1
|
Beretta S, de Araújo RA, Bianchini MO, Bonavina JT, Rocha-Júnior JD, Campos NC, Pizauro LJL, Rodrigues-Silva FA, Toniollo GH, Cardozo MV, Apparício M. Vaginal Seeding: Is There Any Positive Effect in Canine C-Sections? Animals (Basel) 2025; 15:416. [PMID: 39943186 PMCID: PMC11816153 DOI: 10.3390/ani15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to scrutinize variations in the intestinal microbiota of neonatal dogs born through natural birth versus elective cesarean section, focusing on evaluating the influence of vaginal seeding on the microbiota of cesarean-born neonates. Samples were collected from cesarean-sectioned females before anesthesia and from naturally birthing females during prodrome signs, along with neonates at eight time points from birth to 15 days of age. In the cesarean section group, seeding was performed in half of the neonates (cesarean section seeding group; seeding consisted of gently rubbing the gauze, obtained from the mother's vagina, onto the mouths, faces, and bodies of the newborns), while the other half underwent microbiological sample collection without seeding (cesarean section group). Another group (normal birth group) consisted of naturally born neonates. Microbiota analysis included counting for enterobacteria, Staphylococcus spp., and Streptococcus spp. The results suggested that vertical transmission played a crucial role, but the method of birth did not emerge as the primary determinant of observed differences. Under study conditions, vaginal seeding failed to effectively modulate the microbiota of neonates born through elective cesarean section. Further investigations into the gut-brain axis are suggested for understanding factors influencing the initial development of the canine intestinal microbiota in neonates born through different delivery routes.
Collapse
Affiliation(s)
- Samara Beretta
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Renatha Almeida de Araújo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Melissa Oliveira Bianchini
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Jaqueline Tamara Bonavina
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| | - João Domingos Rocha-Júnior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Nayara Camatta Campos
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Lucas José Luduverio Pizauro
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| | - Fernanda Andreza Rodrigues-Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| | - Gilson Hélio Toniollo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Maricy Apparício
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| |
Collapse
|
2
|
Weldegebreal F, Ayana DA, Wilfong T, Dheresa M, Yadeta TA, Negesa AS, Demmu YM, Tesfa T, Alemu TN, Eticha TG, Geremew A, Roba KT, Abdissa A, Assefa N, Negash AA, Cools P, Tura AK. Relationship between vaginal and gut microbiome and pregnancy outcomes in eastern Ethiopia: a protocol for a longitudinal maternal-infant cohort study (the EthiOMICS study). BMJ Open 2025; 15:e092461. [PMID: 39762107 PMCID: PMC11748928 DOI: 10.1136/bmjopen-2024-092461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
INTRODUCTION Although evidence exists on the impact of microbiota on pregnancy outcomes in many high-resource settings, there is a lack of research in many low-resource settings like Ethiopia. This study aims to fill this gap by studying the gut and vaginal microbiota changes throughout pregnancy and assess how these changes relate to pregnancy outcomes among a cohort of pregnant women in eastern Ethiopia. METHODS AND ANALYSIS Vaginal and stool samples will be collected using DNA/RNA Shield Collection kits three times starting at 12-22 weeks, 28-36 weeks and at birth (within 7 days). Postnatally, newborns' skin swabs (at birth) and rectal swabs will be obtained until 2 years of age. Moreover, breast milk samples at birth and 6 months and environmental samples (water, indoor air and soil) will be collected at enrolment, birth, 6, 12 and 24 months post partum. DNA will be extracted using Roche kits. Metagenomic sequencing will be performed to identify metataxonomic profiling and assess variations in microbial profiles, and α and β diversity of the microbiota. Information on socioeconomic, behavioural, household and biological factors will be collected at enrolment. The collected data will be coded, entered into EpiData 3.1 and analysed using Stata 17. ETHICS AND DISSEMINATION The Institutional Health Research Ethics Review Committee (Ref No. IHRERC/033/2022) of Haramaya University, Ethiopia has approved this study ethically. Written informed consent regarding the study and sample storage for biobanking will be obtained from all participants. Results will be published in international peer-reviewed journals, and summaries will be provided to the study funders. Clinical study data will be submitted to Data Compass (https://datacompass.lshtm.ac.uk/), and molecular profiles of the microbiome and whole-genome sequences will be submitted to the European Nucleotide Archive (https://www. ebi.ac.uk/ena). Requests for data should be directed to daberaf@gmail.com. The decision to share data will be made by the study steering committee under the College of Health and Medical Sciences, Haramaya University, Ethiopia.
Collapse
Affiliation(s)
- Fitsum Weldegebreal
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Desalegn Admassu Ayana
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tara Wilfong
- School of Public Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Merga Dheresa
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tesfaye Assebe Yadeta
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Akewok Sime Negesa
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Yohannes Mulugeta Demmu
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tewodros Tesfa
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tegbaru Nibrat Alemu
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tadesse Gure Eticha
- School of Medicine, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Abraham Geremew
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Kedir Teji Roba
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | | | - Nega Assefa
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Abera Kenay Tura
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
- Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Du B, Shama A, Zhang Y, Chen B, Bu Y, Chen PA, Lin C, Liu J, Zheng J, Li Z, Chen Q, Sun Y, Fu X. Gut microbiota and plasma metabolites in pregnant mothers and infant atopic dermatitis: A multi-omics study. World Allergy Organ J 2025; 18:101017. [PMID: 39850616 PMCID: PMC11754505 DOI: 10.1016/j.waojou.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Background Many studies reported the influence of infants' gut microbiota on atopic dermatitis (AD) postnatally, yet the role of maternal gut microbiota and plasma metabolites in infants' AD remains largely unexplored. Methods Sixty-three pregnant mother-infants were enrolled and followed after childbirth in Guangzhou, China. Demographic information, maternal stool and plasma samples, and records for infants' AD were collected. Maternal gut microbiota/metabolome and plasma metabolome were profiled using shotgun metagenomics and non-targeted metabolomics. Logistic regression and multi-omics analysis were used to explore characteristic maternal gut microbiota in the AD and health groups. Results The α-diversity of maternal gut microbiota in health group was significantly higher than AD group (Shannon diversity P = 0.02, Simpson diversity P = 0.04). Short-chain fatty acids (SCFAs) producing microorganisms, including Faecalibacterium, Roseburia, Butyricicoccus, and Ruminococcus, as well as the abundance of phenylalanine, tyrosine, and tryptophan biosynthesis pathway, were enriched in health group (LDA>2 and P < 0.05). Virulent factors (VFs) involved in immune modulation were enriched in the health group, while VFs involving in adhesin were enriched in the AD group (P < 0.05). Metabolomic analysis showed that a polyunsaturated fatty acid/linoleic acid, 13S-hydroxyoctadecadienoic, were negatively associated with AD in both the gut and plasma samples (FDR<0.05). Several other linoleic acids and flavonoids were negatively associated with AD (FDR<0.05). Neural network analysis revealed that microorganisms enriched in health group may produce these protective fatty acids. Conclusions Our findings show that maternal gut microorganisms/metabolites and plasma metabolites during pregnancy impact subsequent pathogenesis of infants AD. This illuminates new strategies against early AD in offspring.
Collapse
Affiliation(s)
- Bingqian Du
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102200, PR China
| | - Aga Shama
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Yi Zhang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Baolan Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Yongqi Bu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Pei-an Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Chuzhi Lin
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Jie Liu
- Maternity and Child Health Hospital of Baiyun District, Guangzhou, 510400, Guangdong, PR China
| | - Juan Zheng
- Maternity and Child Health Hospital of Baiyun District, Guangzhou, 510400, Guangdong, PR China
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102200, PR China
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xi Fu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
4
|
Obeagu EI, Obeagu GU. Neutrophil phenotypes in prolonged labor: Implications for therapeutic strategies. Medicine (Baltimore) 2024; 103:e40611. [PMID: 39560573 PMCID: PMC11576028 DOI: 10.1097/md.0000000000040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Prolonged labor, defined as labor extending beyond 20 hours for nulliparas and 14 hours for multiparas, poses significant risks to both maternal and neonatal health. The inflammatory response plays a crucial role in the pathophysiology of prolonged labor, with neutrophils being key players in this process. Neutrophils, the most abundant leukocytes, exhibit diverse phenotypes and functions in response to prolonged labor, influencing both the onset and progression of labor through their inflammatory actions. Classical neutrophils (N1) are involved in acute inflammatory responses, aiding in tissue remodeling and labor onset, but their prolonged activation can lead to tissue damage. Regulatory neutrophils (N2), which produce anti-inflammatory cytokines, help resolve inflammation and facilitate labor progression. Low-density granulocytes and aged neutrophils, associated with chronic inflammation and impaired function respectively, contribute to labor complications. The balance among these neutrophil phenotypes is crucial for maintaining a controlled inflammatory response during labor. Therapeutic strategies targeting neutrophil recruitment, NETosis, and cytokine production hold promise for managing prolonged labor. Modulating chemokine pathways, regulating NET formation, and balancing cytokine profiles may reduce inflammation and improve labor outcomes. Further research into the mechanisms of neutrophil regulation and the development of targeted therapies is essential for mitigating the adverse effects of prolonged labor and enhancing maternal and neonatal health.
