1
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Alyavi AL, Sobirova GN, Abdullaev AO, Shadmanova DA. Ways to overcome difficulties in diagnosing non-alcoholic fatty liver disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:175-181. [DOI: 10.31146/1682-8658-ecg-218-10-175-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The purpose of the study is to evaluate the status and capabilities of modern types of diagnostics of non-alcoholic fatty liver disease as part of a meta-analysis of scientific data. Materials and methods. The literature search was carried out in electronic databases Cochrane Library, PubMed.gov, Elsevier.com, Google Scholar. The analysis of the data obtained was focused on works published between 2010 and 2023 (the bias in the form of later studies was used in isolated cases when it came to fundamental scientometric data). Results. After reviewing 693 scientific papers for duplication and inconsistency, 38 sources were selected. Conclusions. The analysis of scientific data revealed that despite the understanding of the pathogenetic causes of non-alcoholic fatty liver disease and the complexity of this disease, liver biopsy still remains the gold standard for assessing liver health. In this regard, there is a need to introduce accessible non-imaging tools and accurate biomarkers, with the help of which it will be possible not only to make an adequate diagnosis, but also to analyze new treatments for NAFLD in clinical trials.
Collapse
Affiliation(s)
- A. L. Alyavi
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - G. N. Sobirova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - A. O. Abdullaev
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - D. A. Shadmanova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| |
Collapse
|
3
|
Wattacheril J, Kleinstein SE, Shea PR, Wilson LA, Subramanian GM, Myers RP, Lefkowitch J, Behling C, Xanthakos SA, Goldstein DB. Investigating the Relationship Between Rare Genetic Variants and Fibrosis in Pediatric Nonalcoholic Fatty Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.02.24303632. [PMID: 38496563 PMCID: PMC10942529 DOI: 10.1101/2024.03.02.24303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background and Aims Nonalcoholic Fatty Liver Disease (NAFLD) is a complex human disease. Common genetic variation in the patatin-like phospholipase domain containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2) genes have been associated with an increased risk of developing NAFLD, nonalcoholic steatohepatitis (NASH), and fibrosis in adults. The role of rare genetic variants in the development and progression of NAFLD in children is not well known. We aimed to explore the role of rare genetic variants in pediatric patients with advanced fibrosis. Methods Whole exome sequencing data was generated for 229 pediatric patients diagnosed with NAFLD recruited from the NASH Clinical Research Network (NASH CRN). Case-control single variant and gene-based collapsing analyses were used to test for rare variants that were enriched or depleted within the pediatric NAFLD cohort specifically for advanced fibrosis (cases) versus those without fibrosis (controls) or six other histologic characteristics. Exome data from non-NAFLD population controls were also used for additional analyses. All results were adjusted for multiple testing using a Bonferroni correction. Results No genome-wide significant associations were found between rare variation and presence of advanced fibrosis or NASH, nor the severity of steatosis, inflammation, or hepatocellular ballooning. Significantly, no enrichment of rare variants in PNPLA3 or TM6SF2 was observed across phenotypes. Conclusion In a cohort of children with histologically proven NAFLD, no genome-wide significant associations were found between rare genetic variation and advanced fibrosis or six other histologic features. Of particular interest was the lack of association with genes of interest in adults: PNPLA3 and TM6SF2, though limitations in sample size may reduce the ability to detect associations, particularly with rare variation.
Collapse
Affiliation(s)
- Julia Wattacheril
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Center for Liver Disease and Transplantation, New York Presbyterian Hospital
| | - Sarah E. Kleinstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | - Patrick R. Shea
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | | | | | | - Jay Lefkowitch
- Columbia University Vagelos College of Physicians and Surgeons, Department of Pathology
| | | | - Stavra A. Xanthakos
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center
| | - David B. Goldstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | |
Collapse
|
4
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
5
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
6
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
7
|
Wang C, Pai AK, Putra J. Paediatric non-alcoholic fatty liver disease: an approach to pathological evaluation. J Clin Pathol 2022; 75:443-451. [PMID: 35414523 DOI: 10.1136/jclinpath-2022-208246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an increasingly important healthcare issue along with the rising rates of obesity worldwide. It is the most common chronic liver disease in the paediatric population and the fastest growing indication for liver transplant in young adults. The pathogenesis is complex with contributions from multiple factors and genetic predisposition. While non-invasive laboratory tests and imaging modalities are being increasingly used, the liver biopsy continues to play a crucial role in the diagnosis and prognosis of NAFLD. Histologically, the assessment of paediatric fatty liver disease requires special considerations with respect to a periportal predominant pattern seen in prepubertal patients, as well as a different set of disease processes in the differential diagnosis. In this review, we provide a summary of current knowledge on the epidemiology, pathogenesis and clinical course of paediatric NAFLD as well as the clinical guidelines on diagnosis and management. We discuss the indications and limitations of liver biopsy, histological patterns seen in paediatric NAFLD, other entities to be considered in the differential diagnosis, and conclude with appropriate triaging of liver biopsies and essential elements of pathology reporting.
Collapse
Affiliation(s)
- Chiyun Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Anita K Pai
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan Putra
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Metabolic Associated Fatty Liver Disease in Children-From Atomistic to Holistic. Biomedicines 2021; 9:biomedicines9121866. [PMID: 34944682 PMCID: PMC8698557 DOI: 10.3390/biomedicines9121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease has become the most common chronic liver disease in children due to the alarmingly increasing incidence of pediatric obesity. It is well-documented that MAFLD prevalence is directly related to an incremental increase in BMI. The multiple hits theory was designed for providing insights regarding the pathogenesis of steatohepatitis and fibrosis in MAFLD. Recent evidence suggested that the microbiome is a crucial contributor in the pathogenesis of MAFLD. Aside from obesity, the most common risk factors for pediatric MAFLD include male gender, low-birth weight, family history of obesity, MAFLD, insulin resistance, type 2 diabetes mellitus, obstructive sleep apnea, and polycystic ovarium syndrome. Usually, pediatric patients with MAFLD have nonspecific symptoms consisting of fatigue, malaise, or diffuse abdominal pain. A wide spectrum of biomarkers was proposed for the diagnosis of MAFLD and NASH, as well as for quantifying the degree of fibrosis, but liver biopsy remains the key diagnostic and staging tool. Nevertheless, elastography-based methods present promising results in this age group as potential non-invasive replacers for liver biopsy. Despite the lack of current guidelines regarding MAFLD treatment in children, lifestyle intervention was proven to be crucial in the management of these patients.
