1
|
Karakaya D, Lampe K, Encinas JL, Duru S, Peiro L, Oge HK, Sanchez-Margallo FM, Oria M, Peiro JL. Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model. Fluids Barriers CNS 2025; 22:20. [PMID: 39994758 PMCID: PMC11849300 DOI: 10.1186/s12987-025-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Congenital hydrocephalus (HCP) is a prevalent condition, that leads to fetal cerebral ventricle dilation and increased intracranial pressure. It is associated with significant neurological impairments, partly due to the disruption of neurogenesis and gliogenesis. This study aims to investigate alterations in the proliferation and differentiation of neural progenitor cells (NPCs) in a fetal lamb model of obstructive HCP induced by intracisternal BioGlue injection, to identify the potential optimal intervention time for prenatal surgery. METHODS This study involved 22 fetal lambs, divided into control (n = 10) and HCP (n = 12) groups with hydrocephalus induced at approximately 85-90 gestational days. Histological and molecular techniques, including hematoxylin and eosin staining, triple immunofluorescence, Western blot analysis, and RT-qPCR, were utilized to assess changes in NPCs, astrocytes, and oligodendrocytes across three different gestational stages (E105, E125, and E140). The analysis of data was done by using multiple (unpaired) two-sample t-test and was represented as mean and standard deviation. RESULTS HCP led to significant disruptions in the ventricular zone (VZ), with the translocation of NPCs into the intraventricular CSF and formation of periventricular heterotopias. This study revealed an initial surge in the expression of NPC markers (Pax6 and Sox2), which decreased as HCP progressed. Astroglia reaction intensified, as indicated by increased expression of GFAP, vimentin, and aquaporin 4, particularly at later stages of pregnancy (p < 0.001, p < 0.001 and p < 0.001, control and HCP E140, respectively). Myelin formation was also adversely affected, with reduced expression of oligodendrocyte markers (Olig2 and Sox10, p = 0.01 and p = 0.009, control and HCP E140, respectively) and myelin proteins (MOBP, MOG and MBP, p = 0.02, p = 0.049 and p = 0.02 control and HCP E140, respectively). CONCLUSIONS This study contributed to clarify the profound impact of congenital HCP on neurogenesis and gliogenesis in an experimental fetal lamb model. The VZ disruption and altered expression of key neurogenic and glial markers suggested a significant pathological process underlying neurodevelopmental abnormalities. The findings suggested a potential window for prenatal surgical intervention between E105 and E125 in the sheep model, offering new avenues for prenatal therapeutic approaches and improving surgical outcomes in affected fetuses and neonates.
Collapse
Affiliation(s)
- Dicle Karakaya
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Jose L Encinas
- Pediatric Surgery Division, Hospital Universitario La Paz, Madrid, Spain
| | - Soner Duru
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Lucas Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Halil Kamil Oge
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | | | - Marc Oria
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Epstein AA, Janos SN, Menozzi L, Pegram K, Jain V, Bisset LC, Davis JT, Morrison S, Shailaja A, Guo Y, Chao AS, Abdi K, Rikard B, Yao J, Gregory SG, Fisher K, Pittman R, Erkanli A, Gustafson KE, Carrico CWT, Malcolm WF, Inder TE, Cotten CM, Burt TD, Shinohara ML, Maxfield CM, Benner EJ. Subventricular zone stem cell niche injury is associated with intestinal perforation in preterm infants and predicts future motor impairment. Cell Stem Cell 2024; 31:467-483.e6. [PMID: 38537631 PMCID: PMC11129818 DOI: 10.1016/j.stem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.
Collapse
Affiliation(s)
- Adrian A Epstein
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Sara N Janos
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kelly Pegram
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Logan C Bisset
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph T Davis
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha Morrison
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Aswathy Shailaja
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Yingqiu Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Agnes S Chao
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Khadar Abdi
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Blaire Rikard
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Kimberley Fisher
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Rick Pittman
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Al Erkanli
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn E Gustafson
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | | | - William F Malcolm
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Michael Cotten
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Trevor D Burt
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Children's Health and Discovery Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles M Maxfield
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
| | - Eric J Benner
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Del Puerto A, Lopez-Fonseca C, Simón-García A, Martí-Prado B, Barrios-Muñoz AL, Pose-Utrilla J, López-Menéndez C, Alcover-Sanchez B, Cesca F, Schiavo G, Campanero MR, Fariñas I, Iglesias T, Porlan E. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis. Cell Death Dis 2023; 14:500. [PMID: 37542079 PMCID: PMC10403621 DOI: 10.1038/s41419-023-05995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.
Collapse
Affiliation(s)
- Ana Del Puerto
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Autovía A6, Km 7,5, 28040, Madrid, Spain
| | - Coral Lopez-Fonseca
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Beatriz Martí-Prado
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departmento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, C/ Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Ana L Barrios-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Giampietro Schiavo
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Miguel R Campanero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departmento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, C/ Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Eva Porlan
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
5
|
Garcia-Bonilla M, Nair A, Moore J, Castaneyra-Ruiz L, Zwick SH, Dilger RN, Fleming SA, Golden RK, Talcott MR, Isaacs AM, Limbrick DD, McAllister JP. Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus. Exp Neurol 2023; 363:114354. [PMID: 36822393 PMCID: PMC10411821 DOI: 10.1016/j.expneurol.2023.114354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hydrocephalus is a neurological disease with an incidence of 0.3-0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. METHODS Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. RESULTS The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. CONCLUSION In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Arjun Nair
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jason Moore
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | - Sarah H Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ryan N Dilger
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Stephen A Fleming
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA; Traverse Science, Champaign, IL 61801, USA
| | - Rebecca K Golden
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Michael R Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; AbbVie, Inc., North Chicago, IL 60064, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Vanderbilt, University Medical Center, Nashville, TN 37232, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
García-Bonilla M, Ojeda-Pérez B, Shumilov K, Rodríguez-Pérez LM, Domínguez-Pinos D, Vitorica J, Jiménez S, Ramírez-Lorca R, Echevarría M, Cárdenas-García C, Iglesias T, Gutiérrez A, McAllister JP, Limbrick DD, Páez-González P, Jiménez AJ. Generation of Periventricular Reactive Astrocytes Overexpressing Aquaporin 4 Is Stimulated by Mesenchymal Stem Cell Therapy. Int J Mol Sci 2023; 24:5640. [PMID: 36982724 PMCID: PMC10057840 DOI: 10.3390/ijms24065640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFβ1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.
