1
|
Theofilas P, Wang C, Butler D, Morales DO, Petersen C, Ambrose A, Chin B, Yang T, Khan S, Ng R, Kayed R, Karch CM, Miller BL, Gestwicki JE, Gan L, Temple S, Arkin MR, Grinberg LT. iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death. Mol Cell Neurosci 2024; 130:103954. [PMID: 39032719 PMCID: PMC11866097 DOI: 10.1016/j.mcn.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dulce O Morales
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Andrew Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA.
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Brazil.
| |
Collapse
|
2
|
Yang J, Shen N, Shen J, Yang Y, Li HL. Complicated Role of Post-translational Modification and Protease-Cleaved Fragments of Tau in Alzheimer's Disease and Other Tauopathies. Mol Neurobiol 2024; 61:4712-4731. [PMID: 38114762 PMCID: PMC11236937 DOI: 10.1007/s12035-023-03867-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Tau, a microtubule-associated protein predominantly localized in neuronal axons, plays a crucial role in promoting microtubule assembly, stabilizing their structure, and participating in axonal transport. Perturbations in tau's structure and function are implicated in the pathogenesis of neurodegenerative diseases collectively known as tauopathies, the most common disorder of which is Alzheimer's disease (AD). In tauopathies, it has been found that tau has a variety of post-translational modification (PTM) abnormalities and/or tau is cleaved into a variety of fragments by some specific proteolytic enzymes; however, the precise contributions of these abnormal modifications and fragments to disease onset and progression remain incompletely understood. Herein, we provide an overview about the involvement of distinctive abnormal tau PTMs and different tau fragments in the pathogenesis of AD and other tauopathies and discuss the involvement of proteolytic enzymes such as caspases, calpains, and asparagine endopeptidase in mediating tau cleavage while also addressing the intercellular transmission role played by tau. We anticipate that further exploration into PTMs and fragmented forms of tau will yield valuable insights for diagnostic approaches and therapeutic interventions targeting AD and other related disorders.
Collapse
Affiliation(s)
- Jie Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianying Shen
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Rizzi L, Grinberg LT. Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer's disease: implications for biomarker development and therapeutic targeting. Acta Neuropathol Commun 2024; 12:36. [PMID: 38419122 PMCID: PMC10900669 DOI: 10.1186/s40478-024-01744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Liara Rizzi
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Olesen MA, Quintanilla RA. Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease. Mol Neurobiol 2023; 60:5691-5707. [PMID: 37332018 DOI: 10.1007/s12035-023-03434-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile.
| |
Collapse
|
5
|
Tsoi PS, Quan MD, Ferreon JC, Ferreon ACM. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int J Mol Sci 2023; 24:3380. [PMID: 36834792 PMCID: PMC9966039 DOI: 10.3390/ijms24043380] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Chris M. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Flores J, Fillion ML, LeBlanc AC. Caspase-1 inhibition improves cognition without significantly altering amyloid and inflammation in aged Alzheimer disease mice. Cell Death Dis 2022; 13:864. [PMID: 36220815 PMCID: PMC9553979 DOI: 10.1038/s41419-022-05290-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Human genetic and animal model studies indicate that brain microglial inflammation is a primary driver of cognitive impairment in Alzheimer Disease (AD). Inflammasome-activated Caspase-1 (Casp1) is associated with both AD microglial inflammation and neuronal degeneration. In mice, Casp1 genetic ablation or VX-765 small molecule inhibition of Casp1 given at onset of cognitive deficits strongly supports the association between microglial inflammation and cognitive impairment. Here, VX-765 significantly improved episodic and spatial memory impairment eight months after the onset of cognitive impairment in aged AD mice with significant amyloid beta peptide (Aβ) accumulation and microglial inflammation. Unexpectedly, while cognitive improvement was associated with dendritic spine density and hippocampal synaptophysin level recovery, VX-765 only slightly decreased Aβ deposition and did not alter biochemically-measured Aβ levels. Furthermore, increased hippocampal Iba1+-microglia, GFAP+-astrocytes, IL-1β, and TNF-α levels were unaltered by VX-765. These results support the hypothesis that neuronal degeneration, not Aβ or microglial inflammation, drives cognitive impairment in AD.