Collapse
|
9
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
10
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
11
|
Choudhary NS, Duseja A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl Gastroenterol Hepatol 2021; 6:2. [PMID: 33409397 DOI: 10.21037/tgh.2019.09.06] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Inter-individual and inter-ethnic differences and difference in the severity and progression of liver disease among patients with non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) suggests the involvement of genetic and epigenetic factors in their pathogenesis. This article reviews the genetic and epigenetic modifiers in patients with NAFLD and ALD. Evidence regarding the genetic and epigenetic disease modifiers of NAFLD and ALD was reviewed by searching the available literature. Both genome wide association studies (GWAS) and candidate gene studies pertaining to the pathogenesis in both diseases were included. Clinical implications of the available information are also discussed. Several studies have shown association of both NAFLD and ALD with I148M PNPLA3 variant. In addition to the higher prevalence of hepatic steatosis, the I148M PNPLA3 variant is also associated with severity of liver disease and risk of hepatocellular carcinoma (HCC). TM6SF2 is the other genetic variant shown to be significantly associated with hepatic steatosis and cirrhosis in patients with NAFLD and ALD. The Membrane bound O-acyltransferase domain-containing 7 (MBOAT7) genetic variant is also associated with both NAFLD and ALD. In addition to these mutations, several variants related to the genes involved in glucose metabolism, insulin resistance, lipid metabolism, oxidative stress, inflammatory pathways, fibrosis have also been shown to be the disease modifiers in patients with NAFLD and ALD. Epigenetics involving several micro RNAs and DNA methylation could also modify the disease course in NAFLD and ALD. In conclusion the available literature suggests that genetics and epigenetics are involved in the pathogenesis of NAFLD and ALD which may affect the disease prevalence, severity and response to treatment in these patients.
Collapse
Affiliation(s)
- Narendra Singh Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, Delhi (NCR), India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
13
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
14
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
15
|
Li J, Hua W, Ji C, Rui J, Zhao Y, Xie C, Shi B, Yang X. Effect of the patatin-like phospholipase domain containing 3 gene (PNPLA3) I148M polymorphism on the risk and severity of nonalcoholic fatty liver disease and metabolic syndromes: A meta-analysis of paediatric and adolescent individuals. Pediatr Obes 2020; 15:e12615. [PMID: 32020770 DOI: 10.1111/ijpo.12615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The effect of the patatin-like phospholipase domain containing 3 gene (PNPLA3) I148M polymorphism on the risk and severity of paediatric and adolescent nonalcoholic fatty liver disease (NAFLD) remains inconclusive. OBJECTIVES We aimed to estimate the effect of this polymorphism not only on early-onset NAFLD risk and severity but also on metabolic syndromes susceptibility. METHODS A systematic literature search was performed to identify relevant datasets. The odds ratio of the dichotomic variables and the standardized mean difference of quantitative variables with corresponding 95% confidence intervals were calculated to assess the strength of the associations. RESULTS Twenty-seven studies comprising 10 070 subjects were eligible. The summary effect showed that this polymorphism increased susceptibility to NAFLD development. Furthermore, it also indicated that nonalcoholic steatohepatitis (NASH) was more frequently observed in G allele carriers among paediatric and adolescent NAFLD patients. Moreover, the meta-analysis suggested that the variant was significantly associated with elevated liver damage indexes, including serum alanine transaminase, aspartate transaminase, gamma-glutamyltransferase concentrations, and liver fat content. However, the summary estimates for insulin resistance, lipid metabolism, and adiposity showed no significant associations. CONCLUSIONS The PNPLA3 I148M polymorphism is associated with elevated early-onset NAFLD risk, severity, and liver damage but not with related metabolic syndromes.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Medical College, Soochow University, Suzhou, China
| | - Wenxi Hua
- Medical College, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jingwen Rui
- Medical College, Soochow University, Suzhou, China
| | - Yuening Zhao
- Medical College, Soochow University, Suzhou, China
| | - Chenyao Xie
- Medical College, Soochow University, Suzhou, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Stanislawski MA, Shaw J, Litkowski E, Lange EM, Perng W, Dabelea D, Lange LA. Genetic Risk for Hepatic Fat among an Ethnically Diverse Cohort of Youth: The Exploring Perinatal Outcomes among Children Study. J Pediatr 2020; 220:146-153.e2. [PMID: 32143931 PMCID: PMC8148653 DOI: 10.1016/j.jpeds.2020.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess the importance of genetic and nongenetic risk factors contributing to hepatic fat accumulation in a multiethnic population of youth. STUDY DESIGN We investigated the relationship between genetic factors and hepatic fat fraction (HFF) in 347 children aged 12.5-19.5 years. We examined 5 single nucleotide polymorphisms previously associated with HFF and a weighted genetic risk score (GRS) and examined how these associations varied with ethnicity (Hispanic vs non-Hispanic white) and body mass index (BMI) category. We also compared how much variation in HFF was explained by genetic factors vs cardiometabolic factors (BMI z-score and the Homeostasis Model of Insulin Resistance) or diet. RESULTS PNPLA3 rs738409 and the GRS were each associated with HFF among Hispanic (β = 0.39; 95% CI, 0.16-0.62; P = .001; and β = 0.20; 95% CI, 0.05-0.34; P = .007, respectively) but not non-Hispanic white (β = 0.04; 95% CI, -0.18 to 0.26; P = .696; and β = 0.03; 95% CI, -0.09 to 0.14; P = .651, respectively) youth. Cardiometabolic risk factors explained more of the variation in HFF than genetic risk factors among non-lean Hispanic individuals (27.2% for cardiometabolic markers vs 6.4% for rs738409 and 4.3% for the GRS), and genetic risk factors were more important among lean individuals (2.7% for cardiometabolic markers vs 12.6% for rs738409 and 4.4% for the GRS). CONCLUSIONS Poor cardiometabolic health may be more important than genetic factors when predicting HFF in overweight and obese young populations. Genetic risk is an important contributor to pediatric HFF among lean Hispanics, but further studies are necessary to elucidate the strength of the association between genetic risk and HFF in non-Hispanic white youth.
Collapse
Affiliation(s)
- Maggie A Stanislawski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Jessica Shaw
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth Litkowski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ethan M Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
17
|
Goldner D, Lavine JE. Nonalcoholic Fatty Liver Disease in Children: Unique Considerations and Challenges. Gastroenterology 2020; 158:1967-1983.e1. [PMID: 32201176 DOI: 10.1053/j.gastro.2020.01.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence in concert with the global epidemic of obesity and is being diagnosed at increasingly younger ages. The unique histologic features and early presentation of disease in pediatrics suggest that children and adults may differ with regard to etiopathogenesis, with children displaying a greater vulnerability to genetic and environmental factors. Of significant relevance to pediatrics, in utero and perinatal stressors may alter the lifelong health trajectory of a child, increasing the risk of NAFLD and other cardiometabolic diseases. The development and progression of disease in childhood is likely to carry increased risk of long-term morbidity. Novel biomarkers and therapeutic agents are needed to avoid the otherwise inevitable health and societal consequences of this rapidly expanding pediatric population.
