1
|
Wahab N, Dubey V, Sivachandran V, Llewellyn C, Richardson D. Campylobacter spp. in men who have sex with men: A systematic review. Int J STD AIDS 2024; 35:1094-1102. [PMID: 39259938 DOI: 10.1177/09564624241280739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Campylobacter spp. has been reported to be a sexually transmissible enteric infection in men who have sex with men (MSM) since the 1980s causing an acute severe diarrhoeal illness and rarely an acute demyelinating polyneuropathy (Guillain-Barré syndrome). The aim of this review was to explore the factors seen in MSM with Campylobacter spp. METHODS We conducted a systematic review following PRISMA guidelines by searching 7 bibliographical databases in August 2024 for manuscripts in English. Initial screening was conducted by a primary author and then two authors conducted independent full-text reviews to determine the final eligible manuscripts. We only included manuscripts which explored factors seen in MSM with Campylobacter spp.. Two authors independently used the Joanna Briggs Institute critical appraisal tools to assess risk for bias. This review was registered with PROSPERO (CRD42023464803). RESULTS 25 manuscripts met the inclusion criteria that included 265 MSM with Campylobacter spp.. This review has highlighted demographic factors (living with HIV, living in urban MSM districts, HIV negative MSM using HIV-PrEP), biological factors (antimicrobial resistant Campylobacter spp., having a concurrent or previous sexually transmitted infection [Neisseria gonorrhoeae, Chlamydia trachomatis, Herpes simplex virus, Hepatitis C, Mpox] current/previous enteric infection including non-pathogenic parasites [Shigella spp., Giardia duodenalis, Cryptosporidium, Entamoeba histolytica, Salmonella spp., Entamoeba hartmanii, Entamoeba coli, Endolimax nana, Iodamoeba butchlii]) and behavioural factors (condomless receptive anal sex, oral-anal sex, oral genital sex, multiple/new sexual partners, using sex on premises venues and the internet to meet sexual partners) seen in MSM with Campylobacter spp. CONCLUSION This review has highlighted some important demographic, biological and behavioural risk factors seen in MSM with Campylobacter spp.. These data can be used to inform future public health interventions and clinical guidelines.
Collapse
Affiliation(s)
- Natasha Wahab
- Department of primary care and public health, Brighton & Sussex Medical School, Brighton, UK
| | - Vaibhav Dubey
- Department of primary care and public health, Brighton & Sussex Medical School, Brighton, UK
| | - Vidhushan Sivachandran
- Department of primary care and public health, Brighton & Sussex Medical School, Brighton, UK
| | - Carrie Llewellyn
- Department of primary care and public health, Brighton & Sussex Medical School, Brighton, UK
| | - Daniel Richardson
- Department of primary care and public health, Brighton & Sussex Medical School, Brighton, UK
- Sexual Health & HIV medicine, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
2
|
He M, Zhao N. A Mixed Effect Similarity Matrix Regression Model (SMRmix) for Integrating Multiple Microbiome Datasets at Community Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584315. [PMID: 38559012 PMCID: PMC10979838 DOI: 10.1101/2024.03.10.584315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Recent studies have highlighted the importance of human microbiota in our health and diseases. However, in many areas of research, individual microbiome studies often offer inconsistent results due to the limited sample sizes and the heterogeneity in study populations and experimental procedures. This inconsistency underscores the necessity for integrative analysis of multiple microbiome datasets. Despite the critical need, statistical methods that incorporate multiple microbiome datasets and account for the study heterogeneity are not available in the literature. METHODS In this paper, we develop a mixed effect similarity matrix regression (SMRmix) approach for identifying community level microbiome shifts between outcomes. SMRmix has a close connection with the microbiome kernel association test, one of the most popular approaches for such a task but is only applicable when we have a single study. SMRmix enables researchers to consolidate findings from diverse microbiome studies. RESULTS Via extensive simulations, we show that SMRmix has well-controlled type I error and higher power than some potential competitors. We applied the SMRmix to two real-world datasets. The first, from the HIV-reanalysis consortium, integrated data from 17 studies on gut dysbiosis in HIV. Our analysis confirmed consistent associations between the gut microbiome and HIV infection as well as MSM (men who have sex with men) status, demonstrating greater power than competing methods. The second dataset involved 11 studies on the gut microbiome in colorectal cancer; analysis with SMRmix confirmed significant dysbiosis in affected individuals compared to healthy controls. CONCLUSION The development of SMRmix enables the integration of multiple studies and effectively managing study heterogeneity, and provides a powerful tool for uncovering consistent associations between diseases and community-level microbiome data.