Collapse
Affiliation(s)
- Joseph Flores
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Marie-Lyne Fillion
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Andréa C. LeBlanc
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| |
Collapse
|
7
|
Seitkazina A, Kim KH, Fagan E, Sung Y, Kim YK, Lim S. The Fate of Tau Aggregates Between Clearance and Transmission. Front Aging Neurosci 2022; 14:932541. [PMID: 35923541 PMCID: PMC9339952 DOI: 10.3389/fnagi.2022.932541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Neuronal accumulation of mis-folded tau is the pathological hallmark of multiple neurodegenerative disorders, including Alzheimer’s disease. Distinct from amyloid plaques, which appear simultaneously throughout the brain, tau pathology develops first in a specific brain region and then propagates to neuroanatomically connected brain regions, exacerbating the disease. Due to the implication in disease progression, prevention of tau transmission is recognized as an important therapeutic strategy that can halt disease progression in the brain. Recently, accumulating studies have demonstrated diverse cellular mechanisms associated with cell-to-cell transmission of tau. Once transmitted, mis-folded tau species act as a prion-like seed for native tau aggregation in the recipient neuron. In this review, we summarize the diverse cellular mechanisms associated with the secretion and uptake of tau, and highlight tau-trafficking receptors, which mediate tau clearance or cell-to-cell tau transmission.
Collapse
Affiliation(s)
- Assel Seitkazina
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Kyu Hyeon Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Erin Fagan
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Yoonsik Sung
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Yun Kyung Kim,
| | - Sungsu Lim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Sungsu Lim,
| |
Collapse
|
8
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
9
|
Theofilas P, Piergies AMH, Oh I, Lee YB, Li SH, Pereira FL, Petersen C, Ehrenberg AJ, Eser RA, Ambrose AJ, Chin B, Yang T, Khan S, Ng R, Spina S, Seeley WW, Miller BL, Arkin MR, Grinberg LT. Caspase-6-cleaved tau is relevant in Alzheimer's disease and marginal in four-repeat tauopathies: diagnostic and therapeutic implications. Neuropathol Appl Neurobiol 2022; 48:e12819. [PMID: 35508761 PMCID: PMC9472770 DOI: 10.1111/nan.12819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
AIM Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet, the relationship between aCasp-6, different forms of tr-tau, and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used 5-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau, and their co-occurrence in healthy controls, AD, and primary tauopathies. RESULTS Casp-6 activation was strongest in AD and Pick's disease (PiD), but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalizing by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD, but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Antonia M H Piergies
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ian Oh
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yoo Bin Lee
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Song Hua Li
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Felipe L Pereira
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rana A Eser
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Andrew J Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
10
|
Horta-López PH, Mendoza-Franco G, Rodríguez-Cruz F, Torres-Cruz FM, Hernández-Echeagaray E, Jarero-Basulto JJ, Rícny J, Garduño BF, Garcia-Sierra F. Association of α-1-Antichymotrypsin Expression with the Development of Conformational Changes of Tau Protein in Alzheimer's Disease Brain. Neuroscience 2022; 518:83-100. [PMID: 35007692 DOI: 10.1016/j.neuroscience.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease (AD), two mutually exclusive amino-terminal-dependent conformations have been reported to occur during the aggregation of Tau protein into neurofibrillary tangles (NFTs). An early conformation of full-length Tau, involving the bending of the amino terminus over the third repeated domain, is recognized by the Alz-50 antibody, followed by a second conformation recognized by Tau-66 antibody that depends on the folding of the proline-rich region over the third repeated domain in a molecule partially truncated at the amino- and carboxyl-termini. α-1-antichymotrypsin (ACT) is an acute phase serum glycoprotein that accumulates abnormally in the brain of AD patients, and since it is considered to promote the in vitro and in vivo aggregation of amyloid-β, we here seek further evidence that ACT may also contribute to the abnormal aggregation of Tau in AD. By analyzing brain samples from a population of AD cases under immunofluorescence and high-resolution confocal microscopy, we demonstrate here the abundant expression of ACT in hippocampal neurons, visualized as a granular diffuse accumulation, frequently reaching the nuclear compartment. In a significant number of these neurons, intracellular NFTs composed of abnormally phosphorylated and truncated Tau at Asp421 were also observed to coexist in separated regions of the cytoplasm. However, we found strong colocalization between ACT and diffuse aggregates of Tau-66-positive granules, which was not observed with Alz-50 antibody. These results suggest that ACT may play a role during the development of Tau conformational changes facilitating its aggregation during the formation of the neurofibrillary pathology in AD.
