1
|
Chen S, Liu H, Sun Y, Li S, Shi Y, Cheng Z, Zhu H, Sun H. Phthalate Biomarkers Composition in Relation to Fatty Liver: Evidence from Epidemiologic and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171607. [PMID: 38461993 DOI: 10.1016/j.scitotenv.2024.171607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Phthalates, classified as environmental endocrine disruptors, pose potential toxicity risks to human health. Metabolic dysfunction-associated fatty liver disease is one of the most widespread liver diseases globally. Compared to studies focusing on metabolic disorders in relation to pollutants exposure, the impact of individual factors such as fatty liver on the in vivo metabolism of pollutants is always overlooked. Therefore, this study measured concentrations and composition of phthalate monoesters (mPAEs) in human urine samples, particularly those from fatty liver patients. Furthermore, we induced fatty liver in male Wistar rats by formulating a high-fat diet for twelve weeks. After administering a single dose of DEHP at 500 mg/kg bw through gavage, we compared the levels of di-2-ethylhexyl phthalate (DEHP), its metabolites (mDEHPs) and three hepatic metabolic enzymes, namely cytochrome P450 enzymes (CYP450), UDP glucuronosyltransferase 1 (UGT1), and carboxylesterase 1 (CarE1), between the normal and fatty liver rat groups. Compared to healthy individuals (n = 75), fatty liver patients (n = 104) exhibited significantly lower urinary concentrations of ∑mPAEs (median: 106 vs. 166 ng/mL), but with a higher proportion of mono-2-ethylhexyl phthalate in ∑mDEHPs (25.7 % vs. 9.9 %) (p < 0.05). In the animal experiment, we found that fatty liver in rats prolonged the elimination half-life of DEHP (24.61 h vs. 18.89 h) and increased the contents of CYP450, CarE1, and UGT1, implying the common but differentiated metabolism of DEHP as excess lipid accumulation in liver cells. This study provides valuable information on how to distinguish populations in biomonitoring studies across a diverse population and in assigning exposure classifications of phthalates or similar chemicals in epidemiologic studies.
Collapse
Affiliation(s)
- Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulian Sun
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuxian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yixuan Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Nghiem-Rao TH, Johnson JS, Pan A, Atkinson SN, Behling C, Simpson PM, Holtz ML, Weinstock GM, Schwimmer JB, Salzman NH. A serum-induced gene signature in hepatocytes is associated with pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2024; 78:886-897. [PMID: 38390691 PMCID: PMC11967236 DOI: 10.1002/jpn3.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD. METHODS We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns. RESULTS Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD. CONCLUSION The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.
Collapse
Affiliation(s)
- T. Hang Nghiem-Rao
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI
| | - Jethro S. Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Amy Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Cynthia Behling
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA
- Department of Pathology, Sharp Medical Center, San Diego, CA
| | - Pippa M. Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Mary L. Holtz
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI
| | - George M. Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA
| | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Dietrich CG, Geier A. What is the impact of metabolic dysfunction-associated steatotic liver disease on drug transport and metabolism? Expert Opin Drug Metab Toxicol 2024; 20:107-110. [PMID: 38412106 DOI: 10.1080/17425255.2024.2324015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Affiliation(s)
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg (UKW), Würzburg, Germany
| |
Collapse
|
4
|
Vaughns JD, McCullough-Roach R, Williams EF, Nadler EP. Child and Adolescent Bariatric Surgery in an Urban Tertiary Center: Special Anesthetic Considerations for Obesity. J Clin Pharmacol 2023; 63 Suppl 2:S103-S109. [PMID: 37942911 DOI: 10.1002/jcph.2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Children and adolescents with obesity who present for weight loss surgery are a unique subset of patients. A thorough understanding of the perioperative needs of these individuals is essential to avoid deleterious complications. This review illustrates the necessity for specialized care, including the continued need of specified drug dosing and a systematic approach in the management of the pediatric bariatric patient.
Collapse
Affiliation(s)
- Janelle D Vaughns
- Divisions of Anesthesiology, Pain and Perioperative Medicine, and Clinical Pharmacology, Children's National Hospital, The George Washington University, Washington, DC, USA
| | | | - Elaine F Williams
- Division of Clinical Pharmacology, Children's National Hospital, The George Washington University, Washington, DC, USA
| | - Evan P Nadler
- Division of Surgery, Children's National Hospital, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Gouju J, Legeay S. Pharmacokinetics of obese adults: Not only an increase in weight. Biomed Pharmacother 2023; 166:115281. [PMID: 37573660 DOI: 10.1016/j.biopha.2023.115281] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity is a pathophysiological state defined by a body mass index > 30 kg/m2 and characterized by an adipose tissue accumulation leading to an important weight increased. Several pathologies named comorbidities such as cardiovascular disease, type 2 diabetes and cancer make obesity the fifth cause of death in the world. Physiological changes impact the four main phases of pharmacokinetics of some drugs and leads to an inappropriate drug-dose. For absorption, the gastrointestinal transit is accelerated, and the gastric empty time is shortened, that can reduce the solubilization and absorption of some oral drugs. The drug distribution is probably the most impacted by the obesity-related changes because the fat mass (FM) increases at the expense of the lean body weight (LBW), leading to an important increase of the volume of distribution for lipophilic drugs and a low or moderately increase of this parameter for hydrophilic drugs. This modification of the distribution may require drug-dose adjustments. By various mechanisms, the metabolism and elimination of drugs are impacted by obesity and should be considered as similar or lower than that non-obese patients. To better understand the necessary drug-dose adjustments in obese patients, a narrative review of the literature was conducted to highlight the main elements to consider in the therapeutic management of adult obese patients.
Collapse
Affiliation(s)
- Julien Gouju
- MINT, INSERM U1066, CNRS 6021, UNIV Angers, SFR-ICAT 4208, IBS-CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France; CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France.
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, UNIV Angers, SFR-ICAT 4208, IBS-CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France
| |
Collapse
|
6
|
Anderson BJ, Cortinez LI. Perioperative Acetaminophen Dosing in Obese Children. CHILDREN 2023; 10:children10040625. [PMID: 37189874 DOI: 10.3390/children10040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acetaminophen is a commonly used perioperative analgesic drug in children. The use of a preoperative loading dose achieves a target concentration of 10 mg/L associated with a target analgesic effect that is 2.6 pain units (visual analogue scale 1–10). Postoperative maintenance dosing is used to keep this effect at a steady-state concentration. The loading dose in children is commonly prescribed per kilogram. That dose is consistent with the linear relationship between the volume of distribution and total body weight. Total body weight is made up of both fat and fat-free mass. The fat mass has little influence on the volume of distribution of acetaminophen but fat mass should be considered for maintenance dosing that is determined by clearance. The relationship between the pharmacokinetic parameter, clearance, and size is not linear. A number of size metrics (e.g., fat-free and normal fat mass, ideal body weight and lean body weight) have been proposed to scale clearance and all consequent dosing schedules recognize curvilinear relationships between clearance and size. This relationship can be described using allometric theory. Fat mass also has an indirect influence on clearance that is independent of its effects due to increased body mass. Normal fat mass, used in conjunction with allometry, has proven a useful size metric for acetaminophen; it is calculated using fat-free mass and a fraction (Ffat) of the additional mass contributing to total body weight. However, the Ffat for acetaminophen is large (Ffat = 0.82), pharmacokinetic and pharmacodynamic parameter variability high, and the concentration–response slope gentle at the target concentration. Consequently, total body weight with allometry is acceptable for the calculation of maintenance dose. The dose of acetaminophen is tempered by concerns about adverse effects, notably hepatotoxicity associated with use after 2–3 days at doses greater than 90 mg/kg/day.