Collapse
Affiliation(s)
- Dana Goldner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York
| | - Joel E Lavine
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York.
| |
Collapse
|
18
|
Lin YC, Wu CC, Ni YH. New Perspectives on Genetic Prediction for Pediatric Metabolic Associated Fatty Liver Disease. Front Pediatr 2020; 8:603654. [PMID: 33363067 PMCID: PMC7755886 DOI: 10.3389/fped.2020.603654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic or recently re-defined metabolic associated fatty liver disease (MAFLD), a spectrum of progressive hepatic disease, has become a public health issue in obese children and adolescents. MAFLD is a complex metabolic disease strongly associated with obesity and insulin resistance. It is not known why not every obese subject will develop MAFLD. Different ethnic/racial groups display differences in MAFLD prevalence, indicating genetic factor plays a role. In the past two decades, sequence variations in genetic loci, including PNPLA3, TM6SF2, GCKR, MBOAT7, HSD17B13, etc. have been shown to confer susceptibility to MAFLD in children and adults. This review article provides an updated viewpoint of genetic predictors related to pediatric MAFLD. We discuss whether these susceptible genes can be clinically used for risk stratification and personalized care. Understanding human genetics and molecular mechanisms can give important information not only for prediction of risk but also on how to design drugs. In view of current epidemic of MAFLD worldwide, it is necessary to identify which children with MAFLD progress rapidly and need earlier intervention. In the future, a comprehensive analysis of individualized genetic and environmental factors may help assess the risk of children with MAFLD and personalize their treatment.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Zusi C, Mantovani A, Olivieri F, Morandi A, Corradi M, Miraglia Del Giudice E, Dauriz M, Valenti L, Byrne CD, Targher G, Maffeis C. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. Dig Liver Dis 2019; 51:1586-1592. [PMID: 31255630 DOI: 10.1016/j.dld.2019.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease in children and adolescents in Western countries. Complex traits arise from the interplay between environmental and genetic factors in the pathogenesis of NAFLD. AIMS We examined the association between NAFLD and eleven single nucleotide polymorphisms (SNPs) at genetic loci potentially associated with liver damage (GCKR, MBOAT7, GPR120), oxidative stress (SOD2), lipid metabolism (PNPLA3, TM6SF2, LPIN1, ELOVL2, FADS2, MTTP) and fibrogenesis (KLF6) in a paediatric population. A genetic risk score (GRS) was performed taking into account both these SNPs and clinical risk factors. METHODS We recruited a cohort of 514 obese children and adolescents (mean age [±SD]: 11.2 ± 2.8 years, z-BMI 3.3 ± 0.8). NAFLD was identified by ultrasonography. Genotyping was performed by TaqMan-based RT-PCR system. RESULTS The overall prevalence of NAFLD was 67.5% (347 patients). Among the eleven genotyped SNPs, the genetic variants in TM6SF2 rs58542926 (OR = 4.13, p = 0.002), GCKR rs1260326 (OR = 1.53, p = 0.003), PNPLA3 rs738409 (OR = 1.58, p = 0.004) and ELOVL2 rs2236212 (OR = 1.34, p = 0.047) were significantly associated with a higher risk of NAFLD. Addition of a 11-polymorphism GRS to established clinical risk factors significantly (albeit modestly) improved the discriminatory capability of the regression model for predicting the risk of NAFLD (with SNPs C-statistic 0.81 [95%CI 0.75-0.88] vs. 0.77 [0.70-0.84] without SNPs; p = 0.047). CONCLUSIONS NAFLD was strongly associated with three genetic variants, TM6SF2 rs58542926, PNPLA3 rs738409 and GCKR rs1260326, and more slightly with ELOVL2 rs2236212, in obese children and adolescents. Addition of a 11-polymorphism GRS to clinical risk factors improved the predictability of NAFLD.
Collapse
Affiliation(s)
- Chiara Zusi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Alessandro Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Francesca Olivieri
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - Anita Morandi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - Massimiliano Corradi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan and Translational Medicine and Hepatology - Transfusional Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK; Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy.
| |
Collapse
|
20
|
Tzifi F, Fretzayas A, Chrousos G, Kanaka-Gantenbein C. Non-alcoholic fatty liver infiltration in children: an underdiagnosed evolving disease. Hormones (Athens) 2019; 18:255-265. [PMID: 31140156 DOI: 10.1007/s42000-019-00107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes the most common liver disease, one that is still underdiagnosed in pediatric populations (as well as in the general population), this due to the progressive increase in childhood obesity observed both in developed and developing countries during the last few decades. The pathophysiology of the disease has not been thoroughly clarified yet. The condition displays common pathways in adults and children; however, there are age-related differences. Unlike adults, children with NAFLD require extensive laboratory analysis, because underlying pathologies other than obesity may contribute to the evolution of the disease. Despite the presence of several serum markers and imaging techniques that contribute to NAFLD diagnosis, liver biopsy remains the gold standard diagnostic procedure. Early intervention and obesity prevention are mandatory, as NAFLD is reversible at an early stage. If left undiagnosed and untreated, NAFLD can progress to steatohepatitis (NASH) and subsequent liver failure, a potentially lethal complication. Of note, there are no treatment options when advanced liver fibrosis occurs. This review summarizes literature data on NAFLD in childhood indicating that this is an evolving disease and a significant component of the metabolic syndrome. Pediatricians should be aware of this entity, screening children at high risk and providing appropriate early management, in collaboration with pediatric subspecialists.
Collapse
Affiliation(s)
- Flora Tzifi
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Athens Medical Group, Marousi, Greece.
| | | | - George Chrousos
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
21
|
Abstract
Purpose of review Advancing our understanding of the mechanisms that underlie NASH pathogenesis. Recent findings Recent findings on NASH pathogenesis have expanded our understanding of its complexity including: (1) there are multiple parallel hits that lead to NASH; (2) the microbiota play an important role in pathogenesis, with bacterial species recently shown to accurately differentiate between NAFL and NASH patients; (3) the main drivers of liver cell injury are lipotoxicity caused by free fatty acids (FFAs) and their derivatives combined with mitochondrial dysfunction; (4) decreased endoplasmic reticulum (ER) efficiency with increased demand for protein synthesis/folding/repair results in ER stress, protracted unfolded protein response, and apoptosis; (5) upregulated proteins involved in multiple pathways including JNK, CHOP, PERK, BH3-only proteins, and caspases result in mitochondrial dysfunction and apoptosis; and (6) subtypes of NASH in which these pathophysiological pathways vary may require patient subtype identification to choose effective therapy. Summary Recent pathogenesis studies may lead to important therapeutic advances, already seen in patients treated with ACC, ASK1 and SCD1 inhibitors and FXR agonists. Further advancing our understanding of mechanisms underlying NASH pathogenesis and the complex interplay between them will be crucial for developing effective therapies.