Collapse
Affiliation(s)
- María García-Bonilla
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Kirill Shumilov
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Luis-Manuel Rodríguez-Pérez
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, 29010 Malaga, Spain
| | | | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Reposo Ramírez-Lorca
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Miriam Echevarría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Casimiro Cárdenas-García
- Servicios Centrales de Apoyo a la Investigación (SCAI), University of Malaga, 29010 Malaga, Spain
| | - Teresa Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain
| | - Antonia Gutiérrez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - James P. McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Patricia Páez-González
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Antonio J. Jiménez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| |
Collapse
|
7
|
Bustamante-Barrientos FA, Méndez-Ruette M, Molina L, Koning T, Ehrenfeld P, González CB, Wyneken U, Henzi R, Bátiz LF. Alpha-SNAP (M105I) mutation promotes neuronal differentiation of neural stem/progenitor cells through overactivation of AMPK. Front Cell Dev Biol 2023; 11:1061777. [PMID: 37113766 PMCID: PMC10127105 DOI: 10.3389/fcell.2023.1061777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.
Collapse
Affiliation(s)
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B. González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ursula Wyneken
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Roberto Henzi
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Laboratorio de Reproducción Animal, Escuela de Medicina Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| |
Collapse
|
8
|
Norton ES, Whaley LA, Ulloa-Navas MJ, García-Tárraga P, Meneses KM, Lara-Velazquez M, Zarco N, Carrano A, Quiñones-Hinojosa A, García-Verdugo JM, Guerrero-Cázares H. Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids Barriers CNS 2022; 19:58. [PMID: 35821139 PMCID: PMC9277938 DOI: 10.1186/s12987-022-00354-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and common type of primary brain tumor in adults. Tumor location plays a role in patient prognosis, with tumors proximal to the lateral ventricles (LVs) presenting with worse overall survival, increased expression of stem cell genes, and increased incidence of distal tumor recurrence. This may be due in part to interaction of GBM with factors of the subventricular zone (SVZ), including those contained within the cerebrospinal fluid (CSF). However, direct interaction of GBM tumors with CSF has not been proved and would be hindered in the presence of an intact ependymal cell layer. Methods Here, we investigate the ependymal cell barrier and its derived extracellular matrix (ECM) fractones in the vicinity of a GBM tumor. Patient-derived GBM cells were orthotopically implanted into immunosuppressed athymic mice in locations distal and proximal to the LV. A PBS vehicle injection in the proximal location was included as a control. At four weeks post-xenograft, brain tissue was examined for alterations in ependymal cell health via immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. Results We identified local invading GBM cells within the LV wall and increased influx of CSF into the LV-proximal GBM tumor bulk compared to controls. In addition to the physical disruption of the ependymal cell barrier, we also identified increased signs of compromised ependymal cell health in LV-proximal tumor-bearing mice. These signs include increased accumulation of lipid droplets, decreased cilia length and number, and decreased expression of cell channel proteins. We additionally identified elevated numbers of small fractones in the SVZ within this group, suggesting increased indirect CSF-contained molecule signaling to tumor cells. Conclusions Our data is the first to show that LV-proximal GBMs physically disrupt the ependymal cell barrier in animal models, resulting in disruptions in ependymal cell biology and increased CSF interaction with the tumor bulk. These findings point to ependymal cell health and CSF-contained molecules as potential axes for therapeutic targeting in the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00354-8.
Collapse
Affiliation(s)
- Emily S Norton
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia García-Tárraga
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Kayleah M Meneses
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Garcia-Bonilla M, Castaneyra-Ruiz L, Zwick S, Talcott M, Otun A, Isaacs AM, Morales DM, Limbrick DD, McAllister JP. Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Fluids Barriers CNS 2022; 19:17. [PMID: 35193620 PMCID: PMC8864805 DOI: 10.1186/s12987-022-00313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hydrocephalus is a neurological disease with an incidence of 80-125 per 100,000 births in the United States. Neuropathology comprises ventriculomegaly, periventricular white matter (PVWM) alterations, inflammation, and gliosis. We hypothesized that hydrocephalus in a pig model is associated with subventricular and PVWM cellular alterations and neuroinflammation that could mimic the neuropathology described in hydrocephalic infants. METHODS Hydrocephalus was induced by intracisternal kaolin injections in 35-day old female pigs (n = 7 for tissue analysis, n = 10 for CSF analysis). Age-matched sham controls received saline injections (n = 6). After 19-40 days, MRI scanning was performed to measure the ventricular volume. Stem cell proliferation was studied in the Subventricular Zone (SVZ), and cell death and oligodendrocytes were examined in the PVWM. The neuroinflammatory reaction was studied by quantifying astrocytes and microglial cells in the PVWM, and inflammatory cytokines in the CSF. RESULTS The expansion of the ventricles was especially pronounced in the body of the lateral ventricle, where ependymal disruption occurred. PVWM showed a 44% increase in cell death and a 67% reduction of oligodendrocytes. In the SVZ, the number of proliferative cells and oligodendrocyte decreased by 75% and 57% respectively. The decrease of the SVZ area correlated significantly with ventricular volume increase. Neuroinflammation occurred in the hydrocephalic pigs with a significant increase of astrocytes and microglia in the PVWM, and high levels of inflammatory interleukins IL-6 and IL-8 in the CSF. CONCLUSION The induction of acquired hydrocephalus produced alterations in the PVWM, reduced cell proliferation in the SVZ, and neuroinflammation.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| | - Leandro Castaneyra-Ruiz
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michael Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Ayodamola Otun
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Alberta, T2N 2T9, Canada
| | - Diego M Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Dawes W. Secondary Brain Injury Following Neonatal Intraventricular Hemorrhage: The Role of the Ciliated Ependyma. Front Pediatr 2022; 10:887606. [PMID: 35844746 PMCID: PMC9280684 DOI: 10.3389/fped.2022.887606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Intraventricular hemorrhage is recognized as a leading cause of hydrocephalus in the developed world and a key determinant of neurodevelopmental outcome following premature birth. Even in the absence of haemorrhagic infarction or posthaemorrhagic hydrocephalus, there is increasing evidence of neuropsychiatric and neurodevelopmental sequelae. The pathophysiology underlying this injury is thought to be due to a primary destructive and secondary developmental insult, but the exact mechanisms remain elusive and this has resulted in a paucity of therapeutic interventions. The presence of blood within the cerebrospinal fluid results in the loss of the delicate neurohumoral gradient within the developing brain, adversely impacting on the tightly regulated temporal and spatial control of cell proliferation and migration of the neural stem progenitor cells within the subventricular zone. In addition, haemolysis of the erythrocytes, associated with the release of clotting factors and leucocytes into the cerebrospinal (CSF), results in a toxic and inflammatory CSF microenvironment which is harmful to the periventricular tissues, resulting in damage and denudation of the multiciliated ependymal cells which line the choroid plexus and ventricular system. The ependyma plays a critical role in the developing brain and beyond, acting as both a protector and gatekeeper to the underlying parenchyma, controlling influx and efflux across the CSF to brain interstitial fluid interface. In this review I explore the hypothesis that damage and denudation of the ependymal layer at this critical juncture in the developing brain, seen following IVH, may adversely impact on the brain microenvironment, exposing the underlying periventricular tissues to toxic and inflammatory CSF, further exacerbating disordered activity within the subventricular zone (SVZ). By understanding the impact that intraventricular hemorrhage has on the microenvironment within the CSF, and the consequences that this has on the multiciliated ependymal cells which line the neuraxis, we can begin to develop and test novel therapeutic interventions to mitigate damage and reduce the associated morbidity.