Collapse
|
7
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
8
|
Holladay J, Winch P, Morse J, Anderson BJ, McKee CT, Rice-Weimer J, Tobias JD. Acetaminophen pharmacokinetics in infants and children with congenital heart disease. Paediatr Anaesth 2023; 33:46-51. [PMID: 36264219 PMCID: PMC10100048 DOI: 10.1111/pan.14579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Acetaminophen is routinely used for perioperative analgesia in children undergoing major surgical procedures. There are few estimates of acetaminophen pharmacokinetic parameters in children with congenital heart disease, especially those with cyanotic heart disease. AIMS The current study prospectively investigated differences in acetaminophen pharmacokinetics following surgery using cardiopulmonary bypass in children with cyanotic and acyanotic congenital heart disease. METHODS Children (2-6 years, 9-23 kg) presenting for median sternotomy for Fontan palliation (cyanotic patients) or two ventricle surgical repair (acyanotic patients) were eligible for inclusion. A single intravenous dose of acetaminophen (15 mg/kg) was administered at the start of sternal closure after separation from cardiopulmonary bypass. The time-course of acetaminophen concentrations were described using non-linear mixed effects models. One and two-compartment disposition models with first-order elimination were tested. Pharmacokinetic parameter estimates were scaled using allometry and standardized to a 70 kg person. RESULTS There were 208 acetaminophen concentrations assayed from 30 children, 15 with cyanotic, and 15 with acyanotic heart disease. A 2-compartment model best described acetaminophen PK. Parameter estimates (population parameter variability, PPV%; 95% confidence interval, CI) were clearance CL 15.3 L.h-1.70 kg-1 (22.2%; 13.8-16.7), intercompartment clearance Q 45.4 L.h-1.70 kg-1 (22.4%; 25.2-61.9), central volume of distribution V1 33.5 L.70 kg-1 (23.2%; 25.9-38.8), peripheral volume of distribution V2 32.1 L.70 kg-1 (21.7%; 25.9-38.8). Neither clearance nor volume parameters differed between cyanotic and acyanotic patients. CONCLUSIONS Acetaminophen pharmacokinetics were characterized using a 2-compartment model with first-order elimination following cardiac bypass surgery in children. Population pharmacokinetic parameter estimates were similar to other studies in children. No differences were detected between patients with cyanotic and acyanotic heart disease.
Collapse
Affiliation(s)
- Jay Holladay
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter Winch
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James Morse
- Department of Anesthesiology, University of Auckland, Auckland, New Zealand
| | - Brian J Anderson
- Department of Anesthesiology, University of Auckland, Auckland, New Zealand
| | - Christopher T McKee
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Julie Rice-Weimer
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
9
|
Short-Term High-Fat Diet Alters Acetaminophen Metabolism in Healthy Individuals. Ther Drug Monit 2022; 44:797-804. [PMID: 35500453 DOI: 10.1097/ftd.0000000000000993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Acetaminophen is metabolized through a nontoxic sulfation and glucuronidation pathway and toxic oxidation pathway (via CYP2E1 and CYP1A2). A short-term high-fat diet induces alterations in the steatotic liver and may alter hepatic drug enzyme activity. In the case of acetaminophen, these alterations may result in an increased risk of hepatotoxicity. Therefore, this study was conducted to assess the effect of a 3-day hypercaloric high-fat diet on the plasma levels of acetaminophen metabolites. METHODS Nine healthy subjects participated in this randomized, crossover intervention study. The subjects consumed a regular diet or a regular diet supplemented with 500 mL of cream (1700 kcal) for 3 days and then fasted overnight. After ingesting 1000-mg acetaminophen, the plasma concentration of acetaminophen (APAP) and its metabolites [acetaminophen glucuronide, acetaminophen sulfate, 3-cysteinyl-acetaminophen, and 3-(N-acetyl-L-cystein-S-yl)-acetaminophen, and 3-methoxy-acetaminophen] were measured. RESULTS The 3-day high-fat diet increased the extrapolated area under the concentration-time curve from 0 to infinity (area under the curve 0-inf ) of APAP-Cys by approximately 20% ( P = 0.02) and that from 0 to 8 hours (area under the curve 0-8 ) of APAP-Cys-NAC by approximately 39% ( P = 0.01). The 3-day high-fat diet did not alter the pharmacokinetic parameters of the parent compound acetaminophen and other metabolites. CONCLUSIONS A short-term, hypercaloric, high-fat diet increases the plasma levels of the APAP metabolites formed by the oxidation pathway, which may increase the risk of hepatotoxicity.
Collapse
|
10
|
Gerhart JG, Balevic S, Sinha J, Perrin EM, Wang J, Edginton AN, Gonzalez D. Characterizing Pharmacokinetics in Children With Obesity-Physiological, Drug, Patient, and Methodological Considerations. Front Pharmacol 2022; 13:818726. [PMID: 35359853 PMCID: PMC8960278 DOI: 10.3389/fphar.2022.818726] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Childhood obesity is an alarming public health problem. The pediatric obesity rate has quadrupled in the past 30 years, and currently nearly 20% of United States children and 9% of children worldwide are classified as obese. Drug distribution and elimination processes, which determine drug exposure (and thus dosing), can vary significantly between patients with and without obesity. Obesity-related physiological changes, such as increased tissue volume and perfusion, altered blood protein concentrations, and tissue composition can greatly affect a drug's volume of distribution, which might necessitate adjustment in loading doses. Obesity-related changes in the drug eliminating organs, such as altered enzyme activity in the liver and glomerular filtration rate, can affect the rate of drug elimination, which may warrant an adjustment in the maintenance dosing rate. Although weight-based dosing (i.e., in mg/kg) is commonly practiced in pediatrics, choice of the right body size metric (e.g., total body weight, lean body weight, body surface area, etc.) for dosing children with obesity still remains a question. To address this gap, the interplay between obesity-related physiological changes (e.g., altered organ size, composition, and function), and drug-specific properties (e.g., lipophilicity and elimination pathway) needs to be characterized in a quantitative framework. Additionally, methodological considerations, such as adequate sample size and optimal sampling scheme, should also be considered to ensure accurate and precise top-down covariate selection, particularly when designing opportunistic studies in pediatric drug development. Further factors affecting dosing, including existing dosing recommendations, target therapeutic ranges, dose capping, and formulations constraints, are also important to consider when undergoing dose selection for children with obesity. Opportunities to bridge the dosing knowledge gap in children with obesity include modeling and simulating techniques (i.e., population pharmacokinetic and physiologically-based pharmacokinetic [PBPK] modeling), opportunistic clinical data, and real world data. In this review, key considerations related to physiology, drug parameters, patient factors, and methodology that need to be accounted for while studying the influence of obesity on pharmacokinetics in children are highlighted and discussed. Future studies will need to leverage these modeling opportunities to better describe drug exposure in children with obesity as the childhood obesity epidemic continues.
Collapse
Affiliation(s)
- Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen Balevic
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eliana M. Perrin
- Department of Pediatrics, Johns Hopkins University Schools of Medicine and School of Nursing, Baltimore, MD, United States
| | - Jian Wang
- Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Roy H, Bertoldi C, Farrell C, Rousseau E. Prescribing drugs to overweight and obese children: Balancing efficacy and safety. Paediatr Child Health 2021; 26:e236-e239. [PMID: 34552680 DOI: 10.1093/pch/pxaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 09/05/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Helene Roy
- CHU Sainte Justine/University of Montreal, Montreal, Quebec
| | | | | | | |
Collapse
|
12
|
Sjöstedt N, Neuhoff S, Brouwer KL. Physiologically-Based Pharmacokinetic Model of Morphine and Morphine-3-Glucuronide in Nonalcoholic Steatohepatitis. Clin Pharmacol Ther 2021; 109:676-687. [PMID: 32897538 PMCID: PMC7902445 DOI: 10.1002/cpt.2037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease, is increasing in prevalence. NASH-related alterations in hepatic protein expression (e.g., transporters) and in overall physiology may affect drug exposure by altering drug disposition and elimination. The aim of this study was to build a physiologically-based pharmacokinetic (PBPK) model to predict drug exposure in NASH by incorporating NASH-related changes in hepatic transporters. Morphine and morphine-3-glucuronide (M3G) were used as model compounds. A PBPK model of morphine with permeability-limited hepatic disposition was extended to include M3G disposition and enterohepatic recycling (EHR). The model captured the area under the plasma concentration-time curve (AUC) of morphine and M3G after intravenous morphine administration within 0.82-fold and 1.94-fold of observed values from 3 independent clinical studies for healthy adult subjects (6, 10, and 14 individuals). When NASH-related changes in multidrug resistance-associated protein 2 (MRP2) and MRP3 were incorporated into the model, the predicted M3G mean AUC in NASH was 1.34-fold higher compared to healthy subjects, which is slightly lower than the observed value (1.63-fold). Exploratory simulations on other physiological changes occurring in NASH (e.g., moderate decreases in glomerular filtration rate and portal vein blood flow) revealed that the effect of transporter changes was most prominent. Additionally, NASH-related transporter changes resulted in decreased morphine EHR, which could be important for drugs with extensive EHR. This study is an important first step to predict drug disposition in complex diseases such as NASH using PBPK modeling.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| | - Sibylle Neuhoff
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| |
Collapse
|
13
|
Zempsky WT, Bhagat PK, Siddiqui K. Practical Challenges-Use of Paracetamol in Children and Youth Who are Overweight or Obese: A Narrative Review. Paediatr Drugs 2020; 22:525-534. [PMID: 32918268 PMCID: PMC7529628 DOI: 10.1007/s40272-020-00417-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, > 380 million children and adolescents are overweight or obese, including 41 million children aged < 5 years. Obesity can change the pharmacokinetic properties of drugs by altering their distribution, metabolism, and elimination. Thus, children who are overweight or obese are at increased risk for receiving inappropriate doses of commonly used drugs, which can result in treatment failure, adverse events, and/or drug toxicity. This review analyzes available data on paracetamol dosing for pain and fever in children and adolescents who are overweight or obese to identify gaps and challenges in optimal dosing strategies. Literature searches using Medline, Embase, and ClinicalTrials.gov were conducted to identify English-language articles reporting paracetamol pharmacokinetics, dosing practices, and guidelines in children and adolescents who are overweight or obese. Of 24 relevant studies identified, 20 were specific to overweight/obese individuals and 15 were specific to children and/or adolescents. Data on paracetamol pharmacokinetics in children and adolescents who are overweight or obese are lacking, and there is no high-quality evidence to guide paracetamol prescribing practices in these patients. Adult data have been extrapolated to pediatric populations; however, extrapolation does not address differences in paracetamol metabolism in adults versus children; the efficacy and safety effects of such differences are unknown. Given the growing worldwide prevalence of obesity in children and adolescents and the likelihood that paracetamol use in this population will increase accordingly, obesity-specific pediatric dosing guidelines for paracetamol are urgently needed. High-quality research is necessary to inform such guidelines.