Collapse
|
22
|
Mingorance L, Castro V, Ávila-Pérez G, Calvo G, Rodriguez MJ, Carrascosa JL, Pérez-del-Pulgar S, Forns X, Gastaminza P. Host phosphatidic acid phosphatase lipin1 is rate limiting for functional hepatitis C virus replicase complex formation. PLoS Pathog 2018; 14:e1007284. [PMID: 30226904 PMCID: PMC6161900 DOI: 10.1371/journal.ppat.1007284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection constitutes a significant health burden worldwide, because it is a major etiologic agent of chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV replication cycle is closely tied to lipid metabolism and infection by this virus causes profound changes in host lipid homeostasis. We focused our attention on a phosphatidate phosphate (PAP) enzyme family (the lipin family), which mediate the conversion of phosphatidate to diacylglycerol in the cytoplasm, playing a key role in triglyceride biosynthesis and in phospholipid homeostasis. Lipins may also translocate to the nucleus to act as transcriptional regulators of genes involved in lipid metabolism. The best-characterized member of this family is lipin1, which cooperates with lipin2 to maintain glycerophospholipid homeostasis in the liver. Lipin1-deficient cell lines were generated by RNAi to study the role of this protein in different steps of HCV replication cycle. Using surrogate models that recapitulate different aspects of HCV infection, we concluded that lipin1 is rate limiting for the generation of functional replicase complexes, in a step downstream primary translation that leads to early HCV RNA replication. Infection studies in lipin1-deficient cells overexpressing wild type or phosphatase-defective lipin1 proteins suggest that lipin1 phosphatase activity is required to support HCV infection. Finally, ultrastructural and biochemical analyses in replication-independent models suggest that lipin1 may facilitate the generation of the membranous compartment that contains functional HCV replicase complexes. Hepatitis C virus (HCV) infection is an important biomedical problem worldwide because it causes severe liver disease and cancer. Although immunological events are major players in HCV pathogenesis, interference with host cell metabolism contribute to HCV-associated pathologies. HCV utilizes resources of the cellular lipid metabolism to strongly modify subcellular compartments, using them as platforms for replication and infectious particle assembly. In particular, HCV induces the formation of a “membranous web” that hosts the viral machinery dedicated to the production of new copies of the viral genome. This lipid-rich structure provides an optimized platform for viral genome replication and hides new viral genomes from host´s antiviral surveillance. In this study, we have identified a cellular protein, lipin1, involved in the production of a subset of cellular lipids, as a rate-limiting factor for HCV infection. Our results indicate that the enzymatic activity of lipin1 is required to build the membranous compartment dedicated to viral genome replication. Lipin1 is probably contributing to the formation of the viral replication machinery by locally providing certain lipids required for an optimal membranous environment. Based on these results, interfering with lipin1 capacity to modify lipids may therefore constitute a potential strategy to limit HCV infection.
Collapse
Affiliation(s)
- Lidia Mingorance
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - María Josefa Rodriguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - José L. Carrascosa
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
- * E-mail:
| |
Collapse
|
23
|
Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018; 128:3692-3703. [PMID: 30168806 DOI: 10.1172/jci120846] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic in obese children and adults, and the onset might have fetal origins. A growing body of evidence supports the role of developmental programming, whereby the maternal environment affects fetal and infant development, altering the risk profile for disease later in life. Human and nonhuman primate studies of maternal obesity demonstrate that risk factors for pediatric obesity and NAFLD begin in utero. The pathologic mechanisms for NAFLD are multifactorial but have centered on altered mitochondrial function/dysfunction that might precede insulin resistance. Compared with the adult liver, the fetal liver has fewer mitochondria, low activity of the fatty acid metabolic enzyme carnitine palmitoyl-CoA transferase-1, and little or no gluconeogenesis. Exposure to excess maternal fuels during fetal life uniquely alters hepatic fatty acid oxidation, tricarboxylic acid cycle activity, de novo lipogenesis, and mitochondrial health. These events promote increased oxidative stress and excess triglyceride storage, and, together with altered immune function and epigenetic changes, they prime the fetal liver for NAFLD and might drive the risk for nonalcoholic steatohepatitis in the next generation.
Collapse
Affiliation(s)
- Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Wang JZ, Cao HX, Chen JN, Pan Q. PNPLA3 rs738409 underlies treatment response in nonalcoholic fatty liver disease. World J Clin Cases 2018; 6:167-175. [PMID: 30148144 PMCID: PMC6107533 DOI: 10.12998/wjcc.v6.i8.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has now become the leading cause of chronic liver disease with its growing incidence worldwide. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C > G reflects one of the critical genetic factors that confers high-risk to NAFLD. However, the role of PNPLA3 polymorphism in NAFLD treatment remains uncertain. Here, the present review reveals that NAFLD patients with G-allele at PNPLA3 rs738409 (PNPLA3 148M variant) are sensitive to therapies of lifestyle modification, dipeptidyl peptidase-4 inhibitors, and bariatric surgery. They exhibit much significant reduction of liver fat content, in concurrence with weigh loss and abolished insulin resistance, as compared to those of C-allele carriers. In contrast, patients bearing PNPLA3 rs738409 C-allele (PNPLA3 148I variant), instead of G-allele, demonstrate greater beneficial effects by omega-3 poly-unsaturated fatty acids and statin intervention. Improved adipose tissue-liver interaction and decrease in intrahepatic triglyceride efflux may contribute to the PNPLA3 rs738409 related diversities in therapeutic efficacy. Therefore, PNPLA3 rs738409 underlies the response to a variety of treatments, which warrants a personalized, precise medicine in NAFLD on the basis of genotype stratification.
Collapse
Affiliation(s)
- Jin-Zhi Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Hai-Xia Cao
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Neng Chen
- Department of Hepatology, Zhengxing Hospital, Zhangzhou 363000, Fujian Province, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
25
|
Danford CJ, Yao ZM, Jiang ZG. Non-alcoholic fatty liver disease: a narrative review of genetics. J Biomed Res 2018; 32:389-400. [PMID: 30355853 PMCID: PMC6283828 DOI: 10.7555/jbr.32.20180045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver diseases worldwide. It encompasses a spectrum of disorders ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. One of the key challenges in NAFLD is identifying which patients will progress. Epidemiological and genetic studies indicate a strong pattern of heritability that may explain some of the variability in NAFLD phenotype and risk of progression. To date, at least three common genetic variants in the PNPLA3, TM6SF2, and GCKR genes have been robustly linked to NAFLD in the population. The function of these genes revealed novel pathways implicated in both the development and progression of NAFLD. In addition, candidate genes previously implicated in NAFLD pathogenesis have also been identified as determinants or modulators of NAFLD phenotype including genes involved in hepatocellular lipid handling, insulin resistance, inflammation, and fibrogenesis. This article will review the current understanding of the genetics underpinning the development of hepatic steatosis and the progression of NASH. These newly acquired insights may transform our strategy to risk-stratify patients with NAFLD and to identify new potential therapeutic targets.