Collapse
Affiliation(s)
- Perla H Horta-López
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Graciela Mendoza-Franco
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Fanny Rodríguez-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jose J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Jan Rícny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Benjamín Florán Garduño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
11
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Boyarko B, Hook V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front Neurosci 2021; 15:702788. [PMID: 34744602 PMCID: PMC8566764 DOI: 10.3389/fnins.2021.702788] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
The human tau protein is implicated in a wide range of neurodegenerative “tauopathy” diseases, consisting of Alzheimer’s disease (AD) and frontotemporal lobar degeneration which includes progressive supranuclear palsy, corticobasal degeneration, Pick’s disease, and FTLD-tau (frontotemporal dementia with parkinsonism caused by MAPT mutations). Tau gene transcripts in the human brain undergo alternative splicing to yield 6 different tau protein isoforms that are expressed in different ratios in neurodegeneration which result in tau pathology of paired-helical filaments, neurofibrillary tangles, and tau fibrillar aggregates with detrimental microtubule destabilization. Protease-mediated tau truncation is an important post-translational modification (PTM) which drives neurodegeneration in a tau fragment-dependent manner. While numerous tau fragments have been identified, knowledge of the proteolytic steps that convert each parent tau isoform into specific truncated tau fragments has not yet been fully defined. An improved understanding of the relationships between tau isoforms and their proteolytic processing to generate neurotoxic tau fragments is important to the field. This review evaluates tau isoform expression patterns including PTMs and mutations that influence proteolysis of tau to generate toxic fragments that drive cognitive deficits in AD and other tauopathy models. This assessment identifies the gap in the field on understanding the details of proteolytic steps used to convert each tau isoform into fragments. Knowledge of the processing mechanisms of tau isoforms can lead to new protease targeted drug strategies to prevent the formation of toxic tau fragments in tauopathy neurodegenerative diseases.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Limorenko G, Lashuel HA. To target Tau pathologies, we must embrace and reconstruct their complexities. Neurobiol Dis 2021; 161:105536. [PMID: 34718129 DOI: 10.1016/j.nbd.2021.105536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022] Open
Abstract
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Zhang H, Cao Y, Ma L, Wei Y, Li H. Possible Mechanisms of Tau Spread and Toxicity in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:707268. [PMID: 34395435 PMCID: PMC8355602 DOI: 10.3389/fcell.2021.707268] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Tau is a protein that associates with microtubules (MTs) and promotes their assembly and stability. The protein loses its ability to bind MTs in tauopathies, and detached tau can misfold and induce the pathological changes that characterize Alzheimer’s disease (AD). A growing body of evidence indicates that tauopathies can spread between cells or connected regions. Pathological tau transmission in the brain of patients with AD and other tauopathies is due to the spread of various tau species along neuroanatomically connected regions in a “prion-like” manner. This complex process involves multiple steps of secretion, cellular uptake, transcellular transfer, and/or seeding, but the precise mechanisms of tau pathology propagation remain unclear. This review summarizes the current evidence on the nature of propagative tau species and the possible steps involved in the process of tau pathology spread, including detachment from MTs, degradations, and secretion, and discusses the different mechanisms underlying the spread of tau pathology.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Sci Rep 2021; 11:12695. [PMID: 34135352 PMCID: PMC8209045 DOI: 10.1038/s41598-021-91367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.
