1
|
Chakraborty A. Primary Neuroendocrine Carcinoma of Breast: Changing Paradigm. Indian J Surg Oncol 2025; 16:60-63. [PMID: 40114880 PMCID: PMC11920472 DOI: 10.1007/s13193-024-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 03/22/2025] Open
Abstract
Neuroendocrine carcinomas are one of the most rare malignancies of the breast. Theoretically they can arise from any organ of the body, but incidence in breast is very rare. Due to the ever-changing definition of the disease, no specific therapeutic guideline is available in current literature. Currently WHO defines neuroendocrine carcinoma of breast as malignant lesions that expresses > 90% of neuroendocrine markers like synaptophysin, chromogranin A with characteristic histopathology features with exclusion of solid papillary carcinoma, and hypercellular-type mucinous carcinoma.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Surgical Oncology & Breast Services, The Mission Hospital, Durgapur, West Bengal 713212 India
| |
Collapse
|
2
|
Ju H, Liu M. Primary neuroendocrine tumor of the breast: A case report. Oncol Lett 2025; 29:79. [PMID: 39655273 PMCID: PMC11626422 DOI: 10.3892/ol.2024.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Primary neuroendocrine neoplasm of the breast (PNENB) is a rare subtype of breast cancer, accounting for <1% of all breast tumors. The morphological features of PNENB are similar to those of neuroendocrine tumors originating in the lungs or gastrointestinal system, with tumor cells exhibiting the strong expression of neuroendocrine markers, including chromogranin A and synaptophysin. Since this type of cancer was first reported, the definition, classification and diagnostic criteria of PNENB have evolved and changed. However, accurate diagnostic criteria and standard treatment guidelines are lacking. The present report describes a specific case of PNENB, which was consistent with the morphological and molecular features of other cases in most previous studies. In addition, the current body of literature on PNENB, including its development, diagnosis, molecular features, treatment and prognosis is reviewed.
Collapse
Affiliation(s)
- Husileng Ju
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Ming Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| |
Collapse
|
3
|
Zhao D, Bai X, Zhu S, Zhao Z, Li X. Organoids as a model system for researching human neuroendocrine tumor of the breast. Cancer Cell Int 2024; 24:433. [PMID: 39731167 PMCID: PMC11681707 DOI: 10.1186/s12935-024-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Neuroendocrine tumors primarily consist of endocrine cells commonly located in neural tissue and the endocrine system. Primary neuroendocrine neoplasms of the breast are highly heterogeneous tumors characterized by a diverse cell population. Their rarity in the breast poses considerable challenges in studying their pathogenesis and developing effective treatments. METHODS The surgical specimen was obtained from a Chinese female patient diagnosed with neuroendocrine tumor of the breast (NETB). We performed tissue histological staining and established NETB patient-derived organoids, which were subsequently used for histological staining, drug screen, and Single-cell RNA sequencing. RESULTS We successfully established NETB patient-derived organoids from a Chinese female patient. Histological staining showed that the morphological characteristics and the expression of molecular biomarkers (ER, PR, HER2, Ki67, Syn, CgA) in the NETB patient-derived organoids resembled those of the original tumor tissue. The NETB patient-derived organoids exhibited varying sensitivities to seven different drugs. Single-cell RNA sequencing revealed significant heterogeneity and diverse molecular functions among these organoids. CONCLUSIONS This was the first instance of establishing an organoid model for NETB. Due to high heterogeneity, this NETB patient-derived organoid provides a robust foundation for clinical research. In the future, it could serve as a reliable tool for disease pathology diagnosis, drug screening, and genetic level studies.
Collapse
Affiliation(s)
- Dongyi Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xue Bai
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shida Zhu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zuowei Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Xuelu Li
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
4
|
Vegni F, De Stefano IS, Policardo F, Tralongo P, Feraco A, Carlino A, Ferraro G, Zhang Q, Scaglione G, D'Alessandris N, Navarra E, Zannoni G, Santoro A, Mule A, Rossi ED. Neuroendocrine neoplasms of the breast: a review of literature. Virchows Arch 2024; 485:197-212. [PMID: 38980337 PMCID: PMC11329594 DOI: 10.1007/s00428-024-03856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Primary neuroendocrine neoplasms (NENs) of the breast are characterized by neuroendocrine architectural and cytological features, which must be supported by immunohistochemical positivity for neuroendocrine markers (such as Chromogranin and Synaptophysin). According to the literature, making a diagnosis of primary neuroendocrine breast cancer always needs to rule out a possible primary neuroendocrine neoplasm from another site. Currently, the latest 2022 version of the WHO of endocrine and neuroendocrine neoplasms has classified breast NENs as well-differentiated neuroendocrine tumours (NETs) and aggressive neuroendocrine carcinomas (NECs), differentiating them from invasive breast cancers of no special type (IBCs-NST). with neuroendocrine features. The current review article describes six cases from our series and a comprehensive review of the literature in the field of NENs of the breast.
Collapse
Affiliation(s)
- Federica Vegni
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Ilenia Sara De Stefano
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Federica Policardo
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Pietro Tralongo
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Feraco
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Carlino
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Giulia Ferraro
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Qianqian Zhang
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Giulia Scaglione
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Nicoletta D'Alessandris
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Elena Navarra
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Gianfranco Zannoni
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Santoro
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Antonino Mule
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
5
|
Mahapatra S, Kar P. Computational biophysical characterization of the effect of gatekeeper mutations on the binding of ponatinib to the FGFR kinase. Arch Biochem Biophys 2024; 758:110070. [PMID: 38909834 DOI: 10.1016/j.abb.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fibroblast Growth Factor Receptor (FGFR) is connected to numerous downstream signalling cascades regulating cellular behavior. Any dysregulation leads to a plethora of illnesses, including cancer. Therapeutics are available, but drug resistance driven by gatekeeper mutation impedes the treatment. Ponatinib is an FDA-approved drug against BCR-ABL kinase and has shown effective results against FGFR-mediated carcinogenesis. Herein, we undertake molecular dynamics simulation-based analysis on ponatinib against all the FGFR isoforms having Val to Met gatekeeper mutations. The results suggest that ponatinib is a potent and selective inhibitor for FGFR1, FGFR2, and FGFR4 gatekeeper mutations. The extensive electrostatic and van der Waals interaction network accounts for its high potency. The FGFR3_VM mutation has shown resistance towards ponatinib, which is supported by their lesser binding affinity than wild-type complexes. The disengaged molecular brake and engaged hydrophobic spine were believed to be the driving factors for weak protein-ligand interaction. Taken together, the inhibitory and structural characteristics exhibited by ponatinib may aid in thwarting resistance based on Val-to-Met gatekeeper mutations at an earlier stage of treatment and advance the design and development of other inhibitors targeted at FGFRs harboring gatekeeper mutations.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
6
|
Derakhshan F, Da Cruz Paula A, Selenica P, da Silva EM, Grabenstetter A, Jalali S, Gazzo AM, Dopeso H, Marra A, Brown DN, Ross DS, Mandelker D, Razavi P, Chandarlapaty S, Wen HY, Brogi E, Zhang H, Weigelt B, Pareja F, Reis-Filho JS. Nonlobular Invasive Breast Carcinomas with Biallelic Pathogenic CDH1 Somatic Alterations: A Histologic, Immunophenotypic, and Genomic Characterization. Mod Pathol 2024; 37:100375. [PMID: 37925055 PMCID: PMC11154908 DOI: 10.1016/j.modpat.2023.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Grabenstetter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sahar Jalali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dara S Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
7
|
Karihtala P, Porvari K, Roininen N, Voutilainen S, Mattson J, Heikkilä P, Haapasaari KM, Selander K. Comparison of the mutational profiles of neuroendocrine breast tumours, invasive ductal carcinomas and pancreatic neuroendocrine carcinomas. Oncogenesis 2022; 11:53. [PMID: 36085291 PMCID: PMC9463436 DOI: 10.1038/s41389-022-00427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
The pathophysiology and the optimal treatment of breast neuroendocrine tumours (NETs) are unknown. We compared the mutational profiles of breast NETs (n = 53) with those of 724 publicly available invasive ductal carcinoma (IDC) and 98 pancreatic NET (PNET) cases. The only significantly different pathogenetic or unknown variant rate between breast NETs and IDCs was detected in the TP53 (11.3% in breast NETs and 41% in IDCs, adjusted p value 0.027) and ADCK2 (9.4% in breast NETs vs. 0.28% in IDCs, adjusted p value 0.045) genes. Between breast NETs and PNETs, different pathogenetic or unknown variant frequencies were detected in 30 genes. For example, MEN1 was mutated in only 6% of breast NETs and 37% in PNETs (adjusted p value 0.00050), and GATA3 pathogenetic or unknown variants were only found in 17.0% of breast NETs and 0% in PNETs (adjusted p value 0.0010). The most commonly affected oncogenic pathways in the breast NET cases were PI3K/Akt/mTOR, NOTCH and RTK-RAS pathways. Breast NETs had typically clock-like mutational signatures and signatures associated with defective DNA mismatch repair in their mutational landscape. Our results suggest that the breast NET mutational profile more closely resembles that of IDCs than that of PNETs. These results also revealed several potentially druggable targets, such as MMRd, in breast NETs. In conclusion, breast NETs are indeed a separate breast cancer entity, but their optimal treatment remains to be elucidated.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki, Finland.