Collapse
Affiliation(s)
- William Dawes
- Alder Hey Children's Hospital, Liverpool, United Kingdom.,NIHR Great Ormond Street Hospital BRC, London, United Kingdom
| |
Collapse
|
11
|
Garcia-Bonilla M, McAllister JP, Limbrick DD. Genetics and Molecular Pathogenesis of Human Hydrocephalus. Neurol India 2021; 69:S268-S274. [PMID: 35102976 DOI: 10.4103/0028-3886.332249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 live births in the United States. The molecular pathogenesis of this multidimensional disorder is complex and has both genetic and environmental influences. This review aims to discuss the genetic and molecular alterations described in human hydrocephalus, from well-characterized, heritable forms of hydrocephalus (e.g., X-linked hydrocephalus from L1CAM variants) to those affecting cilia motility and other complex pathologies such as neural tube defects and Dandy-Walker syndrome. Ventricular zone disruption is one key pattern among congenital and acquired forms of hydrocephalus, with abnormalities in cadherins, which mediate neuroepithelium/ependymal cell junctions and contribute to the pathogenesis and severity of the disease. Given the relationship between hydrocephalus pathogenesis and neurodevelopment, future research should elucidate the genetic and molecular mechanisms that regulate ventricular zone integrity and stem cell biology.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Cumulative Damage: Cell Death in Posthemorrhagic Hydrocephalus of Prematurity. Cells 2021; 10:cells10081911. [PMID: 34440681 PMCID: PMC8393895 DOI: 10.3390/cells10081911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, approximately 11% of all infants are born preterm, prior to 37 weeks’ gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.
Collapse
|
13
|
Dunn JF, Isaacs AM. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. J Appl Physiol (1985) 2021; 131:977-985. [PMID: 34264124 DOI: 10.1152/japplphysiol.00108.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The blood-brain barrier (BBB), blood-cerebrospinal fluid (CSF) barrier (BCSFB), and CSF-brain barriers (CSFBB) are highly regulated barriers in the central nervous system comprising complex multicellular structures that separate nerves and glia from blood and CSF, respectively. Barrier damage has been implicated in the pathophysiology of diverse hypoxia-related neurological conditions, including stroke, multiple sclerosis, hydrocephalus, and high-altitude cerebral edema. Much is known about the damage to the BBB in response to hypoxia, but much less is known about the BCSFB and CSFBB. Yet, it is known that these other barriers are implicated in damage after hypoxia or inflammation. In the 1950s, it was shown that the rate of radionucleated human serum albumin passage from plasma to CSF was five times higher during hypoxic than normoxic conditions in dogs, due to BCSFB disruption. Severe hypoxia due to administration of the bacterial toxin lipopolysaccharide is associated with disruption of the CSFBB. This review discusses the anatomy of the BBB, BCSFB, and CSFBB and the impact of hypoxia and associated inflammation on the regulation of those barriers.
Collapse
Affiliation(s)
- Jeff F Dunn
- Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Albert M Isaacs
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Isaacs AM, Morton SU, Movassagh M, Zhang Q, Hehnly C, Zhang L, Morales DM, Sinnar SA, Ericson JE, Mbabazi-Kabachelor E, Ssenyonga P, Onen J, Mulondo R, Hornig M, Warf BC, Broach JR, Townsend RR, Limbrick DD, Paulson JN, Schiff SJ. Immune activation during Paenibacillus brain infection in African infants with frequent cytomegalovirus co-infection. iScience 2021; 24:102351. [PMID: 33912816 PMCID: PMC8065213 DOI: 10.1016/j.isci.2021.102351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation during neonatal brain infections leads to significant secondary sequelae such as hydrocephalus, which often follows neonatal sepsis in the developing world. In 100 African hydrocephalic infants we identified the biological pathways that account for this response. The dominant bacterial pathogen was a Paenibacillus species, with frequent cytomegalovirus co-infection. A proteogenomic strategy was employed to confirm host immune response to Paenibacillus and to define the interplay within the host immune response network. Immune activation emphasized neuroinflammation, oxidative stress reaction, and extracellular matrix organization. The innate immune system response included neutrophil activity, signaling via IL-4, IL-12, IL-13, interferon, and Jak/STAT pathways. Platelet-activating factors and factors involved with microbe recognition such as Class I MHC antigen-presenting complex were also increased. Evidence suggests that dysregulated neuroinflammation propagates inflammatory hydrocephalus, and these pathways are potential targets for adjunctive treatments to reduce the hazards of neuroinflammation and risk of hydrocephalus following neonatal sepsis. There is a characteristic immune response to Paenibacillus brain infection There is a characteristic immune response to CMV brain infection The matching immune response validates pathogen genomic presence The combined results support molecular infection causality
Collapse
Affiliation(s)
- Albert M Isaacs
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mercedeh Movassagh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine Hehnly
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Lijun Zhang
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shamim A Sinnar
- Center for Neural Engineering, Pennsylvania State University, State College, PA 16801, USA.,Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jessica E Ericson
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Justin Onen
- CURE Children's Hospital of Uganda, Mbale, Uganda
| | | | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - James R Broach
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Steven J Schiff
- Center for Neural Engineering, Pennsylvania State University, State College, PA 16801, USA.,Center for Infectious Disease Dynamics, Departments of Neurosurgery, Engineering Science and Mechanics, and Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Chronic extradural compression of spinal cord leads to syringomyelia in rat model. Fluids Barriers CNS 2020; 17:50. [PMID: 32736591 PMCID: PMC7393857 DOI: 10.1186/s12987-020-00213-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background Syringomyelia is a common spinal cord lesion. However, whether CSF blockage is linked to the formation and enlargement of syringomyelia is still controversial. The current model of syringomyelia needs modification to more closely mimic the clinical situation. Methods We placed cotton strips under the T13 lamina of 40 8-week-old rats and blocked CSF flow by extradural compression. After 4 and 8 weeks, MRI was performed to evaluate the morphology of syringomyelia and the ratio of spinal cord diameter to syrinx diameter calculated. Locomotor function was evaluated weekly. Spinal cord sections, staining and immunohistochemistry were performed 8 weeks after surgery, the ratio of the central canal to the spinal cord area was calculated, and ependymal cells were counted. In another experiment, we performed decompression surgery for 8 rats with induced syringomyelia at the 8th week after surgery. During the surgery, the cotton strip was completely removed without damaging the dura mater. Then, the rats received MRI imaging during the following weeks and were sacrificed for pathological examination at the end of the experiment. Results Syringomyelia formed in 82.5% (33/40) of rats at the 8-week follow-up. The Basso, Beattie and Bresnahan (BBB) scores of rats in the experimental group decreased from 21.0±0.0 to 18.0 ±3.9 in the first week after operation but returned to normal in later weeks. The BBB score indicated that the locomotor deficit caused by compression is temporary and can spontaneously recover. MRI showed that the syrinx is located in the center of the spinal cord, which is very similar to the most common syringomyelia in humans. The ratio of the central canal to the spinal cord area reached (2.9 ± 2.0) × 10−2, while that of the sham group was (5.4 ± 1.5) × 10−4. The number of ependymal cells lining the central canal was significantly increased (101.9 ± 39.6 vs 54.5 ± 3.4). There was no syrinx or proliferative inflammatory cells in the spinal cord parenchyma. After decompression, the syringomyelia size decreased in 50% (4/8) of the rats and increased in another 50% (4/8). Conclusion Extradural blockade of CSF flow can induce syringomyelia in rats. Temporary locomotor deficit occurred in some rats. This reproducible rat model of syringomyelia, which mimics syringomyelia in humans, can provide a good model for the study of disease mechanisms and therapies.