Collapse
Affiliation(s)
- Christopher J Danford
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ze-Min Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
26
|
Vespasiani-Gentilucci U, Dell'Unto C, De Vincentis A, Baiocchini A, Delle Monache M, Cecere R, Pellicelli AM, Giannelli V, Carotti S, Galati G, Gallo P, Valentini F, Del Nonno F, Rosati D, Morini S, Antonelli-Incalzi R, Picardi A. Combining Genetic Variants to Improve Risk Prediction for NAFLD and Its Progression to Cirrhosis: A Proof of Concept Study. Can J Gastroenterol Hepatol 2018; 2018:7564835. [PMID: 29732362 PMCID: PMC5872672 DOI: 10.1155/2018/7564835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND & AIMS Identifying NAFLD patients at risk of progression is crucial to orient medical care and resources. We aimed to verify if the effects determined by different single nucleotide polymorphisms (SNPs) could add up to multiply the risk of NAFLD and NASH-cirrhosis. METHODS Three study populations, that is, patients diagnosed with NASH-cirrhosis or with noncirrhotic NAFLD and healthy controls, were enrolled. PNPLA3 rs738409, TM6SF2 rs58542926, KLF6 rs3750861, SOD2 rs4880, and LPIN1 rs13412852 were genotyped. RESULTS One hundred and seven NASH-cirrhotics, 93 noncirrhotic NAFLD, and 90 controls were enrolled. At least one difference in allele frequency between groups was significant, or nearly significant, for the PNPLA3, TM6SF2, and KLF6 variants (p < 0.001, p < 0.05, and p = 0.06, resp.), and a risk score based on these SNPs was generated. No differences were observed for SOD2 and LPIN1 SNPs. When compared to a score of 0, a score of 1-2 quadrupled, and a score of 3-4 increased 20-fold the risk of noncirrhotic NAFLD; a score of 3-4 quadrupled the risk of NASH-cirrhosis. CONCLUSIONS The effects determined by disease-associated variants at different loci can add up to multiply the risk of NAFLD and NASH-cirrhosis. Combining different disease-associated variants may represent the way for genetics to keep strength in NAFLD diagnostics.
Collapse
Affiliation(s)
| | - Chiara Dell'Unto
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Antonio De Vincentis
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Andrea Baiocchini
- Laboratory of Pathology of The National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | | | - Roberto Cecere
- Hepatology Outpatient Clinic, Colleferro Hospital, Rome, Italy
| | | | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, CIR, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Galati
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Paolo Gallo
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Francesco Valentini
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Franca Del Nonno
- Laboratory of Pathology of The National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | | | - Sergio Morini
- Laboratory of Microscopic and Ultrastructural Anatomy, CIR, University Campus Bio-Medico, Rome, Italy
| | | | - Antonio Picardi
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
27
|
The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol 2018; 11:97-102. [PMID: 29492830 DOI: 10.1007/s12328-018-0841-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
|
28
|
Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018; 68:268-279. [PMID: 29122391 DOI: 10.1016/j.jhep.2017.09.003] [Citation(s) in RCA: 678] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognised as the most common liver disease worldwide. It encompasses a broad spectrum of conditions, from simple steatosis, through non-alcoholic steatohepatitis, to fibrosis and ultimately cirrhosis and hepatocellular carcinoma. A hallmark of NAFLD is the substantial inter-patient variation in disease progression. NAFLD is considered a complex disease trait such that interactions between the environment and a susceptible polygenic host background determine disease phenotype and influence progression. Recent years have witnessed multiple genome-wide association and large candidate gene studies, which have enriched our understanding of the genetic basis of NAFLD. Notably, the I148M PNPLA3 variant has been identified as the major common genetic determinant of NAFLD. Variants with moderate effect size in TM6SF2, MBOAT7 and GCKR have also been shown to have a significant contribution. The premise for this review is to discuss the status of research into important genetic and epigenetic modifiers of NAFLD progression. The potential to translate the accumulating wealth of genetic data into the design of novel therapeutics and the clinical implementation of diagnostic/prognostic biomarkers will be explored. Finally, personalised medicine and the opportunities for future research and challenges in the immediate post genetics era will be illustrated and discussed.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
29
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Severe fibrosis and cirrhosis are potential consequences of pediatric NAFLD and can occur within a few years of diagnosis. Observations suggest that genetics may be a strong modifying factor in the presentation, severity, and natural history of the disease. There is increasing interest in determining at-risk populations based on genetics in the hope of finding genotypes that correlate to NAFLD phenotype. Ultimately, the hope is to be able to tailor therapeutics to genetic predispositions and decrease disease morbidity in children with NAFLD.
Collapse
Affiliation(s)
- Nidhi P Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA 92993, USA; Department of Gastroenterology, Rady Children's Hospital, San Diego, Children's Way, San Diego, CA 92123, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA 92993, USA; Department of Gastroenterology, Rady Children's Hospital, San Diego, Children's Way, San Diego, CA 92123, USA.
| |
Collapse
|
30
|
Metwally M, Eslam M, George J. Genetic and Epigenetic Associations of NAFLD: Focus on Clinical Decision Making. CURRENT HEPATOLOGY REPORTS 2017; 16:335-345. [DOI: 10.1007/s11901-017-0372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
31
|
Genome-Wide Associations Related to Hepatic Histology in Nonalcoholic Fatty Liver Disease in Hispanic Boys. J Pediatr 2017; 190:100-107.e2. [PMID: 28918882 PMCID: PMC5690841 DOI: 10.1016/j.jpeds.2017.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To identify genetic loci associated with features of histologic severity of nonalcoholic fatty liver disease in a cohort of Hispanic boys. STUDY DESIGN There were 234 eligible Hispanic boys age 2-17 years with clinical, laboratory, and histologic data enrolled in the Nonalcoholic Steatohepatitis Clinical Research Network included in the analysis of 624 297 single nucleotide polymorphisms (SNPs). After the elimination of 4 outliers and 22 boys with cryptic relatedness, association analyses were performed on 208 DNA samples with corresponding liver histology. Logistic regression analyses were carried out for qualitative traits and linear regression analyses were applied for quantitative traits. RESULTS The median age and body mass index z-score were 12.0 years (IQR, 11.0-14.0) and 2.4 (IQR, 2.1-2.6), respectively. The nonalcoholic fatty liver disease activity score (scores 1-4 vs 5-8) was associated with SNP rs11166927 on chromosome 8 in the TRAPPC9 region (P = 8.7-07). Fibrosis stage was associated with SNP rs6128907 on chromosome 20, near actin related protein 5 homolog (p = 9.9-07). In comparing our results in Hispanic boys with those of previously reported SNPs in adult nonalcoholic steatohepatitis, 2 of 26 susceptibility loci were associated with nonalcoholic fatty liver disease activity score and 2 were associated with fibrosis stage. CONCLUSIONS In this discovery genome-wide association study, we found significant novel gene effects on histologic traits associated with nonalcoholic fatty liver disease activity score and fibrosis that are distinct from those previously recognized by adult nonalcoholic fatty liver disease genome-wide association studies.