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Nelli Roininen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sari Voutilainen
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katri Selander
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Schaffrin-Nabe D, Schuster S, Tannapfel A, Voigtmann R. Case Report: Extensive Tumor Profiling in Primary Neuroendocrine Breast Cancer Cases as a Role Model for Personalized Treatment in Rare and Aggressive Cancer Types. Front Med (Lausanne) 2022; 9:841441. [PMID: 35721079 PMCID: PMC9203716 DOI: 10.3389/fmed.2022.841441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroendocrine breast cancer (NEBC) is a rare entity accounting for <0.1% of all breast carcinomas and <0.1% of all neuroendocrine carcinomas. In most cases treatment strategies in NEBC are empirical in absence of prospective trial data on NEBC cohorts. Herein, we present two case reports diagnosed with anaplastic and small cell NEBC. After initial therapies failed, comprehensive tumor profiling was applied, leading to individualized treatment options for both patients. In both patients, targetable alterations of the PI3K/AKT/mTOR pathway were found, including a PIK3CA mutation itself and an STK11 mutation that negatively regulates the mTOR complex. The epicrisis of the two patients exemplifies how to manage rare and difficult to treat cancers and how new diagnostic tools contribute to medical management.
Collapse
Affiliation(s)
- Dörthe Schaffrin-Nabe
- Praxis für Hämatologie und Onkologie, Bochum, Germany
- *Correspondence: Dörthe Schaffrin-Nabe
| | | | | | | |
Collapse
|
9
|
Sun H, Dai S, Xu J, Liu L, Yu J, Sun T. Primary Neuroendocrine Tumor of the Breast: Current Understanding and Future Perspectives. Front Oncol 2022; 12:848485. [PMID: 35692784 PMCID: PMC9174548 DOI: 10.3389/fonc.2022.848485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Primary neuroendocrine carcinoma of the breast (NECB) is characterized with heterogeneity, rarity, and poor differentiation, which is probably an underestimated subtype of breast cancer, including small cell NECs and large cell NECs. The diagnostic criteria for NECB have been constantly updated as the disease changes and the understanding increases. According to the latest WHO Classification, primary neuroendocrine neoplasm (NEN) of the breast consists of well-differentiated neuroendocrine tumors (NET), extremely aggressive neuroendocrine carcinomas (NEC) as well as invasive breast cancers of no special type (IBCs-NST) with neuroendocrine differentiation. The accurate diagnosis of NECB remains a challenge for its low incidence, which needs multi-disciplinary methods. For the rarity of the disease, there is a lack of large samples and prospective clinical research. For these invasive tumors, there are no standardized therapeutic guidelines or norms, and the treatment often refers to nonspecific breast cancer. In addition, the prognosis of such patients remains unknown. In 2003, the World Health Organization (WHO) listed NECB as an independent entity for the first time, while few features of NECB were clarified. In this review, it presents the WHO Classification, clinicopathologic characteristics, diagnosis, treatment, and prognosis of these patients. In addition, it summarizes the latest studies on molecular features of NECB, aiming to provide new therapeutic perspectives for the disease.
Collapse
Affiliation(s)
- Hongna Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junnan Xu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Linan Liu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jiaxing Yu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
10
|
Stimes N, Stanbery L, Albrethsen M, Trivedi C, Hamouda D, Dworkin L, Nemunaitis J. Small-cell breast carcinoma with response to atezolizumab: a case report. Immunotherapy 2022; 14:669-674. [PMID: 35481350 DOI: 10.2217/imt-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: Small-cell carcinoma of the breast is a rare disease with little research outlining molecular targets or optimal therapeutic management. We summarize a young female patient with poorly differentiated high-grade carcinoma with neuroendocrine features/small-cell carcinoma. Case presentation: A 31-year-old female presented with a large left breast mass. Initial biopsy revealed small-cell, triple-negative breast carcinoma. Treatment consisted of cisplatin and etoposide but was poorly tolerated and discontinued after one cycle. Combination abraxane/atezolizumab resulted in transient partial response in tumor size with 7 months of progression-free stability. Worsening metastatic disease was found 8 months after initial biopsy on radiologic studies and the patient expired 10 months after initial biopsy. Conclusion: Transient benefit in response to combination abraxane/atezolizumab was demonstrated.
Collapse
Affiliation(s)
- Nicholas Stimes
- College of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | | | | | | | - Danae Hamouda
- College of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Lance Dworkin
- College of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | | |
Collapse
|
11
|
Chai Y, Liu M, Li Z, Chen Y, Qi F, Li Q, Xu B. Retrospective literature review of primary neuroendocrine neoplasms of the breast (BNEN) in 209 Chinese patients: Treatment and prognostic factor analysis. Breast 2022; 62:93-102. [PMID: 35134665 PMCID: PMC8844750 DOI: 10.1016/j.breast.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background The prognostic factors and optimal choice of treatment for primary neuroendocrine neoplasms of the breast (BNEN) remain to be defined. Methods Patients diagnosed with BNEN in China were retrospectively reviewed from the literature following the systematic search of China National Knowledge Infrastructure (CNKI), Chinese biomedical literature service system (sinomed), wanfang medical network, and Pubmed database. The clinical characteristics and different treatment modalities of patients with BNEN were evaluated. Results A total of 209 cases with BNEN were enrolled. There were 204 female and 5 male patients. The median age was 51 years old (range, 17–82). Out of 209 patients with BNEN, 208 (99.5%) patients were treated with surgery (SG), 44 patients (21.1%) had received radiotherapy (RT), 173 patients (82.8%) experienced chemotherapy (CT). A total of 158 patients with hormone receptor (HR) positive (87.8%, 158/180) were treated with endocrine treatment (ET). The median follow-up time was 52.4 months (range, 6–144). The 3-year overall survival (OS) rate and 3-year disease-free survival (DFS) rate for the whole group were 93.7% and 85.3%, respectively. In univariate analyses, Ki67 expression ≥20%, HR negative, neuroendocrine carcinomas (NECs) were associated with decreased OS and DFS (P < 0.05). Patients treated with anthracycline/taxane-containing CT regimens, or taxane-containing CT regimens had superior OS and DFS than patients without those (P < 0.05). Among 69 patients with stage I who received CT had no significant differences in OS or DFS compared to those without CT. Multivariate Cox regression analysis showed that gender, HR expression, pathologic subtype, and CT were independent prognostic factors for DFS but not OS (P > 0.05). Conclusions The best selection of patients to get the most benefit from different treatment modalities warrant further exploration. The clinicopathological parameters including gender, HR expression, ki67 expression, pathologic type, stage, tumor size, and lymph node status may serve as both indicators of diagnosis and prognosis, and guide treatment decisions for BNEN. Surgery is a cornerstone of BNEN. ET may have a long-term superior effect on patients with HR-positive. Low-risk BNEN patients may be spared CT and managed with ET. Many clinicopathological parameters were very important for BNEN.