Collapse
|
17
|
Castaneyra-Ruiz L, McAllister JP, Morales DM, Brody SL, Isaacs AM, Limbrick DD. Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 2020; 17:46. [PMID: 32690048 PMCID: PMC7372876 DOI: 10.1186/s12987-020-00210-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant. METHODS Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC. DISCUSSION This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.
Collapse
Affiliation(s)
- Leandro Castaneyra-Ruiz
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| | - James P McAllister
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
García-Bonilla M, Ojeda-Pérez B, García-Martín ML, Muñoz-Hernández MC, Vitorica J, Jiménez S, Cifuentes M, Santos-Ruíz L, Shumilov K, Claros S, Gutiérrez A, Páez-González P, Jiménez AJ. Neocortical tissue recovery in severe congenital obstructive hydrocephalus after intraventricular administration of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:121. [PMID: 32183876 PMCID: PMC7079418 DOI: 10.1186/s13287-020-01626-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background In obstructive congenital hydrocephalus, cerebrospinal fluid accumulation is associated with high intracranial pressure and the presence of periventricular edema, ischemia/hypoxia, damage of the white matter, and glial reactions in the neocortex. The viability and short time effects of a therapy based on bone marrow-derived mesenchymal stem cells (BM-MSC) have been evaluated in such pathological conditions in the hyh mouse model. Methods BM-MSC obtained from mice expressing fluorescent mRFP1 protein were injected into the lateral ventricle of hydrocephalic hyh mice at the moment they present a very severe form of the disease. The effect of transplantation in the neocortex was compared with hydrocephalic hyh mice injected with the vehicle and non-hydrocephalic littermates. Neural cell populations and the possibility of transdifferentiation were analyzed. The possibility of a tissue recovering was investigated using 1H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, thus allowing the detection of metabolites/osmolytes related with hydrocephalus severity and outcome in the neocortex. An in vitro assay to simulate the periventricular astrocyte reaction conditions was performed using BM-MSC under high TNFα level condition. The secretome in the culture medium was analyzed in this assay. Results Four days after transplantation, BM-MSC were found undifferentiated and scattered into the astrocyte reaction present in the damaged neocortex white matter. Tissue rejection to the integrated BM-MSC was not detected 4 days after transplantation. Hyh mice transplanted with BM-MSC showed a reduction in the apoptosis in the periventricular neocortex walls, suggesting a neuroprotector effect of the BM-MSC in these conditions. A decrease in the levels of metabolites/osmolytes in the neocortex, such as taurine and neuroexcytotoxic glutamate, also indicated a tissue recovering. Under high TNFα level condition in vitro, BM-MSC showed an upregulation of cytokine and protein secretion that may explain homing, immunomodulation, and vascular permeability, and therefore the tissue recovering. Conclusions BM-MSC treatment in severe congenital hydrocephalus is viable and leads to the recovery of the severe neurodegenerative conditions in the neocortex. NMR spectroscopy allows to follow-up the effects of stem cell therapy in hydrocephalus.
Collapse
Affiliation(s)
- María García-Bonilla
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - María L García-Martín
- BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain
| | - M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain
| | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Cifuentes
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Leonor Santos-Ruíz
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Kirill Shumilov
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Silvia Claros
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Páez-González
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain. .,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| | - Antonio J Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain. .,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| |
Collapse
|
19
|
Veeraval L, O'Leary CJ, Cooper HM. Adherens Junctions: Guardians of Cortical Development. Front Cell Dev Biol 2020; 8:6. [PMID: 32117958 PMCID: PMC7025593 DOI: 10.3389/fcell.2020.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022] Open
Abstract
Apical radial glia comprise the pseudostratified neuroepithelium lining the embryonic lateral ventricles and give rise to the extensive repertoire of pyramidal neuronal subtypes of the neocortex. The establishment of a highly apicobasally polarized radial glial morphology is a mandatory prerequisite for cortical development as it governs neurogenesis, neural migration and the integrity of the ventricular wall. As in all epithelia, cadherin-based adherens junctions (AJs) play an obligate role in the maintenance of radial glial apicobasal polarity and neuroepithelial cohesion. In addition, the assembly of resilient AJs is critical to the integrity of the neuroepithelium which must resist the tensile forces arising from increasing CSF volume and other mechanical stresses associated with the expansion of the ventricles in the embryo and neonate. Junctional instability leads to the collapse of radial glial morphology, disruption of the ventricular surface and cortical lamination defects due to failed neuronal migration. The fidelity of cortical development is therefore dependent on AJ assembly and stability. Mutations in genes known to control radial glial junction formation are causative for a subset of inherited cortical malformations (neuronal heterotopias) as well as perinatal hydrocephalus, reinforcing the concept that radial glial junctions are pivotal determinants of successful corticogenesis. In this review we explore the key animal studies that have revealed important insights into the role of AJs in maintaining apical radial glial morphology and function, and as such, have provided a deeper understanding of the aberrant molecular and cellular processes contributing to debilitating cortical malformations. We highlight the reciprocal interactions between AJs and the epithelial polarity complexes that impose radial glial apicobasal polarity. We also discuss the critical molecular networks promoting AJ assembly in apical radial glia and emphasize the role of the actin cytoskeleton in the stabilization of cadherin adhesion – a crucial factor in buffering the mechanical forces exerted as a consequence of cortical expansion.