Collapse
|
32
|
Umano GR, Martino M, Santoro N. The Association between Pediatric NAFLD and Common Genetic Variants. CHILDREN-BASEL 2017. [PMID: 28629152 PMCID: PMC5483624 DOI: 10.3390/children4060049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of obesity. Several studies have shown that genetic predisposition probably plays an important role in its pathogenesis. In fact, in the last few years a large number of genetic studies have provided compelling evidence that some gene variants, especially those in genes encoding proteins regulating lipid metabolism, are associated with intra-hepatic fat accumulation. Here we provide a comprehensive review of the gene variants that have affected the natural history of the disease.
Collapse
Affiliation(s)
- Giuseppina Rosaria Umano
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento della Donna, del Bambino, di Vhirurgia Generale e Specialistica, Universita' della Campania Luigi Vanvitelli, 80138, Napoli, Italy.
| | - Mariangela Martino
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento di Medicina V. Tiberio, Universita' del Molise, 86100, Campobasso, Italy.
| | - Nicola Santoro
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento di Medicina V. Tiberio, Universita' del Molise, 86100, Campobasso, Italy.
| |
Collapse
|
33
|
Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism 2016; 65:1026-37. [PMID: 26409295 DOI: 10.1016/j.metabol.2015.08.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Epidemiological, familial, and twin studies indicate that non-alcoholic fatty liver disease, now the leading cause of liver damage in developed countries, has a strong heritability. The common I148M variant of PNPLA3 impairing hepatocellular lipid droplets remodeling is the major genetic determinant of hepatic fat content. The I148M variant has a strong impact on the full spectrum of liver damage related to fatty liver, encompassing non-alcoholic steatohepatitis, advanced fibrosis, and hepatocellular carcinoma, and influences the response to therapeutic approaches. Common variants in GCKR enhance de novo hepatic lipogenesis in response to glucose and liver inflammation. Furthermore, the low-frequency E167K variant of TM6SF2 and rare mutations in APOB, which impair very low-density lipoproteins secretion, predispose to progressive fatty liver. CONCLUSIONS These and other recent findings reviewed here indicate that impaired lipid handling by hepatocytes has a major role in the pathogenesis of non-alcoholic fatty liver disease by triggering inflammation, fibrogenesis, and carcinogenesis. These discoveries have provided potential novel biomarkers for clinical use and have revealed intriguing therapeutic targets.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology and Transplantation, Università degli Studi Milano, Milan, Italy.
| |
Collapse
|
34
|
Anstee QM, Seth D, Day CP. Genetic Factors That Affect Risk of Alcoholic and Nonalcoholic Fatty Liver Disease. Gastroenterology 2016; 150:1728-1744.e7. [PMID: 26873399 DOI: 10.1053/j.gastro.2016.01.037] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies and candidate gene studies have informed our understanding of factors contributing to the well-recognized interindividual variation in the progression and outcomes of alcoholic liver disease and nonalcoholic fatty liver disease. We discuss the mounting evidence for shared modifiers and common pathophysiological processes that contribute to development of both diseases. We discuss the functions of proteins encoded by risk variants of genes including patatin-like phospholipase domain-containing 3 and transmembrane 6 superfamily member 2, as well as epigenetic factors that contribute to the pathogenesis of alcoholic liver disease and nonalcoholic fatty liver disease. We also discuss important areas of future genetic research and their potential to affect clinical management of patients.
Collapse
Affiliation(s)
- Quentin M Anstee
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine, Royal Prince Alfred Hospital, Camperdown, Australia; Drug Health Services, Royal Prince Alfred Hospital, Camperdown, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Christopher P Day
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
35
|
Nobili V, Alisi A, Newton KP, Schwimmer JB. Comparison of the Phenotype and Approach to Pediatric vs Adult Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2016; 150:1798-810. [PMID: 27003600 PMCID: PMC4887388 DOI: 10.1053/j.gastro.2016.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the main chronic noncommunicable diseases in Westernized societies; its worldwide prevalence has doubled during the last 20 years. NAFLD has serious health implications not only for adults, but also for children. However, pediatric NAFLD is not only an important global problem in itself, but it is likely to be associated with increases in comorbidities, such as metabolic syndrome and cardiovascular diseases. There are several differences between NAFLD in children and adults, and it is not clear whether the disease observed in children is the initial phase of a process that progresses with age. The increasing prevalence of pediatric NAFLD has serious implications for the future adult population requiring appropriate action. Studies of NAFLD progression, pathogenesis, and management should evaluate disease phenotypes in children and follow these over the patient's lifetime. We review the similarities and differences of NAFLD between children and adults.
Collapse
Affiliation(s)
- V Nobili
- Hepato-metabolic Disease Unit and Liver Research Unit, Bambino Gesù Children’s Hospital and IRCCS, Rome, Italy
| | - A Alisi
- Hepato-metabolic Disease Unit and Liver Research Unit, Bambino Gesù Children’s Hospital and IRCCS, Rome, Italy
| | - Kimberly P. Newton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, California,Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California,Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, San Diego, California
| |
Collapse
|
36
|
Petta S, Valenti L, Bugianesi E, Targher G, Bellentani S, Bonino F. A "systems medicine" approach to the study of non-alcoholic fatty liver disease. Dig Liver Dis 2016; 48:333-342. [PMID: 26698409 DOI: 10.1016/j.dld.2015.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/18/2015] [Accepted: 10/31/2015] [Indexed: 02/07/2023]
Abstract
The prevalence of fatty liver (steatosis) in the general population is rapidly increasing worldwide. The progress of knowledge in the physiopathology of fatty liver is based on the systems biology approach to studying the complex interactions among different physiological systems. Similarly, translational and clinical research should address the complex interplay between these systems impacting on fatty liver. The clinical needs drive the applications of systems medicine to re-define clinical phenotypes, assessing the multiple nature of disease susceptibility and progression (e.g. the definition of risk, prognosis, diagnosis criteria, and new endpoints of clinical trials). Based on this premise and in light of recent findings, the complex mechanisms involved in the pathology of fatty liver and their impact on the short- and long-term clinical outcomes of cardiovascular, metabolic liver diseases associated with steatosis are presented in this review using a new "systems medicine" approach. A new data set is proposed for studying the impairments of different physiological systems that have an impact on fatty liver in different subsets of subjects and patients.