Collapse
Affiliation(s)
- Yue Chai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- Department of Medical Oncology, The Second People's Hospital/ Tumor Hospital of Jilin City, Jilin, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Chen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Bejing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Rakha E, Tan PH. Head to head: Do neuroendocrine tumours in the breast truly exist? Histopathology 2022; 81:2-14. [PMID: 35133666 DOI: 10.1111/his.14627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is a heterogeneous disease with a spectrum of morphological features. Concepts of histogenesis and differentiation in BC remain controversial. Recent evidence supports differentiation rather than histogenesis as the underlying mechanism for the myriad morphological appearances of BC. Prognosis and response to therapy are determined by a combination of factors including tumour grade, stage and receptor status whereas tumour histological types play an independent role in only limited examples. Neuroendocrine tumours (NETs) comprise one of the most debated entities in the breast since their first description. Apart from the rare small cell NE carcinoma (NEC) which has well-characterised features similar to their counterparts in other organs, the true existence, diagnostic criteria and clinical significance of NE neoplasms (NENs) in the breast are shrouded in controversy. At the core of this discussion is whether normal NE cells exist in the breast, and if breast NETs have distinct morphology and clinical behaviour. When NETs are encountered in the breast, metastatic origin has to be excluded. The more frequent situation in which NE differentiation is observed in breast cancers is in the context of recognisable, morphologically well described special type neoplasms like the hypercellular mucinous carcinoma and solid papillary carcinoma. In this review, arguments for and against maintaining the category of NENs in the breast are articulated in relation to existing literature on this group of unusual tumours.
Collapse
Affiliation(s)
- Emad Rakha
- University of Nottingham and Nottingham University Hospital NHS Trust, Department of Histopathology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856
| |
Collapse
|
13
|
Bean GR, Najjar S, Shin SJ, Hosfield EM, Caswell-Jin JL, Urisman A, Jones KD, Chen YY, Krings G. Genetic and immunohistochemical profiling of small cell and large cell neuroendocrine carcinomas of the breast. Mod Pathol 2022; 35:1349-1361. [PMID: 35590107 PMCID: PMC9514991 DOI: 10.1038/s41379-022-01090-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
Neuroendocrine carcinomas (NEC) of the breast are exceedingly rare tumors, which are classified in the WHO system as small cell (SCNEC) and large cell (LCNEC) carcinoma based on indistinguishable features from their lung counterparts. In contrast to lung and enteropancreatic NEC, the genomics of breast NEC have not been well-characterized. In this study, we examined the clinicopathologic, immunohistochemical, and genetic features of 13 breast NEC (7 SCNEC, 4 LCNEC, 2 NEC with ambiguous small versus large cell morphology [ANEC]). Co-alterations of TP53 and RB1 were identified in 86% (6/7) SCNEC, 100% (2/2) ANEC, and 50% (2/4) LCNEC. The one SCNEC without TP53/RB1 alteration had other p53 pathway aberrations (MDM2 and MDM4 amplification) and was immunohistochemically RB negative. PIK3CA/PTEN pathway alterations and ZNF703 amplifications were each identified in 46% (6/13) NEC. Two tumors (1 SCNEC, 1 LCNEC) were CDH1 mutated. By immunohistochemistry, 100% SCNEC (6/6) and ANEC (2/2) and 50% (2/4) LCNEC (83% NEC) showed RB loss, compared to 0% (0/8) grade 3 neuroendocrine tumors (NET) (p < 0.001) and 38% (36/95) grade 3 invasive ductal carcinomas of no special type (IDC-NST) (p = 0.004). NEC were also more often p53 aberrant (60% vs 0%, p = 0.013), ER negative (69% vs 0%, p = 0.005), and GATA3 negative (67% vs 0%, p = 0.013) than grade 3 NET. Two mixed NEC had IDC-NST components, and 69% (9/13) of tumors were associated with carcinoma in situ (6 neuroendocrine DCIS, 2 non-neuroendocrine DCIS, 1 non-neuroendocrine LCIS). NEC and IDC-NST components of mixed tumors were clonally related and immunophenotypically distinct, lacking ER and GATA3 expression in NEC relative to IDC-NST, with RB loss only in NEC of one ANEC. The findings provide insight into the pathogenesis of breast NEC, underscore their classification as a distinct tumor type, and highlight genetic similarities to extramammary NEC, including highly prevalent p53/RB pathway aberrations in SCNEC.
Collapse
Affiliation(s)
- Gregory R. Bean
- grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Saleh Najjar
- grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Sandra J. Shin
- grid.413558.e0000 0001 0427 8745Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY USA
| | - Elizabeth M. Hosfield
- grid.414890.00000 0004 0461 9476Department of Pathology, Kaiser Permanente San Francisco Medical Center, San Francisco, CA USA
| | - Jennifer L. Caswell-Jin
- grid.168010.e0000000419368956Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA USA
| | - Anatoly Urisman
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Kirk D. Jones
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Yunn-Yi Chen
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Gregor Krings
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Ozaki Y, Miura S, Oki R, Morikawa T, Uchino K. Neuroendocrine Neoplasms of the Breast: The Latest WHO Classification and Review of the Literature. Cancers (Basel) 2021; 14:cancers14010196. [PMID: 35008357 PMCID: PMC8750232 DOI: 10.3390/cancers14010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast tumors exhibiting neuroendocrine differentiation are a heterogeneous group of tumors that have been variously defined in previous World Health Organization (WHO) classifications. In the WHO Classification of Tumours, 5th edition, neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) of the breast, both of which are invasive cancers, are classified as neuroendocrine neoplasms (NENs) of the breast. However, the clinical significance of NE differentiation in breast cancers, especially in NETs of the breast, is not yet fully understood, and a large overlap appears to exist between breast cancers showing NE differentiation and invasive breast cancer of no special type (IBC-NST). While breast NECs show distinct clinical and morphological features, diagnosis of NETs based on the morphological characteristics alone can be challenging; one reason is that breast NETs do not necessarily have the same morphological characteristics as those of NENs arising in other organs. Thus, the heterogeneity of breast tumors with neuroendocrine differentiation and the changes in their classifications over the years have left many open issues that still need to be resolved. In this review, we shall summarize the history of breast “NENs,” including of mixed types of tumors and the characteristics of these tumors, and discuss their differences from NENs arising in other organs. Abstract Breast tumors with neuroendocrine (NE) differentiation comprise an uncommon and heterogeneous group of tumors, including invasive breast cancer of no special type (IBC-NST) with NE features, neuroendocrine tumors (NETs), and neuroendocrine carcinoma (NEC). The most recent World Health Organization (WHO) classification in 2019 defined neuroendocrine neoplasms (NENs) of the breast (Br-NENs) as tumors in which >90% of cells show histological evidence of NE differentiation, including NETs (low-grade tumors) and NEC (high-grade). Due to the low prevalence of these tumors and successive changes in their diagnostic criteria over the years, only limited evidence of these tumors exists, derived mainly from case reports and retrospective case series. Breast tumors with NE differentiation are usually treated like the more commonly occurring IBC-NSTs. Immunohistochemistry (IHC) of breast tumors with NE differentiation usually shows a hormone receptor (HR)-positive and human epidermal growth factor type 2 (HER2)-negative profile, so that hormonal therapy with cyclin-dependent kinase (CDK)4/6 inhibitors or other targeted agents would be reasonable treatment options. Herein, we present a review of the literature on breast tumors with NE differentiation as defined in the latest WHO 2019 classification, and discuss the clinical management of these tumors.
Collapse
Affiliation(s)
- Yukinori Ozaki
- Department of Medical Oncology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan; (R.O.); (K.U.)
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Correspondence: ; Tel.: +81-3-3520-0111
| | - Sakiko Miura
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan; (S.M.); (T.M.)
| | - Ryosuke Oki
- Department of Medical Oncology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan; (R.O.); (K.U.)
