1
|
Arbatskiy M, Balandin D, Churov A, Varachev V, Nikolaeva E, Mitrofanov A, Bekyashev A, Tkacheva O, Susova O, Nasedkina T. Intratumoral Cell Heterogeneity in Patient-Derived Glioblastoma Cell Lines Revealed by Single-Cell RNA-Sequencing. Int J Mol Sci 2024; 25:8472. [PMID: 39126040 PMCID: PMC11313325 DOI: 10.3390/ijms25158472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma cell lines derived from different patients are widely used in tumor biology research and drug screening. A key feature of glioblastoma is the high level of inter- and intratumor heterogeneity that accounts for treatment resistance. Our aim was to investigate whether intratumor heterogeneity is maintained in cell models. Single-cell RNA sequencing was used to investigate the cellular composition of a tumor sample and six patient-derived glioblastoma cell lines. Three cell lines preserved the mutational profile of the original tumor, whereas three others differed from their precursors. Copy-number variation analysis showed significantly rearranged genomes in all the cell lines and in the tumor sample. The tumor had the most complex cell composition, including cancer cells and microenvironmental cells. Cell lines with a conserved genome had less diverse cellularity, and during cultivation, a relative increase in the stem-cell-derived progenitors was noticed. Cell lines with genomes different from those of the primary tumors mainly contained neural progenitor cells and microenvironmental cells. The establishment of cell lines without the driver mutations that are intrinsic to the original tumors may be related to the selection of clones or cell populations during cultivation. Thus, patient-derived glioblastoma cell lines differ substantially in their cellular profile, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Vyacheslav Varachev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| | - Eugenia Nikolaeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Alexei Mitrofanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Ali Bekyashev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Olga Tkacheva
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Olga Susova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| |
Collapse
|
2
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
3
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
4
|
Ganesh RA, Sonpatki P, Naik D, John AE, Sathe G, Lakshmikantha A, Chandrachari KP, Bauer L, Knäuper V, Aeschlimann D, Venkatraaman K, Shah N, Sirdeshmukh R. Multi-Omics Analysis of Glioblastoma and Glioblastoma Cell Line: Molecular Insights Into the Functional Role of GPR56 and TG2 in Mesenchymal Transition. Front Oncol 2022; 12:841890. [PMID: 35600402 PMCID: PMC9119646 DOI: 10.3389/fonc.2022.841890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptor 56 (GPR56/ADGRG1) is an adhesion GPCR with an essential role in brain development and cancer. Elevated expression of GPR56 was observed in the clinical specimens of Glioblastoma (GBM), a highly invasive primary brain tumor. However, we found the expression to be variable across the specimens, presumably due to the intratumor heterogeneity of GBM. Therefore, we re-examined GPR56 expression in public domain spatial gene expression data and single-cell expression data for GBM, which revealed that GPR56 expression was high in cellular tumors, infiltrating tumor cells, and proliferating cells, low in microvascular proliferation and peri-necrotic areas of the tumor, especially in hypoxic mesenchymal-like cells. To gain a better understanding of the consequences of GPR56 downregulation in tumor cells and other molecular changes associated with it, we generated a sh-RNA-mediated GPR56 knockdown in the GBM cell line U373 and performed transcriptomics, proteomics, and phospho-proteomics analysis. Our analysis revealed enrichment of gene signatures, pathways, and phosphorylation of proteins potentially associated with mesenchymal (MES) transition in the tumor and concurrent increase in cell invasion and migration behavior of the GPR56 knockdown GBM cells. Interestingly, our analysis also showed elevated expression of Transglutaminase 2 (TG2) - a known interactor of GPR56, in the knockdown cells. The inverse expression of GPR56 and TG2 was also observed in intratumoral, spatial gene expression data for GBM and in GBM cell lines cultured in vitro under hypoxic conditions. Integrating all these observations, we propose a putative functional link between the inverse expression of the two proteins, the hypoxic niche and the mesenchymal status in the tumor. Hypoxia-induced downregulation of GPR56 and activation of TG2 may result in a network of molecular events that contribute to the mesenchymal transition of GBM cells, and we propose a putative model to explain this functional and regulatory relationship of the two proteins.