Collapse
Affiliation(s)
- Salvatore Petta
- Section of Gastroenterology, Di.Bi.M.I.S Policlinico Paolo Giaccone Hospital, University of Palermo, Italy
| | - Luca Valenti
- Internal Medicine, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Elisabetta Bugianesi
- Gastroenterology and Hepatology, Department of Medical Sciences, Città della Salute e della Scienza di Torino Hospital, University of Turin, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Italy
| | - Stefano Bellentani
- Shrewsbury and Telford NHS Trust, Department of Gastroenterology, Shrewsbury, UK; Fondazione Italiana Fegato, Bassovizza, Trieste, Italy
| | - Ferruccio Bonino
- General Medicine 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy.
| |
Collapse
|
37
|
Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH, Cortez-Pinto H, Grieco A, Machado MV, Miele L, Targher G. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig Liver Dis 2015; 47:997-1006. [PMID: 26454786 DOI: 10.1016/j.dld.2015.08.004] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
An improved understanding of non-alcoholic fatty liver disease epidemiology would lead to identification of individuals at high risk of developing chronic liver disease and extra-hepatic complications, thus contributing to more effective case finding of non-alcoholic fatty liver disease among selected groups. We aimed to illustrate the epidemiology of non-alcoholic fatty liver disease in high-risk groups, which were identified based on existing literature. To this end, PubMed was searched to retrieve original articles published until May 2015 using relevant and pertinent keywords "nonalcoholic fatty liver disease" and "diabetes", "obesity", "hyperlipidaemia", "familial heterozygous hypobetalipoproteinaemia", "hypertension", "metabolic syndrome", "ethnicity", "family history" or "genetic polymorphisms". We found that age, sex and ethnicity are major physiological modifiers of the risk of non-alcoholic fatty liver disease, along with belonging to "non-alcoholic fatty liver disease families" and carrying risk alleles for selected genetic polymorphisms. Metabolic syndrome, diabetes, obesity, mixed hyperlipidaemia and hypocholesterolaemia due to familial hypobetalipoproteinaemia are the major metabolic modifiers of non-alcoholic fatty liver disease risk. Compared with these metabolic conditions, however, arterial hypertension appears to carry a relatively more modest risk of non-alcoholic fatty liver disease. A better understanding of the epidemiology of non-alcoholic fatty liver disease may result in a more liberal policy of case finding among high-risk groups.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Internal Medicine and Outpatient Liver Clinic, NOCSAE Baggiovara, Azienda USL di Modena, Modena, Italy.
| | - Stefano Bellentani
- Internal Medicine and Outpatient Liver Clinic, NOCSAE Baggiovara, Azienda USL di Modena, Modena, Italy; Department of Gastroenterology and Endoscopy, NOCSE Baggiovara, Azienda USL di Modena Modena, Italy
| | | | - Stefano Ballestri
- Internal Medicine Pavullo Hospital, Azienda USL di Modena, Modena, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, University of Southampton, Southampton National Institute for Health Research Biomedical Research Centre, Southampton, UK
| | | | - Helena Cortez-Pinto
- Department of Gastroenterology, University Hospital of Santa Maria, Faculty of Medicine, Lisbon, Portugal
| | - Antonio Grieco
- Institute of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - Mariana V Machado
- Department of Gastroenterology, University Hospital of Santa Maria, Faculty of Medicine, Lisbon, Portugal
| | - Luca Miele
- Institute of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| |
Collapse
|
38
|
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21:11088-11111. [PMID: 26494964 PMCID: PMC4607907 DOI: 10.3748/wjg.v21.i39.11088] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.
Collapse
|
39
|
Edelman D, Kalia H, Delio M, Alani M, Krishnamurthy K, Abd M, Auton A, Wang T, Wolkoff AW, Morrow BE. Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population. Mol Genet Genomic Med 2015; 3:558-69. [PMID: 26740948 PMCID: PMC4694126 DOI: 10.1002/mgg3.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022] Open
Abstract
We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean–Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy‐proven NAFLD, 24 ethnically matched non‐NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single‐nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome‐wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean–Hispanic population is warranted.
Collapse
Affiliation(s)
- Deborah Edelman
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Harmit Kalia
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Maria Delio
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - Mustafa Alani
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Karthik Krishnamurthy
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Mortadha Abd
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Adam Auton
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Tao Wang
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew York10461
| | - Allan W. Wolkoff
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| | - Bernice E. Morrow
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| |
Collapse
|
40
|
Wood KL, Miller MH, Dillon JF. Systematic review of genetic association studies involving histologically confirmed non-alcoholic fatty liver disease. BMJ Open Gastroenterol 2015; 2:e000019. [PMID: 26462272 PMCID: PMC4599155 DOI: 10.1136/bmjgast-2014-000019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease has an increasing prevalence in Western countries, affecting up to 20% of the population.
Collapse
Affiliation(s)
| | - Michael H Miller
- Medical Research Institute, University of Dundee, Ninewells Hospital , Dundee , UK
| | - John F Dillon
- Medical Research Institute, University of Dundee, Ninewells Hospital , Dundee , UK
| |
Collapse
|
41
|
A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2014; 58:632-6. [PMID: 24345846 DOI: 10.1097/mpg.0000000000000279] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in industrialized countries in adults and children, following the trail of the epidemic diffusion of obesity. Nonalcoholic steatohepatitis (NASH) is a potentially serious form of NAFLD linked with a significant increase in overall and liver-related morbidity and mortality. Because diagnosis still requires liver biopsy, there is urgent need of developing noninvasive early markers. The aim of the present study was to assess whether the simultaneous detection of genetic risk factors could predict NASH. METHOD We enrolled 152 untreated, consecutive obese children and adolescents with biopsy-proven NAFLD and increased liver enzymes. The PNPLA3 rs738409 C>G (I148 M), SOD2 rs4880 C>T, KLF6 rs3750861 G>A, and LPIN1 rs13412852 C>T polymorphisms were detected by Taqman assays. RESULTS A multivariate logistic model based on the genetic risk factors significantly predicted NASH (area under the receiver-operating characteristic curve [AUC] 0.75, 95% confidence interval [CI] 0.67-0.82, P < 0.0001), performing better than a clinical risk score identified at stepwise regression based on age, aspartate aminotransferase levels, and diastolic blood pressure (AUC 0.66, 95% CI 0.57-0.75). A single cutoff value of the genetic risk score had 90% sensitivity and 36% specificity for NASH. A risk score combining the clinical and genetic risk factors resulted in an AUC of 0.80 (95% CI 0.73-0.87). CONCLUSIONS A score based on genetic risk factors significantly predicts NASH in obese children with increased liver enzymes, representing a proof-of-principle that genetic scores may be useful to predict long-term outcomes of the disease and guide clinical management.