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan; (S.M.); (T.M.)
| | - Keita Uchino
- Department of Medical Oncology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan; (R.O.); (K.U.)
| |
Collapse
|
15
|
Qi Y, Kong X, Wang X, Zhai J, Fang Y, Wang J. Metastasis to Breast from Extramammary Solid Tumors and Lymphomas: A 20-Year Population-Based Study. Cancer Invest 2021; 40:325-336. [PMID: 34937471 DOI: 10.1080/07357907.2021.2019264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To discuss the clinicopathological features and prognosis of metastases to the breast from extramammary solid tumors and lymphomas, we reviewed Cancer Hospital of Chinese Academy of Medical Sciences database from 01/01/2000 to 12/31/2020. Fifty-nine patients were identified. The most common primary sites for breast metastases were lymph node and pulmonary, followed by nasal cavity, ovary, skin, etc. All the patients were treated with chemotherapy, 18 were operated, 14 accepted radiotherapy. Metastasis to breast should be considered in any patient with tumor history presenting a breast lump. Pathological with immunohistochemical examination should be performed to identify the original site.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Zhao J, Tan W, Zhang L, Liu J, Shangguan M, Chen J, Zhao B, Peng Y, Cui M, Zhao S. FGFR3 phosphorylates EGFR to promote cisplatin-resistance in ovarian cancer. Biochem Pharmacol 2021; 190:114536. [PMID: 33794187 DOI: 10.1016/j.bcp.2021.114536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/08/2022]
Abstract
Ovarian cancer is a deadly gynecologic cancer, and the majority of patients with ovarian cancer experience relapse after traditional treatment. Cisplatin (DDP) is a common chemotherapeutic drug for ovarian cancer, but many patients acquire DDP-resistance after treatment with long-term chemotherapy. The mechanisms of drug-resistance in ovarian cancer are not clear, and we thus aim to investigate novel targets for DDP-resistant ovarian cancer. Differential analysis, KEGG pathway enrichment and protein interaction networks were employed to identify the key genes related to DDP-resistance in ovarian cancer. Subsequently, cell viability, apoptosis and migration were measured to assess the effect of fibroblast growth factor receptor 3 (FGFR3) on DDP-resistance. Further, Pearson correlation analysis and co-expression analysis were used to explore the downstream pathways of FGFR3, and the function of FGFR3 and its downstream targets were further demonstrated by in vitro and nude mice experiments. FGFR3 were expressed at high levels in DDP-resistant ovarian cancer cells. FGFR3 silencing suppressed the activation of PI3K/AKT pathway and impeded the drug-resistance and development of tumor cells. Afterwards, we found that FGFR3 was co-expressed with epidermal growth factor receptor (EGFR). FGFR3 overexpression elevated EGFR phosphorylation and activated PI3K/AKT signaling. Furthermore, in nude mice, silencing FGFR3 and inhibiting EGFR phosphorylation were observed to promote the therapeutic effect of DDP. In conclusion, FGFR3 overexpression enhances DDP-resistance of ovarian cancer by promoting EGFR phosphorylation and further activating PI3K/AKT pathway. This study may offer promising targets for DDP-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Lingyi Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Mengyuan Shangguan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Benzheng Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| |
Collapse
|
17
|
Breast cancer with neuroendocrine differentiation: an update based on the latest WHO classification. Mod Pathol 2021; 34:1062-1073. [PMID: 33531618 DOI: 10.1038/s41379-021-00736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Breast cancers with neuroendocrine (NE) differentiation are very heterogeneous, comprising broadly cancers that are morphologically similar to NE tumors (NET) of other anatomic sites, infiltrating breast carcinomas, no special type (IBC-NST) and other special subtypes with NE morphology and/or NE markers expression. Depending on the classification schemes, they are variably included into "NE breast cancers". The latest WHO classification harmonized NE breast cancers with NE neoplasms (NEN) of other organ systems, defined NEN into well-differentiated NET (low Nottingham grade) and poorly-differentiated NE carcinoma (NEC) (high Nottingham grade). Other IBC with NE differentiation are diagnosed based on solely the non-NEN component. Due to the changes in diagnostic criteria, variable results were obtained in the previous studies on NE breast cancers. Hence, the clinical value of NE differentiation in breast cancers is not well investigated and understood. In this review, the current understanding in the pathogenesis, clinical, prognostic, immunhistochemical, and molecular features of "NE breast cancers" is summarized. Controversial issues in their diagnosis and classification are also discussed.
Collapse
|
18
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
19
|
Betella N, Smiroldo V, Baldelli R, Lania A. Treatment of NETs from Rare Origin. NEUROENDOCRINE NEOPLASIA MANAGEMENT 2021:211-229. [DOI: 10.1007/978-3-030-72830-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Zagami P, Kandaraki E, Renne G, Grimaldi F, Spada F, Laffi A, Fazio N. The rare entity of bilateral and unilateral neuroendocrine metastases to the breast: a case series and literature review. Ecancermedicalscience 2020; 14:1123. [PMID: 33209114 PMCID: PMC7652541 DOI: 10.3332/ecancer.2020.1123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Primary neuroendocrine neoplasms (NENs) in the breast are very rare. Until 2011, the prevalence was 0.1% of all breast lesions and 1% of all NENs, whereas metastatic breast NENs represent 1%–2% of all breast tumours. However, it seems that over the last 5 years the diagnostic frequency of breast NENs has increased, probably for more alert specialists and advanced diagnostic tools, leading to a prevalence of 2%–5% of diagnosed breast cancers, mostly in the elderly population. Breast metastases from extramammary malignancies are uncommon and bilateral ones are even more uncommon, with few reported in the literature. We describe four clinical settings of breast metastases from different NENs and the multidisciplinary approach for diagnosis and treatment. Methods Four patients were found to have NEN primaries metastasised to the breast. A literature review was conducted to identify similar cases and characterise breast metastases from neuroendocrinal tumors (NETs). Results Two patients presented with bilateral breast metastases (one with well-differentiated panNET and another with atypical lung carcinoid) and two had unilateral (one with moderately differentiated lung NET and one with atypical lung carcinoid). There are about 13 cases of NEN breast metastases reported in the English literature. The ileum is the most common primary site, followed by the appendix, duodenum, pancreas and lung. Conclusion Breast lesions from extramammary primary often pose a diagnostic challenge, since a breast nodule can be the first and often the only presentation of the disease. However, differentiating between primary and secondary NEN breast lesions is essential, owing to different clinical management and prognosis.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, IEO, IRCCS, Milan 20132, Italy
| | - Eleni Kandaraki
- Department of Pathology, European Institute of Oncology, Milan 20132, Italy
| | - Giuseppe Renne
- Department of Pathology, European Institute of Oncology, Milan 20132, Italy
| | - Franco Grimaldi
- Endocrinology and Metabolism Unit, University of Udine, Italy
| | - Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, IEO, IRCCS, Milan 20132, Italy
| | - Alice Laffi
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, IEO, IRCCS, Milan 20132, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, IEO, IRCCS, Milan 20132, Italy
| |
Collapse
|
21
|
Trevisi E, La Salvia A, Daniele L, Brizzi MP, De Rosa G, Scagliotti GV, Di Maio M. Neuroendocrine breast carcinoma: a rare but challenging entity. Med Oncol 2020; 37:70. [PMID: 32712767 PMCID: PMC7382662 DOI: 10.1007/s12032-020-01396-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
Breast carcinoma with neuroendocrine differentiation, also known as neuroendocrine breast carcinoma (NEBC), includes a heterogeneous group of rare tumors, which account for 2–5% of all invasive breast carcinomas. Because of their low incidence, most of the current limited knowledge of these tumors derives from anecdotal case reports or small retrospective series. The diagnosis of NEBC is based on the presence of morphological features similar to gastrointestinal and lung NETs and neuroendocrine markers. NEBCs are usually hormone receptors positive and HER2 negative, but despite this luminal phenotype, most recent studies suggested that NEBC could be associated with worse prognosis compared to invasive breast cancer without neuroendocrine differentiation. Due to its rarity and lack of randomized data, there is little evidence to guide the choice of treatment, so NEBC is currently treated as any invasive breast carcinoma not-otherwise specified. Recently, attempts to molecularly characterize NEBC have been made, in order to provide new targets for a more personalized treatment of this uncommon entity.
Collapse
Affiliation(s)
- Elena Trevisi
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Anna La Salvia
- Department of Oncology, University Hospital, 12 de Octubre, Madrid, Spain
| | | | - Maria Pia Brizzi
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | | | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Torino, Italy
| |
Collapse
|
22
|
Lai BSW, Tsang JY, Poon IK, Shao Y, Chan SK, Tam FK, Cheung SY, Shea KH, Tse GM. The Clinical Significance of Neuroendocrine Features in Invasive Breast Carcinomas. Oncologist 2020; 25:e1318-e1329. [PMID: 32472950 DOI: 10.1634/theoncologist.2020-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023] Open
Abstract
The latest World Health Organization (WHO) classification categorized invasive breast carcinomas (IBCs) with neuroendocrine (NE) differentiations into neuroendocrine neoplasms (including well-differentiated neuroendocrine tumor [NET] and poorly differentiated neuroendocrine carcinoma [NEC]) and IBC no special type with NE features (IBC-NST-NE). However, little is documented of the clinical significance of this classification; also the precise thresholds and choices of NE markers were variable. In the current study, a large cohort of patients with IBC with NE differentiation were morphologically classified based on the WHO criteria and the clinical relevance of expression of different NE markers (synaptophysin [SYN], chromogranin [CG], and CD56) was evaluated. Among 1,372 IBCs, 52 NET (3.8%) and 172 IBC-NST-NE (12.5%) were identified. Compared with the IBC-no NE cases, NET and IBC-NST-NE were similarly associated with positive estrogen receptor (ER) expression and lower grade (p < .001). For patient outcome, IBC-NST-NE, but not NET, demonstrated significantly worse survival than the IBC-no NE cases. Based on high (≥50%) and low (<50%) expression for each NE marker, independent poor disease-free survival for SYNlo CGlo and SYNhi CGlo cancers (IBC-no NE cases as references, hazard ratio [HR], ≤1.429; p ≤ .026) was found. Interestingly, SYN and CG expression correlated with each other and they shared similar clinicopathologic characteristics; but not with with CD56. In addition, CD56-only positive cases were associated with hormone receptors negativity and basal markers positivity (p ≤ .019), and patients' outcome was similar to IBC-no NE cancers. Our findings suggested that NE markers expression may provide information to fine tune treatment strategy. The relevance of CD56 as NE marker requires further studies. IMPLICATIONS FOR PRACTICE: Invasive breast carcinomas (IBCs) with neuroendocrine (NE) differentiation are heterogeneous in clinicopathologic parameters, biomarker expression, and prognosis. However, there are no specific therapies targeting NE differentiation, and all carcinomas with any NE differentiation are treated similarly as other IBCs. The results of this study suggest that stratification based on NE marker expression levels may provide added prognostically pertinent information, aiding better treatment strategy. In addition, CD56-only positive carcinomas showed a different clinicopathologic and biomarker expression profile compared with those with chromogranin and synaptophysin expression. Relevance of CD56 as an NE marker requires further studies.
Collapse
Affiliation(s)
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Ivan K Poon
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Yan Shao
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | - Fiona K Tam
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | | | - Ka-Ho Shea
- Department of Pathology, Tuen Mun Hospital, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| |
Collapse
|
23
|
Freitag CE, Mei P, Wei L, Parwani AV, Li Z. Genetic alterations and their association with clinicopathologic characteristics in advanced breast carcinomas: focusing on clinically actionable genetic alterations. Hum Pathol 2020; 102:94-103. [PMID: 32445652 DOI: 10.1016/j.humpath.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Breast carcinomas (BCs) are genetically heterogeneous and associated with numerous mutations which can be used to predict outcomes and initiate targeted therapies. We investigated clinicopathologic characteristics associated with gene mutations detected using the FoundationOne CDx assay in a cohort of 223 clinically advanced BCs (66 locally recurrent and 157 metastatic) from our institution. One hundred fifty unique mutations were identified (total 1008) in the cohort, with the most prevalent (>10%) including TP53 (53.8%), PIK3CA (35%), MYC (22%), CCND1 (19.7%), FGF19 (19.7%), FGF4 (16.6%), FGF3 (16.1%), ZNF703 (14.8%), ESR1 (13.9%), FGFR1 (13.5%), PTEN (12.1%), and CDH1 (10.8%). ERBB2 genetic alteration was most common in human epidermal growth factor receptor 2 (HER2)-positive BCs, and GATA3 and ESR1 mutations were only identified in hormone receptor-positive BC. Mutations enriched in triple-negative BCs (TNBCs) included TP53, PTEN, RB1, and CDKN2A/B. CDH1 mutation was predominantly found in lobular carcinomas, and PIK3CA mutation was also enriched. Mutations enriched in metaplastic carcinomas with heterologous mesenchymal differentiation included TP53, PTEN, MCL1, CDKN2A/B, and NOTCH2. An increase in mutations of CCND1, FGF19, FGF4, FGF3, ESR1, and EMSY was identified in metastatic BCs compared with locally recurrent BCs. Overall, PIK3CA was the most frequent clinically actionable genetic alteration (35%), followed by MYC (22%), CCND1 (19.7%), and FGF3/FGF4/FGFR1 (16%). In conclusion, our study provides genetic insight into the biology of advanced BCs and summarizes their most frequent clinically actionable genetic alterations, generating useful genomic information for potential improvement of patient management.
Collapse
Affiliation(s)
- Cody Eric Freitag
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ping Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lai Wei
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
25
|
Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019; 8:E614. [PMID: 31216761 PMCID: PMC6627960 DOI: 10.3390/cells8060614] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases expressed on the cell membrane that play crucial roles in both developmental and adult cells. Dysregulation of FGFRs has been implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular carcinoma, ovarian cancer and lung adenocarcinoma. Due to their functional importance, FGFRs have been considered as promising drug targets for the therapy of various cancers. Multiple small molecule inhibitors targeting this family of kinases have been developed, and some of them are in clinical trials. Furthermore, the pan-FGFR inhibitor erdafitinib (JNJ-42756493) has recently been approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic or unresectable urothelial carcinoma (mUC). This review summarizes the structure of FGFR, especially its kinase domain, and the development of small molecule FGFR inhibitors.
Collapse
Affiliation(s)
- Shuyan Dai
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhan Zhou
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
26
|
Kelten Talu C, Savli TC, Huq GE, Leblebici C. Histopathological and Clinical Differences Between Primary Breast Carcinomas With Neuroendocrine Features and Primary Breast Carcinomas Mimicking Neuroendocrine Features. Int J Surg Pathol 2019; 27:744-752. [PMID: 31195855 DOI: 10.1177/1066896919851873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We aimed to determine the histopathological differences between primary breast carcinomas with neuroendocrine features (NEBC) and carcinomas mimicking neuroendocrine features (NEBC-like). Twenty-three cases with NEBC, all showing positive staining for synaptophysin and/or chromogranin-A in ≥50% of tumor cells and 36 cases with NEBC-like (no staining for neuroendocrine [NE] markers but suspicious for NE morphology in terms of solid/trabecular growth patterns) were included in the study. Significant differences were found between the groups in terms of the patients' ages, histologic/nuclear grade of tumor, lymphovascular invasion, comedo-type ductal carcinoma in situ (DCIS), microcalcification, Ki-67 proliferation index, nuclear shape, and level of peritumoral lymphocytic infiltration. The presence of large-size solid cohesive groups of tumor cells; plasmocytoid, spindle, and/or columnar shapes of tumor cells; and eosinophilic-granular appearance of cytoplasm were mostly noted in the NEBC group. The presence of small- to medium-sized solid cohesive groups of tumor cells; high-grade histologic and nuclear features; clear cytoplasm; and round to ovoid nucleus were mostly noted in the NEBC-like group. No significant differences were found in terms of tumor size, ER/PR/HER2 status, as well as the presence of DCIS, elastosis, extracellular/intracellular mucin, signet ring cells, apocrine features, and accompanying papilloma or ductal ectasia. In conclusion, small- to medium-sized solid cohesive groups of tumor cells, high-grade features, clear cytoplasm, round to ovoid shape of nucleus, lymphovascular invasion, comedo-type DCIS, microcalcification, high level of Ki-67 proliferation index (≥20%), and moderate/strong level of peritumoral lymphocytic infiltration might support non-NE features in breast carcinomas.
Collapse
Affiliation(s)
- Canan Kelten Talu
- 1 Department of Pathology, University of Health Sciences, Istanbul SUAM, Turkey
| | - Taha Cumhan Savli
- 1 Department of Pathology, University of Health Sciences, Istanbul SUAM, Turkey
| | - Gulben Erdem Huq
- 1 Department of Pathology, University of Health Sciences, Istanbul SUAM, Turkey
| | - Cem Leblebici
- 1 Department of Pathology, University of Health Sciences, Istanbul SUAM, Turkey
| |
Collapse
|
27
|
Osamura RY, Matsui N, Okubo M, Chen L, Field AS. Histopathology and Cytopathology of Neuroendocrine Tumors and Carcinomas of the Breast: A Review. Acta Cytol 2019; 63:340-346. [PMID: 31163417 DOI: 10.1159/000500705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/02/2019] [Indexed: 11/19/2022]
Abstract
Neuroendocrine tumors (NET) and carcinomas (NEC) of the breast are rare diseases, but NEC has attracted attention in both cytopathology and surgical pathology because of its specific management and prognosis. Fine-needle aspiration biopsy (FNAB) cytology can make the diagnosis in many cases particularly with high-grade NEC, with definitive diagnosis based on histopathology and immunohistochemistry. This review describes the characteristics of the disease based on the WHO classification 2012 and recent literature and -includes discussion related to the International Academy of Cytology Yokohama System of Reporting Breast FNAB -cytology.
Collapse
Affiliation(s)
- Robert Y Osamura
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan,
- Division of Diagnostic Pathology, Nippon Koukan Hospital, Kawasaki, Japan,
| | - Naruaki Matsui
- Division of Diagnostic Pathology, Nippon Koukan Hospital, Kawasaki, Japan
| | - Misa Okubo
- Division of Pathology, Yamachika Memorial Hospital Odawara City, Odawara, Japan
| | - Lan Chen
- Department of Pathology, Beijing Hospital and National Center of Gerontology, Beijing, China
| | - Andrew S Field
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales, Australia
- University of NSW and Notre Dame University Medical Schools, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Vranic S, Palazzo J, Sanati S, Florento E, Contreras E, Xiu J, Swensen J, Gatalica Z. Potential Novel Therapy Targets in Neuroendocrine Carcinomas of the Breast. Clin Breast Cancer 2018; 19:131-136. [PMID: 30268765 DOI: 10.1016/j.clbc.2018.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Neuroendocrine carcinoma (NEC) of the breast is a rare, special type of breast cancer, reportedly constituting 2% to 5% of all breast cancers. Although breast NEC does not have a specific targeted therapy, several new targeted therapies based on specific biomarkers were recently investigated in the NEC of lung and in other types of breast carcinoma, which may provide guidance to their feasibility in breast NEC. MATERIALS AND METHODS Twenty breast NECs were profiled for biomarkers of therapy including antibody-drug conjugates (DLL3, TROP-2, and FOLR1), histone deacetylase (H3K36Me3) inhibitors, tropomyosin receptor kinases (NTRK1/2/3 gene fusions) targeted inhibitors, alkylating agents (MGMT), and immune checkpoint inhibitors (PD-L1, TMB, and MSI) using immunohistochemistry and DNA/RNA next-generation sequencing assays. RESULTS Predictive expression of TROP-2, FOLR1, and H3K36Me3 were detected in different subsets of tumors and may pave the way for development of novel targeted therapies in some patients with breast NECs. There was no evidence of DLL3 expression, NTRK gene fusions, or MGMT hypermethylation. No biomarkers predictive of immune checkpoint inhibitor efficacy (programmed death-ligand 1 expression, tumor mutational burden, microsatellite instability) were identified. FGFR and CCND1 gene amplifications were detected in isolated cases. CONCLUSIONS This study identified several potential targets for novel therapies in breast NEC, including farletuzumab and mirvetuximab soravtansine (FOLR1), sacituzumab govitecan (TROP-2), and HDAC inhibitors (H3K36Me3). In some cases, CCND1 gene amplification may indicate the usefulness of investigational therapies. The reported results should serve as an early indication of potential clinical relevance in selected patients with breast NEC.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | - Juan Palazzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Souzan Sanati
- Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO
| | | | | | | | | | | |
Collapse
|
29
|
Bockorny B, Rusan M, Chen W, Liao RG, Li Y, Piccioni F, Wang J, Tan L, Thorner AR, Li T, Zhang Y, Miao C, Ovesen T, Shapiro GI, Kwiatkowski DJ, Gray NS, Meyerson M, Hammerman PS, Bass AJ. RAS-MAPK Reactivation Facilitates Acquired Resistance in FGFR1-Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR-MEK Blockade. Mol Cancer Ther 2018; 17:1526-1539. [PMID: 29654068 PMCID: PMC6030474 DOI: 10.1158/1535-7163.mct-17-0464] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/23/2017] [Accepted: 04/06/2018] [Indexed: 12/26/2022]
Abstract
The FGFR kinases are promising therapeutic targets in multiple cancer types, including lung and head and neck squamous cell carcinoma, cholangiocarcinoma, and bladder cancer. Although several FGFR kinase inhibitors have entered clinical trials, single-agent clinical efficacy has been modest and resistance invariably occurs. We therefore conducted a genome-wide functional screen to characterize mechanisms of resistance to FGFR inhibition in a FGFR1-dependent lung cancer cellular model. Our screen identified known resistance drivers, such as MET, and additional novel resistance mediators including members of the neurotrophin receptor pathway (NTRK), the TAM family of tyrosine kinases (TYRO3, MERTK, AXL), and MAPK pathway, which were further validated in additional FGFR-dependent models. In an orthogonal approach, we generated a large panel of resistant clones by chronic exposure to FGFR inhibitors in FGFR1- and FGFR3-dependent cellular models and characterized gene expression profiles employing the L1000 platform. Notably, resistant clones had enrichment for NTRK and MAPK signaling pathways. Novel mediators of resistance to FGFR inhibition were found to compensate for FGFR loss in part through reactivation of MAPK pathway. Intriguingly, coinhibition of FGFR and specific receptor tyrosine kinases identified in our screen was not sufficient to suppress ERK activity or to prevent resistance to FGFR inhibition, suggesting a redundant reactivation of RAS-MAPK pathway. Dual blockade of FGFR and MEK, however, proved to be a more powerful approach in preventing resistance across diverse FGFR dependencies and may represent a therapeutic opportunity to achieve durable responses to FGFR inhibition in FGFR-dependent cancers. Mol Cancer Ther; 17(7); 1526-39. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- MAP Kinase Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase Kinase 1/genetics
- Mice
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Bruno Bockorny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Maria Rusan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rachel G Liao
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Therese Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David J Kwiatkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| |
Collapse
|
30
|
Shanks A, Choi J, Karur V. Dramatic response to cyclin D-dependent kinase 4/6 inhibitor in refractory poorly differentiated neuroendocrine carcinoma of the breast. Proc (Bayl Univ Med Cent) 2018; 31:352-354. [PMID: 29904310 DOI: 10.1080/08998280.2018.1463041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/17/2023] Open
Abstract
Neuroendocrine tumors are a rare subset of breast carcinomas. Commonly, platinum-based doublet is used as a systemic treatment option for high-grade neuroendocrine carcinomas from lung, gastrointestinal, and genitourinary origins. In comparison to other breast cancers, neuroendocrine carcinomas have unique genomic features and different treatment strategies. We present a patient with high-grade neuroendocrine carcinoma of the breast who had a successful and durable response to the cyclin D-dependent kinase (CDK) 4/6 inhibitor palbociclib in conjunction with endocrine therapy. This patient was refractory to commonly used platinum-based chemotherapy as well as hormone-based treatment. To date, this is the first published case of use of CDK 4/6 inhibitor in primary neuroendocrine carcinoma of the breast.
Collapse
Affiliation(s)
| | - Julia Choi
- Texas A&M College of Medicine, Temple, Texas.,Department of Hematology and Oncology, Baylor Scott and White, Temple, Texas
| | - Vinit Karur
- Texas A&M College of Medicine, Temple, Texas.,Department of Hematology and Oncology, Baylor Scott and White, Temple, Texas
| |
Collapse
|
31
|
Cheymol C, Abramovici O, Do Cao C, Dumont A, Robin YM, El Hajbi F, Dansin E, Bonneterre J, Lauridant G. [Neuroendocrine tumors of the breast: Myth or reality? A systematic review]. Bull Cancer 2018; 105:431-439. [PMID: 29567279 DOI: 10.1016/j.bulcan.2018.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
Abstract
Primary neuroendocrine breast carcinomas are rare and little-known tumors. Only a limited number of studies on neuroendocrine breast carcinomas have been reported in the literature, and the vast majority of them are small retrospective series or case reports. According to the World Health Organization (WHO), they account for only 2 % to 5 % of breast cancers. Their diagnosis relies on the presence of a neuroendocrine architecture and the expression of neuroendocrine markers (chromogranin A and/or synaptophysin). The revised 2012 WHO classification subdivides them into three categories: (i) well-differentiated neuroendocrine carcinomas, (ii) poorly differentiated neuroendocrine carcinomas or small-cell carcinomas, and (iii) invasive breast carcinomas with neuroendocrine differentiation. Their clinical features and radiological characteristics are not different from those of other types of breast cancer. Because of discordant results, their clinical outcome is still poorly defined. So far, no standard treatment has been established, and most clinicians draw on their experience of invasive ductal cancer. The role of specific treatments like platinum-based chemotherapy, somatostatin analogues, peptide receptor radionucleide therapy or temozolomide remains unclear. A better knowledge of the molecular pathways involved in their carcinogenesis could help to identify new potential therapeutic targets. The efficacy of targeted therapies has to be studied.
Collapse
Affiliation(s)
- Claire Cheymol
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département de sénologie, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Olivia Abramovici
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département d'anatomie et cytopathologie, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Christine Do Cao
- Centre hospitalo-universitaire régional de Lille 2, service d'endocrinologie, diabétologie et maladies métaboliques, avenue Oscar-Lambret, 59000 Lille, France
| | - Aurélie Dumont
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, unité d'oncologie moléculaire humaine, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Yves-Marie Robin
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département d'anatomie et cytopathologie, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Farid El Hajbi
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département d'oncologie urodigestive, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Eric Dansin
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département de cancérologie cervicofaciale et thoracique, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Jacques Bonneterre
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département de sénologie, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - Géraldine Lauridant
- Centre régional de lutte contre le cancer des Hauts de France, centre Oscar-Lambret, département de sénologie, 3, rue Frédéric-Combemale, 59000 Lille, France.
| |
Collapse
|
32
|
Tsai TH, Hsieh PP, Hong YC, Yeh CH, Yu LHL, Yu MS. Metastatic primary neuroendocrine carcinoma of the breast (NECB). JOURNAL OF CANCER RESEARCH AND PRACTICE 2018. [DOI: 10.1016/j.jcrpr.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Wu D, Guo M, Min X, Dai S, Li M, Tan S, Li G, Chen X, Ma Y, Li J, Jiang L, Qu L, Zhou Z, Chen Z, Chen L, Xu G, Chen Y. LY2874455 potently inhibits FGFR gatekeeper mutants and overcomes mutation-based resistance. Chem Commun (Camb) 2018; 54:12089-12092. [DOI: 10.1039/c8cc07546h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
LY2874455 can avoid a steric clash with the mutated gatekeeper residue in FGFR4.
Collapse
|
34
|
Suresh PS, Venkatesh T, Tsutsumi R, Shetty A. Next-generation sequencing for endocrine cancers: Recent advances and challenges. Tumour Biol 2017; 39:1010428317698376. [DOI: 10.1177/1010428317698376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.
Collapse
Affiliation(s)
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Abhishek Shetty
- Department of Biosciences, Mangalore University, Mangalore, India
| |
Collapse
|
35
|
Maqsood A, Khoury T, Kumar P, Papanicolau-Sengos A, Early AP. Neuroendocrine Carcinoma of the Breast With Endobronchial Metastases and Syndrome of Inappropriate Antidiuretic Hormone Secretion. Clin Breast Cancer 2017; 17:e229-e232. [PMID: 28420584 DOI: 10.1016/j.clbc.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Anaum Maqsood
- Catholic Health System, State University of New York at Buffalo, Buffalo, NY.
| | | | | | | | | |
Collapse
|
36
|
Roininen N, Takala S, Haapasaari KM, Jukkola-Vuorinen A, Mattson J, Heikkilä P, Karihtala P. Primary neuroendocrine breast carcinomas are associated with poor local control despite favourable biological profile: a retrospective clinical study. BMC Cancer 2017; 17:72. [PMID: 28118820 PMCID: PMC5259879 DOI: 10.1186/s12885-017-3056-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast carcinomas with neuroendocrine features (NEBC) are a very rare entity of mammary neoplasms, WHO classification of which has recently been revised. There are very limited data available about the clinical behaviour and treatment options of NEBC. METHODS We collected retrospectively patients with NEBC from Oulu and Helsinki University Hospitals in 2007-2015. There were 43 NEBC cases during the period. RESULTS The incidence of NEBC from all breast cancers varied from 0.1% in Helsinki to 1.3% in Oulu. The mean tumor size was 2.2 cm and 23 patients (55.8%) had no lymph node metastases when diagnosed. In total, 4 patients (9.3%) had distant metastases at the time of diagnosis. High estrogen receptor (ER) expression was observed in 41 (97.7%) patients. When non-metastatic NEBC were compared to a prospective set of ductal carcinomas (n = 506), NEBC were more often HER2 negative (p = 0.046), ER positive (p = 0.0062) and the NEBC patients were older (p < 0.0005) than patients with ductal carcinomas. Plasma chromogranin A correlated only to higher age at diagnosis (p = 0.0028). Relapse-free survival (p = 0.0013), disease-free survival (p = 0.024) and overall survival (p = 0.0028) favoured ductal carcinomas compared to NEBC, while no difference was observed in distant disease-free survival or in breast cancer-specific survival. CONCLUSIONS There is remarkable variation in the incidence of NEBC in Finland, which is likely to be explained by differences in the use of neuroendocrine marker immunostainings. Poor local control and worse overall survival may be linked to the more aggressive biology of the disease, despite its association with apparently indolent prognostic factors.
Collapse
Affiliation(s)
- Nelli Roininen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 22, FIN-90029, Oulu, Finland.,Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sari Takala
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 22, FIN-90029, Oulu, Finland
| | - Johanna Mattson
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 22, FIN-90029, Oulu, Finland.
| |
Collapse
|
37
|
Targeting FGFR Pathway in Breast Cancer. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Marchiò C, Geyer FC, Ng CK, Piscuoglio S, De Filippo MR, Cupo M, Schultheis AM, Lim RS, Burke KA, Guerini-Rocco E, Papotti M, Norton L, Sapino A, Weigelt B, Reis-Filho JS. The genetic landscape of breast carcinomas with neuroendocrine differentiation. J Pathol 2016; 241:405-419. [PMID: 27925203 DOI: 10.1002/path.4837] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/11/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
Neuroendocrine breast carcinomas (NBCs) account for 2-5% of all invasive breast cancers, and are histologically similar to neuroendocrine tumours from other sites. They typically express oestrogen receptor (ER), and are HER2-negative and of luminal 'intrinsic' subtype. Here, we sought to define the mutational profile of NBCs, and to investigate whether NBCs and common forms of luminal (ER+ /HER2- ) breast carcinoma show distinct repertoires of somatic mutations. Eighteen ER+ /HER2- NBCs, defined as harbouring >50% of tumour cells expressing chromogranin A and/or synaptophysin, and matched normal tissues were microdissected and subjected to massively parallel sequencing targeting all exons of 254 genes most frequently mutated in breast carcinomas and/or related to DNA repair. Their mutational repertoire was compared with that of ER+ /HER2- breast carcinomas (n = 240), PAM50-defined luminal breast carcinomas (luminal A, n = 209; luminal B, n = 111) and invasive lobular carcinomas (n = 127) from The Cancer Genome Atlas. NBCs were found to harbour a median of 4.5 (range 1-11) somatic mutations, similar to that of luminal B breast carcinomas (median = 3, range 0-17) but significantly higher than that of luminal A breast carcinomas (median = 3, range 0-18, p = 0.02). The most frequently mutated genes were GATA3, FOXA1, TBX3, and ARID1A (3/18, 17%), and PIK3CA, AKT1, and CDH1 (2/18, 11%). NBCs less frequently harboured PIK3CA mutations than common forms of ER+ /HER2- , luminal A and invasive lobular carcinomas (p < 0.05), and showed a significantly higher frequency of somatic mutations affecting ARID1A (17% versus 2%, p < 0.05) and the transcription factor-encoding genes FOXA1 (17% versus 2%, p = 0.01) and TBX3 (17% versus 3%, p < 0.05) than common-type ER+ /HER2- breast carcinomas. No TP53 somatic mutations were detected in NBCs. As compared with common forms of luminal breast carcinomas, NBCs show a distinctive repertoire of somatic mutations featuring lower frequencies of TP53 and PIK3CA mutations, enrichment for FOXA1 and TBX3 mutations, and, akin to neuroendocrine tumours from other sites, ARID1A mutations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Caterina Marchiò
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Charlotte Ky Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria R De Filippo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Cupo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anne M Schultheis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pathology Department, University Hospital, Cologne, Germany
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena Guerini-Rocco
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pathology Department, European Institute of Oncology, Milan, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
39
|
Criscitiello C, Esposito A, De Placido S, Curigliano G. Targeting fibroblast growth factor receptor pathway in breast cancer. Curr Opin Oncol 2016; 27:452-6. [PMID: 26397764 DOI: 10.1097/cco.0000000000000224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this manuscript is to critically review the literature published last year focusing on the rationale and potential role of fibroblast growth factor receptor (FGFR) inhibitors in breast cancer. RECENT FINDINGS Substantial evidence indicates that aberrant FGFR signaling is involved in the pathogenesis of breast cancer. FGFR targeting has progressed in the last years due to the development of novel agents inhibiting FGF or FGFR. One of the most investigated FGFR inhibitors is lucitanib, which has shown clinical activity in breast cancer, especially in presence of FGF aberrations. Moving forward, the design and development of FGFR4 inhibitors and covalent FGFR inhibitors may overcome resistance to first-generation FGFR inhibitors. SUMMARY Inhibition of FGFR signaling is under investigation in the treatment of breast cancer with increasing interest. Next steps will include the optimal selection of patients to be treated with this class of drugs and the development of new-generation FGFR inhibitors to face with the resistance issue.