Collapse
Affiliation(s)
- Raksha A Ganesh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore, India.,Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, India
| | - Pranali Sonpatki
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore, India
| | - Divya Naik
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore, India
| | | | - Gajanan Sathe
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | | | | | - Lea Bauer
- Matrix Biology and Tissue Repair Research Unit, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Vera Knäuper
- Matrix Biology and Tissue Repair Research Unit, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Krishnan Venkatraaman
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, India
| | - Nameeta Shah
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore, India
| | - Ravi Sirdeshmukh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India.,Health Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
6
|
Shi Y, Jiang J, Cui Y, Chen Y, Dong T, An H, Liu P. MSH6 Aggravates the Hypoxic Microenvironment via Regulating HIF1A to Promote the Metastasis of Glioblastoma Multiforme. DNA Cell Biol 2020; 40:93-100. [PMID: 33181035 DOI: 10.1089/dna.2020.5442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by diffuse infiltration of the brain, active regional recurrence, low cure proportion, and limited chemotherapy efficiency. MutS homolog 6 (MSH6) is a component of the mismatch repair system related to the oncogenesis, tumor evolution, and recurrence of GBM. The impact of MSH6 upregulation on the tumor microenvironment (TME) of GBM and the feasibility of MSH6 as a potential target to improve the prognosis remain unknown. The expression of MSH6 at mRNA level indicated that MSH6 expressed higher in GBM tissues than that in normal ones. The transwell assay and expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) suggested that the capability of invasion and migration in U251-MSH6 was more stubborn. The intracranial tumor model was established with nude mice to further explore in vivo. The time-weight curve, overall survival, tumor volumes, expression levels of MMP-2 and MMP-9 in tissue, and hematoxylin and eosin staining all indicated that MSH6 had a positive effect on metastasis. The expression levels of related proteins suggested that the hypoxia TME induced by MSH6 may promote metastasis via epithelial to mesenchymal transition, stemness, and angiogenesis progress. MSH6 is an overexpressed oncogene in human GBM tissues, which accelerated metastasis by regulating hypoxia inducible factor-1A (HIF1A) to form a hypoxic TME in GBM. The MSH6 was a vital marker of GBM, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Ying Shi
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Jiang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingzhe Cui
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongda An
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pengfei Liu
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain 2019; 142:847-866. [PMID: 30946477 PMCID: PMC6485274 DOI: 10.1093/brain/awz044] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The complexity of glioblastoma multiforme, the most common and lethal variant of gliomas, is reflected by cellular and molecular heterogeneity at both the inter- and intra-tumoural levels. Molecular subtyping has arisen in the past two decades as a promising strategy to give better predictions of glioblastoma multiforme evolution, common disease pathways, and rational treatment options. The Cancer Genome Atlas network initially identified four molecular subtypes of glioblastoma multiforme: proneural, neural, mesenchymal and classical. However, further studies, also investigated glioma stem cells, have only identified two to three subtypes: proneural, mesenchymal and classical. The proneural-mesenchymal transition upon tumour recurrence has been suggested as a mechanism of tumour resistance to radiation and chemotherapy treatment. Glioblastoma multiforme patients with the mesenchymal subtype tend to survive shorter than other subtypes when analysis is restricted to samples with low transcriptional heterogeneity. Although the mesenchymal signature in malignant glioma may seem at odds with the common idea of the ectodermal origin of neural-glial lineages, the presence of the mesenchymal signature in glioma is supported by several studies suggesting that it can result from: (i) intrinsic expression of tumour cells affected with accumulated genetic mutations and cell of origin; (ii) tumour micro-environments with recruited macrophages or microglia, mesenchymal stem cells or pericytes, and other progenitors; (iii) resistance to tumour treatment, including radiotherapy, antiangiogenic therapy and possibly chemotherapy. Genetic abnormalities, mainly NF1 mutations, together with NF-κB transcriptional programs, are the main driver of acquiring mesenchymal-signature. This signature is far from being simply tissue artefacts, as it has been identified in single cell glioma, circulating tumour cells, and glioma stem cells that are released from the tumour micro-environment. All these together suggest that the mesenchymal signature in glioblastoma multiforme is induced and sustained via cell intrinsic mechanisms and tumour micro-environment factors. Although patients with the mesenchymal subtype tend to have poorer prognosis, they may have favourable response to immunotherapy and intensive radio- and chemotherapy.