Collapse
|
16
|
Noël A, Foveau B, LeBlanc AC. Caspase-6-cleaved Tau fails to induce Tau hyperphosphorylation and aggregation, neurodegeneration, glial inflammation, and cognitive deficits. Cell Death Dis 2021; 12:227. [PMID: 33649324 PMCID: PMC7921451 DOI: 10.1038/s41419-021-03506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
De La-Rocque S, Moretto E, Butnaru I, Schiavo G. Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. J Neurochem 2020; 156:563-588. [PMID: 32770783 PMCID: PMC8432157 DOI: 10.1111/jnc.15144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Since aggregates of the microtubule‐binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta‐amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion‐like mechanism following a stereotypical pattern, which can be explained by the trans‐synaptic inter‐neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Samantha De La-Rocque
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edoardo Moretto
- UK Dementia Research Institute, University College London, London, UK
| | - Ioana Butnaru
- UK Dementia Research Institute, University College London, London, UK
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
18
|
Gu J, Xu W, Jin N, Li L, Zhou Y, Chu D, Gong CX, Iqbal K, Liu F. Truncation of Tau selectively facilitates its pathological activities. J Biol Chem 2020; 295:13812-13828. [PMID: 32737201 DOI: 10.1074/jbc.ra120.012587] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Neurofibrillary tangles of abnormally hyperphosphorylated Tau are a hallmark of Alzheimer's disease (AD) and related tauopathies. Tau is truncated at multiple sites by various proteases in AD brain. Although many studies have reported the effect of truncation on the aggregation of Tau, these studies mostly employed highly artificial conditions, using heparin sulfate or arachidonic acid to induce aggregation. Here, we report for the first time the pathological activities of various truncations of Tau, including site-specific phosphorylation, self-aggregation, binding to hyperphosphorylated and oligomeric Tau isolated from AD brain tissue (AD O-Tau), and aggregation seeded by AD O-Tau. We found that deletion of the first 150 or 230 amino acids (aa) enhanced Tau's site-specific phosphorylation, self-aggregation, and binding to AD O-Tau and aggregation seeded by AD O-Tau, but deletion of the first 50 aa did not produce a significant effect. Deletion of the last 50 aa was found to modulate Tau's site-specific phosphorylation, promote its self-aggregation, and cause it to be captured by and aggregation seeded by AD O-Tau, whereas deletion of the last 20 aa had no such effects. Among the truncated Taus, Tau151-391 showed the highest pathological activities. AD O-Tau induced aggregation of Tau151-391 in vitro and in cultured cells. These findings suggest that the first 150 aa and the last 50 aa protect Tau from pathological characteristics and that their deletions facilitate pathological activities. Thus, inhibition of Tau truncation may represent a potential therapeutic approach to suppress Tau pathology in AD and related tauopathies.
Collapse
Affiliation(s)
- Jianlan Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Wen Xu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Longfei Li
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Nantong University, Nantong, Jiangsu, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| |
Collapse
|
19
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
21
|
A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep 2020; 10:3869. [PMID: 32123248 PMCID: PMC7052165 DOI: 10.1038/s41598-020-60777-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Neurofibrillary tangles are a pathological hallmark of Alzheimer’s disease, and their levels correlate with the severity of cognitive dysfunction in humans. However, experimental evidence suggests that soluble tau species cause cognitive deficits and memory impairment. Our recent study suggests that caspase-2 (Casp2)-catalyzed tau cleavage at aspartate 314 mediates synaptic dysfunction and memory impairment in mouse and cellular models of neurodegenerative disorders. Δtau314, the C-terminally-truncated cleavage products, are soluble and present in human brain. In addition, levels of Δtau314 proteins are elevated in the brain of the cognitively impaired individuals compared to the cognitively normal individuals, indicating a possible role for Δtau314 proteins in cognitive deterioration. Here we show that (1) Δtau314 proteins are present in the inferior temporal gyrus of human brains; (2) Δtau314 proteins are generated from all six tau splicing isoforms, (3) levels of both Casp2 and Δtau314 proteins are elevated in cognitively impaired individuals compared to cognitively normal individuals, and (4) levels of Δtau314 proteins show a modest predictive value for dementia. These findings advance our understanding of the characteristics of Δtau314 proteins and their relevance to cognitive dysfunction and shed light on the contribution of Casp2-mediated Δtau314 production to cognitive deterioration.
