1
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Marando A, Di Blasi E, Tucci F, Aquilano MC, Bonoldi E. DOG1 expression in neuroendocrine neoplasms: Potential applications and diagnostic pitfalls. Pathol Res Pract 2023; 248:154623. [PMID: 37331184 DOI: 10.1016/j.prp.2023.154623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Neuroendocrine neoplasms represent a heterogeneous group of rare tumors, more frequently arising from gastroenteropancreatic tract and lungs. At the time of diagnosis, 20% of cases are metastatic, and 10% of cases are considered as cancer of unknown primary origin. Several immunohistochemical markers are routinely used to confirm the neuroendocrine differentiation, first among all Synaptophysin and Chromogranin-A; on the other hand, different immunohistochemical markers are used to establish primary anatomical site, as TTF1, CDX2, Islet-1 and Calcitonin, but no marker is available in order to distinguish among different sites of the digestive tract. DOG1 (discovered on GIST-1) is a gene normally expressed in interstitial cells of Cajal and, in routine practice, DOG1 immunostaining is used in diagnosis of GIST (gastrointestinal stromal tumor). DOG1 expression has been described in several neoplasms other than GIST, both in mesenchymal and epithelial neoplasms. In the present study, DOG1 immunostaining has been performed in a large cohort of neuroendocrine neoplasms, including neuroendocrine tumors and neuroendocrine carcinomas, in order to evaluate frequency, intensity and pattern of expression in different anatomical site and in different tumor grade. DOG1 expression was detected in a large percentage of neuroendocrine tumors, with statistically significant association between DOG1 expression and gastrointestinal tract neuroendocrine tumors. As a consequence, DOG1 could be included in marker panel for the identification of primary site in neuroendocrine metastases of unknown primary origin; moreover, these results recommend careful evaluation of DOG1 expression in gastrointestinal neoplasms, in particular in differential diagnosis between epithelioid GIST and neuroendocrine tumors.
Collapse
Affiliation(s)
- A Marando
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy.
| | - E Di Blasi
- School of Pathology, University of Milan, Milan, Italy
| | - F Tucci
- School of Pathology, University of Milan, Milan, Italy
| | - M C Aquilano
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy
| | - E Bonoldi
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy
| |
Collapse
|
3
|
DOG1 as an Immunohistochemical Marker of Acinic Cell Carcinoma: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179711. [PMID: 36077107 PMCID: PMC9456024 DOI: 10.3390/ijms23179711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
DOG1 is a transmembrane protein originally discovered on gastrointestinal stromal tumors and works as a calcium-activated chloride channel protein. There are a limited number of articles on the potential utility of this antibody in the diagnosis of salivary gland tumors in routine practice. In this study, we aimed to investigate the role of DOG1 as an immunohistochemical marker in patients with salivary acinic cell carcinoma (ACC) through meta-analysis. A literature search was performed of the PubMed, Scopus, and Web of Science databases for English-language studies published from January 2010 to September 2021. The literature search revealed 148 articles, of which 20 were included in the study. The overall rate of DOG1 expression in salivary acinic cell carcinoma was 55% (95% CI = 0.43–0.58). Although ACC is a challenging diagnosis, paying careful attention to the cytomorphological features in conjunction with DOG1 immunostaining can help to reach an accurate diagnosis.
Collapse
|
4
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
5
|
Jansen K, Farahi N, Büscheck F, Lennartz M, Luebke AM, Burandt E, Menz A, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Lebok P, Sauter G, Simon R, Uhlig R, Wilczak W, Jacobsen F, Minner S, Krech R, Clauditz T, Bernreuther C, Dum D, Krech T, Marx A, Steurer S. DOG1 expression is common in human tumors: A tissue microarray study on more than 15,000 tissue samples. Pathol Res Pract 2021; 228:153663. [PMID: 34717148 DOI: 10.1016/j.prp.2021.153663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023]
Abstract
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n = 1002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p < 0.0001) and absence of HPV infection in squamous cell carcinomas (p = 0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagina Farahi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Huajun J, Wei Q, Yuxuan W, Jingjing Y. Intraosseous schwannoma of the proximal humerus with pathologic fracture. Eur J Med Res 2021; 26:72. [PMID: 34243786 PMCID: PMC8268594 DOI: 10.1186/s40001-021-00541-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intraosseous schwannomas are extremely rare in the humerus, and less than five cases have been reported previously in the literature. This is the first report of its origin in the proximal humerus with pathologic fracture. We herein present this case to discuss the reason for its rarity and share our experience of management. CASE PRESENTATION A 55-year-old female patient presented with pain in the right shoulder, which was caused by tripping and falling over a board. Radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) showed considerable tumor in proximal humerus, which connected with a fracture. For this suspected tumor, we performed two operations. Pathological examination demonstrated typical picture of a schwannoma, showing whorls and interlacing fascicles of schwannoma spindle cells. Immunohistochemistry, the tumor cells were diffusely positive for S-100 protein, SOX-10 and CD68, while they were completely negative for desmin, DOG-1, AE1/AE3 and P63. The Ki-67 index was about 10%. No mitoses or features of malignancy were identified. The final diagnosis of intraosseous schwannoma was made. The treatment for intraosseous schwannoma with pathologic fracture includes excisional biopsy, curettage, bone allograft, and fracture fixation. The patient recovered well. After the surgery, the patient gradually regained mobility and the pain subsided. There was no recurrence after 6 months of follow-up by X-ray. CONCLUSIONS Although very rare, intraosseous schwannoma should be taken under consideration in the differential diagnosis of benign-appearing osseous tumor in the proximal humerus with pathologic fracture.