Collapse
Affiliation(s)
- Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.,Duke Preclinical Translational Unit, Duke University Medical Center, Durham, North Carolina
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Neurological Institute C. Besta, Milan, Italy
| | - Gabi Hanna
- Duke Preclinical Translational Unit, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Chauvin C, Joalland N, Perroteau J, Jarry U, Lafrance L, Willem C, Retière C, Oliver L, Gratas C, Gautreau-Rolland L, Saulquin X, Vallette FM, Vié H, Scotet E, Pecqueur C. NKG2D Controls Natural Reactivity of Vγ9Vδ2 T Lymphocytes against Mesenchymal Glioblastoma Cells. Clin Cancer Res 2019; 25:7218-7228. [PMID: 31506386 DOI: 10.1158/1078-0432.ccr-19-0375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cellular immunotherapies are currently being explored to eliminate highly invasive and chemoradioresistant glioblastoma (GBM) cells involved in rapid relapse. We recently showed that concomitant stereotactic injections of nonalloreactive allogeneic Vγ9Vδ2 T lymphocytes eradicate zoledronate-primed human GBM cells. In the present study, we investigated the spontaneous reactivity of allogeneic human Vγ9Vδ2 T lymphocytes toward primary human GBM cells, in vitro and in vivo, in the absence of any prior sensitization. EXPERIMENTAL DESIGN Through functional and transcriptomic analyses, we extensively characterized the immunoreactivity of human Vγ9Vδ2 T lymphocytes against various primary GBM cultures directly derived from patient tumors. RESULTS We evidenced that GBM cells displaying a mesenchymal signature are spontaneously eliminated by allogeneic human Vγ9Vδ2 T lymphocytes, a reactivity process being mediated by γδ T-cell receptor (TCR) and tightly regulated by cellular stress-associated NKG2D pathway. This led to the identification of highly reactive Vγ9Vδ2 T lymphocyte populations, independently of a specific TCR repertoire signature. Moreover, we finally provide evidence of immunotherapeutic efficacy in vivo, in the absence of any prior tumor cell sensitization. CONCLUSIONS By identifying pathways implicated in the selective natural recognition of mesenchymal GBM cell subtypes, accounting for 30% of primary diagnosed and 60% of recurrent GBM, our results pave the way for novel targeted cellular immunotherapies.
Collapse
Affiliation(s)
- Cynthia Chauvin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Noémie Joalland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jeanne Perroteau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Ulrich Jarry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Laura Lafrance
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Catherine Willem
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Etablissement Français du Sang, Nantes, France
| | - Christelle Retière
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Etablissement Français du Sang, Nantes, France
| | - Lisa Oliver
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Catherine Gratas
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Laetitia Gautreau-Rolland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Xavier Saulquin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - François M Vallette
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.,Institut de Cancérologie de l'Ouest (ICO), St Herblain, France
| | - Henri Vié
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Claire Pecqueur
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| |
Collapse
|
9
|
Klopfenstein Q, Truntzer C, Vincent J, Ghiringhelli F. Cell lines and immune classification of glioblastoma define patient's prognosis. Br J Cancer 2019; 120:806-814. [PMID: 30899088 PMCID: PMC6474266 DOI: 10.1038/s41416-019-0404-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background Prognostic markers for glioblastoma are lacking. Both intrinsic tumour characteristics and microenvironment could influence cancer prognostic. The aim of our study was to generate a pure glioblastoma cell lines and immune classification in order to decipher the respective role of glioblastoma cell and microenvironment on prognosis. Methods We worked on two large cohorts of patients suffering from glioblastoma (TCGA, n = 481 and Rembrandt, n = 180) for which clinical data, transcriptomic profiles and outcome were recorded. Transcriptomic profiles of 129 pure glioblastoma cell lines were clustered to generate a glioblastoma cell lines classification. Presence of subtypes of glioblastoma cell lines and immune cells was determined using deconvolution. Results Glioblastoma cell lines classification defined three new molecular groups called oncogenic, metabolic and neuronal communication enriched. Neuronal communication-enriched tumours were associated with poor prognosis in both cohorts. Immune cell infiltrate was more frequent in mesenchymal classical classification subgroup and metabolic-enriched tumours. A combination of age, glioblastoma cell lines classification and immune classification could be used to determine patient’s outcome in both cohorts. Conclusions Our study shows that glioblastoma-bearing patients can be classified based on their age, glioblastoma cell lines classification and immune classification. The combination of these information improves the capacity to address prognosis.
Collapse
Affiliation(s)
- Quentin Klopfenstein
- Research Platform in Biological Oncology, Dijon, France.,GIMI Genetic and Immunology Medical Institute, Dijon, France
| | - Caroline Truntzer
- Research Platform in Biological Oncology, Dijon, France.,GIMI Genetic and Immunology Medical Institute, Dijon, France
| | - Julie Vincent
- Department of Medical Oncology, Centre GF Leclerc, Dijon, France
| | - Francois Ghiringhelli
- Research Platform in Biological Oncology, Dijon, France. .,GIMI Genetic and Immunology Medical Institute, Dijon, France. .,Department of Medical Oncology, Centre GF Leclerc, Dijon, France. .,INSERM, UMR1231, Dijon, France.
| |
Collapse
|
10
|
Kim R, Lee S, Lee J, Kim M, Kim WJ, Lee HW, Lee MY, Kim J, Chang W. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy. BMB Rep 2018; 51:406-411. [PMID: 29966581 PMCID: PMC6130835 DOI: 10.5483/bmbrep.2018.51.8.105] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Exosomes are small membranous vesicles which contain abundant RNA molecules, and are transferred from releasing cells to uptaking cells. MicroRNA (miRNA) is one of the transferred molecules affecting the adopted cells, including glioma cells. We hypothesized that mesenchymal stem cells (MSCs) can secrete exosomes loading miRNA and have important effects on the progress of gliomas. To determine these effects by treating exosomal miRNA in culture media of miRNA mimic transfected MSCs, we assessed the in vitro cell proliferation and invasion capabilities, and the expression level of relative proteins associated with cell apoptosis, growth and migration. For animal studies, the mice injected with U87 cells were exposed to exosomes derived from miRNA-584-5p transfected MSCs, to confirm the influence of exosomal miRNA on the progress of glioma. Based on our results, we propose a new targeted cancer therapy wherein exosomes derived from miRNA transfected MSCs could be used to modulate tumor progress as the anticancer vehicles.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Seokyeon Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Minji Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Won Jung Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Hee Won Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 04310, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| |
Collapse
|
11
|
Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma. Cell Death Dis 2017; 8:3210. [PMID: 29238047 PMCID: PMC5870582 DOI: 10.1038/s41419-017-0051-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.
Collapse
|
12
|
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, Barthel F, Cho HJ, Lin YH, Satani N, Martinez-Ledesma E, Zheng S, Chang E, Sauvé CEG, Olar A, Lan ZD, Finocchiaro G, Phillips JJ, Berger MS, Gabrusiewicz KR, Wang G, Eskilsson E, Hu J, Mikkelsen T, DePinho RA, Muller F, Heimberger AB, Sulman EP, Nam DH, Verhaak RGW. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 2017; 32:42-56.e6. [PMID: 28697342 PMCID: PMC5599156 DOI: 10.1016/j.ccell.2017.06.003] [Citation(s) in RCA: 1258] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single-cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.
Collapse
Affiliation(s)
- Qianghu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas-Houston Graduate School in Biomedical Sciences, Houston, TX 77030, USA
| | - Hoon Kim
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Massimo Squatrito
- Cancer Cell Biology Programme, Seve Ballesteros Foundation Brain Tumor Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Lisa Scarpace
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ana C deCarvalho
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sali Lyu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Pengping Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Floris Barthel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emmanuel Martinez-Ledesma
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siyuan Zheng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Adriana Olar
- Departments of Pathology and Laboratory Medicine, Neurosurgery Medical University of South Carolina, and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Zheng D Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Konrad R Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tom Mikkelsen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florian Muller
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P Sulman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea; Department of Neurosurgery Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Roel G W Verhaak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
13
|
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, Barthel F, Cho HJ, Lin YH, Satani N, Martinez-Ledesma E, Zheng S, Chang E, Sauvé CEG, Olar A, Lan ZD, Finocchiaro G, Phillips JJ, Berger MS, Gabrusiewicz KR, Wang G, Eskilsson E, Hu J, Mikkelsen T, DePinho RA, Muller F, Heimberger AB, Sulman EP, Nam DH, Verhaak RGW. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 2017. [PMID: 28697342 DOI: 10.1016/j.ccell.2017.06.003.erratum.in:cancercell.2018;33(1):152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single-cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.
Collapse
Affiliation(s)
- Qianghu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas-Houston Graduate School in Biomedical Sciences, Houston, TX 77030, USA
| | - Hoon Kim
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Massimo Squatrito
- Cancer Cell Biology Programme, Seve Ballesteros Foundation Brain Tumor Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Lisa Scarpace
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ana C deCarvalho
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sali Lyu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Pengping Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China
| | - Floris Barthel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emmanuel Martinez-Ledesma
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siyuan Zheng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Adriana Olar
- Departments of Pathology and Laboratory Medicine, Neurosurgery Medical University of South Carolina, and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Zheng D Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Konrad R Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tom Mikkelsen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florian Muller
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P Sulman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea; Department of Neurosurgery Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Roel G W Verhaak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
14
|
Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD, Zadeh G. GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 2014; 16:1167-75. [PMID: 24642524 PMCID: PMC4136895 DOI: 10.1093/neuonc/nou035] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 01/29/2023] Open
Abstract
Gliomas are a heterogeneous group of tumors that show variable proliferative potential, invasiveness, aggressiveness, histological grading, and clinical behavior. In this review, we focus on glioblastoma multiforme (GBM), a grade IV glioma, which is the most common and malignant of primary adult brain tumors. Research over the past several decades has revealed the existence of extensive cellular, molecular, genetic, epigenetic, and metabolic heterogeneity among tumors of the same grade and even within individual tumors. Evaluation of different tumor types has shown that tumors with advanced grade and clinical aggressiveness also display enhanced molecular, cellular, and microenvironmental heterogeneity. From a therapeutic standpoint, this heterogeneity is a major clinical hurdle for devising effective therapeutic strategies for patients and challenges personalized medicine. In this review, we will highlight key aspects of GBM heterogeneity, directing special attention to regional heterogeneity, hypoxia, genomic heterogeneity, tumor-specific metabolic reprogramming, neovascularization or angiogenesis, and stromal immune cells. We will further discuss the clinical implications of GBM heterogeneity in the context of therapy.
Collapse
Affiliation(s)
- Alenoush Vartanian
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Sanjay K Singh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Sameer Agnihotri
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Shahrzad Jalali
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Kelly Burrell
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Kenneth D Aldape
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Gelareh Zadeh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| |
Collapse
|
15
|
Riehmer V, Gietzelt J, Beyer U, Hentschel B, Westphal M, Schackert G, Sabel MC, Radlwimmer B, Pietsch T, Reifenberger G, Weller M, Weber RG, Loeffler M. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosomes Cancer 2014; 53:589-605. [PMID: 24706357 DOI: 10.1002/gcc.22169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022] Open
Abstract
Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Riehmer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Haynes HR, Camelo-Piragua S, Kurian KM. Prognostic and predictive biomarkers in adult and pediatric gliomas: toward personalized treatment. Front Oncol 2014; 4:47. [PMID: 24716189 PMCID: PMC3970023 DOI: 10.3389/fonc.2014.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.
Collapse
Affiliation(s)
- Harry R Haynes
- Department of Neuropathology, Frenchay Hospital , Bristol , UK
| | | | | |
Collapse
|
17
|
Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14:92-107. [PMID: 24457416 PMCID: PMC4003223 DOI: 10.1038/nrc3655] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have extended our understanding of the molecular biology that underlies adult glioblastoma over many years. By contrast, high-grade gliomas in children and adolescents have remained a relatively under-investigated disease. The latest large-scale genomic and epigenomic profiling studies have yielded an unprecedented abundance of novel data and provided deeper insights into gliomagenesis across all age groups, which has highlighted key distinctions but also some commonalities. As we are on the verge of dissecting glioblastomas into meaningful biological subgroups, this Review summarizes the hallmark genetic alterations that are associated with distinct epigenetic features and patient characteristics in both paediatric and adult disease, and examines the complex interplay between the glioblastoma genome and epigenome.
Collapse
Affiliation(s)
- Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - David T.W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jacques Grill
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, Universite Paris Sud, 114 Rue Eduoard Vaillant, 94805 Villejuif, France
| | - Oren Becher
- Division of Pediatric Hematology/Oncology, Duke University Medical Center, DUMC 91001, Durham, NC 27710, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jacek Majewski
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Joseph F. Costello
- Brain Tumor Research Center, Department of Neurosurgery, University of California, 2340 Sutter St., San Francisco, CA 94143, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics and Departments of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kenneth Aldape
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0085, Houston, TX 77030, USA
| | - Cameron W. Brennan
- Human Oncology & Pathogenesis Program and Department of Neurosurgery, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Nada Jabado
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 2014; 119:616-24. [PMID: 24408041 DOI: 10.1007/s11547-013-0371-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/25/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The discrimination between recurrent glioma and radiation injury is often a challenge on conventional magnetic resonance imaging (MRI). We verified whether adding and combining proton MR spectroscopic imaging ((1)H-MRSI), diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) information at 3 Tesla facilitate such discrimination. MATERIALS AND METHODS Twenty-nine patients with histologically verified high-grade gliomas, who had undergone surgical resection and radiotherapy, and had developed new contrast-enhancing lesions close to the treated tumour, underwent MRI, (1)H-MRSI, DWI and PWI at regular time intervals. The metabolite ratios choline (Cho)/normal( n )Cho n , N-acetylaspartate (NAA)/NAA n , creatine (Cr)/Cr n , lactate/lipids (LL)/LL n , Cho/Cr n , NAA/Cr n , Cho/NAA, NAA/Cr and Cho/Cr were derived from (1)H-MRSI; the apparent diffusion coefficient (ADC) from DWI; and the relative cerebral blood volume (rCBV) from PWI. RESULTS In serial MRI, recurrent gliomas showed a progressive enlargement, and radiation injuries showed regression or no modification. Discriminant analysis showed that discrimination accuracy was 79.3 % when considering only the metabolite ratios (predictor, Cho/Cr n ), 86.2 % when considering ratios and ADC (predictors, Cho/Cr n and ADC), 89.7 % when considering ratios and rCBV (predictors, Cho/Cr n , Cho/Cr and rCBV), and 96.6 % when considering ratios, ADC and rCBV (predictors, Cho/Cho n , ADC and rCBV). CONCLUSIONS The multiparametric 3-T MR assessment based on (1)H-MRSI, DWI and PWI in addition to MRI is a useful tool to discriminate tumour recurrence/progression from radiation effects.
Collapse
|
19
|
Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 2014; 232:165-77. [PMID: 24114756 PMCID: PMC4138801 DOI: 10.1002/path.4282] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and most aggressive diffuse glioma, associated with short survival and uniformly fatal outcome, irrespective of treatment. It is characterized by morphological, genetic and gene-expression heterogeneity. The current standard of treatment is maximal surgical resection, followed by radiation, with concurrent and adjuvant chemotherapy. Due to the heterogeneity, most tumours develop resistance to treatment and shortly recur. Following recurrence, glioblastoma is quickly fatal in the majority of cases. Recent genetic molecular advances have contributed to a better understanding of glioblastoma pathophysiology and disease stratification. In this paper we review basic glioblastoma pathophysiology, with emphasis on clinically relevant genetic molecular alterations and potential targets for further drug development.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | | |
Collapse
|
20
|
Zheng S, Fu J, Vegesna R, Mao Y, Heathcock LE, Torres-Garcia W, Ezhilarasan R, Wang S, McKenna A, Chin L, Brennan CW, Yung WKA, Weinstein JN, Aldape KD, Sulman EP, Chen K, Koul D, Verhaak RGW. A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes Dev 2013; 27:1462-72. [PMID: 23796897 DOI: 10.1101/gad.213686.113] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas to relate chromosomal alterations to imbalances in DNA dosage and describe the landscape of intragenic breakpoints in glioblastoma multiforme (GBM). Gene length, guanine-cytosine (GC) content, and local presence of a copy number alteration were closely associated with breakpoint susceptibility. A dense pattern of repeated focal amplifications involving the murine double minute 2 (MDM2)/cyclin-dependent kinase 4 (CDK4) oncogenes and associated with poor survival was identified in 5% of GBMs. Gene fusions and rearrangements were detected concomitant within the breakpoint-enriched region. At the gene level, we noted recurrent breakpoints in genes such as apoptosis regulator FAF1. Structural alterations of the FAF1 gene disrupted expression and led to protein depletion. Restoration of the FAF1 protein in glioma cell lines significantly increased the FAS-mediated apoptosis response. Our study uncovered a previously underappreciated genomic mechanism of gene deregulation that can confer growth advantages on tumor cells and may generate cancer-specific vulnerabilities in subsets of GBM.
Collapse
Affiliation(s)
- Siyuan Zheng
- Department of Bioinformatics and Computational Biology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Magnus N, Gerges N, Jabado N, Rak J. Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 2013; 11:1197-200. [PMID: 23582031 DOI: 10.1111/jth.12242] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 11/28/2022]
|
22
|
Olar A, Aldape KD. Biomarkers classification and therapeutic decision-making for malignant gliomas. Curr Treat Options Oncol 2013; 13:417-36. [PMID: 22956341 DOI: 10.1007/s11864-012-0210-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OPINION STATEMENT Diffuse gliomas are the most common primary brain tumors, with glioblastoma (GBM) encompassing more than 50 % of all cases. Despite aggressive therapy, patients nearly always succumb to their disease and the survival for patients with GBM is approximately 1 year. During past years, numerous scientific contributions have reshaped the field of neuro-oncology and neuropathology. A series of molecular discoveries have shed light on new pathogenic mechanisms, as well as new prognostic and predictive biomarkers with clinical relevance. The current World Health Organization (WHO) classification system is solely based on morphologic criteria; however, there is accumulated evidence that tumors with similar histology have distinct molecular signatures with a clinically significant impact on treatment response and survival. Molecular markers and signatures could be incorporated into the glioma classification and grading system to mirror the clinical outcomes. Additionally, molecular markers could lead to a redefinition of currently controversial entities, such as mixed oligoastrocytomas. Newly discovered molecular alterations also have the potential to become targets for future drug development. Despite tremendous progress in the past decade, therapeutic progress for diffuse gliomas has been slow. A further understanding of glioma biology, in concert with well-designed clinical trials, is necessary to identify more putative molecular biomarkers and unravel the mysteries in the pathogenic mechanisms that trigger this menacing disease.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology and Genomic Medicine, The Methodist Hospital, 6565 Fannin St, M227, Houston, TX 77030, USA.
| | | |
Collapse
|
23
|
Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013; 335:201-4. [PMID: 23419525 DOI: 10.1016/j.canlet.2013.02.019] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/18/2013] [Accepted: 02/08/2013] [Indexed: 12/12/2022]
Abstract
Exosomes are 30-150 nm vesicles secreted by a wide range of mammalian cells that can contain microRNA (miRNA). To test if marrow stromal cell (MSC) exosomes could be used as a vehicle for delivery of anti-tumor miRNAs, we transfected MSCs with a miR-146b expression plasmid, and harvested exosomes released by the MSCs. Intra-tumor injection of exosomes derived from miR-146-expressing MSCs significantly reduced glioma xenograft growth in a rat model of primary brain tumor.
Collapse
Affiliation(s)
- Mark Katakowski
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zong H, Verhaak RGW, Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 2012; 12:383-94. [PMID: 22616703 PMCID: PMC3368274 DOI: 10.1586/erm.12.30] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioma remains incurable despite great advancements in medicine. Targeting the cell of origin for gliomas could bring great hope for patients. However, as a collection of diverse diseases, each subtype of glioma could derive from a distinct cell of origin. To resolve such a complex problem, one must use multiple research approaches to gain deep insights. Here we review current evidence regarding the cell of origin from clinical observations, whole-genome molecular pathology and glioma animal models. We conclude that neural stem cells, glial progenitors (including oligodendrocyte progenitor cells) and astrocytes could all serve as cells of origin for gliomas, and that cells incurring initial mutations (cells of mutation) might not transform, while their progeny cells could instead transform and act as cells of origin. Further studies with multidisciplinary approaches are needed to link each subtype to a particular cell of origin, and to develop effective therapies that target the signaling network within these cells.
Collapse
Affiliation(s)
- Hui Zong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|