Collapse
Affiliation(s)
- Lenin Veeraval
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Conor J O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. J Neurosci 2020; 40:2015-2024. [PMID: 31988061 DOI: 10.1523/jneurosci.2249-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
Neural stem cells (NSCs) persist throughout life in the subventricular zone (SVZ) neurogenic niche of the lateral ventricles as Type B1 cells in adult mice. Maintaining this population of NSCs depends on the balance between quiescence and self-renewing or self-depleting cell divisions. Interactions between B1 cells and the surrounding niche are important in regulating this balance, but the mechanisms governing these processes have not been fully elucidated. The cytoplasmic FMRP-interacting protein (Cyfip1) regulates apical-basal polarity in the embryonic brain. Loss of Cyfip1 during embryonic development in mice disrupts the embryonic niche and affects cortical neurogenesis. However, a direct role for Cyfip1 in the regulation of adult NSCs has not been established. Here, we demonstrate that Cyfip1 expression is preferentially localized to B1 cells in the adult mouse SVZ. Loss of Cyfip1 in the embryonic mouse brain results in altered adult SVZ architecture and expansion of the adult B1 cell population at the ventricular surface. Furthermore, acute deletion of Cyfip1 in adult NSCs results in a rapid change in adherens junction proteins as well as increased proliferation and number of B1 cells at the ventricular surface. Together, these data indicate that Cyfip1 plays a critical role in the formation and maintenance of the adult SVZ niche; furthermore, deletion of Cyfip1 unleashes the capacity of adult B1 cells for symmetric renewal to increase the adult NSC pool.SIGNIFICANCE STATEMENT Neural stem cells (NSCs) persist in the subventricular zone of the lateral ventricles in adult mammals, and the size of this population is determined by the balance between quiescence and self-depleting or renewing cell division. The mechanisms regulating these processes are not fully understood. This study establishes that the cytoplasmic FMRP interacting protein 1 (Cyfip1) regulates NSC fate decisions in the adult subventricular zone and adult NSCs that are quiescent or typically undergo self-depleting divisions retain the ability to self-renew. These results contribute to our understanding of how adult NSCs are regulated throughout life and has potential implications for human brain disorders.
Collapse
|
21
|
Untangling human neurogenesis to understand and counteract brain disorders. Curr Opin Pharmacol 2019; 50:67-73. [PMID: 31901615 DOI: 10.1016/j.coph.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Neurogenesis in the human postnatal brain occurs in two regions, the subventricular zone of the later ventricle and the dentate gyrus of the hippocampus. While it is well accepted that SVZ and hippocampal neurogenesis are active during juvenile stages in human, their contribution during adulthood and ageing as well as pathological states is recently animating the neural stem cell research field. In this review we will discuss recent evidence about the organization of SVZ and hippocampal neurogenic niches, and will report on how human adult neurogenesis may contribute to disease and appears to respond to neurodegeneration. In light of these novel findings, we will discuss how we can target human adult neurogenesis in order to influence brain disease trajectories.
Collapse
|
22
|
Isaacs AM, Smyser CD, Lean RE, Alexopoulos D, Han RH, Neil JJ, Zimbalist SA, Rogers CE, Yan Y, Shimony JS, Limbrick DD. MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity. NEUROIMAGE-CLINICAL 2019; 24:102031. [PMID: 31795043 PMCID: PMC6909338 DOI: 10.1016/j.nicl.2019.102031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Diffusion MRI demonstrates PHH is associated with LVP microstructural injury. The greatest PHH-associated disruption occurs at the frontal and occipital horns. Greater ventricular size is associated with greater disruption. dMRI may provide useful biomarkers for PHH monitoring and intervention. The region of LVP injury encompasses neuroprogenitor regions.
Objectives Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). Study design Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. Results In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p<.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p<.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p<.010), and a lower FA than the HG-IVH group (p<.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p>.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p<.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p<.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. Conclusion HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH.
Collapse
Affiliation(s)
- Albert M Isaacs
- Department of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rowland H Han
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sophia A Zimbalist
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia E Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Yan Yan
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David D Limbrick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Castaneyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD. Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. J Neuropathol Exp Neurol 2019; 77:803-813. [PMID: 30032242 DOI: 10.1093/jnen/nly058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is the most common cause of pediatric hydrocephalus in North America but remains poorly understood. Cell junction-mediated ventricular zone (VZ) disruption and astrogliosis are associated with the pathogenesis of congenital, nonhemorrhagic hydrocephalus. Recently, our group demonstrated that VZ disruption is also present in preterm infants with IVH. On the basis of this observation, we hypothesized that blood triggers the loss of VZ cell junction integrity and related cytopathology. In order to test this hypothesis, we developed an in vitro model of IVH by applying syngeneic blood to cultured VZ cells obtained from newborn mice. Following blood treatment, cells were assayed for N-cadherin-dependent adherens junctions, ciliated ependymal cells, and markers of glial activation using immunohistochemistry and immunoblotting. After 24-48 hours of exposure to blood, VZ cell junctions were disrupted as determined by a significant reduction in N-cadherin expression (p < 0.05). This was also associated with significant decrease in multiciliated cells and increase in glial fibrillary acid protein-expressing cells (p < 0.05). These observations suggest that, in vitro, blood triggers VZ cell loss and glial activation in a pattern that mirrors the cytopathology of human IVH and supports the relevance of this in vitro model to define injury mechanisms.
Collapse
Affiliation(s)
- Leandro Castaneyra-Ruiz
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri
| | - Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri
| | - James P McAllister
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | - Jennifer M Strahle
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri.,Department of Pediatrics
| | - Sonika M Dahiya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri.,Department of Pediatrics
| |
Collapse
|
24
|
Roy A, Murphy RM, Deng M, MacDonald JW, Bammler TK, Aldinger KA, Glass IA, Millen KJ. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. eLife 2019; 8:45961. [PMID: 31094678 PMCID: PMC6544437 DOI: 10.7554/elife.45961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Mechanisms driving the initiation of brain folding are incompletely understood. We have previously characterized mouse models recapitulating human PIK3CA-related brain overgrowth, epilepsy, dysplastic gyrification and hydrocephalus (Roy et al., 2015). Using the same, highly regulatable brain-specific model, here we report PI3K-dependent mechanisms underlying gyrification of the normally smooth mouse cortex, and hydrocephalus. We demonstrate that a brief embryonic Pik3ca activation was sufficient to drive subtle changes in apical cell adhesion and subcellular Yap translocation, causing focal proliferation and subsequent initiation of the stereotypic ‘gyrification sequence’, seen in naturally gyrencephalic mammals. Treatment with verteporfin, a nuclear Yap inhibitor, restored apical surface integrity, normalized proliferation, attenuated gyrification and rescued the associated hydrocephalus, highlighting the interrelated role of regulated PI3K-Yap signaling in normal neural-ependymal development. Our data defines apical cell-adhesion as the earliest known substrate for cortical gyrification. In addition, our preclinical results support the testing of Yap-related small-molecule therapeutics for developmental hydrocephalus.