Collapse
|
5
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Manus MB, Savo Sardaro ML, Dada O, Davis M, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Dominguez-Bello MG, Melby MK, Miller ES, Amato KR. Birth and household exposures are associated with changes to skin bacterial communities during infancy. Evol Med Public Health 2024; 13:49-76. [PMID: 40182701 PMCID: PMC11966193 DOI: 10.1093/emph/eoae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Indexed: 04/05/2025] Open
Abstract
Background and objectives Microbial exposures during infancy shape the development of the microbiome, the collection of microbes living in and on the body, which in turn directs immune system training. Newborns acquire a substantial quantity of microbes during birth and throughout infancy via exposure to microbes in the physical and social environment. Alterations to early life microbial environments may give rise to mismatches, where environmental, cultural and behavioral changes that outpace the body's adaptive responses can lead to adverse health outcomes, particularly those related to microbiome development and immune system regulation. Methods This study explored the development of the skin microbiome among infants born in Chicago, USA. We collected skin swab microbiome samples from 22 mother-infant dyads during the first 48 h of life and again at 6 weeks postpartum. Mothers provided information about social environments and hygiene behaviors that may impact infants' microbial exposures. Results Analysis of amplicon bacterial gene sequencing data revealed correlations between infant skin bacterial abundances shortly after birth and factors such as antibiotic exposure and receiving a bath in the hospital. The composition of the infant microbiome at 6 weeks of age was associated with interactions with caregivers and infant feeding practices. We also found shifts in maternal skin microbiomes that may reflect increased hygiene practices in the hospital. Conclusions and implications Our data suggest that factors related to the birth and household environment can impact the development of infant skin microbiomes and point to practices that may produce mismatches for the infant microbiome and immune system.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Omolola Dada
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maya Davis
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Melissa R Romoff
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | | | - Esther Ubadigbo
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Rebecca C Wu
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Melissa K Melby
- Department of Anthropology, University of Delaware, Newark, DE, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Emily S Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Warren Alpert Medical School of Brown University, Providence, RI;USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
7
|
Alemu BK, Wu L, Azeze GG, Lau SL, Wang Y, Wang CC. Microbiota-targeted interventions and clinical implications for maternal-offspring health: An umbrella review of systematic reviews and meta-analyses of randomised controlled trials. J Glob Health 2024; 14:04177. [PMID: 39269153 PMCID: PMC11395958 DOI: 10.7189/jogh.14.04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Microbes in the human body are the determinants of life-long health and disease. Microbiome acquisition starts in utero and matures during early childhood through breastfeeding. However, maternal gut dysbiosis affects the maternal-offspring microbiome interplay. Lines of evidence on dysbiosis-targeted interventions and their effect on maternal-offspring health and gut microbiome are inconsistent and inconclusive. Therefore, this study summarised studies to identify the most common microbiota-targeted intervention during pregnancy and lactation and to comprehensively evaluate its effects on maternal and offspring health. Methods This umbrella review was conducted by systematically searching databases such as PubMed and the Web of Science from inception to 2 September 2023. The quality was assessed using the Assessment of Multiple Systematic Reviews-2 checklist. The Grading of Recommendations Assessment, Development, and Evaluation was used for grading the strength and certainty of the studies. The overlap of primary studies was quantified by the corrected covered area score. Results A total of 17 systematic reviews and meta-analyses with 219 randomised controlled trials, 39 113 mothers, and 20 915 infants were included in this study. About 88% of studies had moderate and above certainty of evidence. Probiotics were the most common and effective interventions at reducing gestational diabetes risk (fasting blood glucose with the mean difference (MD) = -2.92, -0.05; I2 = 45, 98.97), fasting serum insulin (MD = -2.3, -2.06; I2 = 45, 77), glycated haemoglobin (Hb A1c) = -0.16; I2 = 0.00)), Homeostatic Model Assessment of insulin resistance (HOMA-IR) (MD = -20.55, -0.16; I2 = 0.00, 72.00), and lipid metabolism (MD = -5.47, 0.98; I2 = 0.00, 90.65). It was also effective in preventing and treating mastitis (risk ratio (RR) = 0.49; I2 = 2.00), relieving anxiety symptoms (MD = -0.99, 0.01; I2 = 0.00, 70.00), depression in lactation (MD = -0.46, -0.22; I2 = 0.00, 74.00) and reducing recto-vaginal bacterial colonisation (odds ratio (OR) = 0.62; I2 = 4.80), and with no adverse events. It also effectively remodelled the infant gut microbiome (MD = 0.89; I2 = 95.01) and prevented infant allergies. However, studies on pregnancy outcomes and preeclampsia incidences are limited. Conclusions Our findings from high-quality studies identify that probiotics are the most common microbiome interventions during pregnancy and lactation. Probiotics have a strong impact on maternal and offspring health through maintaining gut microbiome homeostasis. However, further studies are needed on the effect of microbiota-targeted interventions on maternal cardiometabolic health, pregnancy, and neonatal outcomes. Registration This umbrella review was registered with PROSPERO, CRD42023437098.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Ethiopia
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Ethiopia
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
8
|
van Haren JS, Delbressine FLM, Monincx M, Hoveling T, Meijer N, Bangaru C, Sterk J, van der Woude DAA, Oei SG, van der Hout-van der Jagt MB. From intra- to extra-uterine: early phase design of a transfer to extra-uterine life support through medical simulation. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1371447. [PMID: 39229370 PMCID: PMC11368740 DOI: 10.3389/fmedt.2024.1371447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Extra-uterine life support technology could provide a more physiologic alternative for the treatment of extremely premature infants, as it allows further fetal growth and development ex utero. Animal studies have been carried out which involved placing fetuses in a liquid-filled incubator, with oxygen supplied through an oxygenator connected to the umbilical vessels. Hence, by delaying lung exposure to air, further lung development and maturation can take place. This medical intervention requires adjustments to current obstetric procedures to maintain liquid-filled lungs through a so-called transfer procedure. Methods Our objective was to develop obstetric device prototypes that allow clinicians to simulate this birth procedure to safely transfer the infant from the mother's uterus to an extra-uterine life support system. To facilitate a user-centered design, implementation of medical simulation during early phase design of the prototype development was used. First, the requirements for the procedure and devices were established, by reviewing the literature and through interviewing direct stakeholders. The initial transfer device prototypes were tested on maternal and fetal manikins in participatory simulations with clinicians. Results & discussion Through analysis of recordings of the simulations, the prototypes were evaluated on effectiveness, safety and usability with latent conditions being identified and improved. This medical simulation-based design process resulted in the development of a set of surgical prototypes and allowed for knowledge building on obstetric care in an extra-uterine life support context.