Collapse
Affiliation(s)
- Jiang Huajun
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Qu Wei
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Wu Yuxuan
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Yang Jingjing
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
7
|
Marx A, Koopmann L, Höflmayer D, Büscheck F, Hube-Magg C, Steurer S, Eichenauer T, Clauditz TS, Wilczak W, Simon R, Sauter G, Izbicki JR, Huland H, Heinzer H, Graefen M, Haese A, Schlomm T, Bernreuther C, Lebok P, Bonk S. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol Med 2021; 18:245-255. [PMID: 33628598 PMCID: PMC7877177 DOI: 10.20892/j.issn.2095-3941.2019.0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/09/2022] Open
Abstract
Objective Anoctamin 7 (ANO7) is a calcium2+-dependent chloride ion channel protein. Its expression is restricted to prostate epithelial cells. The exact function is unknown. This study aimed to analyze ANO7 expression and its clinical significance in prostate cancer (PCa). Methods ANO7 expression was assessed by immunohistochemistry in 17,747 clinical PCa specimens. Results ANO7 was strongly expressed in normal prostate glandular cells but often less abundant in cancer cells. ANO7 staining was interpretable in 13,594 cancer tissues and considered strong in 34.4%, moderate in 48.7%, weak in 9.3%, and negative in 7.6%. Reduced staining was tightly linked to adverse tumor features [high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, high Ki67 labeling index, positive surgical margin, and early biochemical recurrence (P < 0.0001 each)]. The univariate Cox hazard ratio for prostate-specific antigen (PSA) recurrence after prostatectomy in patients with negative vs. strong ANO7 expression was 2.98 (95% confidence interval 2.61-3.38). The prognostic impact was independent of established pre- or postoperatively available parameters (P < 0.0001). Analysis of annotated molecular data showed that low ANO7 expression was linked to TMPRSS2:ERG fusions (P < 0.0001), elevated androgen receptor expression (P < 0.0001), as well as presence of 9 of 11 chromosomal deletions (P < 0.05 each). A particularly strong association of low ANO7 expression with phosphatase and tensin homolog (PTEN) deletion may indicate a functional relationship with the PTEN/AKT pathway. Conclusions These data identify reduced ANO7 protein expression as a strong and independent predictor of poor prognosis in PCa. ANO7 measurement, either alone or in combination, might provide clinically useful prognostic information in PCa.
Collapse
Affiliation(s)
- Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth 90766, Germany
| | - Lena Koopmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Bonk
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
8
|
Kunisaki C. Role of the Anoctamin Family in Various Carcinomas. Ann Surg Oncol 2020; 27:3112-3114. [PMID: 32347400 DOI: 10.1245/s10434-020-08371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Chikara Kunisaki
- Department of Surgery, Gastroenterological Center, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
9
|
Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer. Cell Calcium 2019; 82:102050. [PMID: 31279157 PMCID: PMC6711484 DOI: 10.1016/j.ceca.2019.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers. In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.
Collapse
Affiliation(s)
- David Crottès
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
10
|
Karakas C, Christensen P, Baek D, Jung M, Ro JY. Dedifferentiated gastrointestinal stromal tumor: Recent advances. Ann Diagn Pathol 2019; 39:118-124. [DOI: 10.1016/j.anndiagpath.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
11
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
12
|
Criswell S, Taylor M, Kenwright K, Skalli O. The intermediate filament protein synemin (SYNM) was found to be more widespread in CD117+ gastrointestinal stromal cell tumors (GIST) than the CD34 transmembrane phosphoglycoprotein: an immunohistochemical study. J Histotechnol 2019. [DOI: 10.1080/01478885.2019.1576829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sheila Criswell
- Clinical Laboratory Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Micaela Taylor
- Clinical Laboratory Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kathleen Kenwright
- Clinical Laboratory Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Omar Skalli
- Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
13
|
Salama R, Al-Obaidy KI, Perrino CM, Grignon DJ, Ulbright TM, Idrees MT. DOG1 immunohistochemical staining of testicular biopsies is a reliable tool for objective assessment of infertility. Ann Diagn Pathol 2019; 40:18-22. [PMID: 30849695 DOI: 10.1016/j.anndiagpath.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022]
Abstract
Testicular biopsy may be a component of the work-up of male infertility. However, no reliable diagnostic tools are available for objective quantitative assessment of spermatogenic cells. It is well known that MAGE-A4 is selectively expressed in spermatogonia and our group has previously demonstrated that DOG1 differentially stains germ cells. Therefore, we performed DOG1 and a double stain cocktail (DOG1 and 57b murine monoclonal anti-MAGE-A4) immunohistochemical stains on 40 testicular infertility biopsies (10 each with active spermatogenesis, Sertoli cell-only, hypospermatogenesis, and maturation arrest), 25 benign seminiferous tubules from radical orchiectomies, and 5 spermatocytic tumors (ST). In biopsies/resections with active spermatogenesis, DOG1 stained spermatocytes and spermatids and was absent in spermatogonia, while MAGE-A4 stained spermatogonia and primary spermatocytes (weak). In hypospermatogenesis, DOG1 highlighted decreased spermatocytes/spermatids and MAGE-A4 highlighted decreased spermatogonia. DOG1 staining confirmed decreased to absent spermatocytes in maturation arrest and MAGE-A4 staining established the presence of preserved spermatogonia in all cases. All STs were negative for DOG1 and positive for MAGE-A4, while all Sertoli cell-only cases were negative for DOG1 and the double stain cocktail. In conclusion, we confirmed that DOG1 is expressed in spermatocytes and spermatids and MAGE-A4 highlights primarily spermatogonia. Usage of these stains facilitates confirmation of maturation arrest, assessment of the percentage of testis involvement in hypospermatogenesis and identification of mixed patterns. Finally, this study supports that the differentiation of STs is more closely related to spermatogonia than the more mature spermatocytes.