Collapse
Affiliation(s)
- William T Zempsky
- Department of Pediatrics, Connecticut Children's Medical Center, University of Connecticut, 282 Washington St, Hartford, CT, 06106, USA.
| | - Preeti K Bhagat
- Consumer Healthcare R & D, GlaxoSmithKline Consumer Healthcare, Singapore, Singapore
| | - Kamran Siddiqui
- Consumer Healthcare R & D, GlaxoSmithKline Consumer Healthcare, Singapore, Singapore
| |
Collapse
|
14
|
Dosage adjustment in obese children, even for common drugs, is largely unclear and a treat-to-effect approach may work best. DRUGS & THERAPY PERSPECTIVES 2020. [DOI: 10.1007/s40267-020-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Ameer B, Weintraub MA. Dosing Common Medications in Hospitalized Pediatric Patients with Obesity: A Review. Obesity (Silver Spring) 2020; 28:1013-1022. [PMID: 32441477 DOI: 10.1002/oby.22739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
Abstract
Medication management in children and adolescents with obesity is challenging because both developmental and pathophysiological changes may impact drug disposition and response. Evidence to date indicates an effect of obesity on drug disposition for certain drugs used in this population. This work identified published studies evaluating drug dosing, pharmacokinetics (PK), and effect in pediatric patients with obesity, focusing on 70 common medications used in a pediatric network of 42 US medical centers. A PubMed search revealed 33 studies providing PK and/or effectiveness data for 23% (16 of 70) of medications, 44% of which have just one study and can be considered exploratory. This work appraising 4 decades of literature shows several promising approaches: greater use of PK models applied to prospective clinical studies, dosing recommendations derived from both PK and safety, and multiyear effectiveness data on drugs for chronic conditions (e.g., asthma). Most studies make dose recommendations but are weakened by retrospective study design, small study populations, and no controls or historic controls. Dosing decisions continue to rely on extrapolating knowledge, including targeting systemic drug exposure typically achieved in adults. Optimal weight-based dosing strategies vary by drug and warrant prospective, controlled studies incorporating PK and modeling and simulation to complement clinical assessment.
Collapse
Affiliation(s)
- Barbara Ameer
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Michael A Weintraub
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
García-Román R, Francés R. Acetaminophen-Induced Liver Damage in Hepatic Steatosis. Clin Pharmacol Ther 2019; 107:1068-1081. [PMID: 31638270 DOI: 10.1002/cpt.1701] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
One of the most used painkillers is acetaminophen (APAP), which is safe at the right dose. However, several studies have described populations susceptible to APAP-induced liver damage, mainly in livers with steatosis. Thus, clinicians should consider the presence of obesity and other chronic liver diseases like nonalcoholic fatty liver disease (NAFLD) when indicating treatment with APAP. Liver damage from this drug is generated through its metabolite N-acetyl-p-benzoquinone imine, which is detoxified with glutathione (GSH). Prior depletion of GSH in steatotic hepatocytes plays a key role in APAP-induced hepatotoxicity in people with obesity and NAFLD. The knowledge about the damage to the liver or APAP in susceptible people like the obese and those with NAFLD is of great relevance for the sanitary sector because it would imply strategies of different therapeutic approach in such patients. This paper reviews the role of APAP in liver damage in the presence of obesity, NAFLD, and nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
| | - Rubén Francés
- Liver and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan Alicante, Spain.,ISABIAL-FISABIO Foundation, General University Hospital of Alicante, Alicante, Spain.,CIBERehd, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Kyler KE, Wagner J, Hosey-Cojocari C, Watt K, Shakhnovich V. Drug Dose Selection in Pediatric Obesity: Available Information for the Most Commonly Prescribed Drugs to Children. Paediatr Drugs 2019; 21:357-369. [PMID: 31432433 PMCID: PMC7681556 DOI: 10.1007/s40272-019-00352-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity rates continue to rise in children, and little guidance exists regarding the need for adjustment away from total body weight-based doses for those prescribing drugs to this population of children. A majority of drugs prescribed to children with obesity result in either sub-therapeutic or supra-therapeutic concentrations, placing these children at risk for treatment failure and drug toxicities. In this review, we highlight available obesity-specific pharmacokinetic and dosing information for the most frequently prescribed drugs to children in the inpatient and outpatient clinical settings. We also comment on available dosing recommendations for drugs prescribed to treat common pediatric obesity-related comorbidities. This review highlights that there is no safe or proven 'rule of thumb,' for dosing drugs for children with obesity, and a striking lack of pharmacokinetic data to support the creation of dosing guidelines for children with obesity for the most commonly prescribed drugs. It is important that those prescribing for children with obesity are aware of these gaps in knowledge and of potential drug treatment failure or adverse events related to drug toxicity as a result of these knowledge gaps. Until more data are available, we recommend close monitoring of drug response and adverse events in children with obesity receiving commonly prescribed drugs.
Collapse
Affiliation(s)
- Kathryn E Kyler
- Children's Mercy Kansas City, 2401 Gillham Rd., Kansas City, MO, 64108, USA.
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Jonathan Wagner
- Children's Mercy Kansas City, 2401 Gillham Rd., Kansas City, MO, 64108, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Kevin Watt
- Duke University Medical Center, Durham, NC, USA
| | - Valentina Shakhnovich
- Children's Mercy Kansas City, 2401 Gillham Rd., Kansas City, MO, 64108, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
18
|
Kumar A, Purohit B, Mahato K, Mandal R, Srivastava A, Chandra P. Gold‐Iron Bimetallic Nanoparticles Impregnated Reduced Graphene Oxide Based Nanosensor for Label‐free Detection of Biomarker Related to Non‐alcoholic Fatty Liver Disease. ELECTROANAL 2019. [DOI: 10.1002/elan.201900337] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ashutosh Kumar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology Guwahati, Guwahati- 781039 Assam India
| | - Buddhadev Purohit
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology Guwahati, Guwahati- 781039 Assam India
| | - Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology Guwahati, Guwahati- 781039 Assam India
| | - Riddhipratim Mandal
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology Guwahati, Guwahati- 781039 Assam India
| | - Ananya Srivastava
- Department of Pharmacology and ToxicologyNIPER Guwahati, Guwahati- 781125 Assam India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology Guwahati, Guwahati- 781039 Assam India
| |
Collapse
|
19
|
Zimmerman KO, Benjamin DK, Becker ML, Anand R, Hornik CP. Product Labeling of Drugs Commonly Administered to Children and Adults with Obesity. PHARMACEUTICAL REGULATORY AFFAIRS : OPEN ACCESS 2019; 8:219. [PMID: 37220561 PMCID: PMC10201954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Obesity is a major public health problem that can affect drug disposition and dosing, particularly in vulnerable pediatric populations. Despite potentially detrimental consequences from inappropriately dosed drugs in children with obesity, drug product labels largely fail to include dosing or guidance specific to this population. Failure to include this information results in an increased incidence of adverse events, and concerns from treating physicians regarding their ability to provide appropriate care for children with obesity. Using data from the National Institute of Child Health and Human Development-funded Pediatric Trials Network (PTN), we explore possible ways to improve drug labeling in children with obesity. In order to improve health outcomes of children with obesity, carefully designed and executed PK trials and comprehensive PK analysis strategies are needed. Early collaboration with the Food and Drug Administration may be helpful in developing studies and analyses that are most beneficial for child health. This collaboration is particularly important for drugs that treat potentially life-threatening diseases, where inclusion of PK and dosing on the drug label is vital. We hope that increasing the body of knowledge on drug dosing in children with obesity will open the door to regulatory guidance based on extrapolation or population-specific PK studies, similar to other currently-recognized special populations. Given the magnitude of the pediatric obesity pandemic, recognition as a special population will offer substantial public health value.