Collapse
Affiliation(s)
- Carmen Criscitiello
- aDivision of Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan bDipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
40
|
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 2016; 38:3-15. [PMID: 27245147 PMCID: PMC4899036 DOI: 10.3892/ijmm.2016.2620] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
41
|
Tanner Y, Grose RP. Dysregulated FGF signalling in neoplastic disorders. Semin Cell Dev Biol 2016; 53:126-35. [DOI: 10.1016/j.semcdb.2015.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
|
42
|
Abstract
Primary neuroendocrine carcinomas (NEC) are rare tumors in children and young adults, resulting in a lack of standardized treatment approach. To refine the molecular taxonomy of these rare tumors, we performed whole exome sequencing in a pediatric patient with mediastinal NEC. We identified a somatic mutation in HRAS gene and LOH regions in NF2, MYO18B, and RUX3 genes. In addition, a germline heterozygous somatic variant in BRCA2 with LOH at that same position in the tumor tissue was also found. Our data provide valuable insight into the genomic landscape of this tumor, prompting further investigation of therapeutic targets.
Collapse
|
43
|
Inno A, Bogina G, Turazza M, Bortesi L, Duranti S, Massocco A, Zamboni G, Carbognin G, Alongi F, Salgarello M, Gori S. Neuroendocrine Carcinoma of the Breast: Current Evidence and Future Perspectives. Oncologist 2015; 21:28-32. [PMID: 26659223 DOI: 10.1634/theoncologist.2015-0309] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/27/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED : Neuroendocrine carcinoma of the breast is considered a rare entity, and for this reason there are no data from prospective clinical trials on its optimal management. Early stage tumors are usually treated with the same strategy used for the other types of invasive breast cancer. Anthracycline- and taxane-based regimens represent the most frequently administered chemotherapy in neoadjuvant and adjuvant setting, as well as for metastatic disease, although combinations of platinum compounds and etoposide have been widely used, in particular for small-cell histology and tumors with a high proliferation index. For metastatic disease, a multimodality therapeutic strategy can be considered on an individual basis, with chemotherapy, endocrine therapy, peptide receptor radionuclide therapy, radiation therapy, surgery, or a combination of the above. In the near future, a better knowledge of the biology of these tumors will hopefully provide new therapeutic targets for personalized treatment. In this review, we discuss the current evidence and the future perspectives on diagnosis and treatment of neuroendocrine carcinoma of the breast. IMPLICATIONS FOR PRACTICE Neuroendocrine carcinoma of the breast (NECB) is a distinct entity of breast cancer. Clinical features and morphology are not helpful to distinguish NECB from other subtypes of breast cancer; therefore, immunohistochemistry markers for neuroendocrine differentiation, mainly chromogranin and synaptophysin, should be routinely used to confirm the diagnosis, especially in cases of mucinous or solid papillary carcinoma in which the suspicion of NECB may be relevant. Adjuvant treatment should be offered according to the same recommendations given for the other types of invasive breast cancer. An accurate diagnosis of NECB is also important in the metastatic setting, in which a multimodality approach including specific therapies such as peptide receptor radionuclide therapy can be considered.
Collapse
Affiliation(s)
- Alessandro Inno
- Department of Medical Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Giuseppe Bogina
- Department of Pathology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Monica Turazza
- Department of Medical Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Laura Bortesi
- Department of Pathology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Simona Duranti
- Department of Medical Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Alberto Massocco
- Department of Surgery, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Giuseppe Zamboni
- Department of Pathology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Giovanni Carbognin
- Department of Radiology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Filippo Alongi
- Department of Radiotherapy, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Matteo Salgarello
- Department of Nuclear Medicine, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Stefania Gori
- Department of Medical Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| |
Collapse
|
44
|
Sohl CD, Ryan MR, Luo B, Frey KM, Anderson KS. Illuminating the molecular mechanisms of tyrosine kinase inhibitor resistance for the FGFR1 gatekeeper mutation: the Achilles' heel of targeted therapy. ACS Chem Biol 2015; 10:1319-29. [PMID: 25686244 DOI: 10.1021/acschembio.5b00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human fibroblast growth factor receptors (FGFRs) 1-4 are a family of receptor tyrosine kinases that can serve as drivers of tumorigenesis. In particular, FGFR1 gene amplification has been implicated in squamous cell lung and breast cancers. Tyrosine kinase inhibitors (TKIs) targeting FGFR1, including AZD4547 and E3810 (Lucitanib), are currently in early phase clinical trials. Unfortunately, drug resistance limits the long-term success of TKIs, with mutations at the "gatekeeper" residue leading to tumor progression. Here we show the first structural and kinetic characterization of the FGFR1 gatekeeper mutation, V561M FGFR1. The V561M mutation confers a 38-fold increase in autophosphorylation achieved at least in part by a network of interacting residues forming a hydrophobic spine to stabilize the active conformation. Moreover, kinetic assays established that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. Structural analyses of these TKIs with wild type (WT) and gatekeeper mutant forms of FGFR1 offer clues to developing inhibitors that maintain potency against gatekeeper mutations. We show that AZD4547 affinity is preserved by V561M FGFR1 due to a flexible linker that allows multiple inhibitor binding modes. This is the first example of a TKI binding in distinct conformations to WT and gatekeeper mutant forms of FGFR, highlighting adaptable regions in both the inhibitor and binding pocket crucial for drug design. Exploiting inhibitor flexibility to overcome drug resistance has been a successful strategy for combatting diseases such as AIDS and may be an important approach for designing inhibitors effective against kinase gatekeeper mutations.
Collapse
Affiliation(s)
- Christal D. Sohl
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Molly R. Ryan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - BeiBei Luo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kathleen M. Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
45
|
Bunney TD, Wan S, Thiyagarajan N, Sutto L, Williams SV, Ashford P, Koss H, Knowles MA, Gervasio FL, Coveney PV, Katan M. The Effect of Mutations on Drug Sensitivity and Kinase Activity of Fibroblast Growth Factor Receptors: A Combined Experimental and Theoretical Study. EBioMedicine 2015; 2:194-204. [PMID: 26097890 PMCID: PMC4471147 DOI: 10.1016/j.ebiom.2015.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are recognized therapeutic targets in cancer. We here describe insights underpinning the impact of mutations on FGFR1 and FGFR3 kinase activity and drug efficacy, using a combination of computational calculations and experimental approaches including cellular studies, X-ray crystallography and biophysical and biochemical measurements. Our findings reveal that some of the tested compounds, in particular TKI258, could provide therapeutic opportunity not only for patients with primary alterations in FGFR but also for acquired resistance due to the gatekeeper mutation. The accuracy of the computational methodologies applied here shows a potential for their wider application in studies of drug binding and in assessments of functional and mechanistic impacts of mutations, thus assisting efforts in precision medicine.
Collapse
Affiliation(s)
- Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
| | - Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
| | - Ludovico Sutto
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St., London WC1E 6BT, UK
| | - Sarah V. Williams
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
| | - Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
- Division of Molecular Structure, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Margaret A. Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Francesco L. Gervasio
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St., London WC1E 6BT, UK
| | - Peter V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
46
|
Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A 2014; 111:E4869-77. [PMID: 25349422 DOI: 10.1073/pnas.1403438111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.
Collapse
|