Collapse
|
22
|
Zhou L, Flores J, Noël A, Beauchet O, Sjöström PJ, LeBlanc AC. Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Acta Neuropathol Commun 2019; 7:210. [PMID: 31843022 PMCID: PMC6915996 DOI: 10.1186/s40478-019-0856-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Activated Caspase-6 (Casp6) is associated with age-dependent cognitive impairment and Alzheimer disease (AD). Mice expressing human Caspase-6 in hippocampal CA1 neurons develop age-dependent cognitive deficits, neurodegeneration and neuroinflammation. This study assessed if methylene blue (MB), a phenothiazine that inhibits caspases, alters Caspase-6-induced neurodegeneration and cognitive impairment in mice. Aged cognitively impaired Casp6-overexpressing mice were treated with methylene blue in drinking water for 1 month. Methylene blue treatment did not alter Caspase-6 levels, assessed by RT-PCR, western blot and immunohistochemistry, but inhibited fluorescently-labelled Caspase-6 activity in acute brain slice intact neurons. Methylene blue treatment rescued Caspase-6-induced episodic and spatial memory deficits measured by novel object recognition and Barnes maze, respectively. Methylene blue improved synaptic function of hippocampal CA1 neurons since theta-burst long-term potentiation (LTP), measured by field excitatory postsynaptic potentials (fEPSPs) in acute brain slices, was successfully induced in the Schaffer collateral-CA1 pathway in methylene blue-treated, but not in vehicle-treated, Caspase-6 mice. Increased neuroinflammation, measured by ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia numbers and subtypes, and glial fibrillary acidic protein (GFAP)-positive astrocytes, were decreased by methylene blue treatment. Therefore, methylene blue reverses Caspase-6-induced cognitive deficits by inhibiting Caspase-6, and Caspase-6-mediated neurodegeneration and neuroinflammation. Our results indicate that Caspase-6-mediated damage is reversible months after the onset of cognitive deficits and suggest that methylene blue could benefit Alzheimer disease patients by reversing Caspase-6-mediated cognitive decline.
Collapse
Affiliation(s)
- Libin Zhou
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
| | - Joseph Flores
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Anastasia Noël
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Olivier Beauchet
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, the BRaIN Program, Department of Neurology and Neurosurgery, McGill University, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4 Canada
| | - Andrea C. LeBlanc
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC H3A 0G4 Canada
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC H3T 1E2 Canada
| |
Collapse
|
23
|
Velagapudi R, Kosoko AM, Olajide OA. Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin. Cell Mol Neurobiol 2019; 39:1187-1200. [PMID: 31332667 PMCID: PMC6764936 DOI: 10.1007/s10571-019-00713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
Hemozoin produced by Plasmodium falciparum during malaria infection has been linked to the neurological dysfunction in cerebral malaria. In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1β, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1β, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS- and caspase-6-mediated neurotoxicity. These results have thrown more light on the actions of malarial hemozoin in the neurobiology of cerebral malaria.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.,Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ayokulehin M Kosoko
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
24
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
25
|