Collapse
Affiliation(s)
- Achira Roy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States
| | - Rory M Murphy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States
| | - Mei Deng
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington, United States
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| |
Collapse
|
25
|
Leijser LM, de Vries LS. Preterm brain injury: Germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:173-199. [PMID: 31324310 DOI: 10.1016/b978-0-444-64029-1.00008-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Germinal matrix hemorrhage and intraventricular hemorrhages (GMH-IVH) remain a common and clinically significant problem in preterm infants, particularly extremely preterm infants. A large GMH-IVH is often complicated by posthemorrhagic ventricular dilation (PHVD) or parenchymal hemorrhagic infarction and is associated with an increased risk of adverse neurologic sequelae. The widespread use of cranial ultrasonography since the early 1980s has shown a gradual decrease in the incidence of GMH-IVH and has helped with the identification of antenatal and perinatal risk factors and timing of the lesion. The increased use of magnetic resonance imaging (MRI) has contributed to more detailed visualization of the site and extent of the GMH-IVH. In addition, MRI has contributed to the awareness of associated white matter changes as well as associated cerebellar hemorrhages. Although GMH-IVH and PHVD still cannot be prevented, cerebrospinal fluid drainage initiated in the early stage of PHVD development seems to be associated with a better neurodevelopmental outcome. Further studies are underway to improve treatment strategies for PHVD and to potentially prevent and repair GMH-IVH and PHVD and associated brain injury. This chapter discusses the pathogenesis, incidence, risk factors, and management, including preventive measures, of GHM-IVH and PHVD.
Collapse
Affiliation(s)
- Lara M Leijser
- Department of Pediatrics, Section of Neonatology, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Multiple effects of the herbicide glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018; 69:152-163. [DOI: 10.1016/j.neuro.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
27
|
Koschnitzky JE, Keep RF, Limbrick DD, McAllister JP, Morris JA, Strahle J, Yung YC. Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 2018; 15:11. [PMID: 29587767 PMCID: PMC5870202 DOI: 10.1186/s12987-018-0096-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
The Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop was held on July 25 and 26, 2016 at the National Institutes of Health. The workshop brought together a diverse group of researchers including pediatric neurosurgeons, neurologists, and neuropsychologists with scientists in the fields of brain injury and development, cerebrospinal and interstitial fluid dynamics, and the blood-brain and blood-CSF barriers. The goals of the workshop were to identify areas of opportunity in posthemorrhagic hydrocephalus research and encourage scientific collaboration across a diverse set of fields. This report details the major themes discussed during the workshop and research opportunities identified for posthemorrhagic hydrocephalus. The primary areas include (1) preventing intraventricular hemorrhage, (2) stopping primary and secondary brain damage, (3) preventing hydrocephalus, (4) repairing brain damage, and (5) improving neurodevelopment outcomes in posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
| | - Richard F. Keep
- University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| | - David D. Limbrick
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - James P. McAllister
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - Jill A. Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Neuroscience Center, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD 20892 USA
| | - Jennifer Strahle
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - Yun C. Yung
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., Building 7, La Jolla, CA 92037 USA
| |
Collapse
|
28
|
Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA, Ehrenfeld P, Rivera FJ, Michaut MA, Batiz LF. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci Rep 2017; 7:11765. [PMID: 28924180 PMCID: PMC5603506 DOI: 10.1038/s41598-017-12292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.
Collapse
Affiliation(s)
- Alexis Arcos
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Matilde de Paola
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Diego Gianetti
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Zahady D Velásquez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Toro
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Bryan Hinrichsen
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rosa Iris Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria
| | - Marcela A Michaut
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Luis Federico Batiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. .,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile. .,Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
29
|
McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage. J Neuropathol Exp Neurol 2017; 76:358-375. [PMID: 28521038 DOI: 10.1093/jnen/nlx017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH.
Collapse
Affiliation(s)
- James P McAllister
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Maria Montserrat Guerra
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Leandro Castaneyra Ruiz
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Antonio J Jimenez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Dolores Dominguez-Pinos
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Deborah Sival
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Wilfred den Dunnen
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Diego M Morales
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Robert E Schmidt
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Esteban M Rodriguez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - David D Limbrick
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| |
Collapse
|
30
|
Naz N, Jimenez AR, Sanjuan-Vilaplana A, Gurney M, Miyan J. Neonatal hydrocephalus is a result of a block in folate handling and metabolism involving 10-formyltetrahydrofolate dehydrogenase. J Neurochem 2016; 138:610-23. [DOI: 10.1111/jnc.13686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Naila Naz
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| | | | | | - Megan Gurney
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| | - Jaleel Miyan
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| |
Collapse
|
31
|
Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 2016; 6:26794. [PMID: 27243144 PMCID: PMC4886677 DOI: 10.1038/srep26794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Johanna Sandlund
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive L235, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Avenue Palo, Alto, CA 94304, USA
| | - Mustafa Q Hameed
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery and Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Granados-Durán P, López-Ávalos MD, Hughes TR, Johnson K, Morgan BP, Tamburini PP, Fernández-Llebrez P, Grondona JM. Complement system activation contributes to the ependymal damage induced by microbial neuraminidase. J Neuroinflammation 2016; 13:115. [PMID: 27209022 PMCID: PMC4875702 DOI: 10.1186/s12974-016-0576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
Abstract
Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement.
Collapse
Affiliation(s)
- Pablo Granados-Durán
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Krista Johnson
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Paul P Tamburini
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain.
| |
Collapse
|
33
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|
34
|
Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 2015; 40:911-32. [PMID: 24707814 DOI: 10.1111/nan.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
Abstract
AIMS Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFβ1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFβ1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS The TGFβ1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.