Collapse
Affiliation(s)
- Rasha Salama
- Department of Pathology, St. Elizabeth Healthcare, Edgewood, KY, USA
| | - Khaleel I Al-Obaidy
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David J Grignon
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M Ulbright
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muhammad T Idrees
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Bai C, Liu X, Xu J, Qiu C, Wang R, Zheng J. Expression profiles of stemness genes in gastrointestinal stromal tumor. Hum Pathol 2018; 76:76-84. [PMID: 29486292 DOI: 10.1016/j.humpath.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is believed to originate from intestinal cells of Cajal or their stem cell precursors, and expresses stemness-related markers, such as CD117, CD34, DOG1 and nestin. To further characterize phenotypic features of GISTs, we examined expression profiles of a panel of stemness genes in GISTs, by analyzing existing gene expression profiling datasets. Our results showed that mRNA levels of B-lymphoma moloney murine leukaemia virus insertion region-1 (BMI1), kruppel-like factor 4 (KLF4), sal-like protein 4 (SALL4) and telomerase reverse transcriptase (TERT) were significantly unregulated in GISTs. Subsequently, protein expression of BMI1 and TERT was identified in GIST specimens by immunohistochemistry. Especially, we found that high expression of nuclear BMI1 was associated with large tumor size (P = .0239), high mitotic count (P < .01), high Ki-67 index (P = .0357), advanced National Institute of Health (NIH) criteria (P = .0025) and advanced World Health Organization (WHO) classification (P < .01) in GISTs. Functional and pathway enrichment analysis showed that most of BMI1's coexpressed genes were involved in tumor growth-related process, such as regulation of cell cycle and proliferation. Furthermore, we confirmed RAS oncogene family (RAB18) and limb development membrane protein 1 (LMBR1) genes as novel targets for BMI1 in GIST cells. These results provide valuable information for the expression profiles of stemness genes in GISTs, and identified nuclear BMI1 as an important marker of GIST cell proliferation and progression.
Collapse
Affiliation(s)
- Chenguang Bai
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China
| | - Xiaohong Liu
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China
| | - Jingjing Xu
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China
| | - Cen Qiu
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China
| | - Runqiu Wang
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Second Milltary Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Peters CJ, Gilchrist JM, Tien J, Bethel NP, Qi L, Chen T, Wang L, Jan YN, Grabe M, Jan LY. The Sixth Transmembrane Segment Is a Major Gating Component of the TMEM16A Calcium-Activated Chloride Channel. Neuron 2018; 97:1063-1077.e4. [PMID: 29478917 DOI: 10.1016/j.neuron.2018.01.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/03/2017] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Calcium-activated chloride channels (CaCCs) formed by TMEM16A or TMEM16B are broadly expressed in the nervous system, smooth muscles, exocrine glands, and other tissues. With two calcium-binding sites and a pore within each monomer, the dimeric CaCC exhibits voltage-dependent calcium sensitivity. Channel activity also depends on the identity of permeant anions. To understand how CaCC regulates neuronal signaling and how CaCC is, in turn, modulated by neuronal activity, we examined the molecular basis of CaCC gating. Here, we report that voltage modulation of TMEM16A-CaCC involves voltage-dependent occupancy of calcium- and anion-binding site(s) within the membrane electric field as well as a voltage-dependent conformational change intrinsic to the channel protein. These gating modalities all critically depend on the sixth transmembrane segment.