Collapse
Affiliation(s)
- J. S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - F. L. M. Delbressine
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Monincx
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - T. Hoveling
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - N. Meijer
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - C. Bangaru
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. Sterk
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - D. A. A. van der Woude
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Obstetrics & Gynecology, Amphia Hospital, Breda, Netherlands
| | - S. G. Oei
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. B. van der Hout-van der Jagt
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
9
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
10
|
Aurora R, Sanford T. The Microbiome: From the Beginning to the End. MISSOURI MEDICINE 2024; 121:310-316. [PMID: 39575080 PMCID: PMC11578570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The human microbiota, a community of microorganisms in our bodies, is crucial for our health. This paper explores its development from birth through old age, highlighting some of the unique roles at key life stages-infancy, adulthood, and in the elderly years. Understanding the significant health impacts and consequences of changes in the microbiota offers insights for both the public and clinicians.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Thomas Sanford
- Department of Otolaryngology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Qu L, Li Y, Liu F, Fang Y, He J, Ma J, Xu T, Wang L, Lei P, Dong H, Jin L, Yang Q, Wu W, Sun D. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer's Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis 2024; 15:1108-1131. [PMID: 37728579 PMCID: PMC11081173 DOI: 10.14336/ad.2023.0823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
An essential regulator of neurodegenerative conditions like Alzheimer's disease (AD) is the gut microbiota. Alterations in intestinal permeability brought on by gut microbiota dysregulation encourage neuroinflammation, central immune dysregulation, and peripheral immunological dysregulation in AD, as well as hasten aberrant protein aggregation and neuronal death in the brain. However, it is unclear how the gut microbiota transmits information to the brain and how it influences brain cognition and function. In this review, we summarized the multiple pathways involved in the gut microbiome in AD and provided detailed treatment strategies based on the gut microbiome. Based on these observations, this review also discusses the problems, challenges, and strategies to address current therapeutic strategies.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
- College of Veterinary Medicine, Jilin University, Changchun 130118, China.
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
12
|
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 2024; 15:1346035. [PMID: 38482009 PMCID: PMC10933031 DOI: 10.3389/fimmu.2024.1346035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
The influence of gut microbiota on physiological processes is rapidly gaining attention globally. Despite being under-studied, there are available data demonstrating a gut microbiota-gonadal cross-talk, and the importance of this axis in reproduction. This study reviews the impacts of gut microbiota on reproduction. In addition, the possible mechanisms by which gut microbiota modulates male and female reproduction are presented. Databases, including Embase, Google scholar, Pubmed/Medline, Scopus, and Web of Science, were explored using relevant key words. Findings showed that gut microbiota promotes gonadal functions by modulating the circulating levels of steroid sex hormones, insulin sensitivity, immune system, and gonadal microbiota. Gut microbiota also alters ROS generation and the activation of cytokine accumulation. In conclusion, available data demonstrate the existence of a gut microbiota-gonadal axis, and role of this axis on gonadal functions. However, majority of the data were compelling evidences from animal studies with a great dearth of human data. Therefore, human studies validating the reports of experimental studies using animal models are important.
Collapse
Affiliation(s)
- Victory J. Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, WY, United States
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tunmise M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Ejigbo, Osun State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
13
|
VanOrmer M, Thompson M, Thoene M, Riethoven JJ, Natarajan SK, Hanson C, Anderson-Berry A. The impact of iron supplementation on the preterm neonatal gut microbiome: A pilot study. PLoS One 2024; 19:e0297558. [PMID: 38381745 PMCID: PMC10880995 DOI: 10.1371/journal.pone.0297558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE The gastrointestinal microbiome in preterm infants exhibits significant influence on optimal outcomes-with dysbiosis shown to substantially increase the risk of the life-threatening necrotizing enterocolitis. Iron is a vital nutrient especially during the perinatal window of rapid hemoglobin production, tissue growth, and foundational neurodevelopment. However, excess colonic iron exhibits potent oxidation capacity and alters the gut microbiome-potentially facilitating the proliferation of pathological bacterial strains. Breastfed preterm infants routinely receive iron supplementation starting 14 days after delivery and are highly vulnerable to morbidities associated with gastrointestinal dysbiosis. Therefore, we set out to determine if routine iron supplementation alters the preterm gut microbiome. METHODS After IRB approval, we collected stool specimens from 14 infants born <34 weeks gestation in the first, second, and fourth week of life to assess gut microbiome composition via 16S rRNA sequencing. RESULTS We observed no significant differences in either phyla or key genera relative abundance between pre- and post-iron timepoints. We observed notable shifts in infant microbiome composition based on season of delivery. CONCLUSION Though no obvious indication of iron-induced dysbiosis was observed in this unique study in the setting of prematurity, further investigation in a larger sample is warranted to fully understand iron's impact on the gastrointestinal milieu.
Collapse
Affiliation(s)
- Matthew VanOrmer
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Maranda Thompson
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Melissa Thoene
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Corrine Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
14
|
van Haren JS, Delbressine FLM, Schoberer M, te Pas AB, van Laar JOEH, Oei SG, van der Hout-van der Jagt MB. Transferring an extremely premature infant to an extra-uterine life support system: a prospective view on the obstetric procedure. Front Pediatr 2024; 12:1360111. [PMID: 38425664 PMCID: PMC10902175 DOI: 10.3389/fped.2024.1360111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
To improve care for extremely premature infants, the development of an extrauterine environment for newborn development is being researched, known as Artificial Placenta and Artificial Womb (APAW) technology. APAW facilitates extended development in a liquid-filled incubator with oxygen and nutrient supply through an oxygenator connected to the umbilical vessels. This setup is intended to provide the optimal environment for further development, allowing further lung maturation by delaying gas exposure to oxygen. This innovative treatment necessitates interventions in obstetric procedures to transfer an infant from the native to an artificial womb, while preventing fetal-to-neonatal transition. In this narrative review we analyze relevant fetal physiology literature, provide an overview of insights from APAW studies, and identify considerations for the obstetric procedure from the native uterus to an APAW system. Lastly, this review provides suggestions to improve sterility, fetal and maternal well-being, and the prevention of neonatal transition.
Collapse
Affiliation(s)
- Juliette S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
| | | | - Mark Schoberer
- Institute for Applied Medical Engineering and Clinic for Neonatology, University Hospital Aachen, Aachen, Germany
| | - Arjan B. te Pas
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Judith O. E. H. van Laar
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - S. Guid Oei
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Beatrijs van der Hout-van der Jagt
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
15
|
Hamidi M, Cruz-Lebrón A, Sangwan N, Blatz MA, Levine AD. Maternal Vertical Microbial Transmission During Skin-to-Skin Care. Adv Neonatal Care 2023; 23:555-564. [PMID: 37850917 DOI: 10.1097/anc.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND Skin-to-skin (STS) care may contribute to mother-to-infant vertical microbial transmission by enriching the preterm infant's microbiome. PURPOSE The purpose of this observational study was to define the impact of increased STS care duration on vertical microbial transmission and consequently modulate oral and intestinal microbial balance. METHODS Postpartum women and their preterm infants, 31 to 34 weeks' gestation (n = 25), were recruited for this study. Using 16S rRNA sequencing, we compared α- and β-diversity with the Shannon and Chao indexes and nonmetric multidimensional scaling, respectively, and relative abundance of microbial communities, which refers to the percentage of specific organisms in a community, from mother's chest skin, preterm infant's oral cavity, and preterm infant's stool samples. Effects of STS care on vertical transmission were determined by comparing oral and stool microbial population of preterm infants who received low exposure (<40 minutes) with that of preterm infants who received high exposure (>60 minutes). RESULTS Microbial composition, diversity, and relative abundance were different across the 3 sites. Oral microbial richness was less and stool richness was greater among the preterm infants in the high STS care group. Oral and intestinal microbial diversity and composition were different between the groups, with the relative abundance of Gemella and Aggregatibacter genera and Lachnospiraceae family significantly greater in the stool of the high STS care group. IMPLICATIONS FOR PRACTICE Results suggest that STS care may be an effective method to enhance microbial communities among preterm infants.
Collapse
Affiliation(s)
- Maryam Hamidi
- Frances Bolton School of Nursing (Dr Hamidi), Department of Molecular Biology and Microbiology (Drs Cruz-Lebrón and Levine), and Departments of Pharmacology, Pathology, Medicine, and Pediatrics (Dr Levine), Case Western Reserve University, Cleveland, Ohio; Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio (Dr Sangwan); Neonatal Intensive Care Unit, Rainbow Babies & Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Dr Blatz)
| | | | | | | | | |
Collapse
|
16
|
Beretta S, Apparicio M, Toniollo GH, Cardozo MV. The importance of the intestinal microbiota in humans and dogs in the neonatal period. Anim Reprod 2023; 20:e20230082. [PMID: 38026003 PMCID: PMC10681130 DOI: 10.1590/1984-3143-ar2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.