Collapse
Affiliation(s)
- Antonio-Jesús Jiménez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yano H, Nakayama N, Morimitsu K, Futamura M, Ohe N, Miwa K, Shinoda J, Iwama T. Changes in protein level in the cerebrospinal fluid of a patient with cerebral radiation necrosis treated with bevacizumab. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2014; 8:153-7. [PMID: 25574147 PMCID: PMC4263439 DOI: 10.4137/cmo.s19823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/05/2022]
Abstract
A 32-year-old woman underwent surgeries and radiation therapy for astrocytoma. She developed symptomatic radiation necrosis in the lesion, which caused hydrocephalus. She initially underwent ventricular drainage, because the protein level in the cerebrospinal fluid (CSF) was 787 mg/dL, which was too high for shunt surgery. Because she also had breast cancer, which was pathologically diagnosed as an invasive ductal carcinoma, standard bevacizumab therapy in combination with paclitaxel every 2 weeks was selected. Interestingly, after 2 days, the agents had dramatically reduced the CSF protein level. However, it returned to approximately the initial level within 2 weeks. After two courses of this regimen, a ventriculoperitoneal shunt was placed. After 10 courses of this regimen, the CSF protein level decreased to 338 mg/dL, which is less than half of the initial level. Long-term administration of bevacizumab might decrease leakage of protein from the vessels around the ventriculus.
Collapse
Affiliation(s)
- Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kasumi Morimitsu
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Miwa
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Kizawa Memorial Hospital, Minokamo, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Kizawa Memorial Hospital, Minokamo, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
36
|
Medina-Bolívar C, González-Arnay E, Talos F, González-Gómez M, Moll UM, Meyer G. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis. J Comp Neurol 2014; 522:2663-79. [PMID: 24500610 DOI: 10.1002/cne.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.
Collapse
Affiliation(s)
- Carolina Medina-Bolívar
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Shook BA, Lennington JB, Acabchuk RL, Halling M, Sun Y, Peters J, Wu Q, Mahajan A, Fellows DW, Conover JC. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell 2014; 13:340-50. [PMID: 24341850 PMCID: PMC3954884 DOI: 10.1111/acel.12184] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 01/19/2023] Open
Abstract
Age-associated ventriculomegaly is typically attributed to neurodegeneration; however, additional factors might initiate or contribute to progressive ventricular expansion. By directly linking postmortem human MRI sequences with histological features of periventricular tissue, we show that substantial lateral ventricle surface gliosis is associated with ventriculomegaly. To examine whether loss of ependymal cell coverage resulting in ventricle surface glial scarring can lead directly to ventricle enlargement independent of any other injury or degenerative loss, we modeled in mice the glial scarring found along the lateral ventricle surface in aged humans. Neuraminidase, which cleaves glycosidic linkages of apical adherens junction proteins, was administered intracerebroventricularly to denude areas of ependymal cells. Substantial ependymal cell loss resulted in reactive gliosis rather than stem cell-mediated regenerative repair of the ventricle lining, and the gliotic regions showed morphologic and phenotypic characteristics similar to those found in aged humans. Increased levels of aquaporin-4, indicative of edema, observed in regions of periventricular gliosis in human tissue were also replicated in our mouse model. 3D modeling together with volume measurements revealed that mice with ventricle surface scarring developed expanded ventricles, independent of neurodegeneration. Through a comprehensive, comparative analysis of the lateral ventricles and associated periventricular tissue in aged humans and mouse, followed by modeling of surface gliosis in mice, we have demonstrated a direct link between lateral ventricle surface gliosis and ventricle enlargement. These studies highlight the importance of maintaining an intact ependymal cell lining throughout aging.
Collapse
Affiliation(s)
- Brett A. Shook
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Jessica B. Lennington
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Rebecca L. Acabchuk
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Meredith Halling
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Ye Sun
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
| | - John Peters
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
| | - Qian Wu
- Department of Anatomic Pathology and Laboratory Medicine University of Connecticut Health Center 400 Farmington Avenue FarmingtonCT 06030 USA
| | - Amit Mahajan
- Department of Diagnostic Radiology Yale School of Medicine New Haven CT 06520‐8042 USA
| | - Douglas W. Fellows
- Department of Diagnostic Imaging and Therapeutics University of Connecticut Health Center 400 Farmington Avenue FarmingtonCT 06030 USA
| | - Joanne C. Conover
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| |
Collapse
|
38
|
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014; 2:e28426. [PMID: 25045600 PMCID: PMC4091052 DOI: 10.4161/tisb.28426] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022] Open
Abstract
The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.
Collapse
Affiliation(s)
- Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology; University of Malaga; Malaga, Spain
| | | | - María M Guerra
- Institute of Anatomy, Histology, and Pathology; Austral University of Chile; Valdivia, Chile
| | | | | |
Collapse
|
39
|
Devaraju K, Barnabé-Heider F, Kokaia Z, Lindvall O. FoxJ1-expressing cells contribute to neurogenesis in forebrain of adult rats: evidence from in vivo electroporation combined with piggyBac transposon. Exp Cell Res 2013; 319:2790-800. [PMID: 24075965 DOI: 10.1016/j.yexcr.2013.08.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/03/2023]
Abstract
Ependymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb. The distribution and progeny of FoxJ1-expressing cells in rat forebrain are unknown. Here we show using immunohistochemistry that the overall majority of FoxJ1-expressing cells in the lateral ventricular wall of adult rats are ependymal cells with a minor population being astrocytes. To allow for long-term fate mapping of FoxJ1-derived cells, we used the piggyBac system for in vivo gene transfer with electroporation. Using this method, we found that FoxJ1-expressing cells, presumably the astrocytes, give rise to neuroblasts and mature neurons in the olfactory bulb both in intact and stroke-damaged brain of adult rats. No significant contribution of FoxJ1-derived cells to stroke-induced striatal neurogenesis was detected. These data indicate that in the adult rat brain, FoxJ1-expressing cells contribute to the formation of new neurons in the olfactory bulb but are not involved in the cellular repair after stroke.
Collapse
Affiliation(s)
- Karthikeyan Devaraju
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
40
|
Di Curzio DL, Buist RJ, Del Bigio MR. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 2013; 248:112-28. [PMID: 23769908 DOI: 10.1016/j.expneurol.2013.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/27/2023]
Abstract
Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain.