Collapse
Affiliation(s)
- Christian J Peters
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - John M Gilchrist
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Tien
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neville P Bethel
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lijun Qi
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tingxu Chen
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lynn Wang
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Swalchick W, Shamekh R, Bui MM. Is DOG1 Immunoreactivity Specific to Gastrointestinal Stromal Tumor? Cancer Control 2016; 22:498-504. [PMID: 26678977 DOI: 10.1177/107327481502200416] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DOG1 is a novel gene on gastrointestinal stromal tumors (GISTs) that encodes the chloride channel protein anoctamin 1, also known as discovered on GIST-1 (DOG1) protein. DOG1 antibodies are a sensitive and specific marker against GIST positive for CD117 and CD34 and negative for CD117 and CD34. DOG1 is also independent of KIT or PDGFRA mutation status and considered specific for GIST when it was first discovered in 2004. METHODS The previous 10 years of literature was searched for articles relating to DOG1. We critically reviewed 12 studies that showed DOG1 was positive in 250 cases of 2,360 tested non-GIST neoplasms (10.6%) at different anatomical sites using monoclonal, polyclonal, or nonspecified antibodies. Criteria for positivity varied between the studies. RESULTS Monoclonal and polyclonal DOG1 antibodies were reactive in various different non-GIST tumor types spanning 9 organ systems in addition to normal salivary and pancreatic tissues. The tumors included were renal oncocytoma (100%), renal cell carcinoma chromophobe type (86%), solid pseudopapillary neoplasm of the pancreas (51%), neoplastic salivary tissue (17%), synovial sarcoma (15%), leiomyoma (10%), pancreatic adenocarcinoma (7%), and leiomyosarcoma (4%). CONCLUSIONS By contrast to the original concept that DOG1 antibodies are specific to GIST neoplasms, the studies reviewed showed that the data suggest DOG1 positivity in select non-GIST tumors. Only in the appropriate clinical and pathological context is DOG1 positivity specific and helpful in the diagnosis of GIST.
Collapse
|
17
|
Goto K. The role of DOG1 immunohistochemistry in dermatopathology. J Cutan Pathol 2016; 43:974-983. [DOI: 10.1111/cup.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Keisuke Goto
- Department of Diagnostic Pathology; Kainan Hospital; Yatomi Japan
| |
Collapse
|
18
|
Novel Use for DOG1 in Discriminating Breast Invasive Carcinoma from Noninvasive Breast Lesions. DISEASE MARKERS 2016; 2016:5628176. [PMID: 27041791 PMCID: PMC4793094 DOI: 10.1155/2016/5628176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/03/2022]
Abstract
Aims. DOG1 has proven to be a useful marker of gastrointestinal stromal tumors (GISTs). Recently, DOG1 expression has also been reported in some non-GIST malignant tumors, but the details related to DOG1 expression in breast tissue remain unclear. The aim of this study was to detect the expression of DOG1 in the human breast and to evaluate the feasibility of using DOG1 to discriminate between invasive breast carcinoma and noninvasive breast lesions. Methods and Results. A total of 210 cases, including both invasive and noninvasive breast lesions, were collected to assess DOG1 expression immunohistochemically. DOG1 expression was consistently positive in breast myoepithelial cells (MECs), which was similar to the results obtained for three other MEC markers: calponin, smooth muscle myosin heavy chain (SMMHC), and P63 (P > 0.05 in all). Importantly, DOG1 was useful in discriminating invasive breast carcinoma from noninvasive breast lesions (P < 0.05). Conclusions. DOG1 is a useful marker of breast MECs, and adding DOG1 to the MEC identification panel will provide more sophisticated information when diagnosing uncertain cases in the breast.
Collapse
|
19
|
The utility of CDX2, GATA3, and DOG1 in the diagnosis of testicular neoplasms: an immunohistochemical study of 109 cases. Hum Pathol 2016; 48:18-24. [DOI: 10.1016/j.humpath.2015.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
|
20
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
21
|
Güler B, Özyılmaz F, Tokuç B, Can N, Taştekin E. Histopathological Features of Gastrointestinal Stromal Tumors and the Contribution of DOG1 Expression to the Diagnosis. Balkan Med J 2015; 32:388-96. [PMID: 26740899 DOI: 10.5152/balkanmedj.2015.15912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 05/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GIST) have KIT or platelet-derived growth factor receptor α (PDGFRα) mutations affecting receptor tyrosine kinase activity and do not benefit from classic treatment regimens. AIMS The aim of this study was to review the algorithm that may be followed for the diagnosis and differential diagnosis in GISTs by investigating the histomorphological parameters and expression characteristics of classical immunohistochemical antibodies used in routine tests in addition to DOG1 expression. STUDY DESIGN Diagnostic accuracy study. METHODS We reevaluated the histological and immunohistochemical parameters of 37 GISTs. The standard immunohistochemical diagnosis and differential diagnosis panel antibodies (CD117, PDGFRα, CD34, vimentin, desmin, SMA, S-100, and Ki67) were studied on the tumor sections. We also used the popular marker DOG1 antibody with accepted sensitivity for GISTs in recent years and the PDGFRα immune marker for which the benefit in routine practice is discussed. RESULTS Classification according to progressive disease risk groups of the 37 cases revealed that 54% were in the high risk, 19% in the moderate risk, 16% in the low risk, 8% in the very low risk and 8% in the no risk group. Cytological atypia, necrosis, mucosal invasion and the Ki67 index were found to be related to the progressive disease risk groups of the tumors (p<0.05). Positive immunoreaction was observed with CD117 and PDGFRα in all GISTs in the study (100%). Positivity with the DOG1 antibody was found in 33 (89%) cases. CD34 was positive in 62% (23) of the cases. CONCLUSION The CD117 antibody still plays a key role in GIST diagnosis. However, the use of DOG1 and PDGFRα antibodies combined with CD117 as sensitive markers can be beneficial.