Collapse
|
42
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
43
|
Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 2014; 19:5219-38. [PMID: 23394097 PMCID: PMC3850262 DOI: 10.2174/13816128113199990381] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 02/07/2023]
Abstract
Liver fat deposition related to systemic insulin resistance defines non-alcoholic fatty liver disease (NAFLD) which, when associated with oxidative hepatocellular damage, inflammation, and activation of fibrogenesis, i.e. non-alcoholic steatohepatitis (NASH), can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver disease and the leading cause of altered liver enzymes in Western countries. Epidemiological, familial, and twin studies provide evidence for an element of heritability of NAFLD. Genetic modifiers of disease severity and progression have been identified through genome-wide association studies. These include the Patatin-like phosholipase domain-containing 3 (PNPLA3) gene variant I148M as a major determinant of inter-individual and ethnicity-related differences in hepatic fat content independent of insulin resistance and serum lipid concentration. Association studies confirm that the I148M polymorphism is also a strong modifier of NASH and progressive hepatic injury. Furthermore, a few large multicentre case-control studies have demonstrated a role for genetic variants implicated in insulin signalling, oxidative stress, and fibrogenesis in the progression of NAFLD towards fibrosing NASH, and confirm that hepatocellular fat accumulation and insulin resistance are key operative mechanisms closely involved in the progression of liver damage. It is now important to explore the molecular mechanisms underlying these associations between gene variants and progressive liver disease, and to evaluate their impact on the response to available therapies. It is hoped that this knowledge will offer further insights into pathogenesis, suggest novel therapeutic targets, and could help guide physicians towards individualised therapy that improves clinical outcome.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Department of Pathophysiology and Transplantation, section Internal Medicine, Università degli Studi Milano, UO Medicina Interna1B, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
44
|
Mehta R, Birerdinc A, Younossi ZM. Host genetic variants in obesity-related nonalcoholic fatty liver disease. Clin Liver Dis 2014; 18:249-67. [PMID: 24274878 DOI: 10.1016/j.cld.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex disease. The considerable variability in the natural history of the disease suggests an important role for genetic variants in the disease development and progression. There is evidence based on genome-wide association studies and/or candidate gene studies that genetic polymorphisms underlying insulin signaling, lipid metabolism, oxidative stress, fibrogenesis, and inflammation can predispose individuals to NAFLD. This review highlights some of the genetic variants in NAFLD.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Center for Liver Disease, Inova Health System, Claude Moore Building, 3300 Gallows Road, Falls Church, VA 22042, USA
| | | | | |
Collapse
|
45
|
Kosters A, Sun D, Wu H, Tian F, Felix JC, Li W, Karpen SJ. Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα) determines male-female differences in the expression of hepatic lipid processing genes in mice. PLoS One 2013; 8:e71538. [PMID: 23977068 PMCID: PMC3747242 DOI: 10.1371/journal.pone.0071538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXRα) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXRα binding sites (BS), associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid-processing genes, suggesting novel gender- and gene-specific responses to NR-based treatments for lipid-related liver diseases.
Collapse
Affiliation(s)
- Astrid Kosters
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deqiang Sun
- Division of Biostatistics, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hao Wu
- Department of Biostatistics, School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Feng Tian
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julio C. Felix
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
46
|
Nobili V, Svegliati-Baroni G, Alisi A, Miele L, Valenti L, Vajro P. A 360-degree overview of paediatric NAFLD: recent insights. J Hepatol 2013; 58:1218-29. [PMID: 23238106 DOI: 10.1016/j.jhep.2012.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted disorder, which ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) with/without fibrosis. The effects of specific risk factors, such as obesity and sedentary lifestyle, on predisposing genetic settings eventually lead to the development of NAFLD in children. The complex interplay between genes and environment in NAFLD pathogenesis is sustained by multiple mechanisms that involve liver crosstalk with other organs and tissues, especially gut and adipose tissue. Unfortunately, natural history of paediatric NAFLD is lacking, and the etiopathogenesis is still in the process of being defined. Potential early predictors and suitable non-invasive diagnostic tools can be discovered based on the pathogenetic mechanisms and histological patterns. This will also help design novel treatments and a comprehensive and successful management strategy for patients. In this review, we discuss the recent advances made in genetics, etiopathogenesis, diagnosis, and therapeutic management of NAFLD, focusing especially on the obesity-related steatotic liver condition.
Collapse
Affiliation(s)
- Valerio Nobili
- Hepato-metabolic Disease Unit and Liver Research Unit, "Bambino Gesù" Children's Hospital, IRCCS, P.le S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is a multicluster disease ranging from intrahepatic simple steatosis to nonalcoholic steatohepatitis (NASH). During the last decade, NAFLD has reached epidemic proportions in overweight/obese children. In this manuscript, we review all recent advances in paediatric NAFLD. RECENT FINDINGS Paediatric NAFLD displays some common aspects with the adult form of disease. However, recent findings have demonstrated that regarding development of NAFLD in children, due to the absence of long-time confounding factors, it may be more appropriate to investigate genetic and pathogenetic origins of the disease. Furthermore, as the histological pattern of paediatric NAFLD is different from those observed in adults, specific diagnostic/management programmes and diagnostic scores have been recently developed. Accordingly, several studies demonstrated that both lifestyle intervention and pharmacological treatments should be adequate to the specific pattern of NAFLD in children. SUMMARY Results of this year's investigations further elucidated the histological features and genetic background that characterize paediatric NAFLD; the closed association of disease development with the cross-talk between different cells and organs; limitations of diagnostic tools borrowed from adult studies and the need of further clinical trial.
Collapse
|
48
|
Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog Lipid Res 2013; 52:305-16. [PMID: 23603613 DOI: 10.1016/j.plipres.2013.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins-lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of "lipinopathies" in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
Collapse
|
49
|
Influence of SNPs in nutrient-sensitive candidate genes and gene–diet interactions on blood lipids: the DiOGenes study. Br J Nutr 2013; 110:790-6. [DOI: 10.1017/s0007114512006058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene–diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP–diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-monthad libitumweight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP–dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of − 0·26 mmol/l per A-allele/protein unit (95 % CI − 0·38, − 0·14,P= 0·000043). In conclusion, we investigated SNP–diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction betweenLPIN1rs4315495 and dietary protein for TAG concentration.
Collapse
|
50
|
Valenti L, Alisi A, Nobili V. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology 2012; 55:661-3. [PMID: 22281838 DOI: 10.1002/hep.25617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|