Collapse
Affiliation(s)
- Domenico L Di Curzio
- Department of Human Anatomy & Cell Science, University of Manitoba, Canada; Manitoba Institute of Child Health, Canada
| | | | | |
Collapse
|
41
|
Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 2013; 91:1117-32. [PMID: 23686703 DOI: 10.1002/jnr.23238] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/22/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Congenital hydrocephalus is a relatively common and debilitating birth defect with several known physiological causes. Dysfunction of motile cilia on the ependymal cells that line the ventricular surface of the brain can result in hydrocephalus by hindering the proper flow of cerebrospinal fluid. As a result, hydrocephalus can be associated with primary ciliary dyskinesia, a rare pediatric syndrome resulting from defects in ciliary and flagellar motility. Although the prevalence of hydrocephalus in primary ciliary dyskinesia patients is low, it is a common hallmark of the disease in mouse models, suggesting that distinct genetic mechanisms underlie the differences in the development and physiology of human and mouse brains. Mouse models of primary ciliary dyskinesia reveal strain-specific differences in the appearance and severity of hydrocephalus, indicating the presence of genetic modifiers segregating in inbred strains. These models may provide valuable insight into the genetic mechanisms that regulate susceptibility to hydrocephalus under the conditions of ependymal ciliary dysfunction.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, USA.
| |
Collapse
|
42
|
Shim JW, Sandlund J, Han CH, Hameed MQ, Connors S, Klagsbrun M, Madsen JR, Irwin N. VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol 2013; 247:703-9. [PMID: 23518418 DOI: 10.1016/j.expneurol.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 01/02/2023]
Abstract
Hydrocephalus is a condition characterized primarily by excessive accumulation of fluid in the ventricles of the brain for which there is currently no effective pharmacological treatment. Surgery, often accompanied by complications, is the only current treatment. Extensive research in our laboratory along with work from others has suggested a link between hydrocephalus and vascular function. We hypothesized that vascular endothelial growth factor (VEGF), the major angiogenic factor, could play a role in the pathogenesis of hydrocephalus. We tested this hypothesis by examining two predictions of such a link: first, that VEGF is present in many cases of clinical hydrocephalus; and second, that exogenous VEGF in an animal model could cause ventricular enlargement and tissue changes associated with hydrocephalus. Our results support the idea that VEGF elevation can potentiate hydrocephalus. The clinical relevance of this work is that anti-angiogenic drugs may be useful in patients with hydrocephalus, either alone or in combination with the currently available surgical treatments.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 2012; 124:531-46. [PMID: 22576081 PMCID: PMC3444707 DOI: 10.1007/s00401-012-0992-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 01/10/2023]
Abstract
Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell–cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF–brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma–CSF interphase.
Collapse
Affiliation(s)
- Ruth Roales-Buján
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Patricia Páez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Montserrat Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sara Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karin Vío
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ailec Ho-Plagaro
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María García-Bonilla
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Luis-Manuel Rodríguez-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María-Dolores Domínguez-Pinos
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Esteban-Martín Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José-Manuel Pérez-Fígares
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Antonio-Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
44
|
Abstract
The pathophysiology of congenital and neonatal hydrocephalus is not well understood although the prognosis for patients with this disorder is far from optimal. A major obstacle to advancing our knowledge of the causes of this disorder and the cellular responses that accompany it is the multifactorial nature of hydrocephalus. Not only is the epidemiology varied and complex, but the injury mechanisms are numerous and overlapping. Nevertheless, several conclusions can be made with certainty: the age of onset strongly influences the degree of impairment; injury severity is dependent on the magnitude and duration of ventriculomegaly; the primary targets are periventricular axons, myelin, and microvessels; cerebrovascular injury mechanisms are prominent; gliosis and neuroinflammation play major roles; some but not all changes are preventable by draining cerebrospinal fluid with shunts and third ventriculostomies; cellular plasticity and physiological compensation probably occur but this is a major under-studied area; and pharmacologic interventions are promising. Rat and mouse models have provided important insights into the pathogenesis of congenital and neonatal hydrocephalus. Ependymal denudation of the ventricular lining appears to affect the development of neural progenitors exposed to cerebrospinal fluid, and alterations of the subcommissural organ influence the patency of the cerebral aqueduct. Recently these impairments have been observed in patients with fetal-onset hydrocephalus, so experimental findings are beginning to be corroborated in humans. These correlations, coupled with advanced genetic manipulations in animals and successful pharmacologic interventions, support the view that improved treatments for congenital and neonatal hydrocephalus are on the horizon.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah and Primary Children's Medical Center, Salt Lake City, UT 84132, USA.
| |
Collapse
|
45
|
Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience 2012; 214:159-70. [DOI: 10.1016/j.neuroscience.2012.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/29/2012] [Accepted: 03/20/2012] [Indexed: 11/17/2022]
|
46
|
McMullen AB, Baidwan GS, McCarthy KD. Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS One 2012; 7:e30159. [PMID: 22291910 PMCID: PMC3265463 DOI: 10.1371/journal.pone.0030159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Brain/pathology
- Brain/physiopathology
- Brain/ultrastructure
- Cardiomegaly/pathology
- Cerebral Aqueduct/pathology
- Cerebral Aqueduct/ultrastructure
- Cerebral Ventricles/pathology
- Cerebral Ventricles/ultrastructure
- Disease Models, Animal
- Hydrocephalus/complications
- Hydrocephalus/genetics
- Hydrocephalus/pathology
- Hydrocephalus/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- Allison B. McMullen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gurlal S. Baidwan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ken D. McCarthy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Harris CA, McAllister JP. What We Should Know About the Cellular and Tissue Response Causing Catheter Obstruction in the Treatment of Hydrocephalus. Neurosurgery 2011; 70:1589-601; discussion 1601-2. [DOI: 10.1227/neu.0b013e318244695f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The treatment of hydrocephalus by cerebrospinal fluid shunting is plagued by ventricular catheter obstruction. Shunts can become obstructed by cells originating from tissue normal to the brain or by pathological cells in the cerebrospinal fluid for a variety of reasons. In this review, the authors examine ventricular catheter obstruction and identify some of the modifications to the ventricular catheter that may alter the mechanical and chemical cues involved in obstruction, including alterations to the surgical strategy, modifications to the chemical surface of the catheter, and changes to the catheter architecture. It is likely a combination of catheter modifications that will improve the treatment of hydrocephalus by prolonging the life of ventricular catheters to improve patient outcome.
Collapse
Affiliation(s)
- Carolyn A. Harris
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, Utah
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - James P. McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, Utah
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
48
|
Bátiz LF, Jiménez AJ, Guerra M, Rodríguez-Pérez LM, Toledo CD, Vio K, Páez P, Pérez-Fígares JM, Rodríguez EM. New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 2011; 121:721-35. [PMID: 21311902 DOI: 10.1007/s00401-011-0799-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 11/28/2022]
Abstract
A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vik-Mo EO, Sandberg C, Joel M, Stangeland B, Watanabe Y, Mackay-Sim A, Moe MC, Murrell W, Langmoen IA. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies. Exp Cell Res 2011; 317:1049-59. [PMID: 21199649 DOI: 10.1016/j.yexcr.2010.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 01/01/2023]
Abstract
Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.
Collapse
Affiliation(s)
- Einar Osland Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|