Collapse
Affiliation(s)
- Beril Güler
- Department of Pathology, Bezmialem Vakıf University Faculty of Medicine, İstanbul, Turkey
| | - Filiz Özyılmaz
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Burcu Tokuç
- Department of Public Health, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Nuray Can
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
22
|
Jung I, Gurzu S, Turdean S, Ciortea D, Sahlean DI, Golea M, Bara T. Relationship of endothelial area with VEGF-A, COX-2, maspin, c-KIT, and DOG-1 immunoreactivity in liposarcomas versus non-lipomatous soft tissue tumors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1776-1782. [PMID: 25973067 PMCID: PMC4396343 DOI: pmid/25973067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
Soft tissue tumors are rare tumors that show a heterogeneous structure; thus far, their molecular behavior has not been elucidated. The aim of our study was to define the relationship between microvessel density (MVD), evaluated with CD31, and other immunohistochemical markers, such as vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), CD34, maspin, DOG-1, and c-KIT. Immunostains were done in 55 cases consisting of benign and malignant tumors, such as liposarcomas, dermatofibrosarcomas, and tumors with histiocytic differentiation. Renal tubes were used as external control for VEGF, maspin, and DOG-1. Although DOG-1 is considered a specific marker for gastrointestinal tumors (GISTs), its positivity, correlated with c-KIT and VEGF immunoexpression, was also shown by dermatofibrosarcomas and tumors with histiocytic and lipomatous differentiation, suggesting its possible pro-angiogenic role. Maspin expression was observed in adipose tissue tumors only. Regarding angiogenesis, 31 of the 55 cases were VEGF-positive, such positivity being directly correlated with COX-2 and CD34 positivity as evaluated in the tumor cells and also with MVD. Although no significant differences in angiogenic activity were found between benign and malignant non-lipomatous tumors, the MVD was directly correlated with the histological type/grade of liposarcomas. Based on these aspects, we conclude that VEGF/COX-2-induced angiogenesis is specific for non-lipomatous tumors, whereas liposarcomas are dependent on the VEGF/maspin angiogenic pathway. The DOG-1/c-KIT/VEGF target may be used for further personalized therapy of soft tissue sarcomas. No data about DOG-1 and maspin positivity in liposarcomas have been published to date.
Collapse
Affiliation(s)
- Ioan Jung
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Simona Gurzu
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Sabin Turdean
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Diana Ciortea
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Danut Ioan Sahlean
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Mircea Golea
- Department of Pathology, University of Medicine and PharmacyTirgu-Mures, Romania
| | - Tivadar Bara
- Department of Surgery, University of Medicine and PharmacyTirgu-Mures, Romania
| |
Collapse
|
23
|
Lin F, Liu H. Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 2015; 138:1583-610. [PMID: 25427040 DOI: 10.5858/arpa.2014-0061-ra] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry has become an indispensable ancillary study in the identification and classification of undifferentiated neoplasms/tumors of uncertain origin. The diagnostic accuracy has significantly improved because of the continuous discoveries of tissue-specific biomarkers and the development of effective immunohistochemical panels. OBJECTIVES To identify and classify undifferentiated neoplasms/tumors of uncertain origin by immunohistochemistry. DATA SOURCES Literature review and authors' research data and personal practice experience were used. CONCLUSIONS To better guide therapeutic decisions and predict prognostic outcomes, it is crucial to differentiate the specific lineage of an undifferentiated neoplasm. Application of appropriate immunohistochemical panels enables the accurate classification of most undifferentiated neoplasms. Knowing the utilities and pitfalls of each tissue-specific biomarker is essential for avoiding potential diagnostic errors because an absolutely tissue-specific biomarker is exceptionally rare. We review frequently used tissue-specific biomarkers, provide effective panels, and recommend diagnostic algorithms as a standard approach to undifferentiated neoplasms.