Collapse
Affiliation(s)
- Kanecia O. Zimmerman
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Daniel K. Benjamin
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Mara L. Becker
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO
| | | | - Christoph P. Hornik
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
20
|
Hakim M, Anderson BJ, Walia H, Tumin D, Michalsky MP, Syed A, Tobias JD. Acetaminophen pharmacokinetics in severely obese adolescents and young adults. Paediatr Anaesth 2019; 29:20-26. [PMID: 30484909 DOI: 10.1111/pan.13525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intravenous acetaminophen is commonly administered as an adjunctive to opioids during major surgical procedures, but neither the correct pharmacokinetic size descriptor nor the dose is certain in severely obese adolescents undergoing bariatric surgery. METHODS Adolescents, 14-20 years of age, with a body mass index (BMI) ≥95th percentile for age and sex or BMI ≥40 kg·m-2 , presenting for laparoscopic or robotic assisted or vertical sleeve gastrectomy were administered intravenous acetaminophen (1000 mg) following completion of the surgical procedure. Venous blood was drawn for acetaminophen assay at eight time points, starting 15 minutes after completion of the infusion and up to 12 hours afterward. Time-concentration data profiles were analyzed using nonlinear mixed effects models. Parameter estimates were scaled to a 70-kg person using allometry. Normal fat mass was used to assess the impact of obesity on pharmacokinetic parameters. RESULTS The study cohort comprised 11 female patients, age 17 SD 2 years with a weight of 125 SD 19 kg and a mean BMI of 46 SD 5 kg·m-2 . The plasma acetaminophen serum concentration was 17 (SD 4) μg·mL-1 at 10-20 minutes after completion of the infusion and 5 (SD 6) μg·mL-1 at 80-100 minutes. A two-compartment model, used to investigate pharmacokinetics, estimated clearance 10.6 (CV 72%) L·h·70 kg-1 , intercompartment clearance 37.3 (CV 63%) L·h·70 kg-1 , central volume of distribution 20.4 (CV 46%) L·70 kg-1 , and peripheral volume of distribution 16.8 (CV 42%) L·70 kg-1 . Clearance was best described using total body weight. Normal fat mass with a parameter that accounts for fat mass contribution (Ffat) of 0.88 best described volumes. CONCLUSION Current recommendations of acetaminophen to a maximum dose of 1000 mg resulted in serum concentrations below detection limits in all patients within 2 hours after administration. Dose is better predicted using total body mass with allometric scaling.
Collapse
Affiliation(s)
- Mohammed Hakim
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Brian J Anderson
- Department of Anesthesiology, University of Auckland, Auckland, New Zealand
| | - Hina Walia
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Dmitry Tumin
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Marc P Michalsky
- Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Ahsan Syed
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
21
|
Ameer B, Weintraub MA. Pediatric Obesity: Influence on Drug Dosing and Therapeutics. J Clin Pharmacol 2018; 58 Suppl 10:S94-S107. [DOI: 10.1002/jcph.1092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Barbara Ameer
- Department of Medicine; Rutgers - Robert Wood Johnson Medical School; Piscataway NJ USA
| | - Michael A. Weintraub
- Department of Medicine; Thomas Jefferson University Hospitals; Philadelphia PA USA
| |
Collapse
|
22
|
Tirona RG, Kassam Z, Strapp R, Ramu M, Zhu C, Liu M, Schwarz UI, Kim RB, Al-Judaibi B, Beaton MD. Apixaban and Rosuvas--tatin Pharmacokinetics in Nonalcoholic Fatty Liver Disease. Drug Metab Dispos 2018; 46:485-492. [PMID: 29472495 DOI: 10.1124/dmd.117.079624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
There is little known about the impact of nonalcoholic fatty liver disease (NAFLD) on drug metabolism and transport. We examined the pharmacokinetics of oral apixaban (2.5 mg) and rosuvastatin (5 mg) when administered simultaneously in subjects with magnetic resonance imaging-confirmed NAFLD (N = 22) and healthy control subjects (N = 12). The area under the concentration-time curve to the last sampling time (AUC0-12) values for apixaban were not different between control and NAFLD subjects (671 and 545 ng/ml × hour, respectively; P = 0.15). Similarly, the AUC0-12 values for rosuvastatin did not differ between the control and NAFLD groups (25.4 and 20.1 ng/ml × hour, respectively; P = 0.28). Furthermore, hepatic fibrosis in NAFLD subjects was not associated with differences in apixaban or rosuvastatin pharmacokinetics. Decreased systemic exposures for both apixaban and rosuvastatin were associated with increased body weight (P < 0.001 and P < 0.05, respectively). In multivariable linear regression analyses, only participant weight but not NAFLD, age, or SLCO1B1/ABCG2/CYP3A5 genotypes, was associated with apixaban and rosuvastatin AUC0-12 (P < 0.001 and P = 0.06, respectively). NAFLD does not appear to affect the pharmacokinetics of apixaban or rosuvastatin.
Collapse
Affiliation(s)
- Rommel G Tirona
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Zahra Kassam
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Ruth Strapp
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Mala Ramu
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Catherine Zhu
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Melissa Liu
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Ute I Schwarz
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Richard B Kim
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Bandar Al-Judaibi
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| | - Melanie D Beaton
- Department of Physiology and Pharmacology (R.G.T., C.Z., U.I.S, R.B.K.), Division of Clinical Pharmacology, Department of Medicine (R.G.T., C.Z., M.L., U.I.S., R.B.K.), Department of Medical Imaging (Z.K.), Division of Gastroenterology, Department of Medicine (B.A.-J., M.D.B.), and Lawson Health Research Institute (R.G.T., Z.K., R.S., M.R., U.I.S., R.B.K., M.D.B.), University of Western Ontario, London, Ontario, Canada; and Department of Medicine, University of Rochester, Rochester, New York (B.A.-J.)
| |
Collapse
|
23
|
Li H, Toth E, Cherrington NJ. Asking the Right Questions With Animal Models: Methionine- and Choline-Deficient Model in Predicting Adverse Drug Reactions in Human NASH. Toxicol Sci 2018; 161:23-33. [PMID: 29145614 PMCID: PMC6454421 DOI: 10.1093/toxsci/kfx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, great conceptual and technological advances have been made in the field of toxicology, but animal model-based research still remains one of the most widely used and readily available tools for furthering our current knowledge. However, animal models are not perfect in predicting all systemic toxicity in humans. Extrapolating animal data to accurately predict human toxicities remains a challenge, and researchers are obligated to question the appropriateness of their chosen animal model. This paper provides an assessment of the utility of the methionine- and choline-deficient (MCD) diet fed animal model in reflecting human nonalcoholic steatohepatitis (NASH) and the potential risks of adverse drug reactions and toxicities that are associated with the disease. As a commonly used NASH model, the MCD model fails to exhibit most metabolic abnormalities in a similar manner to the human disease. The MCD model, on the other hand, closely resembles human NASH histology and reflects signatures of drug transporter alterations in humans. Due to the nature of the MCD model, it should be avoided in studies of NASH pathogenesis, metabolic parameter evaluation, and biomarker identification. But it can be used to accurately predict altered drug disposition due to NASH-associated transporter alterations.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Erica Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
24
|
Li H, Canet MJ, Clarke JD, Billheimer D, Xanthakos SA, Lavine JE, Erickson RP, Cherrington NJ. Pediatric Cytochrome P450 Activity Alterations in Nonalcoholic Steatohepatitis. Drug Metab Dispos 2017; 45:1317-1325. [PMID: 28986475 PMCID: PMC5697442 DOI: 10.1124/dmd.117.077644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 01/01/2023] Open
Abstract
Variable drug responses depend on individual variation in the activity of drug-metabolizing enzymes, including cytochrome P450 enzymes (CYP). As the most common chronic liver disease in children and adults, nonalcoholic steatohepatitis (NASH) has been identified as a source of significant interindividual variation in hepatic drug metabolism. Compared with adults, children present age-related differences in pharmacokinetics and pharmacodynamics. The purpose of this study was to determine the impact of fatty liver disease severity on the activity of a variety of CYP enzymes in children and adolescents. Healthy and nonalcoholic fatty liver disease pediatric subjects aged 12-21 years inclusive received an oral cocktail of four probe drugs: caffeine (CYP1A2, 100 mg), omeprazole (CYP2C19, 20 mg), losartan (CYP2C9, 25 mg), and midazolam (CYP3A4, 2 mg). Venous blood and urine were collected before administration and 1, 2, 4, and 6 hours after administration. Concentrations of the parent drugs and CYP-specific metabolites were quantified in plasma and urine using liquid chromatography with tandem mass spectrometry. In plasma, the decreased metabolic area under the curve (AUC) ratio, defined as the metabolite AUC to parent AUC, of omeprazole indicated significant decreases of CYP2C19 (P = 0.002) enzymatic activities in NASH adolescents, while the urine analyses did not show significant differences and were highly variable. A comparison between the present in vivo pediatric studies and a previous ex vivo study in adults indicates distinct differences in the activities of CYP1A2 and CYP2C9. These data demonstrate that pediatric NASH presents an altered pattern of CYP activity and NASH should be considered as a confounder of drug metabolism for certain CYP enzymes. These differences could lead to future investigations that may reveal unexpected variable drug responses that should be considered in pediatric dosage recommendations.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Mark J Canet
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - John D Clarke
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Dean Billheimer
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Stavra A Xanthakos
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Joel E Lavine
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Robert P Erickson
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology (H.L., M.J.C., J.D.C., N.J.C.), Department of Epidemiology and Biostatistics (D.B.), and Department of Pediatrics (R.P.E.), University of Arizona, Tucson, Arizona; Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio (S.A.X.); Columbia University, New York, New York (J.E.L.)