Collapse
Affiliation(s)
- Samara Beretta
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Maricy Apparicio
- Departamento de Cirurgia Veterinária e Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Gilson Hélio Toniollo
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Marita Vedovelli Cardozo
- Laboratório de Fisiologia de Microorganismos, Departamento de Ciências Biomédicas e Saúde, Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brasil
| |
Collapse
|
17
|
Šakarnytė L, Šiugždinienė R, Žymantienė J, Ruzauskas M. Comparison of Oral Microbial Composition and Determinants Encoding Antimicrobial Resistance in Dogs and Their Owners. Antibiotics (Basel) 2023; 12:1554. [PMID: 37887255 PMCID: PMC10604839 DOI: 10.3390/antibiotics12101554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Consolidated studies on animal, human, and environmental health have become very important for understanding emerging zoonotic diseases and the spread of antimicrobial resistance (AMR). The aim of this study was to analyse the oral microbiomes of healthy dogs and their owners, including determinants of AMR. Shotgun metagenomic sequencing detected 299 bacterial species in pets and their owners, from which 70 species were carried by dogs and 229 species by humans. Results demonstrated a unique microbial composition of dogs and their owners. At an order level, Bacteroidales were the most prevalent oral microbiota of dogs with significantly lower prevalence in their owners where Actinomycetales and Lactobacillales predominated. Porphyromonas and Corynebacterium were the most prevalent genera in dogs, whereas Streptococcus and Actinomyces were in animal owners. The resistances to macrolides, tetracyclines, lincosamides and Cfx family A class broad-spectrum β-lactamase were detected in both animal and human microbiomes. Resistance determinants to amphenicols, aminoglycosides, sulphonamides, and quaternary ammonium compounds were detected exceptionally in dogs. In conclusion, the study demonstrated different bacterial composition in oral microbiomes of healthy dogs without clinical signs of periodontal disease and their owners. Due to the low numbers of the samples tested, further investigations with an increased number of samples should be performed.
Collapse
Affiliation(s)
- Laura Šakarnytė
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.Š.); (R.Š.)
| | - Rita Šiugždinienė
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.Š.); (R.Š.)
| | - Judita Žymantienė
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.Š.); (R.Š.)
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
18
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
19
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
20
|
Wang CM, Yang ST, Yang CC, Chiu HY, Lin HY, Tsai ML, Lin HC, Chang YC. Maternal and neonatal risk factors of asthma in children: Nationwide population based study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:182-191. [PMID: 36411206 DOI: 10.1016/j.jmii.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Small population group-based cohorts have found that perinatal factors may contribute to the development of asthma in children. We aimed to investigate maternal and neonatal risk factors for the asthma phenotypes using two databases from the Taiwan's Maternal and Child Health Database (TMCHD) and the National Health Insurance Research Database (NHIRD). METHODS Perinatal data was obtained from 2004 to 2008 in the TMCHD and linked the NHIRD to obtain relevant medical information regarding maternal and neonatal risk factors of three asthma phenotypes which were identified as transient early asthma, persistent asthma, and late-onset asthma. A multivariate logistic regression analysis was conducted to adjust for covariates. RESULTS The percentage of non-asthmatic patients was 77.02% and asthmatic (transient early asthma, late onset asthma, and persistent asthma) patients were 8.96%, 11.64%, and 2.42%, respectively. Maternal risk factors-including Cesarean section, maternal asthma, maternal allergic rhinitis (AR), and premature rupture of membranes-and neonatal risk factors, such as male gender, gestational age 29-37 weeks, ventilator use, antibiotics use, AR, and atopic dermatitis, were associated with the development of these three asthma phenotypes. Twins and a gestational age of 28 weeks or less premature were associated with the development of transient early asthma and persistent asthma, but not late onset asthma. Triplets and above were associated with the development of transient early asthma, but not late onset or persistent asthma. CONCLUSION Various asthma phenotypes have different risk factors; therefore, their distinct risk factors should be identified in order to early diagnosis and treatment.
Collapse
Affiliation(s)
- Chuang-Ming Wang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan.
| | - Shun-Ting Yang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan.
| | - Cheng-Chia Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan.
| | - Hsiao-Yu Chiu
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hsiang-Yu Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Ming-Luen Tsai
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Asia University Hospital, Asia University, Taichung 41354, Taiwan.
| | - Yu-Chia Chang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan; Department of Long Term Care, College of Health and Nursing, National Quemoy University, Kinmen County 892009, Taiwan
| |
Collapse
|
21
|
Iqbal F, Lewis LES, Siva N, K E V, Purkayastha J, Shenoy PA. Modulation of gut microbiota: An emerging consequence in neonatal sepsis. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023. [DOI: 10.1016/j.cegh.2023.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
22
|
Tcherni-Buzzeo M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress Behav 2023; 49:15-32. [PMID: 35997420 DOI: 10.1002/ab.22050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Research in biosocial criminology and other related disciplines has established links between nutrition and aggressive behavior. In addition to observational studies, randomized trials of nutritional supplements like vitamins, omega-3 fatty acids, and folic acid provide evidence of the dietary impact on aggression. However, the exact mechanism of the diet-aggression link is not well understood. The current article proposes that the gut microbiome plays an important role in the process, with the microbiota-gut-brain axis serving as such a mediating mechanism between diet and behavior. Based on animal and human studies, this review synthesizes a wide array of research across several academic fields: from the effects of dietary interventions on aggression, to the results of microbiota transplantation on socioemotional and behavioral outcomes, to the connections between early adversity, stress, microbiome, and aggression. Possibilities for integrating the microbiotic perspective with the more traditional, sociologically oriented theories in criminology are discussed, using social disorganization and self-control theories as examples. To extend the existing lines of research further, the article considers harnessing the experimental potential of noninvasive and low-cost dietary interventions to help establish the causal impact of the gut microbiome on aggressive behavior, while adhering to the high ethical standards and modern research requirements. Implications of this research for criminal justice policy and practice are essential: not only can it help determine whether the improved gut microbiome functioning moderates aggressive and violent behavior but also provide ways to prevent and reduce such behavior, alone or in combination with other crime prevention programs.
Collapse
|
23
|
Van Pee T, Hogervorst J, Dockx Y, Witters K, Thijs S, Wang C, Bongaerts E, Van Hamme JD, Vangronsveld J, Ameloot M, Raes J, Nawrot TS. Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association with the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIR ONAGE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17010. [PMID: 36719212 PMCID: PMC9888258 DOI: 10.1289/ehp11257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
24
|
Aboagye RG, Ahinkorah BO, Seidu AA, Anin SK, Frimpong JB, Hagan JE. Mother and newborn skin-to-skin contact and timely initiation of breastfeeding in sub-Saharan Africa. PLoS One 2023; 18:e0280053. [PMID: 36626377 PMCID: PMC9831337 DOI: 10.1371/journal.pone.0280053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mother and newborn skin-to-skin contact (SSC) plays a key role in breastfeeding practices of mothers. In this study, we examined the association between mother and newborn SSC and timely initiation of breastfeeding in sub-Saharan Africa (SSA). METHODS This cross-sectional study utilized nationally representative data from the Demographic and Health Surveys of 17 countries in SSA from 2015 to 2020. Multilevel binary logistic regression analysis was performed to examine the association between mother and newborn SSC and timely initiation of breastfeeding. The results are presented using adjusted odds ratios (aOR), with 95% confidence interval (CI). RESULTS The pooled prevalences of mother and newborn SSC and timely initiation of breastfeeding were 45.68% (95% CI = 34.12-57.23) and 62.89% (95% CI = 55.67-70.11), respectively. Mothers who practiced newborn SSC were more likely to practice timely initiation of breastfeeding compared to those who did not practice SSC [aOR = 1.68, 95% CI = 1.58, 1.78] and this persisted after controlling for all the covariates [aOR = 1.38, 95% CI = 1.29, 1.47]. At the country level, mother and newborn SSC increased the odds of timely initiation of breastfeeding in Angola [aOR = 1.99, 95% CI = 1.44, 2.76], Cameroon [aOR = 1.43, 95% CI = 1.02, 1.99], Ethiopia [aOR = 1.62, 95% CI = 1.16, 2.28], Guinea [aOR = 1.69, 95% CI = 1.10, 2.60], Liberia [aOR = 2.03, 95% CI = 1.33, 3.12], Malawi [aOR = 1.47, 95% CI = 1.02, 2.12], Mali [aOR = 1.42, 95% CI = 1.10, 1.84], Sierra Leone [aOR = 1.87, 95% CI = 1.23, 2.83], South Africa [aOR = 2.59, 95% CI = 1.41, 4.76], Tanzania [aOR = 1.60, 95% CI = 1.27, 2.01], Uganda [aOR = 1.43, 95% CI = 1.02, 1.99], Zambia [aOR = 1.86, 95% CI = 1.50, 2.30], and Zimbabwe [aOR = 1.65, 95% CI = 1.24, 2.21]. CONCLUSION The prevalence of SCC was relatively low but timely initiation of breastfeeding was high. Mother and newborn SSC is a strong predictor of timely initiation of breastfeeding in SSA. To enhance timely initiation of breastfeeding after birth, this study recommends that more child and maternal healthcare interventions focused on improving mother and newborn SSC should be implemented.