Collapse
Affiliation(s)
- Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | | |
Collapse
|
24
|
Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R, Kulkarni S, Duvvuri U, Kunzelmann K. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130096. [PMID: 24493744 PMCID: PMC3917350 DOI: 10.1098/rstb.2013.0096] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca(2+)-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca(2+)-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Luisa Wolf
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Gudrun E. Koehl
- Department of Surgery, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Sucheta Kulkarni
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| |
Collapse
|
25
|
Chowdhury S, Wang S, Patterson BW, Reeds DN, Wice BM. The combination of GIP plus xenin-25 indirectly increases pancreatic polypeptide release in humans with and without type 2 diabetes mellitus. ACTA ACUST UNITED AC 2013; 187:42-50. [PMID: 24183983 DOI: 10.1016/j.regpep.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022]
Abstract
Xenin-25 (Xen) is a 25-amino acid neurotensin-related peptide that activates neurotensin receptor-1 (NTSR1). We previously showed that Xen increases the effect of glucose-dependent insulinotropic polypeptide (GIP) on insulin release 1) in hyperglycemic mice via a cholinergic relay in the periphery independent from the central nervous system and 2) in humans with normal or impaired glucose tolerance, but not type 2 diabetes mellitus (T2DM). Since this blunted response to Xen defines a novel defect in T2DM, it is important to understand how Xen regulates islet physiology. On separate visits, subjects received intravenous graded glucose infusions with vehicle, GIP, Xen, or GIP plus Xen. The pancreatic polypeptide response was used as an indirect measure of cholinergic input to islets. The graded glucose infusion itself had little effect on the pancreatic polypeptide response whereas administration of Xen equally increased the pancreatic polypeptide response in humans with normal glucose tolerance, impaired glucose tolerance, and T2DM. The pancreatic polypeptide response to Xen was similarly amplified by GIP in all 3 groups. Antibody staining of human pancreas showed that NTSR1 is not detectable on islet endocrine cells, sympathetic neurons, blood vessels, or endothelial cells but is expressed at high levels on PGP9.5-positive axons in the exocrine tissue and at low levels on ductal epithelial cells. PGP9.5 positive nerve fibers contacting beta cells in the islet periphery were also observed. Thus, a neural relay, potentially involving muscarinic acetylcholine receptors, indirectly increases the effects of Xen on pancreatic polypeptide release in humans.
Collapse
Affiliation(s)
- Sara Chowdhury
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, United States
| | | | | | | | | |
Collapse
|
26
|
DOG1 (clone K9) is seldom expressed and not useful in the evaluation of pancreatic neoplasms. Appl Immunohistochem Mol Morphol 2012; 20:397-401. [PMID: 22495382 DOI: 10.1097/pai.0b013e318246c345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DOG1, a transmembrane calcium-regulated chloride channel protein, is a sensitive and specific marker for gastrointestinal stromal tumors compared with other spindle cell and epithelioid neoplasms. Overexpression has also been described in a variety of both benign and malignant epithelial neoplasms. Recently, DOG1 immunoreactivity has been reported in pancreatic solid pseudopapillary tumors (SPT), suggesting a role as a marker for SPT. Utilizing immunohistochemistry, we evaluated DOG1 expression in pancreatic neoplasms to determine the prevalence of staining and establish diagnostic utility. Multiple tissue microarrays (TMA) were created from cores of formalin-fixed paraffin-embedded blocks containing pancreatic adenocarcinomas (n=112), neuroendocrine tumors (n=99), serous cystadenomas (n=28), and SPT (n=14) as well as normal pancreas (n=12). Immunoreactivity for DOG1 (clone K9) was assessed for intensity (1 to 3+), percentage of tumor positivity and location. Of the 99 cases of neuroendocrine tumors, only 2 (2%) were focally positive. Patchy staining was identified in 8 cases (7%) of adenocarcinoma of 1 to 2+ intensity, involving 15% to 80% of the tumor cells and primarily seen in a membranous and luminal distribution. In contrast to a previous report, no DOG1 positivity was observed in SPT, evaluated by both TMA and full sections. The TMAs of serous cystadenomas and normal pancreas were negative for DOG1. Rarely, pancreatic islets displayed granular, cytoplasmic staining. DOG1 antibody clone K9 is not a useful marker for SPT or other primary pancreatic neoplasms. Additional studies may be helpful to evaluate differences between clones of DOG1.
Collapse
|
27
|
Abstract
Gastrointestinal stromal tumor has received a lot of attention over the last 10 years due to its unique biologic behavior, clinicopathological features, molecular mechanisms, and treatment implications. GIST is the most common mesenchymal neoplasm in the gastrointestinal tract and has emerged from a poorly understood and treatment resistant neoplasm to a well-defined tumor entity since the discovery of particular molecular abnormalities, KIT and PDGFRA gene mutations. The understanding of GIST biology at the molecular level promised the development of novel treatment modalities. Diagnosis of GIST depends on the integrity of histology, immunohistochemistry and molecular analysis. The risk assessment of the tumor behavior relies heavily on pathological evaluation and significantly impacts clinical management. In this review, historic review, epidemiology, pathogenesis and genetics, diagnosis, role of molecular analysis, prognostic factor and treatment strategies have been discussed.
Collapse
|
28
|
Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K. Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 2012; 7:e43265. [PMID: 22912841 PMCID: PMC3422276 DOI: 10.1371/journal.pone.0043265] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has the potential for early metastasis and is associated with poor survival. Ano1 (Dog1) is an established and sensitive marker for the diagnosis of gastrointestinal stromal tumors (GIST) and has recently been identified as a Ca2+ activated Cl− channel. Although the ANO1 gene is located on the 11q13 locus, a region which is known to be amplified in different types of human carcinomas, a detailed analysis of Ano1 amplification and expression in HNSCC has not been performed. It is thus still unclear how Ano1 contributes to malignancy in HNSCC. We analyzed genomic amplification of the 11q13 locus and Ano1 together with Ano1-protein expression in a large collection of HNSCC samples. We detected a highly significant correlation between amplification and expression of Ano1 and showed that HNSCC patients with Ano1 protein expression have a poor overall survival. We further analyzed the expression of the Ano1 protein in more than 4′000 human samples from 80 different tumor types and 76 normal tissue types and detected that besides HNSCC and GISTs, Ano1 was rarely expressed in other tumor samples or healthy human tissues. In HNSCC cell lines, expression of Ano1 caused Ca2+ activated Cl− currents, which induced cell motility and cell migration in wound healing and in real time migration assays, respectively. In contrast, knockdown of Ano1 did not affect intracellular Ca2+ signaling and surprisingly did not reduce cell proliferation in BHY cells. Further, expression and activity of Ano1 strongly correlated with the ability of HNSCC cells to regulate their volume. Thus, poor survival in HNSCC patients is correlated with the presence of Ano1. Our results further suggest that Ano1 facilitates regulation of the cell volume and causes cell migration, which both can contribute to metastatic progression in HNSCC.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chênevert J, Duvvuri U, Chiosea S, Dacic S, Cieply K, Kim J, Shiwarski D, Seethala RR. DOG1: a novel marker of salivary acinar and intercalated duct differentiation. Mod Pathol 2012; 25:919-29. [PMID: 22460810 DOI: 10.1038/modpathol.2012.57] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anoctamin-1 (ANO1) (DOG1, TMEM16a) is a calcium-activated chloride channel initially described in gastrointestinal stromal tumors, but now known to be expressed in a variety of normal and tumor tissues including salivary tissue in murine models. We herein perform a comprehensive survey of DOG1 expression in 156 cases containing non-neoplastic human salivary tissues and tumors. ANO1 mRNA levels were significantly higher (8-fold increase, P<0.0001) in normal parotid tissue (n=6) as compared with squamous mucosa (n=15). By immunohistochemistry, DOG1 showed a diffuse moderate (2+) apical membranous staining pattern in normal serous acini, 1+ apical membranous pattern in mucous acini, and variable 1-2+ apical staining of distal intercalated ducts. Myoepithelial cells, striated and excretory ducts were invariably negative. All acinic cell carcinomas (n=28) were DOG1 positive demonstrating a complex mixture of intense (3+) apical membranous, cytoplasmic and complete membranous staining. Most ductal tumor types were negative or only showed a subset of positive cases. Within the biphasic tumor category, adenoid cystic carcinomas (18/24 cases) and epithelial-myoepithelial carcinomas (8/15 cases) were frequently positive, often showing a distinctive combined apical ductal and membranous/cytoplasmic myoepithelial staining profile. Thus, DOG1 staining is a marker of salivary acinar and to a lesser extent intercalated duct differentiation. Strong staining can be used to support the diagnosis of acinic cell carcinoma. DOG1 may also be a marker of a 'transformed' myoepithelial phenotype in a subset of biphasic salivary gland malignancies.
Collapse
Affiliation(s)
- Jacinthe Chênevert
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hemminger J, Iwenofu OH. Discovered on gastrointestinal stromal tumours 1 (DOG1) expression in non-gastrointestinal stromal tumour (GIST) neoplasms. Histopathology 2012; 61:170-7. [DOI: 10.1111/j.1365-2559.2011.04150.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Hanzu FA, Gasa R, Bulur N, Lybaert P, Gomis R, Malaisse WJ, Beauwens R, Sener A. Expression of TMEM16A and SLC4A4 in human pancreatic islets. Cell Physiol Biochem 2012; 29:61-4. [PMID: 22415075 DOI: 10.1159/000337587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Stimulation of insulin release by D-glucose is accompanied by Cl(-) and HCO(3)(-) efflux from pancreatic islet cells. The efflux of these anions may involve volume-regulated anion channels, including possibly TMEM16A, and the Na(+)-HCO(3)(-)-cotransporter SLC4A4. The present study was designed to explore the expression of both TMEM16A and SLC4A4 in human pancreatic islets. METHODS Pancreases were obtained from human cadaveric donors. Immunodetection of TMEM16A and SLC4A4 was performed by immunohistochemistry on sections of fixed pancreas, while real-time PCR for the study of corresponding gene expression was performed on RNA extracted from both total pancreatic pieces and isolated pancreatic islets. RESULTS RT-PCR yielded lower levels of SLC4A4 in isolated islets than in the total pancreas, whilst a mirror image prevailed for TMEM16A mRNA. Immunohistochemistry of human pancreas, however, indicated comparable immunostaining of SLC4A4 in insulin-producing cells and exocrine pancreatic cells, whilst that of TMEM16A appeared less pronounced in insulin-producing cells than in exocrine cells. CONCLUSION The present findings support the view that, in humans like in rodent, the regulation of anion fluxes in insulin-producing cells may involve both SLC4A4 and TMEM16A.