Collapse
|
3
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
4
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Guo Y, Wang W, Yu Y, Sun X, Zhang B, Wang Y, Cao J, Wen S, Wang X, Li Y, Cai S, Wu R, Duan W, Xia W, Wei F, Duan J, Dong H, Guo S, Zhang F, Sun Z, Huang X. Crosstalk between human immunodeficiency virus infection and salivary bacterial function in men who have sex with men. Front Cell Infect Microbiol 2024; 14:1341545. [PMID: 38779561 PMCID: PMC11109444 DOI: 10.3389/fcimb.2024.1341545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background Engaging in anal sexual intercourse markedly increases the risk of developing HIV among men who have sex with men (MSM); oral sexual activities tend to uniquely introduce gut-derived microbes to salivary microbiota, which, combined with an individual's positive HIV status, may greatly perturb oral microecology. However, till date, only a few published studies have addressed this aspect. Methods Based on 16S rRNA sequencing data of bacterial taxa, MicroPITA picks representative samples for metagenomic analysis, effectively revealing how the development and progression of the HIV disease influences oral microbiota in MSM. Therefore, we collected samples from 11 HIV-negative and 44 HIV-positive MSM subjects (stage 0 was defined by HIV RNA positivity, but negative or indeterminate antibody status; stages 1, 2, and 3 were defined by CD4+ T lymphocyte counts ≥ 500, 200-499, and ≤ 200 or opportunistic infection) and selected 25 representative saliva samples (5 cases/stage) using MicroPITA. Metagenomic sequencing analysis were performed to explore whether positive HIV status changes salivary bacterial KEGG function and metabolic pathway in MSM. Results The core functions of oral microbiota were maintained across each of the five groups, including metabolism, genetic and environmental information processing. All HIV-positive groups displayed KEGG functions of abnormal proliferation, most prominently at stage 0, and others related to metabolism. Clustering relationship analysis tentatively identified functional relationships between groups, with bacterial function being more similar between stage 0-control groups and stage 1-2 groups, whereas the stage 3 group exhibited large functional changes. Although we identified most metabolic pathways as being common to all five groups, several unique pathways formed clusters for certain groups; the stage 0 group had several, while the stage 2 and 3 groups had few, such clusters. The abundance of K03046 was positively correlated with CD4 counts. Conclusion As HIV progresses, salivary bacterial function and metabolic pathways in MSM progressively changes, which may be related to HIV promoting abnormal energy metabolism and exacerbate pathogen virulence. Further, infection and drug resistance of acute stage and immune cell destruction of AIDS stage were abnormally increased, predicting an increased risk for MSM individuals to develop systemic and oral diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yixi Yu
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xintong Sun
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Baojin Zhang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jie Cao
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wen
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Ruojun Wu
- Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenshan Duan
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyi Duan
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haozhi Dong
- Department of Stomatology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Department of Periodontology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
8
|
Serrano-Villar S, Tincati C, Raju SC, Sáenz JS, Moreno E, Bargiela R, Cabello-Ubeda A, Sendagorta E, Kurz A, Perez Molina JA, de Benito A, Hov JR, Fernandez-Lopez L, Muriel A, Del Campo R, Moreno S, Trøseid M, Seifert J, Ferrer M. Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat Med 2023; 29:1738-1749. [PMID: 37464040 DOI: 10.1038/s41591-023-02407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023]
Abstract
Human papillomavirus can cause preinvasive, high-grade squamous intraepithelial lesions (HSILs) as precursors to cancer in the anogenital area, and the microbiome is suggested to be a contributing factor. Men who have sex with men (MSM) living with human immunodeficiency virus (HIV) have a high risk of anal cancer, but current screening strategies for HSIL detection lack specificity. Here, we investigated the anal microbiome to improve HSIL screening. We enrolled participants living with HIV, divided into a discovery (n = 167) and validation cohort (n = 46), and who were predominantly (93.9%) cisgender MSM undergoing HSIL screening with high-resolution anoscopy and anal biopsies. We identified no microbiome composition signatures associated with HSILs, but elevated levels of microbiome-encoded proteins producing succinyl coenzyme A and cobalamin were significantly associated with HSILs in both cohorts. Measurement of these candidate biomarkers alone in anal cytobrushes outperformed anal cytology as a diagnostic indicator for HSILs, increasing the sensitivity from 91.2% to 96.6%, the specificity from 34.1% to 81.8%, and reclassifying 82% of false-positive results as true negatives. We propose that these two microbiome-derived biomarkers may improve the current strategy of anal cancer screening.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Presidio Ospedaliero San Paolo, University of Milan, Milan, Italy
| | - Sajan C Raju
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johan S Sáenz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Alfonso Cabello-Ubeda
- Department of Infectious Diseases, IIS-FJD, Hospital Universitario Fundación Jiménez Diaz, Madrid, Spain
| | - Elena Sendagorta
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- Department of Dermatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Alina Kurz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jose A Perez Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo de Benito
- Department of Pathology, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center and Section of Gastroenterology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Alfonso Muriel
- Biostatistics Unit, IRYCIS, Hospital Universitario Ramón y Cajal, CIBERESP, Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| |
Collapse
|
9
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Li J, Baertschi I, Wyss J, Jordi SBU, Mazengera LR, Yilmaz B, Misselwitz B, Duri K. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol 2023; 23:4. [PMID: 36604616 PMCID: PMC9817306 DOI: 10.1186/s12866-022-02747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in β-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.
Collapse
Affiliation(s)
- Panashe Chandiwana
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Arthur John Mazhandu
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jiaqi Li
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Isabel Baertschi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jacqueline Wyss
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Sebastian Bruno Ulrich Jordi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lovemore Ronald Mazengera
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Kerina Duri
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| |
Collapse
|
10
|
Russotto Y, Micali C, Pellicanò GF, Nunnari G, Venanzi Rullo E. HIV and Mediterranean Zoonoses: A Review of the Literature. Infect Dis Rep 2022; 14:694-709. [PMID: 36136825 PMCID: PMC9498920 DOI: 10.3390/idr14050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A zoonosis is an infectious disease that has jumped from a non-human animal to humans. Some zoonoses are very common in the Mediterranean area and endemic in specific regions, so they represent an important problem for public health. Human Immunodeficiency Virus (HIV) is a virus that has originated as a zoonosis and is now diffused globally, with the most significant numbers of infected people among the infectious diseases. Since the introduction of antiretroviral therapy (ART), the history for people living with HIV (PLWH) has changed drastically, and many diseases are now no different in epidemiology and prognosis as they are in not-HIV-infected people. Still, the underlying inflammatory state that is correlated with HIV and other alterations related to the infection itself can be a risk factor when infected with other bacteria, parasites or viruses. We reviewed the literature for infection by the most common Mediterranean zoonoses, such as Campylobacter, Salmonella, Brucella, Rickettsia, Borrelia, Listeria and Echinococcus, and a possible correlation with HIV. We included Monkeypox, since the outbreak of cases is becoming a concern lately. We found that HIV may be related with alterations of the microbiome, as for campylobacteriosis, and that there are some zoonoses with a significant prevalence in PLWH, as for salmonellosis.
Collapse
Affiliation(s)
- Ylenia Russotto
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Cristina Micali
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giovanni Francesco Pellicanò
- Department of Human Pathology of the Adult and the Developmental Age “G. Barresi”, University of Messina, 98124 Messina, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
11
|
Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice. Arch Microbiol 2022; 204:412. [PMID: 35731330 DOI: 10.1007/s00203-022-03031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/04/2023]
Abstract
Gut microbiota bears adaptive potential to different environments, but little is known regarding its responses to acute high-altitude exposure. This study aimed to evaluate the microbial changes after acute exposure to simulated high-altitude hypoxia. C57BL/6 J mice were divided into hypoxia and normoxia groups. The hypoxia group was exposed to a simulated altitude of 5500 m for 24 h above sea level. The normoxia group was maintained in low altitude of 10 m above sea level. Colonic microbiota was analyzed using 16S rRNA V4 gene sequencing. Compared with the normoxia group, Shannon, Simpson and Akkermansia were significantly increased, while Firmicutes-to-Bacteroidetes ratio and Bifidobacterium were significantly decreased in the hypoxia group. The hypoxia group exhibited lower mobile element containing and higher potentially pathogenic and stress-tolerant phenotypes than those in the normoxia group. Functional analysis indicated that environmental information processing was significantly lower, metabolism, cellular processes and organismal systems were significantly higher in the hypoxia group than those in the normoxia group. In conclusion, acute exposure to simulated high-altitude hypoxia alters gut microbiota diversity and composition, which may provide a potential target to alleviate acute high-altitude diseases.
Collapse
|
12
|
Tamanai-Shacoori Z, Le Gall-David S, Moussouni F, Sweidan A, Polard E, Bousarghin L, Jolivet-Gougeon A. SARS-CoV-2 and Prevotella spp.: friend or foe? A systematic literature review. J Med Microbiol 2022; 71. [PMID: 35511246 DOI: 10.1099/jmm.0.001520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999-2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.
Collapse
Affiliation(s)
- Zohreh Tamanai-Shacoori
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Sandrine Le Gall-David
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Fouzia Moussouni
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Alaa Sweidan
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Elisabeth Polard
- Teaching Hospital Rennes, Service de Pharmacovigilance, F-35033 Rennes, France
| | - Latifa Bousarghin
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| |
Collapse
|
13
|
Wells J, Bai J, Tsementzi D, Jhaney CI, Foster A, Watkins Bruner D, Gillespie T, Li Y, Hu YJ. Exploring the Anal Microbiome in HIV Positive and High-Risk HIV Negative Women. AIDS Res Hum Retroviruses 2022; 38:228-236. [PMID: 35044233 PMCID: PMC8968844 DOI: 10.1089/aid.2020.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This exploratory study sought to characterize the anal microbiome and explore associations among the anal microbiome, risk factors for anal cancer, and clinical factors. A pilot sample of 50 HIV infected and high-risk HIV negative women were recruited from the former Women's Interagency HIV Study. Microbiome characterization by 16S rRNA gene sequencing and datasets were analyzed using QIIME 2™. Composition of the anal microbiome and its associations with anal cancer risk factors and clinical factors were analyzed using linear decomposition model and permutational multivariate analysis of variance. Composition of the anal microbiome among HIV positive and high-risk negative women was dominated by Bacteroides, Prevotella, and Campylobacter. The overall taxonomic composition and microbial diversity of the anal microbiome did not significantly differ by HIV status. However, the abundance of Ruminococcus 1 belonging to the Rumincoccaceae family was associated with HIV status (q = .05). No anal cancer risk factors were associated with the anal microbiome composition. Clinical factors marginally associated with the anal microbiome composition included body mass index (BMI; p = .05) and hepatitis C virus (HCV; p = .05). Although HIV and risk factors for anal cancer were not associated with the composition of the anal microbiome in this pilot sample, other clinical factors such as BMI and HCV, may be worth further investigation in a larger study. Future research can build on these findings to explore the role of the microbiome and HIV comorbidities in women.
Collapse
Affiliation(s)
- Jessica Wells
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Address correspondence to: Jessica Wells, Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Room 230, Atlanta, GA 30322-1007, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Despina Tsementzi
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Camber Ileen Jhaney
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Antonina Foster
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Watkins Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Theresa Gillespie
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Park SY, Faraci G, Nanda S, Ter-Saakyan S, Love TMT, Mack WJ, Dubé MP, Lee HY. Gut microbiome in people living with HIV is associated with impaired thiamine and folate syntheses. Microb Pathog 2021; 160:105209. [PMID: 34563611 PMCID: PMC8530907 DOI: 10.1016/j.micpath.2021.105209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
People living with HIV have a high incidence of cardiovascular and neurological diseases as comorbid disorders that are commonly linked to inflammation. While microbial translocation can augment inflammation during HIV infection, functional microbiome shifts that may increase pro-inflammatory responses have not been fully characterized. In addition, defining HIV-induced microbiome changes has been complicated by high variability among individuals. Here we conducted functional annotation of previously-published 16S ribosomal RNA gene sequences of 305 HIV positive and 249 negative individuals, with adjustment for geographic region, sex, sexual behavior, and age. Metagenome profiles were inferred from these individuals' 16S data. HIV infection was associated with impaired microbial vitamin B synthesis; around half of the gene families in thiamine and folate biosynthesis pathways were significantly less abundant in the HIV positive group than the negative control. These results are consistent with the high prevalence of thiamine and folate deficiencies in HIV infections. These HIV-induced microbiota shifts have the potential to influence cardiovascular and neurocognitive diseases, given the documented associations between B-vitamin deficiencies, inflammation, and these diseases. We also observed that most essential amino acid biosynthesis pathways were downregulated in the microbiome of HIV-infected individuals. Microbial vitamin B and amino acid synthesis pathways were not significantly recovered by antiretroviral treatment when we compared 262 ART positive and 184 ART negative individuals. Our meta-analysis provides a new outlook for understanding vitamin B and amino acid deficiencies in HIV patients, suggesting that interventions for reversing HIV-induced microbiome shifts may aid in lessening the burdens of HIV comorbidities.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sayan Nanda
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael P Dubé
- Department of Medicine and Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Liu Q, Xu ZY, Wang XL, Huang XM, Zheng WL, Li MJ, Xiao F, Ouyang PW, Yang XH, Cui YH, Pan HW. Changes in Conjunctival Microbiota Associated With HIV Infection and Antiretroviral Therapy. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34473190 PMCID: PMC8419876 DOI: 10.1167/iovs.62.12.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose HIV infection is associated with a variety of ocular surface diseases. Understanding the difference of the ocular microbiota between HIV-infected and healthy individuals as well as the influence of antiretroviral therapy will help to investigate the pathogenesis of these conditions. Methods A cross-sectional study was conducted on subjects including HIV-negative individuals, untreated HIV-infected individuals, and HIV-infected individuals with antiretroviral therapy. Conjunctival microbiota was assessed by bacterial 16S rRNA sequencing of the samples obtained from the conjunctival swab. Results The microbial richness in ocular surface was similar in HIV-negative, untreated HIV-positive, and highly active antiretroviral therapy (HAART) subjects. The bacterial compositions were similar in the two HIV infection groups but were significantly different from the HIV-negative group. HAART changed the beta diversity of bacterial community as determined by Shannon index. CD4+ T cell count had no significant influence on the diversity of ocular microbiota in HIV-infected individuals. Conclusions The data revealed the compositional and structural difference in conjunctival microbial community in subjects with and without HIV infection, indicating that HIV infection or its treatment, may contribute to ocular surface dysbiosis.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan, China
| | - Xiao-Li Wang
- Department of Ophthalmology, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiao-Mei Huang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Fan Xiao
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Perler BK, Reinhart EM, Montgomery M, Maynard M, Shapiro JM, Belenky P, Chan PA. Evaluation of the Microbiome in Men Taking Pre-exposure Prophylaxis for HIV Prevention. AIDS Behav 2021; 25:2005-2013. [PMID: 33394167 DOI: 10.1007/s10461-020-03130-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/04/2023]
Abstract
Tenofovir-based regimens as pre-exposure prophylaxis (PrEP) are highly effective at preventing HIV infection. The most common side-effect is gastrointestinal (GI) distress which may be associated with changes in the microbiome. Dysbiosis of the microbiome can have numerous health-related consequences. To understand the effect of PrEP on dysbiosis, we evaluated 27 individuals; 14 were taking PrEP for an average of 171 weeks. Sequencing of 16S rRNA was performed using self-collected rectal swabs. Mixed beta diversity testing demonstrated significant differences between PrEP and non-PrEP users with Bray-Curtis and unweighted UniFrac analyses (p = 0.05 and 0.049, respectively). At the genus level, there was a significant reduction in Finegoldia, along with a significant increase in Catenibacterium and Prevotella in PrEP users. Prevotella has been associated with inflammatory pathways, insulin resistance and cardiovascular disease, while Catenibacterium has been associated with morbid obesity and metabolic syndrome. Overall, these results suggest that PrEP may be associated with some degree of microbiome dysbiosis, which may contribute to GI symptoms. Long-term impact of these changes is unknown.
Collapse
|
18
|
Rectal microbiota diversity in Kenyan MSM is inversely associated with frequency of receptive anal sex, independent of HIV status. AIDS 2021; 35:1091-1101. [PMID: 33534201 DOI: 10.1097/qad.0000000000002829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Both HIV infection and identifying as MSM have been linked to altered rectal microbiota composition, but few studies have studied sexual behavioural associations with rectal microbiota within MSM. In addition, most rectal microbiota studies in MSM have been limited geographically to Europe and North America, and replication of findings in lower and middle-income countries is lacking. DESIGN A cross-sectional study. METHODS We enrolled MSM from Nairobi, Kenya, and determined their HIV/sexually transmitted infection status. Rectal specimens were obtained for 16s rRNA sequencing of the rectal microbiota, and sexual behaviour was characterized using a standardized questionnaire. Microbiome differences were modelled using nonparametric statistics, Bray-Curtis ecological distance metrics and analyses of differential taxa abundance. Multivariable linear regression was used to model HIV status and recent sexual activity as predictors of alpha diversity, controlling for a range of covariates. RESULTS Alpha diversity was consistently lower in Kenyan HIV-infected MSM (n = 80), including those on antiretroviral therapy (ART) compared with HIV-uninfected MSM. A statistical trend was observed for clustering of HIV status by Prevotella or Bacteroides dominance (P = 0.13). Several taxa were enriched in HIV-positive men, including Roseburia, Lachnospira, Streptococcus and Granulicatella. Receptive anal sex with several types of sexual partners (paying, regular, casual) was associated with lower Chao1 and Simpson diversity, independent of HIV status, while HIV infection was associated lower Chao1 (P = 0.030) but not Simpson diversity (P = 0.49). CONCLUSION Both HIV infection and sexual behaviour were associated with rectal microflora alpha diversity, in particular richness, but not Prevotella spp. dominance, in Kenyan MSM. Associations were more robust for sexual behaviour.
Collapse
|
19
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 2021; 11:646467. [PMID: 34084754 PMCID: PMC8168436 DOI: 10.3389/fcimb.2021.646467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Ray S, Narayanan A, Giske CG, Neogi U, Sönnerborg A, Nowak P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect Dis 2021; 7:1104-1115. [PMID: 33346662 PMCID: PMC8154435 DOI: 10.1021/acsinfecdis.0c00536] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Millions
of individuals currently living with HIV globally are
receiving antiretroviral therapy (ART) that suppresses viral replication
and improves host immune responses. The involvement of gut microbiome
during HIV infection has been studied, exposing correlation with immune
status and inflammation. However, the direct effect of ART on gut
commensals of HIV-infected individuals has been mostly overlooked
in microbiome studies. We used 16S rRNA sequencing (Illumina MiSeq)
for determining the microbiota composition of stool samples from 16
viremic patients before and one year after ART. We also tested the
direct effect of 15 antiretrovirals against four gut microbes, namely, Escherichia coli, Enterococcus faecalis, Bacteroides, and Prevotella to assess their in vitro antibacterial effect. 16S rRNA analysis of fecal samples showed
that effective ART for one year does not restore the microbiome diversity
in HIV-infected patients. A significant reduction in α-diversity
was observed in patients under non-nucleoside reverse transcriptase
inhibitors; (NNRTI; 2 NRTI+NNRTI; NRTIs are nucleoside reverse transcriptase
inhibitors) as compared to ritonavir-boosted protease inhibitors (PI/r;
2 NRTI+PI/r). Prevotella (P = 0.00001) showed a significantly decreased abundance in patients
after ART (n = 16). We also found the direct effect
of antivirals on gut microbes, where zidovudine (ZDV) and efavirenz
(EFV) showed in vitro antimicrobial activity against Bacteroides fragilis and Prevotella. EFV also inhibited the growth of E. faecalis. Therefore, we observed that ART does not reverse the HIV-induced
gut microbiome dysbiosis and might aggravate those microbiota alterations
due to the antibacterial effect of certain antiretrovirals (like EFV,
ZDV). Our results imply that restructuring the microbiota could be
a potential therapeutic target in HIV-1 patients under ART.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
| | - Aswathy Narayanan
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Christian G. Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm 171 76,Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Piotr Nowak
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| |
Collapse
|
21
|
Xu H, Ou Z, Zhou Y, Li Y, Huang H, Zhao H, Xu J, Luo M, Zhou Y, Nie Y. Intestinal mucosal microbiota composition of patients with acquired immune deficiency syndrome in Guangzhou, China. Exp Ther Med 2021; 21:391. [PMID: 33680113 PMCID: PMC7918403 DOI: 10.3892/etm.2021.9822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acquired immune deficiency syndrome, caused by the human immunodeficiency virus (HIV), has been associated with intestinal dysbiosis, which includes an increase in the number of mucosa-associated pathobionts. In the present study, the intestinal mucosal microbiota patterns of HIV-infected patients were compared with those of healthy individuals in a population from Guangzhou, China. The gut microbiota of intestinal mucosal samples from 12 patients with HIV (transmission routes included sex and intravenous drug abuse) was compared with that of 12 healthy age- and sex-matched controls. Gut microbial communities were profiled via sequencing of the bacterial 16S ribosomal RNA genes. Dysbiosis in HIV-infected individuals was characterized by decreased α-diversity, decreased levels of Firmicutes and increased levels of Proteobacteria. Furthermore, low mean counts of Lachnoclostridium, Roseburia, Thauera, Dorea and Roseburia inulinivorans, and high mean counts of Halomonas and Shewanella bacteria, were indicated to be HIV-associated mucosal bacterial alterations. The relative abundance of Fusobacterium and Lachnoclostridium was significantly decreased, while that of Halomonas and Shewanella was significantly increased in patients with sexually transmitted HIV-infection compared with healthy controls. Alterations of the gut microbiota during HIV infection were also indicated to be associated with the route of HIV transmission. Certain bacteria may be potential biomarkers for HIV infection in patients from Guangzhou, China.
Collapse
Affiliation(s)
- Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zhitao Ou
- Department of Internal Medicine, Guangzhou No. 8 People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Meijuan Luo
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
22
|
Koh H, Tuddenham S, Sears CL, Zhao N. Meta-analysis methods for multiple related markers: Applications to microbiome studies with the results on multiple α-diversity indices. Stat Med 2021; 40:2859-2876. [PMID: 33768631 DOI: 10.1002/sim.8940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
Meta-analysis is a practical and powerful analytic tool that enables a unified statistical inference across the results from multiple studies. Notably, researchers often report the results on multiple related markers in each study (eg, various α-diversity indices in microbiome studies). However, univariate meta-analyses are limited to combining the results on a single common marker at a time, whereas existing multivariate meta-analyses are limited to the situations where marker-by-marker correlations are given in each study. Thus, here we introduce two meta-analysis methods, multi-marker meta-analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta), to combine multiple studies throughout multiple related markers with no priori results on marker-by-marker correlations. mMeta is a statistical estimator for a pooled estimate and its SE across all the studies and markers, whereas aMeta is a statistical test based on the test statistic of the minimum P-value among marker-specific meta-analyses. mMeta conducts both effect estimation and hypothesis testing based on a weighted average of marker-specific pooled estimates while estimating marker-by-marker correlations non-parametrically via permutations, yet its power is only moderate. In contrast, aMeta closely approaches the highest power among marker-specific meta-analyses, yet it is limited to hypothesis testing. While their applications can be broader, we illustrate the use of mMeta and aMeta to combine microbiome studies throughout multiple α-diversity indices. We evaluate mMeta and aMeta in silico and apply them to real microbiome studies on the disparity in α-diversity by the status of human immunodeficiency virus (HIV) infection. The R package for mMeta and aMeta is freely available at https://github.com/hk1785/mMeta.
Collapse
Affiliation(s)
- Hyunwook Koh
- Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, South Korea
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Ancona G, Merlini E, Tincati C, Barassi A, Calcagno A, Augello M, Bono V, Bai F, Cannizzo ES, d'Arminio Monforte A, Marchetti G. Long-Term Suppressive cART Is Not Sufficient to Restore Intestinal Permeability and Gut Microbiota Compositional Changes. Front Immunol 2021; 12:639291. [PMID: 33717191 PMCID: PMC7952451 DOI: 10.3389/fimmu.2021.639291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: We explored the long-term effects of cART on markers of gut damage, microbial translocation, and paired gut/blood microbiota composition, with a focus on the role exerted by different drug classes. Methods: We enrolled 41 cART naïve HIV-infected subjects, undergoing blood and fecal sampling prior to cART (T0) and after 12 (T12) and 24 (T24) months of therapy. Fifteen HIV-uninfected individuals were enrolled as controls. We analyzed: (i) T-cell homeostasis (flow cytometry); (ii) microbial translocation (sCD14, EndoCab, 16S rDNA); (iii) intestinal permeability and damage markers (LAC/MAN, I-FABP, fecal calprotectin); (iv) plasma and fecal microbiota composition (alpha- and beta-diversity, relative abundance); (v) functional metagenome predictions (PICRUSt). Results: Twelve and twenty four-month successful cART resulted in a rise in EndoCAb (p = 0.0001) and I-FABP (p = 0.039) vis-à-vis stable 16S rDNA, sCD14, calprotectin and LAC/MAN, along with reduced immune activation in the periphery. Furthermore, cART did not lead to substantial modifications of microbial composition in both plasma and feces and metabolic metagenome predictions. The stratification according to cART regimens revealed a feeble effect on microbiota composition in patients on NNRTI-based or INSTI-based regimens, but not PI-based regimens. Conclusions: We hereby show that 24 months of viro-immunological effective cART, while containing peripheral hyperactivation, exerts only minor effects on the gastrointestinal tract. Persistent alteration of plasma markers indicative of gut structural and functional impairment seemingly parallels enduring fecal dysbiosis, irrespective of drug classes, with no effect on metabolic metagenome predictions.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Barassi
- Biochemistry Laboratory, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elvira S Cannizzo
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
24
|
Li J, Chang S, Guo H, Ji Y, Jiang H, Ruan L, Du M. Altered Salivary Microbiome in the Early Stage of HIV Infections among Young Chinese Men Who Have Sex with Men (MSM). Pathogens 2020; 9:pathogens9110960. [PMID: 33228000 PMCID: PMC7699166 DOI: 10.3390/pathogens9110960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections are spiking in Chinese young men who have sex with men (MSM). To explore alterations in the salivary microbiome and its correlation with demographic characteristics, CD4+ T cell count and viral load (VL) in HIV infections, samples of unstimulated whole saliva were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq platform in 20 HIV newly infected patients before the initiation of antiretroviral therapy (ART) and at three and six months after, and in 20 age- and gender-paired healthy Chinese people. The results showed that the alpha diversity of salivary microbiota in HIV infections did not show differences from the healthy controls, but was reduced after six months under ART treatment. Comparative analysis revealed that Streptococcus was enriched in HIV-infected individuals, while Neisseria was enriched in the healthy control group. After effective ART, the salivary microbiota composition was not completely restored, although some microbiota recovered. In addition, we found Provotella_7, Neisseria and Haemophilus were correlated negatively with CD4+ T cell count, while Neisseria was correlated positively with VL. We conclude that HIV infections experience a dysbiosis of the salivary microbiome. The salivary microbiome test could be a substitute for the blood tests in the diagnosis and prognosis of diseases.
Collapse
Affiliation(s)
- Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Shenghua Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Lianguo Ruan
- Department of Infectious Diseases, Jin Yin-tan Hospital, Wuhan 430023, China
- Correspondence: (L.R.); (M.D.)
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
- Correspondence: (L.R.); (M.D.)
| |
Collapse
|
25
|
Zhou J, Zhang Y, Cui P, Luo L, Chen H, Liang B, Jiang J, Ning C, Tian L, Zhong X, Ye L, Liang H, Huang J. Gut Microbiome Changes Associated With HIV Infection and Sexual Orientation. Front Cell Infect Microbiol 2020; 10:434. [PMID: 33102244 PMCID: PMC7546801 DOI: 10.3389/fcimb.2020.00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Many studies have explored changes in the gut microbiome associated with HIV infection, but the consistent pattern of changes has not been clarified. Men who have sex with men (MSM) are very likely to be an independent influencing factor of the gut microbiome, but relevant research is still lacking. Methods: We conducted a meta-analysis by screening 12 published studies of 16S rRNA gene amplicon sequencing of gut microbiomes related to HIV/AIDS (six of these studies contain data that is relevant and available to MSM) from NCBI and EBI databases. The analysis of gut microbiomes related to HIV infection status and MSM status included 1,288 samples (HIV-positive (HIV+) individuals, n = 744; HIV-negative (HIV–) individuals, n = 544) and 632 samples (MSM, n = 328; non-MSM, n = 304), respectively. The alpha diversity indexes, beta diversity indexes, differentially enriched genera, differentially enriched species, and differentially enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways related to gut microbiomes were calculated. Finally, the overall trend of the above indicators was evaluated. Results: Our results indicate that HIV+ status is associated with decreased alpha diversity of the gut microbiome. MSM status is an important factor that affects the study of HIV-related gut microbiomes; that is, MSM are associated with alpha diversity changes in the gut microbiome regardless of HIV infection, and the changes in the gut microbiome composition of MSM are more significant than those of HIV+ individuals. A consistent change in Bacteroides caccae, Bacteroides ovatus, Bacteroides uniformis, and Prevotella stercorea was found in HIV+ individuals and MSM. The differential expression of the gut microbiome may be accompanied by changes in functional pathways of carbohydrate metabolism, amino acid metabolism, and lipid Metabolism. Conclusions: This study shows that the changes in the gut microbiome are related to HIV and MSM status. Importantly, MSM status may have a far greater impact on the gut microbiome than HIV status.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Lijia Luo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Tian
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Zhong
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne) 2020; 11:502. [PMID: 32982960 PMCID: PMC7493215 DOI: 10.3389/fendo.2020.00502] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV)/AIDS pandemic represents the most significant global health challenge in modern history. This infection leads toward an inflammatory state associated with chronic immune dysregulation activation that tilts the immune-skeletal interface and its deep integration between cell types and cytokines with a strong influence on skeletal renewal and exacerbated bone loss. Hence, reduced bone mineral density is a complication among HIV-infected individuals that may progress to osteoporosis, thus increasing their prevalence of fractures. Highly active antiretroviral therapy (HAART) can effectively control HIV replication but the regimens, that include tenofovir disoproxil fumarate (TDF), may accelerate bone mass density loss. Molecular mechanisms of HIV-associated bone disease include the OPG/RANKL/RANK system dysregulation. Thereby, osteoclastogenesis and osteolytic activity are promoted after the osteoclast precursor infection, accompanied by a deleterious effect on osteoblast and its precursor cells, with exacerbated senescence of mesenchymal stem cells (MSCs). This review summarizes recent basic research data on HIV pathogenesis and its relation to bone quality. It also sheds light on HAART-related detrimental effects on bone metabolism, providing a better understanding of the molecular mechanisms involved in bone dysfunction and damage as well as how the HIV-associated imbalance on the gut microbiome may contribute to bone disease.
Collapse
Affiliation(s)
- María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Fecal Microbiome Composition in Healthy Adults in Ghana. Jpn J Infect Dis 2020; 74:42-47. [PMID: 32611986 DOI: 10.7883/yoken.jjid.2020.469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have indicated an association between gut microbiome composition and various disorders, including infectious diseases. The composition of the microbiome differs among ethnicities and countries, possibly resulting in diversified interactions between host immunity and the gut microbiome. Characterization of baseline microbiome composition in healthy people is an essential step for better understanding of the biological interactions associated with individual populations. However, data on the gut/fecal microbiome have not been accumulated for individuals in West Africa. In the present study, we examined the fecal microbiome composition in healthy adults in Ghana. Toward this, 16S rRNA gene libraries were prepared using bacterial fractions derived from 55 Ghanaian adults, which were then subjected to next-generation sequencing. The fecal microbiome of the Ghanaian adults was dominated by Firmicutes (Faecalibacterium, Subdoligranulum, and Ruminococcaceae UCG-014), Proteobacteria (Escherichia-Shigella and Klebsiella), and Bacteroidetes (Prevotella 9 and Bacteroides), consistent with previous observations in African cohorts. Further, our analysis revealed differences in microbiome composition and a lower diversity of the fecal microbiome in the Ghanaian cohort compared with those reported in non-African countries. This is the first study to describe substantial fecal microbiome data obtained using high-throughput metagenomic tools on samples derived from a cohort in Ghana. The data may provide a valuable basis for determining the association between the fecal microbiome and progression of various diseases in West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Japan
| | - Ai Kawana-Tachikawa
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,The Institute of Medical Science, The University of Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | | | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Japan.,Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Japan.,Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Japan.,CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, USA
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | | | - Tetsuro Matano
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,The Institute of Medical Science, The University of Tokyo, Japan
| |
Collapse
|
29
|
Rubel MA, Abbas A, Taylor LJ, Connell A, Tanes C, Bittinger K, Ndze VN, Fonsah JY, Ngwang E, Essiane A, Fokunang C, Njamnshi AK, Bushman FD, Tishkoff SA. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol 2020; 21:122. [PMID: 32450885 PMCID: PMC7249393 DOI: 10.1186/s13059-020-02020-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND African populations provide a unique opportunity to interrogate host-microbe co-evolution and its impact on adaptive phenotypes due to their genomic, phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon and shotgun metagenomic sequence data with quantification of pathogen burden and measures of immune parameters for 575 ethnically diverse Africans from Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer lifestyles and were compared to an urban US population from Philadelphia. RESULTS We observe significant differences in gut microbiome composition across populations that correlate with subsistence strategy and country. After these, the variable most strongly associated with gut microbiome structure in Cameroonians is the presence of gut parasites. Hunter-gatherers have high frequencies of parasites relative to agropastoralists and pastoralists. Ascaris lumbricoides, Necator americanus, Trichuris trichiura, and Strongyloides stercoralis soil-transmitted helminths ("ANTS" parasites) significantly co-occur, and increased frequency of gut parasites correlates with increased gut microbial diversity. Gut microbiome composition predicts ANTS positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association with multiple immune mechanisms. The unprecedented size of this dataset allowed interrogation of additional questions-for example, we find that Fulani pastoralists, who consume high levels of milk, possess an enrichment of gut bacteria that catabolize galactose, an end product of lactose metabolism, and of bacteria that metabolize lipids. CONCLUSIONS These data document associations of bacterial microbiota and eukaryotic parasites with each other and with host immune responses; each of these is further correlated with subsistence practices.
Collapse
Affiliation(s)
- Meagan A. Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Department of Radiology, Center for Translational Imaging and Precision Medicine, UC San Diego, San Diego, CA USA
| | - Arwa Abbas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Louis J. Taylor
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrew Connell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Valantine N. Ndze
- Johns Hopkins Cameroon Program, Yaoundé, Cameroon
- Department of Microbiology, Hematology, Parasitology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Julius Y. Fonsah
- Department of Neurology, Faculty of Medicine and Biomedical Sciences, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Eric Ngwang
- Department of Anthropology, Faculty of Arts, Letters and Social Sciences, University of Yaoundé I, PO Box 755, Yaoundé, Cameroon
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K. Njamnshi
- Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah A. Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Abstract
Recent studies have raised interest in the possibility that dysbiosis of the gut microbiome (i.e., the communities of bacteria residing in the intestine) in HIV-infected patients could contribute to chronic immune activation, and, thus, to elevated mortality and increased risk of inflammation-related clinical diseases (e.g., stroke, cardiovascular disease, cancer, long-bone fractures, and renal dysfunction) found even in those on effective antiretroviral therapy. