1
|
Totapally A, Stark R, Danko M, Chen H, Altheimer A, Hardison D, Malone MP, Zivick E, Bridges B. Central or Peripheral Venoarterial Extracorporeal Membrane Oxygenation for Pediatric Sepsis: Outcomes Comparison in the Extracorporeal Life Support Organization Dataset, 2000-2021. Pediatr Crit Care Med 2025; 26:e463-e472. [PMID: 39846796 DOI: 10.1097/pcc.0000000000003692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVES Small studies of extracorporeal membrane oxygenation (ECMO) support for children with refractory septic shock (RSS) suggest that high-flow (≥ 150 mL/kg/min) venoarterial ECMO and a central cannulation strategy may be associated with lower odds of mortality. We therefore aimed to examine a large, international dataset of venoarterial ECMO patients for pediatric sepsis to identify outcomes associated with flow and cannulation site. DESIGN Retrospective analysis of the Extracorporeal Life Support Organization (ELSO) database from January 1, 2000, to December 31, 2021. SETTING International pediatric ECMO centers. PATIENTS Patients 18 years old young or younger without congenital heart disease (CHD) cannulated to venoarterial ECMO primarily for a diagnosis of sepsis, septicemia, or septic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 1242 pediatric patients undergoing venoarterial ECMO runs in the ELSO dataset, overall mortality was 55.6%. We used multivariable logistic regression analyses to evaluate explanatory factors associated with adjusted odds ratios (aORs) and 95% CI of mortality. In the regression analysis of data 4 hours after ECMO initiation, logarithm of the aOR, plotted against ECMO flow as a continuous variable, showed that higher flow was associated with lower aOR of mortality ( p = 0.03). However, at 24 hours, we failed to find such a relationship. Finally, peripheral cannulation, as opposed to central cannulation, was independently associated with greater odds of mortality (odds ratio, 1.7 [95% CI, 1.1-2.6]). CONCLUSIONS In this 2000-2021 international cohort of venoarterial ECMO for non-CHD children with sepsis, we have found that higher ECMO flow at 4 hours after support initiation, and central- rather than peripheral-cannulation, were both independently associated with lower odds of mortality. Therefore, flow early in the ECMO run and cannula location are two important factors to consider in future research in pediatric patients requiring cannulation to venoarterial ECMO for RSS.
Collapse
Affiliation(s)
- Abhinav Totapally
- Department of Pediatrics, Division of Pediatric Critical Care, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan Stark
- Department of Pediatrics, Division of Pediatric Critical Care, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa Danko
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Daphne Hardison
- Department of Pediatric Nursing Administration, ECMO Manager, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew P Malone
- Department of Pediatrics, Division of Critical Care Medicine, University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, AR
| | - Elizabeth Zivick
- Department of Pediatrics, Division of Critical Care Medicine, Medical University of South Carolina, Charleston, SC
| | - Brian Bridges
- Department of Pediatrics, Division of Pediatric Critical Care, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Aldewereld Z, Horvat C, Clermont G. Pediatric Sepsis Phenotype in a Single-Center Cohort Covering 2010-2020: Evolution in Day 1-Day 3 Trajectory and Potential Prognostic Value. Pediatr Crit Care Med 2025:00130478-990000000-00448. [PMID: 40019317 DOI: 10.1097/pcc.0000000000003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
OBJECTIVES To examine the utility of day 3 sepsis phenotype classifications compared with day 1 and whether these could be reliably identified using routine clinical data on day 1. DESIGN Retrospective cohort study of pediatric patients managed 2010-2014 and 2018-2020. SETTING Academic children's hospital. PATIENTS One thousand eight hundred twenty-eight children (1 mo to 18 yr old) admitted to the PICU with suspected infection who received a minimum of 7 days of systemic antibiotics. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Subjects showed significant evolution of phenotype from day 1 to day 3, with 31.7-60.9% remaining the same type. Outcomes were worst in those classifying as type D on day 3, with mortality as high as 16.6% in those that were classified as type D on both days 1 and 3, as well as 11.3% in those initially classified as type C (a lower mortality type) on day 1 but type D on day 3. Accurate statistical prediction of day 3 types using multinomial logistic regression and random forest and day 1 data was poor, despite attempts to improve performance. CONCLUSIONS In our retrospective cohort of patients with sepsis, we identified significant evolution in phenotype over the first 3 days of illness. Day 3 phenotypes may provide more accurate statistical prediction of outcomes, but identification of day 3 phenotypes using data available early in the course of illness is challenging. New methods will likely be required to improve performance in this area.
Collapse
Affiliation(s)
- Zachary Aldewereld
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Christopher Horvat
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Division of Health Informatics, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Gilles Clermont
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Polikoff LA. Phoenix Rising: External Validation of the Phoenix Sepsis Criteria. Pediatr Crit Care Med 2025; 26:e241-e243. [PMID: 39752234 DOI: 10.1097/pcc.0000000000003688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Lee A Polikoff
- Division of Critical Care Medicine, Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
4
|
Tasker RC. What Do We Know About Pediatric Sepsis Scoring Post-Phoenix? Pediatr Crit Care Med 2025; 26:e237-e240. [PMID: 39982156 DOI: 10.1097/pcc.0000000000003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- Robert C Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
5
|
Watson RS, Argent AC, Sorce LR, Randolph AG, Sanchez-Pinto LN, Bennett TD, Kissoon N, Schlapbach LJ. The 2024 Phoenix Sepsis Score Criteria: Part 1, the Evolution in Definition of Sepsis and Septic Shock. Pediatr Crit Care Med 2025; 26:e246-e251. [PMID: 39982158 PMCID: PMC11875541 DOI: 10.1097/pcc.0000000000003664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- R. Scott Watson
- Department of Pediatrics, University of Washington; Seattle
- Center for Child Health, Behavior, and Development and Pediatric Critical Care, Seattle Children's; Seattle, Washington, USA
| | - Andrew C. Argent
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- University of Cape Town, Cape Town, South Africa
| | - Lauren R. Sorce
- Ann & Robert H. Lurie Children’s Hospital, Chicago, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - L. Nelson Sanchez-Pinto
- Ann & Robert H. Lurie Children’s Hospital, Chicago, USA
- Department of Pediatrics (Critical Care) and Preventive Medicine (Health & Biomedical Informatics), Northwestern University Feinberg School of Medicine; Chicago, IL, USA
| | - Tellen D. Bennett
- Departments of Biomedical Informatics and Pediatrics, University of Colorado School of Medicine; Aurora, CO, USA
- Pediatric Intensive Care Unit, Children’s Hospital Colorado, Aurora, CO, USA
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Sanchez-Pinto LN, Daniels LA, Atreya M, Faustino EVS, Farris RWD, Geva A, Khemani RG, Rogerson C, Shah SS, Weiss SL, Bennett TD. Phoenix Sepsis Criteria in Critically Ill Children: Retrospective Validation Using a United States Nine-Center Dataset, 2012-2018. Pediatr Crit Care Med 2025; 26:e155-e165. [PMID: 39982153 PMCID: PMC11792981 DOI: 10.1097/pcc.0000000000003675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
OBJECTIVES To perform: 1) external validation of the Phoenix Sepsis Score and Phoenix sepsis criteria in a multicenter cohort of critically ill children with infection and a comparison with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria; 2) a study of Phoenix sepsis criteria performance in patient subgroups based on age and comorbidities; 3) an assessment of microbiological profile of children with Phoenix sepsis; and 4) a study of the performance of the Phoenix-8 score. DESIGN Secondary, retrospective analysis of a multicenter cohort study from 2012 to 2018. SETTING Nine PICUs in the United States. PATIENTS PICU admissions with suspected infection. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Among 25,680 encounters of children with suspected or confirmed infection on PICU admission (4.6% in-hospital mortality), 11,168 (43%) met Phoenix criteria for sepsis or septic shock (9% in-hospital mortality). The Phoenix criteria generally outperformed the IPSCC criteria at discriminating mortality in all critically ill children with infections and across all subgroup analyses, including age group, malignancy, or technology dependence. Of 11,168 patients who met Phoenix criteria, 28% were negative for IPSCC criteria for sepsis and these had higher in-hospital mortality than those who met IPSCC sepsis criteria but not Phoenix criteria (4.7% vs.1.7%; p < 0.001), which was similar to the mortality of patients without sepsis (1.3%). Sepsis was associated with respiratory or bloodstream infection, most commonly Pseudomonas aeruginosa or Staphylococcus aureus. The Phoenix-8 score had good discrimination of mortality in children with infections, comparable to or better than validated and widely used severity of illness and organ dysfunction scores. CONCLUSIONS In 2012-2018, among U.S. patients with suspected or confirmed infection admitted to nine PICUs, those with the highest risk of mortality can be identified using the Phoenix sepsis criteria, including in children of different age groups and those with major comorbidities.
Collapse
Affiliation(s)
- L. Nelson Sanchez-Pinto
- Division of Critical Care, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
- Departments of Pediatrics and Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Latasha A. Daniels
- Division of Critical Care, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Mihir Atreya
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Reid W. D. Farris
- Department of Pediatrics (Critical Care Medicine), University of Washington School of Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Alon Geva
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, MA
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Department of Anaesthesia, Harvard Medical School, Boston, MA
| | - Robinder G. Khemani
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Los Angeles, Los Angeles, CA
| | - Colin Rogerson
- Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN
| | - Sareen S. Shah
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Scott L. Weiss
- Division of Critical Care Medicine, Nemours Children’s Hospital, Wilmington, DE
| | - Tellen D. Bennett
- Departments of Biomedical Informatics and Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
7
|
Tasker RC. Editor's Choice Articles for November. Pediatr Crit Care Med 2024; 25:985-987. [PMID: 39495705 DOI: 10.1097/pcc.0000000000003629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Robert C Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
8
|
Wong JJM, Abbas Q, Wang JQY, Xu W, Dang H, Phan PH, Guo L, Lee PC, Zhu X, Angurana SK, Pukdeetraipop M, Efar P, Yuliarto S, Choi I, Fan L, Hui AWF, Gan CS, Liu C, Samransamruajkit R, Cho HJ, Ong JSM, Lee JH. Severe Pneumonia in PICU Admissions: The Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) Observational Cohort Study, 2020-2022. Pediatr Crit Care Med 2024; 25:1035-1044. [PMID: 39177431 DOI: 10.1097/pcc.0000000000003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Mortality from pneumonia is three times higher in Asia compared with industrialized countries. We aimed to determine the epidemiology, microbiology, and outcome of severe pneumonia in PICUs across the Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN). DESIGN Prospective multicenter observational study from June 2020 to September 2022. SETTING Fifteen PICUs in PACCMAN. PATIENTS All children younger than 18 years old diagnosed with pneumonia and admitted to the PICU. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Clinical, microbiologic, and outcome data were recorded. The primary outcome was PICU mortality. Univariate and multivariable logistic regression was performed to investigate associations between PICU mortality and explanatory risk factors on presentation to the PICU. Among patients screened, 846 of 11,778 PICU patients (7.2%) with a median age of 1.2 years (interquartile range, 0.4-3.7 yr) had pneumonia. Respiratory syncytial virus was detected in 111 of 846 cases (13.1%). The most common bacteria were Staphylococcus species (71/846 [8.4%]) followed by Pseudomonas species (60/846 [7.1%]). Second-generation cephalosporins (322/846 [38.1%]) were the most common broad-spectrum antibiotics prescribed, followed by carbapenems (174/846 [20.6%]). Invasive mechanical ventilation and noninvasive respiratory support was provided in 438 of 846 (51.8%) and 500 of 846 (59.1%) patients, respectively. PICU mortality was 65 of 846 (7.7%). In the multivariable logistic regression model, age (adjusted odds ratio [aOR], 1.08; 95% CI, 1.00-1.16), Pediatric Index of Mortality 3 score (aOR, 1.03; 95% CI, 1.02-1.05), and drowsiness (aOR, 2.73; 95% CI, 1.24-6.00) were associated with greater odds of mortality. CONCLUSIONS In the PACCMAN contributing PICUs, pneumonia is a frequent cause for admission (7%) and is associated with a greater odds of mortality.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | - Qalab Abbas
- Aga Khan University Hospital, Karachi, Pakistan
| | | | - Wei Xu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxing Dang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | - Liang Guo
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore
- Cochrane, Singapore
| | - Pei Chuen Lee
- Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Xuemei Zhu
- Children's Hospital of Fudan University, Shanghai, China
| | | | | | - Pustika Efar
- Harapan Kita National Women and Children Health Center, Jakarta, Indonesia
| | - Saptadi Yuliarto
- Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Hospital, Malang, Indonesia
| | - Insu Choi
- Chonnam National University Children's Hospital, Gwangju, South Korea
| | - Lijia Fan
- National University Hospital, Singapore
| | | | - Chin Seng Gan
- University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Chunfeng Liu
- Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Hwa Jin Cho
- Chonnam National University Children's Hospital, Gwangju, South Korea
| | | | - Jan Hau Lee
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Argent AC. Pulse Oximetry Bias and Skin Tone, What We Know, What We Need to Do About It. Pediatr Crit Care Med 2024; 25:967-969. [PMID: 39360916 DOI: 10.1097/pcc.0000000000003600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Affiliation(s)
- Andrew C Argent
- Department of Pediatrics and Child Health, University of Cape Town, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa
| |
Collapse
|
10
|
Pérez MC, Fernández-Sarmiento J, Bustos JD, Ferro-Jackaman S, Ramírez-Caicedo P, Nieto A, Lucena N, Barrera S, Fernández-Rengifo JM, Cárdenas C, Garavito MC, Fernández-Sarta JP, Rotta IL, Coutin A, Patiño J, Acevedo L, Suárez JD, Duque-Arango C. Association between the lactate-albumin ratio and microcirculation changes in Pediatric Septic patients. Sci Rep 2024; 14:22579. [PMID: 39343791 PMCID: PMC11439901 DOI: 10.1038/s41598-024-73112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
A lactate/albumin ratio (LAR) greater than 0.5 measured early in the course of pediatric critical illness is associated with greater mortality. Whether the elevated LAR can be explained by microcirculation disorders in children with sepsis is not known. In this longitudinal retrospective study (January 2021-January 2024), serum albumin and lactate were measured on admission to the pediatric intensive care unit (PICU), with sublingual video microscopy performed simultaneously to measure microcirculation. A total of 178 children were included, 37% of whom had septic shock measured with the Phoenix Sepsis Score. Patients with remote sepsis had greater odds of an elevated LAR (aOR 6.87: 95% CI 1.98-23.73; p < 0.01). Children with an elevated LAR had more microvascular blood flow abnormalities (aOR 1.31 95% CI 1.08-1.58; p < 0.01), lower 4-6-micron capillary density (aOR 1.03 95% CI 1.01-1.05; p < 0.01) and greater odds of dying (aOR 3.55 95% CI 1.21-10.38; p = 0.02) compared to those with a low LAR. We found no association between LAR and endothelial glycocalyx degradation. A normal LAR is associated with less risk of microcirculatory injury (aOR 0.77 95% CI 0.65-0.93; p < 0.01). In children with sepsis, an elevated LAR is associated with microcirculation abnormalities (microvascular density and flow). The lactate/albumin ratio is a potentially useful biomarker for microcirculatory injury in sepsis.
Collapse
Affiliation(s)
- Maria Camila Pérez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Jaime Fernández-Sarmiento
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia.
| | - Juan David Bustos
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Sarah Ferro-Jackaman
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Paula Ramírez-Caicedo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Andrés Nieto
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Natalia Lucena
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Sofia Barrera
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - José Manuel Fernández-Rengifo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Carolina Cárdenas
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Maria Camila Garavito
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Juan Pablo Fernández-Sarta
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Isabella La Rotta
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Alejandro Coutin
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Juanita Patiño
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Lorena Acevedo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Juan David Suárez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Catalina Duque-Arango
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| |
Collapse
|
11
|
Sanchez-Pinto LN, Del Pilar Arias López M, Scott H, Gibbons K, Moor M, Watson RS, Wiens MO, Schlapbach LJ, Bennett TD. Digital solutions in paediatric sepsis: current state, challenges, and opportunities to improve care around the world. Lancet Digit Health 2024; 6:e651-e661. [PMID: 39138095 PMCID: PMC11371309 DOI: 10.1016/s2589-7500(24)00141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The digitisation of health care is offering the promise of transforming the management of paediatric sepsis, which is a major source of morbidity and mortality in children worldwide. Digital technology is already making an impact in paediatric sepsis, but is almost exclusively benefiting patients in high-resource health-care settings. However, digital tools can be highly scalable and cost-effective, and-with the right planning-have the potential to reduce global health disparities. Novel digital solutions, from wearable devices and mobile apps, to electronic health record-embedded decision support tools, have an unprecedented opportunity to transform paediatric sepsis research and care. In this Series paper, we describe the current state of digital solutions in paediatric sepsis around the world, the advances in digital technology that are enabling the development of novel applications, and the potential effect of advances in artificial intelligence in paediatric sepsis research and clinical care.
Collapse
Affiliation(s)
- L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| | | | - Halden Scott
- Department of Pediatrics, University of Colorado-Denver and Children's Hospital Colorado, Aurora, CO, USA
| | - Kristen Gibbons
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Moor
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - R Scott Watson
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew O Wiens
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; World Alliance for Lung and Intensive Care Medicine in Uganda, Kampala, Uganda
| | - Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care and Neonatology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tellen D Bennett
- Department of Pediatrics, University of Colorado-Denver and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Alcamo AM, Becker AE, Barren GJ, Hayes K, Pennington JW, Curley MA, Tasker RC, Balamuth F, Weiss SL, Fitzgerald JC, Topjian AA. Diagnostic Identification of Acute Brain Dysfunction in Pediatric Sepsis and Septic Shock in the Electronic Health Record: A Comparison of Four Definitions in a Reference Dataset. Pediatr Crit Care Med 2024; 25:740-747. [PMID: 38738953 PMCID: PMC11300159 DOI: 10.1097/pcc.0000000000003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Acute brain dysfunction (ABD) in pediatric sepsis has a prevalence of 20%, but can be difficult to identify. Our previously validated ABD computational phenotype (CP ABD ) used variables obtained from the electronic health record indicative of clinician concern for acute neurologic or behavioral change. We tested whether the CP ABD has better diagnostic performance to identify confirmed ABD than other definitions using the Glasgow Coma Scale or delirium scores. DESIGN Diagnostic testing in a curated cohort of pediatric sepsis/septic shock patients. SETTING Quaternary freestanding children's hospital. SUBJECTS The test dataset comprised 527 children with sepsis/septic shock managed between 2011 and 2021 with a prevalence (pretest probability) of confirmed ABD of 30% (159/527). MEASUREMENTS AND MAIN RESULTS CP ABD was based on use of neuroimaging, electroencephalogram, and/or administration of new antipsychotic medication. We compared the performance of the CP ABD with three GCS/delirium-based definitions of ABD-Proulx et al, International Pediatric Sepsis Consensus Conference, and Pediatric Organ Dysfunction Information Update Mandate. The posttest probability of identifying ABD was highest in CP ABD (0.84) compared with other definitions. CP ABD also had the highest sensitivity (83%; 95% CI, 76-89%) and specificity (93%; 95% CI, 90-96%). The false discovery rate was lowest in CP ABD (1-in-6) as was the false omission rate (1-in-14). Finally, the prevalence threshold for the definitions varied, with the CP ABD being the definition closest to 20%. CONCLUSIONS In our curated dataset of pediatric sepsis/septic shock, CP ABD had favorable characteristics to identify confirmed ABD compared with GCS/delirium-based definitions. The CP ABD can be used to further study the impact of ABD in studies using large electronic health datasets.
Collapse
Affiliation(s)
- Alicia M. Alcamo
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Pediatric Sepsis Program, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew E. Becker
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gregory J. Barren
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katie Hayes
- Pediatric Sepsis Program, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Emergency Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey W. Pennington
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Martha A.Q. Curley
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Family and Community Health, The University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| | - Robert C. Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| | - Fran Balamuth
- Pediatric Sepsis Program, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Emergency Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Scott L. Weiss
- Division of Critical Care Medicine, Nemours Children’s Hospital, Wilmington, Delaware, USA
| | - Julie C. Fitzgerald
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Pediatric Sepsis Program, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexis A. Topjian
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Tasker RC. Editor's Choice Articles for August. Pediatr Crit Care Med 2024; 25:685-688. [PMID: 39101799 DOI: 10.1097/pcc.0000000000003568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
14
|
Tasker RC. Editor's Choice Articles for June. Pediatr Crit Care Med 2024; 25:489-492. [PMID: 38836708 DOI: 10.1097/pcc.0000000000003530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
15
|
Zhu YB, Liu TL, Dai Q, Liu SF, Xiong P, Huang H, Yuan Y, Zhang TN, Chen Y. Characteristics and Risk Factors for Pediatric Sepsis. Curr Med Sci 2024; 44:648-656. [PMID: 38748371 DOI: 10.1007/s11596-024-2870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1β (IL-1β) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1β levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION Lower Hb, ALB, and PLT counts and elevated IL-1β are independent risk factors for poor prognosis in children with sepsis.
Collapse
Affiliation(s)
- Yong-Bing Zhu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong-Lin Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Dai
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Fan Liu
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Xiong
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Huang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yuan
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Nan Zhang
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Chen
- Department of Pediatric Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Atreya MR, Bennett TD, Geva A, Faustino EVS, Rogerson CM, Lutfi R, Cvijanovich NZ, Bigham MT, Nowak J, Schwarz AJ, Baines T, Haileselassie B, Thomas NJ, Luo Y, Sanchez-Pinto LN. Biomarker Assessment of a High-Risk, Data-Driven Pediatric Sepsis Phenotype Characterized by Persistent Hypoxemia, Encephalopathy, and Shock. Pediatr Crit Care Med 2024; 25:512-517. [PMID: 38465952 PMCID: PMC11153020 DOI: 10.1097/pcc.0000000000003499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Identification of children with sepsis-associated multiple organ dysfunction syndrome (MODS) at risk for poor outcomes remains a challenge. We sought to the determine reproducibility of the data-driven "persistent hypoxemia, encephalopathy, and shock" (PHES) phenotype and determine its association with inflammatory and endothelial biomarkers, as well as biomarker-based pediatric risk strata. DESIGN We retrained and validated a random forest classifier using organ dysfunction subscores in the 2012-2018 electronic health record (EHR) dataset used to derive the PHES phenotype. We used this classifier to assign phenotype membership in a test set consisting of prospectively (2003-2023) enrolled pediatric septic shock patients. We compared profiles of the PERSEVERE family of biomarkers among those with and without the PHES phenotype and determined the association with established biomarker-based mortality and MODS risk strata. SETTING Twenty-five PICUs across the United States. PATIENTS EHR data from 15,246 critically ill patients with sepsis-associated MODS split into derivation and validation sets and 1,270 pediatric septic shock patients in the test set of whom 615 had complete biomarker data. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The area under the receiver operator characteristic curve of the modified classifier to predict PHES phenotype membership was 0.91 (95% CI, 0.90-0.92) in the EHR validation set. In the test set, PHES phenotype membership was associated with both increased adjusted odds of complicated course (adjusted odds ratio [aOR] 4.1; 95% CI, 3.2-5.4) and 28-day mortality (aOR of 4.8; 95% CI, 3.11-7.25) after controlling for age, severity of illness, and immunocompromised status. Patients belonging to the PHES phenotype were characterized by greater degree of systemic inflammation and endothelial activation, and were more likely to be stratified as high risk based on PERSEVERE biomarkers predictive of death and persistent MODS. CONCLUSIONS The PHES trajectory-based phenotype is reproducible, independently associated with poor clinical outcomes, and overlapped with higher risk strata based on prospectively validated biomarker approaches.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tellen D Bennett
- Departments of Pediatrics and Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO
| | - Alon Geva
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA
| | | | - Colin M Rogerson
- Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN
| | - Riad Lutfi
- Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN
| | | | | | - Jeffrey Nowak
- Department of Pediatrics, Children's Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Adam J Schwarz
- Department of Pediatrics, University of Calfornia Irvine School of Medicine, Orange, CA
| | - Torrey Baines
- Department of Pediatrics, Shands Children's Hospital, University of Florida Health, Gainesville, FL
| | | | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, PA
| | - Yuan Luo
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
17
|
Schlapbach LJ, Ganesamoorthy D, Wilson C, Raman S, George S, Snelling PJ, Phillips N, Irwin A, Sharp N, Le Marsney R, Chavan A, Hempenstall A, Bialasiewicz S, MacDonald AD, Grimwood K, Kling JC, McPherson SJ, Blumenthal A, Kaforou M, Levin M, Herberg JA, Gibbons KS, Coin LJM. Host gene expression signatures to identify infection type and organ dysfunction in children evaluated for sepsis: a multicentre cohort study. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:325-338. [PMID: 38513681 DOI: 10.1016/s2352-4642(24)00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Sepsis is defined as dysregulated host response to infection that leads to life-threatening organ dysfunction. Biomarkers characterising the dysregulated host response in sepsis are lacking. We aimed to develop host gene expression signatures to predict organ dysfunction in children with bacterial or viral infection. METHODS This cohort study was done in emergency departments and intensive care units of four hospitals in Queensland, Australia, and recruited children aged 1 month to 17 years who, upon admission, underwent a diagnostic test, including blood cultures, for suspected sepsis. Whole-blood RNA sequencing of blood was performed with Illumina NovaSeq (San Diego, CA, USA). Samples with completed phenotyping, monitoring, and RNA extraction by March 31, 2020, were included in the discovery cohort; samples collected or completed thereafter and by Oct 27, 2021, constituted the Rapid Paediatric Infection Diagnosis in Sepsis (RAPIDS) internal validation cohort. An external validation cohort was assembled from RNA sequencing gene expression count data from the observational European Childhood Life-threatening Infectious Disease Study (EUCLIDS), which recruited children with severe infection in nine European countries between 2012 and 2016. Feature selection approaches were applied to derive novel gene signatures for disease class (bacterial vs viral infection) and disease severity (presence vs absence of organ dysfunction 24 h post-sampling). The primary endpoint was the presence of organ dysfunction 24 h after blood sampling in the presence of confirmed bacterial versus viral infection. Gene signature performance is reported as area under the receiver operating characteristic curves (AUCs) and 95% CI. FINDINGS Between Sept 25, 2017, and Oct 27, 2021, 907 patients were enrolled. Blood samples from 595 patients were included in the discovery cohort, and samples from 312 children were included in the RAPIDS validation cohort. We derived a ten-gene disease class signature that achieved an AUC of 94·1% (95% CI 90·6-97·7) in distinguishing bacterial from viral infections in the RAPIDS validation cohort. A ten-gene disease severity signature achieved an AUC of 82·2% (95% CI 76·3-88·1) in predicting organ dysfunction within 24 h of sampling in the RAPIDS validation cohort. Used in tandem, the disease class and disease severity signatures predicted organ dysfunction within 24 h of sampling with an AUC of 90·5% (95% CI 83·3-97·6) for patients with predicted bacterial infection and 94·7% (87·8-100·0) for patients with predicted viral infection. In the external EUCLIDS validation dataset (n=362), the disease class and disease severity predicted organ dysfunction at time of sampling with an AUC of 70·1% (95% CI 44·1-96·2) for patients with predicted bacterial infection and 69·6% (53·1-86·0) for patients with predicted viral infection. INTERPRETATION In children evaluated for sepsis, novel host transcriptomic signatures specific for bacterial and viral infection can identify dysregulated host response leading to organ dysfunction. FUNDING Australian Government Medical Research Future Fund Genomic Health Futures Mission, Children's Hospital Foundation Queensland, Brisbane Diamantina Health Partners, Emergency Medicine Foundation, Gold Coast Hospital Foundation, Far North Queensland Foundation, Townsville Hospital and Health Services SERTA Grant, and Australian Infectious Diseases Research Centre.
Collapse
Affiliation(s)
- Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Paediatric Intensive Care Unit, Queensland Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia.
| | - Devika Ganesamoorthy
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Clare Wilson
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sainath Raman
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia
| | - Shane George
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Emergency Medicine, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Dentistry and the Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Peter J Snelling
- Department of Emergency Medicine, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Dentistry and the Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Natalie Phillips
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Emergency Department, Queensland Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia
| | - Adam Irwin
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Infection Management and Prevention Services, Queensland Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia
| | - Natalie Sharp
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia
| | - Renate Le Marsney
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Arjun Chavan
- Paediatric Intensive Care Unit, Townsville University Hospital, Townsville, QLD, Australia
| | | | - Seweryn Bialasiewicz
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, and Queensland Paediatric Infectious Diseases Laboratory, The University of Queensland, Brisbane, QLD, Australia
| | - Anna D MacDonald
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry and the Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia; Department of Infectious Disease and Paediatrics, Gold Coast Health, Southport, QLD, Australia
| | - Jessica C Kling
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Jethro A Herberg
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Kristen S Gibbons
- Children's Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Sankar J, Agarwal S, Goyal A, Kabra SK, Lodha R. Pediatric Sepsis Phenotypes and Outcome: 5-Year Retrospective Cohort Study in a Single Center in India (2017-2022). Pediatr Crit Care Med 2024; 25:e186-e192. [PMID: 38305702 DOI: 10.1097/pcc.0000000000003449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVES To describe mortality associated with different clinical phenotypes of sepsis in children. DESIGN Retrospective study. SETTING PICU of a tertiary care center in India from 2017 to 2022. PATIENTS Six hundred twelve children (from 2 mo to 17 yr old) with a retrospectively applied diagnosis of sepsis using 2020 guidance. METHODS The main outcome was mortality associated with sepsis subtypes. Other analyses included assessment of risk factors, requirement for organ support, and PICU resources used by sepsis phenotype. Clinical data were recorded on a predesigned proforma. INTERVENTIONS None. MEASUREMENTS AND RESULTS Of the 612 children identified, there were 382 (62%) with sepsis but no multiple organ failure (NoMOF), 48 (8%) with thrombocytopenia-associated MOF (TAMOF), 140 (23%) with MOF without thrombocytopenia, and 40 (6.5%) with sequential MOF (SMOF). Mortality was higher in the SMOF (20/40 [50%]), MOF (62/140 [44%]) and TAMOF (20/48 [42%]) groups, compared with NoMOF group (82/382 [21%] [ p < 0.001]). The requirement for organ support and PICU resources was higher in all phenotypes with MOF as compared with those without MOF. On multivariable analysis elevated lactate and having MOF were associated with greater odds of mortality. CONCLUSIONS In this single-center experience of sepsis in India, we found that sepsis phenotypes having MOF were associated with mortality and the requirement of PICU resources. Prospective studies in different regions of the world will help identify a classification of pediatric sepsis that is more widely applicable.
Collapse
Affiliation(s)
- Jhuma Sankar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
19
|
Heneghan JA, Walker SB, Fawcett A, Bennett TD, Dziorny AC, Sanchez-Pinto LN, Farris RW, Winter MC, Badke C, Martin B, Brown SR, McCrory MC, Ness-Cochinwala M, Rogerson C, Baloglu O, Harwayne-Gidansky I, Hudkins MR, Kamaleswaran R, Gangadharan S, Tripathi S, Mendonca EA, Markovitz BP, Mayampurath A, Spaeder MC. The Pediatric Data Science and Analytics Subgroup of the Pediatric Acute Lung Injury and Sepsis Investigators Network: Use of Supervised Machine Learning Applications in Pediatric Critical Care Medicine Research. Pediatr Crit Care Med 2024; 25:364-374. [PMID: 38059732 PMCID: PMC10994770 DOI: 10.1097/pcc.0000000000003425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Perform a scoping review of supervised machine learning in pediatric critical care to identify published applications, methodologies, and implementation frequency to inform best practices for the development, validation, and reporting of predictive models in pediatric critical care. DESIGN Scoping review and expert opinion. SETTING We queried CINAHL Plus with Full Text (EBSCO), Cochrane Library (Wiley), Embase (Elsevier), Ovid Medline, and PubMed for articles published between 2000 and 2022 related to machine learning concepts and pediatric critical illness. Articles were excluded if the majority of patients were adults or neonates, if unsupervised machine learning was the primary methodology, or if information related to the development, validation, and/or implementation of the model was not reported. Article selection and data extraction were performed using dual review in the Covidence tool, with discrepancies resolved by consensus. SUBJECTS Articles reporting on the development, validation, or implementation of supervised machine learning models in the field of pediatric critical care medicine. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 5075 identified studies, 141 articles were included. Studies were primarily (57%) performed at a single site. The majority took place in the United States (70%). Most were retrospective observational cohort studies. More than three-quarters of the articles were published between 2018 and 2022. The most common algorithms included logistic regression and random forest. Predicted events were most commonly death, transfer to ICU, and sepsis. Only 14% of articles reported external validation, and only a single model was implemented at publication. Reporting of validation methods, performance assessments, and implementation varied widely. Follow-up with authors suggests that implementation remains uncommon after model publication. CONCLUSIONS Publication of supervised machine learning models to address clinical challenges in pediatric critical care medicine has increased dramatically in the last 5 years. While these approaches have the potential to benefit children with critical illness, the literature demonstrates incomplete reporting, absence of external validation, and infrequent clinical implementation.
Collapse
Affiliation(s)
- Julia A. Heneghan
- Division of Pediatric Critical Care, University of Minnesota Masonic Children’s Hospital; Minneapolis, MN
| | - Sarah B. Walker
- Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago; Chicago, IL
| | - Andrea Fawcett
- Department of Clinical and Organizational Development; Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Tellen D. Bennett
- Departments of Biomedical Informatics and Pediatrics (Critical Care Medicine), University of Colorado School of Medicine; Aurora, CO
| | - Adam C. Dziorny
- Department of Pediatrics, University of Rochester; Rochester, NY
| | - L. Nelson Sanchez-Pinto
- Department of Pediatrics (Critical Care) and Preventive Medicine (Health & Biomedical Informatics), Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago; Chicago, IL
| | - Reid W.D. Farris
- Department of Pediatrics, University of Washington and Seattle Children’s Hospital; Seattle, WA
| | - Meredith C. Winter
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles and Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Colleen Badke
- Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago; Chicago, IL
| | - Blake Martin
- Departments of Biomedical Informatics and Pediatrics (Critical Care Medicine), University of Colorado School of Medicine; Aurora, CO
| | - Stephanie R. Brown
- Section of Pediatric Critical Care, Oklahoma Children’s Hospital and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael C. McCrory
- Department of Anesthesiology, Wake Forest University School of Medicine; Winston Salem, NC
| | | | - Colin Rogerson
- Division of Critical Care, Department of Pediatrics, Indiana University; Indianapolis, IN
| | - Orkun Baloglu
- Pediatric Critical Care Medicine and Pediatric Cardiology, Cleveland Clinic Children’s Center for Artificial Intelligence (C4AI), Cleveland Clinic; Cleveland, OH
| | | | - Matthew R. Hudkins
- Division of Pediatric Critical Care, Department of Pediatrics, Oregon Health & Science University; Portland, OR
| | - Rishikesan Kamaleswaran
- Departments of Biomedical Informatics and Pediatrics, Emory University School of Medicine; Department of Biomedical Engineering, Georgia Institute of Technology; Atlanta, GA
| | - Sandeep Gangadharan
- Department of Pediatrics, Mount Sinai Icahn School of Medicine; New York, NY
| | - Sandeep Tripathi
- Department of Pediatrics. University of Illinois College of Medicine at Peoria/OSF HealthCare, Children’s Hospital of Illinois; Peoria, IL
| | - Eneida A. Mendonca
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati; Cincinnati, OH
| | - Barry P. Markovitz
- Division of Pediatric Critical Care, Department of Pediatrics, University of Utah Spencer F Eccles School of Medicine, Intermountain Primary Children’s Hospital; Salt Lake City, UT
| | - Anoop Mayampurath
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison; Madison, WI
| | - Michael C. Spaeder
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
20
|
Tasker RC. Editor's Choice Articles for October. Pediatr Crit Care Med 2023; 24:791-794. [PMID: 38412367 DOI: 10.1097/pcc.0000000000003353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
21
|
Abstract
The September 2023 issue and this year has already proven to be important for improving our understanding of pediatric acute respiratory distress syndrome (PARDS); Pediatric Critical Care Medicine (PCCM) has published 16 articles so far. Therefore, my three Editor's Choice articles this month highlight yet more PCCM material about PARDS by covering the use of noninvasive ventilation (NIV), the trajectory in cytokine profile during illness, and a new look at lung mechanics. The PCCM Connections for Readers give us the opportunity to focus on some clinical biomarkers of severity and mortality risk during critical illness.
Collapse
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
22
|
Atreya MR, Bennett TD, Geva A, Faustino EVS, Rogerson CM, Lutfi R, Cvijanovich NZ, Bigham MT, Nowak J, Schwarz AJ, Baines T, Haileselassie B, Thomas NJ, Luo Y, Sanchez-Pinto LN. External validation and biomarker assessment of a high-risk, data-driven pediatric sepsis phenotype characterized by persistent hypoxemia, encephalopathy, and shock. RESEARCH SQUARE 2023:rs.3.rs-3216613. [PMID: 37577648 PMCID: PMC10418531 DOI: 10.21203/rs.3.rs-3216613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Identification of children with sepsis-associated multiple organ dysfunction syndrome (MODS) at risk for poor outcomes remains a challenge. Data-driven phenotyping approaches that leverage electronic health record (EHR) data hold promise given the widespread availability of EHRs. We sought to externally validate the data-driven 'persistent hypoxemia, encephalopathy, and shock' (PHES) phenotype and determine its association with inflammatory and endothelial biomarkers, as well as biomarker-based pediatric risk-strata. Design We trained and validated a random forest classifier using organ dysfunction subscores in the EHR dataset used to derive the PHES phenotype. We used the classifier to assign phenotype membership in a test set consisting of prospectively enrolled pediatric septic shock patients. We compared biomarker profiles of those with and without the PHES phenotype and determined the association with established biomarker-based mortality and MODS risk-strata. Setting 25 pediatric intensive care units (PICU) across the U.S. Patients EHR data from 15,246 critically ill patients sepsis-associated MODS and 1,270 pediatric septic shock patients in the test cohort of whom 615 had biomarker data. Interventions None. Measurements and Main Results The area under the receiver operator characteristic curve (AUROC) of the new classifier to predict PHES phenotype membership was 0.91(95%CI, 0.90-0.92) in the EHR validation set. In the test set, patients with the PHES phenotype were independently associated with both increased odds of complicated course (adjusted odds ratio [aOR] of 4.1, 95%CI: 3.2-5.4) and 28-day mortality (aOR of 4.8, 95%CI: 3.11-7.25) after controlling for age, severity of illness, and immuno-compromised status. Patients belonging to the PHES phenotype were characterized by greater degree of systemic inflammation and endothelial activation, and overlapped with high risk-strata based on PERSEVERE biomarkers predictive of death and persistent MODS. Conclusions The PHES trajectory-based phenotype is reproducible, independently associated with poor clinical outcomes, and overlap with higher risk-strata based on validated biomarker approaches.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tellen D Bennett
- Departments of Pediatrics and Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO
| | - Alon Geva
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA
| | | | - Colin M Rogerson
- Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Riad Lutfi
- Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Natalie Z Cvijanovich
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA
| | - Michael T Bigham
- Department of Pediatrics, Akron Children's Hospital, Akron, OH 44308, USA
| | - Jeffrey Nowak
- Department of Pediatrics, Children's Hospital and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Adam J Schwarz
- Children's Hospital of Orange County, Orange, CA 92868, USA
| | - Torrey Baines
- University of Florida Health Shands Children's Hospital, Gainesville, FL 32610, USA
| | | | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, PA 17033, USA
| | - Yuan Luo
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| |
Collapse
|