Collapse
Affiliation(s)
- Richard Gyan Aboagye
- Department of Family and Community Health, Fred N. Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Bright Opoku Ahinkorah
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- REMS Consult Limited, Sekondi-Takoradi, Western Region, Ghana
| | - Abdul-Aziz Seidu
- REMS Consult Limited, Sekondi-Takoradi, Western Region, Ghana
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- Centre For Gender and Advocacy, Takoradi Technical University, Takoradi, Ghana
| | - Stephen Kofi Anin
- School of Public Health, Bielefeld University, Bielefeld, Germany
- Department of Industrial and Health Sciences, Faculty of Applied Sciences, Takoradi Technical University, Takoradi, Ghana
| | - James Boadu Frimpong
- Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana
- Department of Kinesiology, New Mexico State University, Las Cruces, NM, United States of America
- * E-mail:
| | - John Elvis Hagan
- Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana
- Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology and Sport Sciences, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
25
|
Liang F, Chen CY, Li YP, Ke YC, Ho EP, Jeng CF, Lin CH, Chen SK. Early Dysbiosis and Dampened Gut Microbe Oscillation Precede Motor Dysfunction and Neuropathology in Animal Models of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2423-2440. [PMID: 36155528 DOI: 10.3233/jpd-223431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Studies have shown different gut microbiomes in patients with Parkinson's disease (PD) compared to unaffected controls. However, when the gut microbiota shift toward dysbiosis in the PD process remains unclear. OBJECTIVE We aim to investigate the changes in gut microbiota, locomotor function, and neuropathology longitudinally in PD rodent models. METHODS Fecal microbiota were longitudinally assessed by sequencing the V4-V5 region of the 16S ribosomal RNA gene in a human mutant α-synuclein over-expressing mouse model of PD, SNCA p.A53T mice, and the non-transgenic littermate controls. The locomotor function, neuronal integrity, and α-synuclein expression in the different brain regions were compared between groups. Human fecal microbiota communities from 58 patients with PD and 46 unaffected controls were also analyzed using metagenomic sequencing for comparison. RESULTS Compared to non-transgenic littermate controls, the altered gut microbiota of the SNCA p.A53T mice can be detected as early as 2 months old, and the diurnal oscillation of the gut microbiome was dampened throughout PD progression starting from 4 months old. However, neuropathology changes and motor deficits were observed starting at 6 months old. Similar changes in altered gut microbiota were also observed in another PD genetic mouse model carrying the LRRK2 p.G2019S mutation at 2 months old. Among the commonly enriched gut microbiota in both PD genetic mouse models, the abundance of Parabateroides Merdae and Ruminococcus torques were also increased in human PD patients compared to controls. CONCLUSION These findings revealed the altered gut microbiota communities and oscillations preceding the occurrence of neuropathy and motor dysfunction in the PD process.
Collapse
Affiliation(s)
- Feng Liang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Pu Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ci Ke
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - En-Pong Ho
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Fan Jeng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
27
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
28
|
Chopra C, Bhushan I, Mehta M, Koushal T, Gupta A, Sharma S, Kumar M, Khodor SA, Sharma S. Vaginal microbiome: considerations for reproductive health. Future Microbiol 2022; 17:1501-1513. [DOI: 10.2217/fmb-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The microbial communities are an indispensable part of the human defense system and coexist with humans as symbionts, contributing to the metabolic functions and immune defense against pathogens. An ecologically stable vaginal microbiota is dominated by Lactobacillus species, which plays an important role in the prevention of genital infections by controlling the vaginal pH, reducing glycogen to lactic acid, and stimulating bacteriocins and hydrogen peroxide. In contrast, an abnormal vaginal microbial composition is associated with an increased risk of bacterial vaginosis, trichomoniasis, sexually transmitted diseases, preterm labor and other birth defects. This microbial diversity is affected by race, ethnicity, pregnancy, hormonal changes, sexual activities, hygiene practices and other conditions. In the present review, we discuss the changes in the microbial community of the vaginal region at different stages of a female's life cycle and its influence on her reproductive health and pathological conditions.
Collapse
Affiliation(s)
- Chitrakshi Chopra
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Indu Bhushan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Malvika Mehta
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Tanvi Koushal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Amita Gupta
- Department of Gynecology, Government Medical College, Jammu, (J&K), 180001, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara, 144411, India
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
29
|
Ahmed E, Hens K. Microbiome in Precision Psychiatry: An Overview of the Ethical Challenges Regarding Microbiome Big Data and Microbiome-Based Interventions. AJOB Neurosci 2022; 13:270-286. [PMID: 34379050 DOI: 10.1080/21507740.2021.1958096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There has been a spurt in both fundamental and translational research that examines the underlying mechanisms of the human microbiome in psychiatric disorders. The personalized and dynamic features of the human microbiome suggest the potential of its manipulation for precision psychiatry in ways to improve mental health and avoid disease. However, findings in the field of microbiome also raise philosophical and ethical questions. From a philosophical point of view, they may yet be another attempt at providing a biological cause for phenomena that ultimately cannot be so easily localized. From an ethical point of view, it is relevant that the human gut microbiome comprises data on the individual's lifestyle, disease history, previous medications, and mental health. Massive datasets of microbiome sequences are collected to facilitate comparative studies to identify specific links between the microbiome and mental health. Although this emerging research domain may show promise for psychiatric patients, it is surrounded by ethical challenges regarding patient privacy, health risks, effects on personal identity, and concerns about responsibility. This narrative overview displays the roles and advances of microbiome research in psychiatry and discusses the philosophical and ethical implications of microbiome big data and microbiome-based interventions for psychiatric patients. We also investigate whether these issues are really "new," or "old wine in new bottles."
Collapse
Affiliation(s)
- Eman Ahmed
- University of Antwerp.,Suez Canal University
| | | |
Collapse
|
30
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
31
|
Nitschke AS, Karim JL, Vallance BA, Bickford C, Ip A, Lanphear N, Lanphear B, Weikum W, Oberlander TF, Hanley GE. Autism Risk and Perinatal Antibiotic Use. Pediatrics 2022; 150:189212. [PMID: 36017659 DOI: 10.1542/peds.2022-057346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Antibiotics are commonly administered during labor and delivery, and research has suggested that fetal exposure to antibiotics can increase risk for autism spectrum disorder (ASD). We assessed whether antibiotic exposure during labor and delivery increased the risk of ASD in the offspring. METHODS This retrospective cohort study included everyone who delivered a live singleton-term infant in British Columbia, Canada, between April 1, 2000, and December 31, 2014. This cohort included 569 953 deliveries. To examine the association among pregnant individuals being treated for the same indication, we studied a subcohort of those who tested positive for group B Streptococcus. Cox proportional hazards models were used to estimate unadjusted and adjusted hazard ratios in both cohorts. A sensitivity analysis was conducted using length of first stage of labor as a proxy measure for dose to assess for a dose-response relationship. RESULTS In this population-based study, antibiotic use during labor and delivery was not associated with an increased risk of ASD in offspring. The unadjusted and adjusted hazard ratios were 1.29 (95% confidence interval, 1.24-1.35) and 0.99 (0.94-1.04), respectively; and 1.07 (0.90-1.27) and 0.88 (0.74-1.05), respectively, in the group B Streptococcus-positive cohort. We observed no substantial difference in the association between antibiotic exposure and ASD depending on length of the first stage of labor. CONCLUSIONS Our findings suggest that concern for ASD should not factor into the clinical decision on whether to administer antibiotics during labor and delivery. Future research is needed to examine longer durations of prenatal antibiotic exposure.