Collapse
Affiliation(s)
- Felicia A Hanzu
- Laboratory of Diabetes and Obesity IDIBAPS, CIBERDEM, Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Patil DT, Rubin BP. Gastrointestinal stromal tumor: advances in diagnosis and management. Arch Pathol Lab Med 2011; 135:1298-310. [PMID: 21970485 DOI: 10.5858/arpa.2011-0022-ra] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and should be differentiated from other mesenchymal tumors. They harbor specific activating mutations in the KIT or platelet-derived growth factor receptor α ( PDGFRA ) receptor tyrosine kinases, which makes them responsive to pharmacologic inhibitors, such as imatinib mesylate and sunitinib malate. OBJECTIVES To provide a comprehensive review of the pathogenesis of GIST and the underlying principles of targeted therapy, to review the salient histologic and immunohistochemical features that facilitate the distinction of GIST from other mesenchymal neoplasms of the gastrointestinal tract, and to present the prognostic parameters for risk stratification that guide clinical management. DATA SOURCES Review of the English literature through PubMed as well as personal experience. Photographs were taken from cases encountered at the Cleveland Clinic. CONCLUSIONS The discovery of the KIT -GIST connection has not only improved the diagnostic accuracy of GISTs but also provided us with a better understanding of the histogenesis and molecular pathogenesis of these neoplasms.
Collapse
Affiliation(s)
- Deepa T Patil
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
33
|
Bergmann F, Andrulis M, Hartwig W, Penzel R, Gaida MM, Herpel E, Schirmacher P, Mechtersheimer G. Discovered on gastrointestinal stromal tumor 1 (DOG1) is expressed in pancreatic centroacinar cells and in solid-pseudopapillary neoplasms—novel evidence for a histogenetic relationship. Hum Pathol 2011; 42:817-23. [PMID: 21295818 DOI: 10.1016/j.humpath.2010.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
|
34
|
Anoctamins. Pflugers Arch 2011; 462:195-208. [DOI: 10.1007/s00424-011-0975-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/14/2023]
|
35
|
The utility of discovered on gastrointestinal stromal tumor 1 (DOG1) antibody in surgical pathology-the GIST of it. Adv Anat Pathol 2010; 17:222-32. [PMID: 20418677 DOI: 10.1097/pap.0b013e3181d973c2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DOG1 (discovered on GIST 1), known also as TMEM16A and ANO1, has emerged in recent years as a promising biomarker for gastrointestinal stromal tumors (GIST). It was originally discovered through microarray expression profiling analysis as gene that is highly expressed in GIST, and subsequent immunohistochemical studies have shown its use in its diagnosis. The results from several series have shown a high overall sensitivity and specificity for DOG1 in the detection of GISTs and about 6% of GISTs overall exhibiting a DOG1+/KIT-immunoprofile. DOG1 antibodies are more sensitive than KIT antibodies in detecting tumors of gastric origin, tumors with epithelioid morphology, and tumors harboring PDGFRA mutation. Furthermore, DOG1 immunoreactivity is rarely observed in other mesenchymal and nonmesenchymal tumor types. These results support the use of DOG1 as a diagnostic biomarker for GIST. When used in combination with KIT, this panel of diagnostic biomarkers can help pathologists and clinicians to identify more patients who may benefit from targeted therapies.
Collapse
|
36
|
Gastrointestinal stromal tumours at present: an approach to burning questions. Clin Transl Oncol 2010; 12:100-12. [DOI: 10.1007/s12094-010-0476-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Bestrophin and TMEM16-Ca(2+) activated Cl(-) channels with different functions. Cell Calcium 2009; 46:233-41. [PMID: 19783045 DOI: 10.1016/j.ceca.2009.09.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
In the past, a number of candidates have been proposed to form Ca(2+) activated Cl(-) currents, but it is only recently that two families of proteins, the bestrophins and the TMEM16-proteins, recapitulate reliably the properties of Ca(2+) activated Cl(-) currents. Bestrophin 1 is strongly expressed in the retinal pigment epithelium, but also at lower levels in other cell types. Bestrophin 1 may form Ca(2+) activated chloride channels and, at the same time, affect intracellular Ca(2+) signaling. In epithelial cells, bestrophin 1 probably controls receptor mediated Ca(2+) signaling. It may do so by facilitating Ca(2+) release from the endoplasmic reticulum, thereby indirectly activating membrane localized Ca(2+)-dependent Cl(-) channels. In contrast to bestrophin 1, the Ca(2+) activated Cl(-) channel TMEM16A (anoctamin 1, ANO1) shows most of the biophysical and pharmacological properties that have been attributed to Ca(2+)-dependent Cl(-) channels in various tissues. TMEM16A is broadly expressed in both mouse and human tissues and is of particular importance in epithelial cells. Thus exocrine gland secretion as well as electrolyte transport by both respiratory and intestinal epithelia requires TMEM16A. Because of its role for Ca(2+)-dependent Cl(-) secretion in human airways, it is likely to become a prime target for the therapy of cystic fibrosis lung disease, caused by defective cAMP-dependent Cl(-) secretion. It will be very exciting to learn, how TMEM16A and other TMEM16-proteins are activated upon increase in intracellular Ca(2+), and whether the other nine members of the TMEM16 family also form Cl(-) channels with properties similar to TMEM16A.
Collapse
|