Zhang X, Zhu C, Beecham G, Vardarajan BN, Ma Y, Lancour D, Farrell JJ, Chung J, Mayeux R, Haines JL, Schellenberg GD, Pericak-Vance MA, Lunetta KL, Farrer LA. A rare missense variant of CASP7 is associated with familial late-onset Alzheimer's disease. Alzheimers Dement 2019; 15:441-452. [PMID: 30503768 PMCID: PMC6408965 DOI: 10.1016/j.jalz.2018.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The genetic architecture of Alzheimer's disease (AD) is only partially understood. METHODS We conducted an association study for AD using whole sequence data from 507 genetically enriched AD cases (i.e., cases having close relatives affected by AD) and 4917 cognitively healthy controls of European ancestry (EA) and 172 enriched cases and 179 controls of Caribbean Hispanic ancestry. Confirmation of top findings from stage 1 was sought in two family-based genome-wide association study data sets and in a whole genome-sequencing data set comprising members from 42 EA and 115 Caribbean Hispanic families. RESULTS We identified associations in EAs with variants in 12 novel loci. The most robust finding is a rare CASP7 missense variant (rs116437863; P = 2.44 × 10-10) which improved when combined with results from stage 2 data sets (P = 1.92 × 10-10). DISCUSSION Our study demonstrated that an enriched case design can strengthen genetic signals, thus allowing detection of associations that would otherwise be missed in a traditional case-control study.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Gary Beecham
- Hussman Institute of Human Genetics, University of Miami, Miami, FL, USA
| | | | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Daniel Lancour
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
26
|
Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model. Nat Commun 2018; 9:3916. [PMID: 30254377 PMCID: PMC6156230 DOI: 10.1038/s41467-018-06449-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an intractable progressive neurodegenerative disease characterized by cognitive decline and dementia. An inflammatory neurodegenerative pathway, involving Caspase-1 activation, is associated with human age-dependent cognitive impairment and several classical AD brain pathologies. Here, we show that the nontoxic and blood-brain barrier permeable small molecule Caspase-1 inhibitor VX-765 dose-dependently reverses episodic and spatial memory impairment, and hyperactivity in the J20 mouse model of AD. Cessation of VX-765 results in the reappearance of memory deficits in the mice after 1 month and recommencement of treatment re-establishes normal cognition. VX-765 prevents progressive amyloid beta peptide deposition, reverses brain inflammation, and normalizes synaptophysin protein levels in mouse hippocampus. Consistent with these findings, Caspase-1 null J20 mice are protected from episodic and spatial memory deficits, neuroinflammation and Aβ accumulation. These results provide in vivo proof of concept for Caspase-1 inhibition against AD cognitive deficits and pathologies.
Collapse
|
27
|
Young ZT, Mok SA, Gestwicki JE. Therapeutic Strategies for Restoring Tau Homeostasis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024612. [PMID: 28159830 DOI: 10.1101/cshperspect.a024612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Normal tau homeostasis is achieved when the synthesis, processing, and degradation of the protein is balanced. Together, the pathways that regulate tau homeostasis ensure that the protein is at the proper levels and that its posttranslational modifications and subcellular localization are appropriately controlled. These pathways include the enzymes responsible for posttranslational modifications, those systems that regulate mRNA splicing, and the molecular chaperones that control tau turnover and its binding to microtubules. In tauopathies, this delicate balance is disturbed. Tau becomes abnormally modified by posttranslational modification, it loses affinity for microtubules, and it accumulates in proteotoxic aggregates. How and why does this imbalance occur? In this review, we discuss how molecular chaperones and other components of the protein homeostasis (e.g., proteostasis) network normally govern tau quality control. We also discuss how aging might reduce the capacity of these systems and how tau mutations might further affect this balance. Finally, we discuss how small-molecule inhibitors are being used to probe and perturb the tau quality-control systems, playing a particularly prominent role in revealing the logic of tau homeostasis. As such, there is now interest in developing these chemical probes into therapeutics, with the goal of restoring normal tau homeostasis to treat disease.
Collapse
Affiliation(s)
- Zapporah T Young
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Sue Ann Mok
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
28
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 812] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
29
|
Quinn JP, Corbett NJ, Kellett KAB, Hooper NM. Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. J Alzheimers Dis 2018; 63:13-33. [PMID: 29630551 PMCID: PMC5900574 DOI: 10.3233/jad-170959] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
With predictions showing that 131.5 million people worldwide will be living with dementia by 2050, an understanding of the molecular mechanisms underpinning disease is crucial in the hunt for novel therapeutics and for biomarkers to detect disease early and/or monitor disease progression. The metabolism of the microtubule-associated protein tau is altered in different dementias, the so-called tauopathies. Tau detaches from microtubules, aggregates into oligomers and neurofibrillary tangles, which can be secreted from neurons, and spreads through the brain during disease progression. Post-translational modifications exacerbate the production of both oligomeric and soluble forms of tau, with proteolysis by a range of different proteases being a crucial driver. However, the impact of tau proteolysis on disease progression has been overlooked until recently. Studies have highlighted that proteolytic fragments of tau can drive neurodegeneration in a fragment-dependent manner as a result of aggregation and/or transcellular propagation. Proteolytic fragments of tau have been found in the cerebrospinal fluid and plasma of patients with different tauopathies, providing an opportunity to develop these fragments as novel disease progression biomarkers. A range of therapeutic strategies have been proposed to halt the toxicity associated with proteolysis, including reducing protease expression and/or activity, selectively inhibiting protease-substrate interactions, and blocking the action of the resulting fragments. This review highlights the importance of tau proteolysis in the pathogenesis of tauopathies, identifies putative sites during tau fragment-mediated neurodegeneration that could be targeted therapeutically, and discusses the potential use of proteolytic fragments of tau as biomarkers for different tauopathies.
Collapse
Affiliation(s)
- James P. Quinn
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola J. Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Katherine A. B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
30
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
31
|
Pakavathkumar P, Noël A, Lecrux C, Tubeleviciute-Aydin A, Hamel E, Ahlfors JE, LeBlanc AC. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol Neurodegener 2017; 12:22. [PMID: 28241839 PMCID: PMC5329948 DOI: 10.1186/s13024-017-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 500 Boulevard Cartier Ouest, Laval, QC, H7V 5B7, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada.
- Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
32
|
Khanna MR, Kovalevich J, Lee VMY, Trojanowski JQ, Brunden KR. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016; 12:1051-1065. [PMID: 27751442 PMCID: PMC5116305 DOI: 10.1016/j.jalz.2016.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 01/25/2023]
Abstract
A group of neurodegenerative diseases referred to as tauopathies are characterized by the presence of brain cells harboring inclusions of pathological species of the tau protein. These disorders include Alzheimer's disease and frontotemporal lobar degeneration due to tau pathology, including progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. Tau is normally a microtubule (MT)-associated protein that appears to play an important role in ensuring proper axonal transport, but in tauopathies tau becomes hyperphosphorylated and disengages from MTs, with consequent misfolding and deposition into inclusions that mainly affect neurons but also glia. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau-directed therapeutic agents. The following review provides a summary of strategies under investigation for the potential treatment of tauopathies, highlighting both the promises and challenges associated with these various therapeutic approaches.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Jane Kovalevich
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Hill ME, MacPherson DJ, Wu P, Julien O, Wells JA, Hardy JA. Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition. ACS Chem Biol 2016; 11:1603-12. [PMID: 27032039 DOI: 10.1021/acschembio.5b00971] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.
Collapse
Affiliation(s)
- Maureen E. Hill
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Derek J. MacPherson
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peng Wu
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | - Jeanne A. Hardy
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker EE, Hayden MR, Graham RK. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 2016; 25:1600-18. [DOI: 10.1093/hmg/ddw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
|
35
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
36
|
Dujardin S, Bégard S, Caillierez R, Lachaud C, Delattre L, Carrier S, Loyens A, Galas MC, Bousset L, Melki R, Aurégan G, Hantraye P, Brouillet E, Buée L, Colin M. Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS One 2014; 9:e100760. [PMID: 24971751 PMCID: PMC4074092 DOI: 10.1371/journal.pone.0100760] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022] Open
Abstract
Tau is a microtubule-associated protein that aggregates in neurodegenerative disorders known as tauopathies. Recently, studies have suggested that Tau may be secreted and play a role in neural network signalling. However, once deregulated, secreted Tau may also participate in the spreading of Tau pathology in hierarchical pathways of neurodegeneration. The mechanisms underlying neuron-to-neuron Tau transfer are still unknown; given the known role of extra-cellular vesicles in cell-to-cell communication, we wondered whether these vesicles could carry secreted Tau. We found, among vesicles, that Tau is predominately secreted in ectosomes, which are plasma membrane-originating vesicles, and when it accumulates, the exosomal pathway is activated.
Collapse
Affiliation(s)
- Simon Dujardin
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Séverine Bégard
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Raphaëlle Caillierez
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Cédrick Lachaud
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Lucie Delattre
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Sébastien Carrier
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Anne Loyens
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
| | - Marie-Christine Galas
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
- CMRR, CHR, Lille, France
| | - Luc Bousset
- Laboratoire d′Enzymologie et Biochimie Structurales, UPR 3082 CNRS, Gif-sur-Yvette, France
| | - Ronald Melki
- Laboratoire d′Enzymologie et Biochimie Structurales, UPR 3082 CNRS, Gif-sur-Yvette, France
| | - Gwennaëlle Aurégan
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
- CNRS, URA2210, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
- CNRS, URA2210, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
- CNRS, URA2210, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Luc Buée
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
- CMRR, CHR, Lille, France
- * E-mail: (MC); (LB)
| | - Morvane Colin
- Inserm, UMR837, Lille, France
- Université de Lille, Faculté de Médecine, IMPRT, JPARC, Lille, France
- CMRR, CHR, Lille, France
- * E-mail: (MC); (LB)
| |
Collapse
|
37
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
38
|
Zhao H, Zhao W, Lok K, Wang Z, Yin M. A synergic role of caspase-6 and caspase-3 in Tau truncation at D421 induced by H2O 2. Cell Mol Neurobiol 2014; 34:369-78. [PMID: 24363090 PMCID: PMC11488892 DOI: 10.1007/s10571-013-0021-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
Tau truncation is widely detected in Alzheimer's disease brain. Caspases activation is suggested to play a significant role in tau truncation at Aspartate 421 (D421) according to their ability to cleave recombinant tau in vitro. Ample evidence has shown that caspase-6 is involved in cognitive impairment and expressed in AD brain. Reactive oxygen species (ROS) can lead to caspase-6 activation and correlate with AD. Here, we transfected human embryonic kidney 293 (HEK 293) cells with Tau 441 plasmid and investigated the role of caspase-6 and caspase-3 in ROS-mediated tau truncation. Our data demonstrated that H2O2 induced oxidative stress and increased tau truncation. Caspase-6 and caspase-3 activity also increased in a dose-dependent manner in HEK 293/Tau cells during H2O2 insult. When cells were treated with an ROS inhibitor N-acetyl-L-cysteine, tau truncation was significantly suppressed. Compared with H2O2 (100 μM)/non-inhibitor group or single-inhibitor groups (z-VEID-fmk, caspase-6 inhibitor or z-DEVD-fmk, and caspase-3 inhibitor), tau truncation induced by H2O2 was effectively reduced in the combinative inhibitors group. Similar results were shown when cells were transfected with specific caspase-3 and caspase-6 siRNA. Inhibition of caspase-6 led to decline of caspase-3 activation. Taken together, our results suggest that the combination of caspase-6 and caspase-3 aggravates tau truncation at D421 induced by H2O2. Caspase-6 may play an important part in activating caspase-3. Further investigation of how the synergic role of caspase-6 and caspase-3 affects tau truncation may provide new visions for potential AD therapies.
Collapse
Affiliation(s)
- Hong Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Kenghoe Lok
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
39
|
Briones TL, Darwish H. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state. Neuroscience 2014; 262:143-55. [PMID: 24412233 PMCID: PMC4103183 DOI: 10.1016/j.neuroscience.2013.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023]
Abstract
In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.
Collapse
Affiliation(s)
- T L Briones
- Department of Adult Health, Wayne State University, Detroit, MI 48202, United States.
| | - H Darwish
- Hariri School of Nursing, American University of Beirut, Lebanon
| |
Collapse
|