Collapse
Affiliation(s)
| | - Jalisa L Karim
- BC Children's Hospital Research Institute.,Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Angie Ip
- School of Population and Public Health.,BC Children's Hospital Research Institute
| | - Nancy Lanphear
- BC Children's Hospital Research Institute.,Division of Developmental Pediatrics, Departments of Pediatrics
| | - Bruce Lanphear
- School of Population and Public Health.,Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Whitney Weikum
- BC Children's Hospital Research Institute.,Division of Developmental Pediatrics, Departments of Pediatrics
| | - Tim F Oberlander
- School of Population and Public Health.,BC Children's Hospital Research Institute.,Division of Developmental Pediatrics, Departments of Pediatrics
| | - Gillian E Hanley
- BC Children's Hospital Research Institute.,Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Ruuskanen MO, Vats D, Potbhare R, RaviKumar A, Munukka E, Ashma R, Lahti L. Towards standardized and reproducible research in skin microbiomes. Environ Microbiol 2022; 24:3840-3860. [PMID: 35229437 PMCID: PMC9790573 DOI: 10.1111/1462-2920.15945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Skin is a complex organ serving a critical role as a barrier and mediator of interactions between the human body and its environment. Recent studies have uncovered how resident microbial communities play a significant role in maintaining the normal healthy function of the skin and the immune system. In turn, numerous host-associated and environmental factors influence these communities' composition and diversity across the cutaneous surface. In addition, specific compositional changes in skin microbiota have also been connected to the development of several chronic diseases. The current era of microbiome research is characterized by its reliance on large data sets of nucleotide sequences produced with high-throughput sequencing of sample-extracted DNA. These approaches have yielded new insights into many previously uncharacterized microbial communities. Application of standardized practices in the study of skin microbial communities could help us understand their complex structures, functional capacities, and health associations and increase the reproducibility of the research. Here, we overview the current research in human skin microbiomes and outline challenges specific to their study. Furthermore, we provide perspectives on recent advances in methods, analytical tools and applications of skin microbiomes in medicine and forensics.
Collapse
Affiliation(s)
- Matti O. Ruuskanen
- Department of Computing, Faculty of TechnologyUniversity of TurkuTurkuFinland
| | - Deepti Vats
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Renuka Potbhare
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Ameeta RaviKumar
- Institute of Bioinformatics and BiotechnologySavitribai Phule Pune UniversityPuneIndia
| | - Eveliina Munukka
- Microbiome Biobank, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Richa Ashma
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Leo Lahti
- Department of Computing, Faculty of TechnologyUniversity of TurkuTurkuFinland
| |
Collapse
|
33
|
Matar G, Bilen M. Culturomics, a potential approach paving the way toward bacteriotherapy. Curr Opin Microbiol 2022; 69:102194. [PMID: 35994842 DOI: 10.1016/j.mib.2022.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022]
Abstract
The human microbiota has been extensively studied over the past decade to describe its role in health and diseases. Numerous studies showed the presence of bacterial imbalance in a variety of human health conditions, suggesting great potential for the development of bacteriotherapies. Identifying mechanisms involving the human microbiota has been very challenging due to the complex data generated by molecular approaches and the limited number of organisms isolated by culture and described. This review summarizes the efforts done to describe the human microbiota through culturomics and the advancements in culturing the organisms residing at different body sites.
Collapse
Affiliation(s)
- Ghassan Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Melhem Bilen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Pham VT, Greppi A, Chassard C, Braegger C, Lacroix C. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr 2022; 9:948131. [PMID: 35967780 PMCID: PMC9366138 DOI: 10.3389/fnut.2022.948131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The early intestinal colonization of functional microbial groups plays an essential role in infant gut health, with most studies targeting the initial colonization period from birth to 6 months of age. In a previous report, we demonstrated the metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization in fecal samples of 40 healthy infants. We present here the extension of our longitudinal study for the period from 6 months to 2 years, with a focus on the colonization of functional groups involved in lactate metabolism and butyrate production. We captured the dynamic changes of the gut microbiota and reported a switch in the predominant lactate-producing and lactate-utilizing bacteria, from Veillonella producing propionate in the first year to Anaerobutyrycum hallii producing butyrate in the second year of life. The significant increase in butyrate producers and fecal butyrate concentration was also pinpointed to the weaning period between 6 and 10 months. Correlation analyses further suggested, for the first time, the metabolic cross-feeding of hydrogen in infants. In conclusion, our longitudinal study of 40 Swiss infants provides important insights into the colonization of functional groups involved in lactate metabolism and butyrate production in the first 2 years of life.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Maternal Microbiota Modulate a Fragile X-like Syndrome in Offspring Mice. Genes (Basel) 2022; 13:genes13081409. [PMID: 36011319 PMCID: PMC9407566 DOI: 10.3390/genes13081409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
Abstract
Maternal microbial dysbiosis has been implicated in adverse postnatal health conditions in offspring, such as obesity, cancer, and neurological disorders. We observed that the progeny of mice fed a Westernized diet (WD) with low fiber and extra fat exhibited higher frequencies of stereotypy, hyperactivity, cranial features and lower FMRP protein expression, similar to what is typically observed in Fragile X Syndrome (FXS) in humans. We hypothesized that gut dysbiosis and inflammation during pregnancy influenced the prenatal uterine environment, leading to abnormal phenotypes in offspring. We found that oral in utero supplementation with a beneficial anti-inflammatory probiotic microbe, Lactobacillus reuteri, was sufficient to inhibit FXS-like phenotypes in offspring mice. Cytokine profiles in the pregnant WD females showed that their circulating levels of pro-inflammatory cytokine interleukin (Il)-17 were increased relative to matched gravid mice and to those given supplementary L. reuteri probiotic. To test our hypothesis of prenatal contributions to this neurodevelopmental phenotype, we performed Caesarian (C-section) births using dissimilar foster mothers to eliminate effects of maternal microbiota transferred during vaginal delivery or nursing after birth. We found that foster-reared offspring still displayed a high frequency of these FXS-like features, indicating significant in utero contributions. In contrast, matched foster-reared progeny of L. reuteri-treated mothers did not exhibit the FXS-like typical features, supporting a key role for microbiota during pregnancy. Our findings suggest that diet-induced dysbiosis in the prenatal uterine environment is strongly associated with the incidence of this neurological phenotype in progeny but can be alleviated by addressing gut dysbiosis through probiotic supplementation.
Collapse
|
36
|
Orchanian SB, Gauglitz JM, Wandro S, Weldon KC, Doty M, Stillwell K, Hansen S, Jiang L, Vargas F, Rhee KE, Lumeng JC, Dorrestein PC, Knight R, Kim JH, Song SJ, Swafford AD. Multiomic Analyses of Nascent Preterm Infant Microbiomes Differentiation Suggest Opportunities for Targeted Intervention. Adv Biol (Weinh) 2022; 6:e2101313. [PMID: 35652166 PMCID: PMC10321678 DOI: 10.1002/adbi.202101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/01/2022] [Indexed: 01/28/2023]
Abstract
The first week after birth is a critical time for the establishment of microbial communities for infants. Preterm infants face unique environmental impacts on their newly acquired microbiomes, including increased incidence of cesarean section delivery and exposure to antibiotics as well as delayed enteral feeding and reduced human interaction during their intensive care unit stay. Using contextualized paired metabolomics and 16S sequencing data, the development of the gut, skin, and oral microbiomes of infants is profiled daily for the first week after birth, and it is found that the skin microbiome appears robust to early life perturbation, while direct exposure of infants to antibiotics, rather than presumed maternal transmission, delays microbiome development and prevents the early differentiation based on body site regardless of delivery mode. Metabolomic analyses identify the development of all gut metabolomes of preterm infants toward full-term infant profiles, but a significant increase of primary bile acid metabolism only in the non-antibiotic treated vaginally birthed late preterm infants. This study provides a framework for future multi-omic, multibody site analyses on these high-risk preterm infant populations and suggests opportunities for monitoring and intervention, with infant antibiotic exposure as the primary driver of delays in microbiome development.
Collapse
Affiliation(s)
- Stephanie B. Orchanian
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Present address: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- These authors contributed equally to this work
| | - Julia M. Gauglitz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - Kelly C. Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - Megan Doty
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Neonatal Intensive Care Unit, Kapi’olani Medical Center for Women & Children, Honolulu, HI, USA
| | - Kristina Stillwell
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Shalisa Hansen
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Lingjing Jiang
- Division of Biostatistics, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Present address: Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kyung E. Rhee
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Julie C. Lumeng
- Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Pieter C. Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jae H. Kim
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Hobi S, Cafarchia C, Romano V, Barrs VR. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J Fungi (Basel) 2022; 8:jof8070708. [PMID: 35887463 PMCID: PMC9324274 DOI: 10.3390/jof8070708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker’s hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Valentina Romano
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| |
Collapse
|
38
|
A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice. Mar Drugs 2022; 20:md20060390. [PMID: 35736193 PMCID: PMC9230221 DOI: 10.3390/md20060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Epidemiology and animal studies suggest that a paternal history of toxicant exposure contributes to the developmental origins of health and disease. Using a mouse model, our laboratory previously reported that a paternal history of in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased his offspring’s risk of developing necrotizing enterocolitis (NEC). Additionally, our group and others have found that formula supplementation also increases the risk of NEC in both humans and mice. Our murine studies revealed that intervening with a paternal fish oil diet preconception eliminated the TCDD-associated outcomes that are risk factors for NEC (e.g., intrauterine growth restriction, delayed postnatal growth, and preterm birth). However, the efficacy of a paternal fish oil diet in eliminating the risk of disease development in his offspring was not investigated. Herein, reproductive-age male mice exposed to TCDD in utero were weaned to a standard or fish oil diet for one full cycle of spermatogenesis, then mated to age-matched unexposed females. Their offspring were randomized to a strict maternal milk diet or a supplemental formula diet from postnatal days 7–10. Offspring colon contents and intestines were collected to determine the onset of gut dysbiosis and NEC. We found that a paternal fish oil diet preconception reduced his offspring’s risk of toxicant-driven NEC, which was associated with a decrease in the relative abundance of the Firmicutes phylum, but an increase in the relative abundance of the Negativicutes class.
Collapse
|
39
|
Breastfeeding as a regulating factor of the development of the intestinal microbiome in the early stages of life. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Alabdaljabar MS, Aslam HM, Veeraballi S, Faizee FA, Husain BH, Iqbal SM, Hashmi SK. Restoration of the Original Inhabitants: A Systematic Review on Fecal Microbiota Transplantation for Graft-Versus-Host Disease. Cureus 2022; 14:e23873. [PMID: 35530905 PMCID: PMC9076056 DOI: 10.7759/cureus.23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
A compelling intervention to maintain healthy gut microbiota in graft-versus-host-disease (GVHD) is fecal microbial transplantation (FMT). To examine its role in GVHD, we conducted a systemic literature search using multiple electronic databases. Upon pooling of data, 79 patients from six studies and five case reports were included. Complete remission (CR) occurred in 55.9% of patients, and partial remission (PR) occurred in 26.5% of patients (82.4% overall response rate). A limited number of patients had treatment-related mortality (TRM), while few showed mild gastrointestinal (GI)-related and non-GI adverse effects. None of the studies directly examined the role of FMT in the prevention of GVHD. In conclusion, FMT seems to be a safe and effective strategy for the management of GVHD based on the current evidence. Due to the small number of patients evaluated and the absence of randomized data, one cannot portray FMT as a standard of care yet; however, the low toxicity along with the clinical improvement justifies this modality to be tested in a randomized fashion.
Collapse
|
41
|
Yang Q, Ouyang J, Pi D, Feng L, Yang J. Malassezia in Inflammatory Bowel Disease: Accomplice of Evoking Tumorigenesis. Front Immunol 2022; 13:846469. [PMID: 35309351 PMCID: PMC8931276 DOI: 10.3389/fimmu.2022.846469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that patients with inflammatory bowel disease (IBD) have a significantly higher risk of developing different cancers, while the exact mechanism involved is not yet fully understood. Malassezia is a lipid-dependent opportunistic yeast, which colonizes on mammalian skin and internal organs. Also, dysbiosis in fungal communities accompanied by high level of Malassezia are fairly common in inflammatory diseases such as IBD and various cancers. In cancer patients, higher levels of Malassezia are associated with worse prognosis. Once it is ablated in tumor-bearing mice, their prognostic conditions will be improved. Moreover, Malassezia manifests multiple proinflammatory biological properties, such as destruction of epithelial barrier, enrichment of inflammatory factors, and degradation of extracellular matrix (ECM), all of which have been reported to contribute to tumor initiation and malignant progression. Based on these facts, we hypothesize that high levels of Malassezia together with mycobiome dysbiosis in patients with IBD, would aggravate the microecological imbalance, worsen the inflammatory response, and further promote tumorigenesis and deterioration. Herein, we will discuss the detrimental properties of Malassezia and explore the key role of this fungus in the correlation between IBD and cancer, in order to take early surveillance and intervention to minimize the cancer risk in individuals with IBD.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Feng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| |
Collapse
|
42
|
Walker K, Green J, Petty J, Whiting L, Staff L, Bromley P, Fowler C, Jones LK. Breastfeeding in the context of the COVID-19 pandemic: A discussion paper. JOURNAL OF NEONATAL NURSING : JNN 2022; 28:9-15. [PMID: 34366687 PMCID: PMC8332735 DOI: 10.1016/j.jnn.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
Breastfeeding offers one of the most fundamental global health benefits for babies. Breastmilk is lifesaving, providing not only nutrition but immunologic benefits and as such is strongly supported by the World Health Organization and leading healthcare associations worldwide. When the COVID-19 pandemic started in 2020, the impact of the restrictions to prevent the spread of the disease created challenges and questions about provision of safe, quality care, including breastfeeding practices, in a new 'normal' environment. Mothers were temporarily separated from their babies where infection was present or suspected, parents were prevented from being present on neonatal units and vital breastfeeding support was prevented. This discussion paper provides an overview of essential areas of knowledge related to practice for neonatal nurses and midwives who care for breastfeeding mothers and babies, in the context of the COVID-19 pandemic and the latest global guidance. Three areas will be discussed; the protective benefits of breastfeeding, keeping breastfeeding mothers and babies together and supporting mothers to breastfeed their babies. Finally, care recommendations are presented to serve as a summary of key points for application to practice for neonatal nurses and midwives.
Collapse
Affiliation(s)
| | - Janet Green
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| | - Julia Petty
- School of Health and Social Work, The University of Hertfordshire, Hatfield, UK
| | - Lisa Whiting
- School of Health and Social Work, The University of Hertfordshire, Hatfield, UK
| | - Lynette Staff
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| | - Patricia Bromley
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| | - Cathrine Fowler
- Faculty of Health University of Technology, Sydney, Australia
| | - Linda K Jones
- School of Nursing, College of Health and Medicine, University of Tasmania, Australia
| |
Collapse
|
43
|
Duale A, Singh P, Al Khodor S. Breast Milk: A Meal Worth Having. Front Nutr 2022; 8:800927. [PMID: 35155521 PMCID: PMC8826470 DOI: 10.3389/fnut.2021.800927] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
A mother is gifted with breast milk, the natural source of nutrition for her infant. In addition to the wealth of macro and micro-nutrients, human milk also contains many microorganisms, few of which originate from the mother, while others are acquired from the mouth of the infant and the surroundings. Among these microbes, the most commonly residing bacteria are Staphylococci, Streptococci, Lactobacilli and Bifidobacteria. These microorganisms initiate and help the development of the milk microbiota as well as the microbiota of the gastrointestinal tract in infants, and contribute to developing immune regulatory factors such as cytokines, growth factors, lactoferrin among others. These factors play an important role in reducing the risk of developing chronic diseases like type 2 diabetes, asthma and others later in life. In this review, we will summarize the known benefits of breastfeeding and highlight the role of the breast milk microbiota and its cross-talk with the immune system in breastfed babies during the early years of life.
Collapse
Affiliation(s)
- Anoud Duale
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
| | - Souhaila Al Khodor
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
44
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Wallenborn JT, Vonaesch P. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac010. [PMID: 35419206 PMCID: PMC8996373 DOI: 10.1093/gastro/goac010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Campus UNIL-Sorge, Lausanne, Switzerland
- Corresponding author. Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland. Tel: +41-21-692-5600;
| |
Collapse
|
46
|
AboNahas HH, Darwish AMG, Abd EL-kareem HF, AboNahas YH, Mansour SA, Korra YH, Sayyed RZ, Abdel-Azeem AM, Saied EM. Trust Your Gut: The Human Gut Microbiome in Health and Disease. MICROBIOME-GUT-BRAIN AXIS 2022:53-96. [DOI: 10.1007/978-981-16-1626-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
|
48
|
Cantarutti A, Rea F, Franchi M, Beccalli B, Locatelli A, Corrao G. Use of Antibiotic Treatment in Pregnancy and the Risk of Several Neonatal Outcomes: A Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12621. [PMID: 34886350 PMCID: PMC8657211 DOI: 10.3390/ijerph182312621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Limited evidence is available on the safety and efficacy of antimicrobials during pregnancy, with even less according to the trimester of their use. OBJECTIVE This study aimed to evaluate the association between exposure to antibiotics therapy (AT) during pregnancy and short-term neonatal outcomes. METHODS We considered 773,237 deliveries that occurred between 2007-2017 in the Lombardy region of Italy. We evaluated the risk of neonatal outcomes among infants that were born to mothers who underwent AT during pregnancy. The odds ratios and the hazard ratios, with the 95% confidence intervals, were estimated respectively for early (first/second trimester) and late (third trimester) exposure. The propensity score was used to account for potential confounders. We also performed subgroup analysis for the class of AT. RESULTS We identified 132,024 and 76,921 singletons that were exposed to AT during early and late pregnancy, respectively. Infants born to mothers with early exposure had 17, 11, and 16% increased risk of preterm birth, low birth weight, and low Apgar score, respectively. Infants that were exposed in late pregnancy had 25, 11, and 13% increased risk of preterm birth, low birth weight, and low Apgar score, respectively. The results were consistent in the subgroup analysis. CONCLUSION Our results suggested an increased risk of several neonatal outcomes in women exposed to ATs during pregnancy, albeit we were not able to assess to what extent the observed effects were due to the infection itself. To reduce the risk of neonatal outcomes, women that are prescribed AT during pregnancy should be closely monitored.
Collapse
Affiliation(s)
- Anna Cantarutti
- National Centre for Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (M.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Federico Rea
- National Centre for Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (M.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Matteo Franchi
- National Centre for Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (M.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Benedetta Beccalli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Anna Locatelli
- Department of Mother and Child, ASST Vimercate, 20871 Vimercate, Italy;
- School of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy
| | - Giovanni Corrao
- National Centre for Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (M.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| |
Collapse
|
49
|
Vaginal microbiome topic modeling of laboring Ugandan women with and without fever. NPJ Biofilms Microbiomes 2021; 7:75. [PMID: 34508087 PMCID: PMC8433417 DOI: 10.1038/s41522-021-00244-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The composition of the maternal vaginal microbiome influences the duration of pregnancy, onset of labor, and even neonatal outcomes. Maternal microbiome research in sub-Saharan Africa has focused on non-pregnant and postpartum composition of the vaginal microbiome. Here we aimed to illustrate the relationship between the vaginal microbiome of 99 laboring Ugandan women and intrapartum fever using routine microbiology and 16S ribosomal RNA gene sequencing from two hypervariable regions (V1–V2 and V3–V4). To describe the vaginal microbes associated with vaginal microbial communities, we pursued two approaches: hierarchical clustering methods and a novel Grades of Membership (GoM) modeling approach for vaginal microbiome characterization. Leveraging GoM models, we created a basis composed of a preassigned number of microbial topics whose linear combination optimally represents each patient yielding more comprehensive associations and characterization between maternal clinical features and the microbial communities. Using a random forest model, we showed that by including microbial topic models we improved upon clinical variables to predict maternal fever. Overall, we found a higher prevalence of Granulicatella, Streptococcus, Fusobacterium, Anaerococcus, Sneathia, Clostridium, Gemella, Mobiluncus, and Veillonella genera in febrile mothers, and higher prevalence of Lactobacillus genera (in particular L. crispatus and L. jensenii), Acinobacter, Aerococcus, and Prevotella species in afebrile mothers. By including clinical variables with microbial topics in this model, we observed young maternal age, fever reported earlier in the pregnancy, longer labor duration, and microbial communities with reduced Lactobacillus diversity were associated with intrapartum fever. These results better defined relationships between the presence or absence of intrapartum fever, demographics, peripartum course, and vaginal microbial topics, and expanded our understanding of the impact of the microbiome on maternal and potentially neonatal outcome risk.
Collapse
|
50
|
Chen YY, Zhao X, Moeder W, Tun HM, Simons E, Mandhane PJ, Moraes TJ, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. Impact of Maternal Intrapartum Antibiotics, and Caesarean Section with and without Labour on Bifidobacterium and Other Infant Gut Microbiota. Microorganisms 2021; 9:microorganisms9091847. [PMID: 34576741 PMCID: PMC8467529 DOI: 10.3390/microorganisms9091847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Aims: Few studies consider the joint effect of multiple factors related to birth, delivery mode, intrapartum antibiotic prophylaxis and the onset of labour, on the abundance of Bifidobacterium and the quantity of this genus and its species Bifidobacterium longum subsp. infantis in the infant gut microbiota. We implemented such a study. Methods: Among 1654 Canadian full-term infants, the gut microbiota of faecal samples collected at 3 months were profiled by 16S rRNA sequencing; the genus Bifidobacterium and Bifidobacterium longum subsp. infantis were quantified by qPCR. Associations between Bifidobacterium and other gut microbiota were examined by Spearman’s rank correlation. Results: Following vaginal birth, maternal IAP exposure was associated with reduced absolute quantities of bifidobacteria among vaginally delivered infants (6.80 vs. 7.14 log10 (gene-copies/g faeces), p < 0.05), as well as their lowered abundance relative to other gut microbiota. IAP differences in infant gut bifidobacterial quantity were independent of maternal pre-pregnancy body-mass-index (BMI), and remarkably, they were limited to breastfed infants. Pre-pregnancy BMI adjustment revealed negative associations between absolute quantities of bifidobacteria and CS with or without labour in non-breastfed infants, and CS with labour in exclusively breastfed infants. Significant correlations between Bifidobacterium abundance and other microbial taxa were observed. Conclusions: This study documented the impact of the birth mode and feeding status on the abundance of gut Bifidobacterium, and pointed to the important ecological role of the genus Bifidobacterium in gut microbiota due to its strong interaction with other gut microbiota in early infancy.
Collapse
Affiliation(s)
- Yuan Yao Chen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.Y.C.); (X.Z.); (H.M.T.); (P.J.M.)
| | - Xin Zhao
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.Y.C.); (X.Z.); (H.M.T.); (P.J.M.)
| | - Wolfgang Moeder
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 1R4, Canada; (W.M.); (J.A.S.)
| | - Hein M. Tun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.Y.C.); (X.Z.); (H.M.T.); (P.J.M.)
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong SAR 999077, China
| | - Elinor Simons
- Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Piushkumar J. Mandhane
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.Y.C.); (X.Z.); (H.M.T.); (P.J.M.)
| | - Theo J. Moraes
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; (T.J.M.); (P.S.)
| | - Stuart E. Turvey
- Department of Pediatrics, Child and Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada;
| | - Padmaja Subbarao
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; (T.J.M.); (P.S.)
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 1R4, Canada; (W.M.); (J.A.S.)
| | - Anita L. Kozyrskyj
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.Y.C.); (X.Z.); (H.M.T.); (P.J.M.)
- Correspondence: Anita Kozyrskyj
| |
Collapse
|