| |
Collapse
|
25
|
van Rongen A, Välitalo PAJ, Peeters MYM, Boerma D, Huisman FW, van Ramshorst B, van Dongen EPA, van den Anker JN, Knibbe CAJ. Morbidly Obese Patients Exhibit Increased CYP2E1-Mediated Oxidation of Acetaminophen. Clin Pharmacokinet 2017; 55:833-847. [PMID: 26818482 PMCID: PMC4916199 DOI: 10.1007/s40262-015-0357-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Acetaminophen (paracetamol) is mainly metabolized via glucuronidation and sulphation, while the minor pathway through cytochrome P450 (CYP) 2E1 is held responsible for hepatotoxicity. In obese patients, CYP2E1 activity is reported to be induced, thereby potentially worsening the safety profile of acetaminophen. The aim of this study was to determine the pharmacokinetics of acetaminophen and its metabolites (glucuronide, sulphate, cysteine and mercapturate) in morbidly obese and non-obese patients. Methods Twenty morbidly obese patients (with a median total body weight [TBW] of 140.1 kg [range 106–193.1 kg] and body mass index [BMI] of 45.1 kg/m2 [40–55.2 kg/m2]) and eight non-obese patients (with a TBW of 69.4 kg [53.4–91.7] and BMI of 21.8 kg/m2 [19.4–27.4]) received 2 g of intravenous acetaminophen. Fifteen blood samples were collected per patient. Population pharmacokinetic modelling was performed using NONMEM. Results In morbidly obese patients, the median area under the plasma concentration–time curve from 0 to 8 h (AUC0–8h) of acetaminophen was significantly smaller (P = 0.009), while the AUC0–8h ratios of the glucuronide, sulphate and cysteine metabolites to acetaminophen were significantly higher (P = 0.043, 0.004 and 0.010, respectively). In the model, acetaminophen CYP2E1-mediated clearance (cysteine and mercapturate) increased with lean body weight [LBW] (population mean [relative standard error] 0.0185 L/min [15 %], P < 0.01). Moreover, accelerated formation of the cysteine and mercapturate metabolites was found with increasing LBW (P < 0.001). Glucuronidation clearance (0.219 L/min [5 %]) and sulphation clearance (0.0646 L/min [6 %]) also increased with LBW (P < 0.001). Conclusion Obesity leads to lower acetaminophen concentrations and earlier and higher peak concentrations of acetaminophen cysteine and mercapturate. While a higher dose may be anticipated to achieve adequate acetaminophen concentrations, the increased CYP2E1-mediated pathway may preclude this dose adjustment. Electronic supplementary material The online version of this article (doi:10.1007/s40262-015-0357-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne van Rongen
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands.,Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Pyry A J Välitalo
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mariska Y M Peeters
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Fokko W Huisman
- Department of Oral and Maxillofacial Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Bert van Ramshorst
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Eric P A van Dongen
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Johannes N van den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington DC, USA.,Department of Pediatric Pharmacology, University Children's Hospital, Basel, Switzerland.,Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands. .,Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
26
|
Takyar V, Nath A, Beri A, Gharib AM, Rotman Y. How healthy are the "Healthy volunteers"? Penetrance of NAFLD in the biomedical research volunteer pool. Hepatology 2017; 66:825-833. [PMID: 28470683 PMCID: PMC5570632 DOI: 10.1002/hep.29247] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Healthy volunteers are crucial for biomedical research. Inadvertent inclusion of subjects with nonalcoholic fatty liver disease (NAFLD) as controls can compromise study validity and subject safety. Given the rising prevalence of NAFLD in the general population, we sought to identify its prevalence and potential impact in volunteers for clinical trials. We conducted a cross-sectional study of subjects who were classified as healthy volunteers between 2011 and 2015 and had no known liver disease. Subjects were classified as presumed NAFLD (pNF; alanine aminotransferase [ALT] level ≥ 20 for women or ≥ 31 for men and body mass index [BMI] > 25 kg/m2 ), healthy non-NAFLD controls (normal ALT and BMI), or indeterminate. A total of 3160 subjects participated as healthy volunteers in 149 clinical trials (1-29 trials per subject); 1732 of these subjects (55%) had a BMI > 25 kg/m2 and 1382 (44%) had abnormal ALT. pNF was present in 881 subjects (27.9%), and these subjects were older than healthy control subjects and had higher triglycerides, low-density lipoprotein cholesterol, and HbA1c and lower high-density lipoprotein cholesterol (P < 0.001 for all). The 149 trials included 101 non-interventional, 33 interventional, and 15 vaccine trials. The impact on study validity of recruiting NAFLD subjects as controls was estimated as likely, probable, and unlikely in 10, 41, and 98 trials, respectively. The proportion of pNF subjects (28%-29%) did not differ by impact. Only 14% of trials used both BMI and ALT for screening. ALT cutoffs for screening were based on local reference values. Grade 3-4 ALT elevations during the study period were rare but more common in pNF subjects than in healthy control subjects (4 versus 1). CONCLUSION NAFLD is common and often overlooked in volunteers for clinical trials, despite its potential impact on subject safety and validity of study findings. Increased awareness of NAFLD prevalence and stricter ALT cutoffs may ameliorate this problem. (Hepatology 2017;66:825-833).
Collapse
Affiliation(s)
- Varun Takyar
- Liver & Energy Metabolism Unit, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Nath
- Liver & Energy Metabolism Unit, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA,Department of Medicine, Medstar Washington Hospital Center, Washington, DC, USA
| | - Andrea Beri
- Laboratory for Informatics Development, Biomedical Translational Research Information System, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed M. Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Unit, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Atilano-Roque A, Roda G, Fogueri U, Kiser JJ, Joy MS. Effect of Disease Pathologies on Transporter Expression and Function. J Clin Pharmacol 2017; 56 Suppl 7:S205-21. [PMID: 27385176 DOI: 10.1002/jcph.768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Transporters are important determinants of drug absorption, distribution, and excretion. The clinical relevance of drug transporters in drug disposition and toxicology depends on their localization in liver, kidney, and brain. There has been growing evidence regarding the importance of disease status on alterations in metabolizing enzymes and transporter proteins. This review focuses on uptake and efflux transporter proteins in liver, kidney, and brain and discusses mechanisms of altered transporter expression and function secondary to disease.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Gavriel Roda
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Uma Fogueri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
28
|
Dalesio NM, Hendrix CW, McMichael DH, Thompson CB, Lee CKK, Pho H, Arias RS, Lynn RR, Galinkin J, Yaster M, Brown RH, Schwartz AR. Effects of Obesity and Leptin Deficiency on Morphine Pharmacokinetics in a Mouse Model. Anesth Analg 2017; 123:1611-1617. [PMID: 27782940 DOI: 10.1213/ane.0000000000001578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. METHODS Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. RESULTS DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). CONCLUSIONS Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- From the *Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; †Department of Otolaryngology/ Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland; ‡Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; §Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; ‖Department of Pharmacy, and Department of Pediatrics, Johns Hopkins Hospital, Baltimore, Maryland ¶Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and #Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
王 鹤, 孙 鹏, 刘 克. 肝脏转运体表达和功能的变化对肝疾病的影响. Shijie Huaren Xiaohua Zazhi 2017; 25:1427-1437. [DOI: 10.11569/wcjd.v25.i16.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
转运体是药物吸收、分布、代谢和排泄的重要决定因素, 在肝脏表达尤为广泛. 肝脏转运体可以摄取大多数内源性物质、营养物质和外源性物质进入肝脏, 在肝脏内经过一系列的代谢转化, 最终将其外排入胆汁, 并由胆汁排到肝外. 越来越多的证据表明, 肝脏疾病状态下转运体的表达和功能会发生改变, 影响药物在体内的处置过程, 进而增加药物相互作用的可能性, 同时加大了疾病药物治疗的难度. 本文从肝脏摄取型和外排型转运体两方面出发, 针对肝脏转运体表达和功能的变化对肝疾病的影响作一综述.
Collapse
|
30
|
Dietrich CG, Rau M, Jahn D, Geier A. Changes in drug transport and metabolism and their clinical implications in non-alcoholic fatty liver disease. Expert Opin Drug Metab Toxicol 2017; 13:625-640. [PMID: 28359183 DOI: 10.1080/17425255.2017.1314461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The incidence of non-alcoholic fatty liver disease (NAFLD) is rising, especially in Western countries. Drug treatment in patients with NAFLD is common since it is linked to other conditions like diabetes, obesity, and cardiovascular disease. Consequently, changes in drug metabolism may have serious clinical implications. Areas covered: A literature search for studies in animal models or patients with obesity, fatty liver, non-alcoholic steatohepatitis (NASH) or NASH cirrhosis published before November 2016 was performed. After discussing epidemiology and animal models for NAFLD, we summarized both basic as well as clinical studies investigating changes in drug transport and metabolism in NAFLD. Important drug groups were assessed separately with emphasis on clinical implications for drug treatment in patients with NAFLD. Expert opinion: Given the frequency of NAFLD even today, a high degree of drug treatment in NAFLD patients appears safe and well-tolerated despite considerable changes in hepatic uptake, distribution, metabolism and transport of drugs in these patients. NASH causes changes in biliary excretion, systemic concentrations, and renal handling of drugs leading to alterations in drug efficacy or toxicity under specific circumstances. Future clinical drug studies should focus on this special patient population in order to avoid serious adverse events in NAFLD patients.
Collapse
Affiliation(s)
- Christoph G Dietrich
- a Bethlehem Center of Health , Department of Medicine , Stolberg/Rhineland , Germany
| | - Monika Rau
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| | - Daniel Jahn
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| | - Andreas Geier
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| |
Collapse
|
31
|
Donepudi AC, Cheng Q, Lu ZJ, Cherrington NJ, Slitt AL. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression. Drug Metab Dispos 2016; 44:518-26. [PMID: 26847773 PMCID: PMC4810770 DOI: 10.1124/dmd.115.066779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/16/2016] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport.
Collapse
Affiliation(s)
- Ajay C Donepudi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Qiuqiong Cheng
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Zhenqiang James Lu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| |
Collapse
|
32
|
Hayward KL, Powell EE, Irvine KM, Martin JH. Can paracetamol (acetaminophen) be administered to patients with liver impairment? Br J Clin Pharmacol 2016; 81:210-22. [PMID: 26460177 PMCID: PMC4833155 DOI: 10.1111/bcp.12802] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
Although 60 years have passed since it became widely available on the therapeutic market, paracetamol dosage in patients with liver disease remains a controversial subject. Fulminant hepatic failure has been a well documented consequence of paracetamol overdose since its introduction, while short and long term use have both been associated with elevation of liver transaminases, a surrogate marker for acute liver injury. From these reports it has been assumed that paracetamol use should be restricted or the dosage reduced in patients with chronic liver disease. We review the factors that have been purported to increase risk of hepatocellular injury from paracetamol and the pharmacokinetic alterations in different pathologies of chronic liver disease which may affect this risk. We postulate that inadvertent under-dosing may result in concentrations too low to enable efficacy. Specific research to improve the evidence base for prescribing paracetamol in patients with different aetiologies of chronic liver disease is needed.
Collapse
Affiliation(s)
- Kelly L. Hayward
- Pharmacy DepartmentPrincess Alexandra HospitalQueensland
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
| | - Elizabeth E. Powell
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
- Department of Gastroenterology and HepatologyPrincess Alexandra HospitalQueensland
| | | | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of NewcastleNew South Wales
- The University of Queensland Diamantina InstituteQueenslandAustralia
| |
Collapse
|
33
|
Harskamp-van Ginkel MW, Hill KD, Becker K, Testoni D, Cohen-Wolkowiez M, Gonzalez D, Barrett JS, Benjamin DK, Siegel DA, Banks P, Watt KM. Drug Dosing and Pharmacokinetics in Children With Obesity: A Systematic Review. JAMA Pediatr 2015; 169:678-85. [PMID: 25961828 PMCID: PMC4494887 DOI: 10.1001/jamapediatrics.2015.132] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Obesity affects nearly one-sixth of US children and results in alterations to body composition and physiology that can affect drug disposition, possibly leading to therapeutic failure or toxic side effects. The depth of available literature regarding obesity's effect on drug safety, pharmacokinetics, and dosing in obese children is unknown. OBJECTIVE To perform a systematic literature review describing the current evidence of the effect of obesity on drug disposition in children. EVIDENCE REVIEW We searched the MEDLINE, Cochrane, and EMBASE databases (January 1, 1970-December 31, 2012) and included studies if they contained data on drug clearance, volume of distribution, or drug concentration in obese children (aged ≤18 years). We compared exposure and weight-normalized volume of distribution and clearance between obese and nonobese children. We explored the association between drug physicochemical properties and clearance and volume of distribution. FINDINGS Twenty studies met the inclusion criteria and contained pharmacokinetic data for 21 drugs. The median number of obese children studied per drug was 10 (range, 1-112) and ages ranged from newborn to 29 years (1 study described pharmacokinetics in children and adults together). Dosing schema varied and were either a fixed dose (6 [29%]) or based on body weight (10 [48%]) and body surface area (4 [19%]). Clinically significant pharmacokinetic alterations were observed in obese children for 65% (11 of 17) of the studied drugs. Pharmacokinetic alterations resulted in substantial differences in exposure between obese and nonobese children for 38% (5 of 13) of the drugs. We found no association between drug lipophilicity or Biopharmaceutical Drug Disposition Classification System class and changes in volume of distribution or clearance due to obesity. CONCLUSIONS AND RELEVANCE Consensus is lacking on the most appropriate weight-based dosing strategy for obese children. Prospective pharmacokinetic trials in obese children are needed to ensure therapeutic efficacy and enhance drug safety.
Collapse
Affiliation(s)
- Margreet W. Harskamp-van Ginkel
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
- Department of Public Health, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin D. Hill
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | - Kristian Becker
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | - Daniela Testoni
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | | | - Daniel Gonzalez
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC
| | - Jeffrey S. Barrett
- Department of Clinical Pharmacology and Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Daniel K. Benjamin
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | - David A. Siegel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Patricia Banks
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | - Kevin M. Watt
- Department of Pediatrics and Duke Clinical Research Institute, Duke University, Durham, NC
| | | |
Collapse
|
34
|
Canet MJ, Merrell MD, Hardwick RN, Bataille AM, Campion SN, Ferreira DW, Xanthakos SA, Manautou JE, A-Kader HH, Erickson RP, Cherrington NJ. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos 2015; 43:829-35. [PMID: 25788542 PMCID: PMC4429682 DOI: 10.1124/dmd.114.062703] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.
Collapse
Affiliation(s)
- Mark J Canet
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Matthew D Merrell
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Rhiannon N Hardwick
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Amy M Bataille
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Sarah N Campion
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Daniel W Ferreira
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Stavra A Xanthakos
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Jose E Manautou
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - H Hesham A-Kader
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Robert P Erickson
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| | - Nathan J Cherrington
- Departments of Pharmacology and Toxicology (M.J.C., M.D.M., R.N.H., N.J.C.) and Pediatrics (H.A.K., R.P.E.), University of Arizona, Tucson, Arizona; School of Pharmacy, University of Connecticut, Storrs, Connecticut (A.M.B., D.W.F., J.E.M.); Drug Safety Research and Development, Pfizer, Inc., New York, New York (S.N.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio (S.A.X.)
| |
Collapse
|
35
|
Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int 2014; 34:e171-9. [PMID: 24575957 DOI: 10.1111/liv.12514] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/10/2014] [Accepted: 02/23/2014] [Indexed: 12/14/2022]
Abstract
Although acetaminophen (APAP) is usually considered as a safe drug, this painkiller can lead to acute liver failure after overdoses. Moreover, there is evidence that the maximum recommended dosage can induce hepatic cytolysis in some individuals. Several predisposing factors appear to enhance the risk and severity of APAP-induced liver injury including chronic alcoholic liver disease and nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions linked to obesity. In contrast, obesity by itself does not seem to be associated with a higher risk of APAP-induced liver injury. Since 1987, seven studies dealt with APAP-induced hepatotoxicity in rodent models of NAFLD and five of them found that this liver disease was associated with higher APAP toxicity. Unfortunately, these studies did not unequivocally established the mechanism(s) whereby NAFLD could favour APAP hepatotoxicity, although some investigations suggested that pre-existent induction of hepatic cytochrome P450 2E1 (CYP2E1) could play a significant role by increasing the generation of N-acetyl-p-benzoquinone imine (NAPQI), the toxic metabolite of APAP. Moreover, pre-existent mitochondrial dysfunction associated with NAFLD could also be involved. In contrast, some investigations suggested that factors that could reduce the risk and severity of APAP hepatotoxicity in obesity and NAFLD include higher hepatic APAP glucuronidation, reduced CYP3A4 activity and increased volume of body distribution. Thus, the occurrence and the outcome of APAP-induced liver injury in an obese individual with NAFLD might depend on a delicate balance between metabolic factors that can be protective and others that favour large hepatic levels of NAPQI.
Collapse
Affiliation(s)
- Anaïs Michaut
- INSERM, U991, Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
36
|
Canet MJ, Cherrington NJ. Drug disposition alterations in liver disease: extrahepatic effects in cholestasis and nonalcoholic steatohepatitis. Expert Opin Drug Metab Toxicol 2014; 10:1209-19. [PMID: 24989624 DOI: 10.1517/17425255.2014.936378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The pharmacokinetics (PK) of drugs and xenobiotics, namely pharmaceuticals, is influenced by a host of factors that include genetics, physiological factors and environmental stressors. The importance of disease on the disposition of xenobiotics has been increasingly recognized among medical professionals for alterations in key enzymes and membrane transporters that influence drug disposition and contribute to the development of adverse drug reactions. AREAS COVERED This review will survey pertinent literature of how liver disease alters the PKs of drugs and other xenobiotics. The focus will be on nonalcoholic steatohepatitis as well as cholestatic liver diseases. A review of basic pharmacokinetic principles, with a special emphasis on xenobiotic metabolizing enzymes and membrane transporters, will be provided. Specifically, examples of how genetic alterations affect metabolism and excretion, respectively, will be highlighted. Lastly, the idea of 'extrahepatic' regulation will be explored, citing examples of how disease manifestation in the liver may affect drug disposition in distal sites, such as the kidney. EXPERT OPINION An expert opinion will be provided highlighting the definite need for data in understanding extrahepatic regulation of membrane transporters in the presence of liver disease and its potential to dramatically alter the PK and toxicokinetic profile of numerous drugs and xenobiotics.
Collapse
Affiliation(s)
- Mark J Canet
- University of Arizona, Department of Pharmacology and Toxicology , 1703 E. Mabel St. Tucson, AZ 85721 , USA
| | | |
Collapse
|
37
|
Diepstraten J, Chidambaran V, Sadhasivam S, Blussé van Oud-Alblas HJ, Inge T, van Ramshorst B, van Dongen EPA, Vinks AA, Knibbe CAJ. An integrated population pharmacokinetic meta-analysis of propofol in morbidly obese and nonobese adults, adolescents, and children. CPT Pharmacometrics Syst Pharmacol 2013; 2:e73. [PMID: 24026252 PMCID: PMC4026632 DOI: 10.1038/psp.2013.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/22/2023] Open
Abstract
This study describes a population pharmacokinetic meta-analysis of propofol to characterize the influence of body size measures and age in morbidly obese and nonobese adults, adolescents, and children. Sixty morbidly obese and nonobese adult patients (55-167 kg; 21-79 years) and 34 morbidly obese and nonobese adolescents and children (37-184 kg; 9-20 years) were included. The results show that clearance increased with total body weight in an allometric function while age was found to influence clearance in a bilinear fashion with two distinct slopes, reflecting an initial increase and subsequent decrease as a result of aging. Using these two functions, the influence of both (over)weight and age on propofol clearance was well characterized, which may provide a basis for dosing across this diverse group of patients.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e73; doi:10.1038/psp.2013.47; advance online publication 11 September 2013.
Collapse
Affiliation(s)
- J Diepstraten
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - V Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - S Sadhasivam
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - T Inge
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - B van Ramshorst
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - E P A van Dongen
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - A A Vinks
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - C A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
- Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| |
Collapse
|
38
|
Effect of caloric restriction and AMPK activation on hepatic nuclear receptor, biotransformation enzyme, and transporter expression in lean and obese mice. Pharm Res 2013; 30:2232-47. [PMID: 23949303 DOI: 10.1007/s11095-013-1140-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/01/2013] [Indexed: 01/06/2023]
Abstract
PURPOSE Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. METHODS mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. RESULTS CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. CONCLUSIONS CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters.
Collapse
|
39
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
40
|
Naik A, Belič A, Zanger UM, Rozman D. Molecular Interactions between NAFLD and Xenobiotic Metabolism. Front Genet 2013; 4:2. [PMID: 23346097 PMCID: PMC3550596 DOI: 10.3389/fgene.2013.00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is a complex multifactorial disease characterized by metabolic deregulations that include accumulation of lipids in the liver, lipotoxicity, and insulin resistance. The progression of NAFLD to non-alcoholic steatohepatitis and cirrhosis, and ultimately to carcinomas, is governed by interplay of pro-inflammatory pathways, oxidative stress, as well as fibrogenic and apoptotic cues. As the liver is the major organ of biotransformation, deregulations in hepatic signaling pathways have effects on both, xenobiotic and endobiotic metabolism. Several major nuclear receptors involved in the transcription and regulation of phase I and II drug metabolizing enzymes and transporters also have endobiotic ligands including several lipids. Hence, hepatic lipid accumulation in steatosis and NAFLD, which leads to deregulated activation patterns of nuclear receptors, may result in altered drug metabolism capacity in NAFLD patients. On the other hand, genetic and association studies have indicated that a malfunction in drug metabolism can affect the prevalence and severity of NAFLD. This review focuses on the complex interplay between NAFLD pathogenesis and drug metabolism. A better understanding of these relationships is a prerequisite for developing improved drug dosing algorithms for the pharmacotherapy of patients with different stages of NAFLD.
Collapse
Affiliation(s)
- Adviti Naik
- Faculty of Computer Sciences and Informatics, University of Ljubljana Ljubljana, Slovenia
| | | | | | | |
Collapse
|
41
|
Gicquel T, Aubert J, Lepage S, Fromenty B, Morel I. Quantitative Analysis of Acetaminophen and its Primary Metabolites in Small Plasma Volumes by Liquid Chromatography-Tandem Mass Spectrometry. J Anal Toxicol 2013; 37:110-6. [DOI: 10.1093/jat/bks139] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Bosilkovska M, Walder B, Besson M, Daali Y, Desmeules J. Analgesics in patients with hepatic impairment: pharmacology and clinical implications. Drugs 2012; 72:1645-69. [PMID: 22867045 DOI: 10.2165/11635500-000000000-00000] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological changes that accompany hepatic impairment alter drug disposition. Porto-systemic shunting might decrease the first-pass metabolism of a drug and lead to increased oral bioavailability of highly extracted drugs. Distribution can also be altered as a result of impaired production of drug-binding proteins or changes in body composition. Furthermore, the activity and capacity of hepatic drug metabolizing enzymes might be affected to various degrees in patients with chronic liver disease. These changes would result in increased concentrations and reduced plasma clearance of drugs, which is often difficult to predict. The pharmacology of analgesics is also altered in liver disease. Pain management in hepatically impaired patients is challenging owing to a lack of evidence-based guidelines for the use of analgesics in this population. Complications such as bleeding due to antiplatelet activity, gastrointestinal irritation, and renal failure are more likely to occur with nonsteroidal anti-inflammatory drugs in patients with severe hepatic impairment. Thus, this analgesic class should be avoided in this population. The pharmacokinetic parameters of paracetamol (acetaminophen) are altered in patients with severe liver disease, but the short-term use of this drug at reduced doses (2 grams daily) appears to be safe in patients with non-alcoholic liver disease. The disposition of a large number of opioid drugs is affected in the presence of hepatic impairment. Certain opioids such as codeine or tramadol, for instance, rely on hepatic biotransformation to active metabolites. A possible reduction of their analgesic effect would be the expected pharmacodynamic consequence of hepatic impairment. Some opioids, such as pethidine (meperidine), have toxic metabolites. The slower elimination of these metabolites can result in an increased risk of toxicity in patients with liver disease, and these drugs should be avoided in this population. The drug clearance of a number of opioids, such as morphine, oxycodone, tramadol and alfentanil, might be decreased in moderate or severe hepatic impairment. For the highly excreted morphine, hydromorphone and oxycodone, an important increase in bioavailability occurs after oral administration in patients with hepatic impairment. Lower doses and/or longer administration intervals should be used when these opioids are administered to patients with liver disease to avoid the risk of accumulation and the potential increase of adverse effects. Finally, the pharmacokinetics of phenylpiperidine opioids such as fentanyl, sufentanil and remifentanil appear to be unaffected in hepatic disease. All opioid drugs can precipitate or aggravate hepatic encephalopathy in patients with severe liver disease, thus requiring cautious use and careful monitoring.
Collapse
Affiliation(s)
- Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 2012; 51:277-304. [PMID: 22448619 DOI: 10.2165/11599410-000000000-00000] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown. In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes. This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults. Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.
Collapse
Affiliation(s)
- Margreke J E Brill
- Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Clark R, Fisher JE, Sketris IS, Johnston GM. Population prevalence of high dose paracetamol in dispensed paracetamol/opioid prescription combinations: an observational study. BMC CLINICAL PHARMACOLOGY 2012; 12:11. [PMID: 22709372 PMCID: PMC3416683 DOI: 10.1186/1472-6904-12-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
Background Paracetamol (acetaminophen) is generally considered a safe medication, but is associated with hepatotoxicity at doses above doses of 4.0 g/day, and even below this daily dose in certain populations. Methods The Nova Scotia Prescription Monitoring Program (NSPMP) in the Canadian province of Nova Scotia is a legislated organization that collects dispensing information on all out-of-hospital prescription controlled drugs dispensed for all Nova Scotia residents. The NSPMP provided data to track all paracetamol/opioids redeemed by adults in Nova Scotia, from July 1, 2005 to June 30, 2010. Trends in the number of adults dispensed these prescriptions and the numbers of prescriptions and tablets dispensed over this period were determined. The numbers and proportions of adults who filled prescriptions exceeding 4.0 g/day and 3.25 g/day were determined for the one-year period July 1, 2009 to June 30, 2010. Data were stratified by sex and age (<65 versus 65+). Results Both the number of prescriptions filled and the number of tablets dispensed increased over the study period, although the proportion of the adult population who filled at least one paracetamol/opioid prescription was lower in each successive one-year period. From July 2009 to June 2010, one in 12 adults (n = 59,197) filled prescriptions for over 13 million paracetamol/opioid tablets. Six percent (n = 3,786) filled prescriptions that exceeded 4.0 g/day and 18.6% (n = 11,008) exceeded 3.25 g/day of paracetamol at least once. These findings exclude non-prescription paracetamol and paracetamol–only prescribed medications. Conclusions A substantial number of individuals who redeem prescriptions for paracetamol/opioid combinations may be at risk of paracetamol-related hepatotoxicity. Healthcare professionals must be vigilant when prescribing and dispensing these medications in order to reduce the associated risks.
Collapse
Affiliation(s)
- Roderick Clark
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|
45
|
More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. COMPARATIVE HEPATOLOGY 2012; 11:1. [PMID: 22524730 PMCID: PMC3416584 DOI: 10.1186/1476-5926-11-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/23/2012] [Indexed: 12/29/2022]
Abstract
Background Type-2 Diabetes is a major health concern in the United States and other Westernized countries, with prevalence increasing yearly. There is a need to better model and predict adverse drug reactions, drug-induced liver injury, and drug efficacy in this population. Because transporters significantly contribute to drug clearance and disposition, it is highly significant to determine whether a severe diabetes phenotype alters drug transporter expression, and whether diabetic mouse models have altered disposition of acetaminophen (APAP) metabolites. Results Transporter mRNA and protein expression were quantified in livers and kidneys of adult C57BKS and db/db mice, which have a severe diabetes phenotype due to a lack of a functional leptin receptor. The urinary excretion of acetaminophen-glucuronide, a substrate for multidrug resistance-associated proteins transporters was also determined. The mRNA expression of major uptake transporters, such as organic anion transporting polypeptide Slco1a1 in liver and kidney, 1a4 in liver, and Slc22a7 in kidney was decreased in db/db mice. In contrast, Abcc3 and 4 mRNA and protein expression was more than 2 fold higher in db/db male mouse livers as compared to C57BKS controls. Urine levels of APAP-glucuronide, -sulfate, and N-acetyl cysteine metabolites were higher in db/db mice. Conclusion A severe diabetes phenotype/presentation significantly altered drug transporter expression in liver and kidney, which corresponded with urinary APAP metabolite levels.
Collapse
Affiliation(s)
- Vijay R More
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | | | | | | | | |
Collapse
|
46
|
Aubert J, Begriche K, Knockaert L, Robin MA, Fromenty B. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin Res Hepatol Gastroenterol 2011; 35:630-7. [PMID: 21664213 DOI: 10.1016/j.clinre.2011.04.015] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Due to the worldwide surge in obesity and type 2 diabetes, the increased incidence of nonalcoholic fatty liver disease (NAFLD) is a major concern for the public health. Indeed, NAFLD encompasses a large spectrum of conditions ranging from fatty liver to nonalcoholic steatohepatitis (NASH), which can progress to cirrhosis in some patients. A better understanding of the mechanisms involved in fatty liver and its progression into NASH is important in order to develop efficient drugs able to alleviate these liver diseases. Although numerous investigations pointed to reactive oxygen species (ROS) as key players in the progression of fatty liver to NASH, their exact source is still uncertain. Besides the mitochondrial respiratory chain, cytochrome P450 2E1 (CYP2E1) has recently emerged as another potentially important cause of ROS overproduction. Indeed, higher hepatic CYP2E1 expression and activity have been frequently observed in the context of obesity and NAFLD. It is currently unknown why CYP2E1 is enhanced in these dysmetabolic diseases, although increased hepatic levels of fatty acids and insulin resistance might play a role. Nonetheless, higher hepatic CYP2E1 could play a significant role in the pathophysiology of NASH by inducing lipid peroxidation and oxidative damage of key cellular components. Moreover, CYP2E1-mediated overproduction of ROS could promote hepatic insulin resistance, which can further aggravate fatty liver. Since a significant amount of CYP2E1 can be located within liver mitochondria, higher levels of CYP2E1 in NAFLD could also have detrimental effects on mitochondrial function. Finally, increased CYP2E1 activity during NAFLD could enhance the susceptibility of some patients to the hepatotoxicity of different xenobiotics through the CYP2E1-mediated generation of harmful reactive metabolites.
Collapse
Affiliation(s)
- J Aubert
- Inserm, U991, Université de Rennes 1, 35000 Rennes, France
| | | | | | | | | |
Collapse
|
47
|
Merrell MD, Cherrington NJ. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 2011; 43:317-34. [PMID: 21612324 DOI: 10.3109/03602532.2011.577781] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-metabolizing enzymes play a vital role in the elimination of the majority of therapeutic drugs. The major organ involved in drug metabolism is the liver. Chronic liver diseases have been identified as a potential source of significant interindividual variation in metabolism. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States, affecting between 60 and 90 million Americans, yet the vast majority of NAFLD patients are undiagnosed. NAFLD encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis and fibrosis. Numerous animal studies have investigated the effects of NAFLD on hepatic gene expression, observing significant alterations in mRNA, protein, and activity levels. Information on the effects of NAFLD in human patients is limited, though several significant investigations have recently been published. Significant alterations in the activity of drug-metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions. With the enormous prevalence of NAFLD, it is conceivable that every drug currently on the market is being given to patients with NAFLD. The current review is intended to present the results from both animal models and human patients, summarizing the observed alterations in the expression and activity of the phase I and II drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, USA
| | | |
Collapse
|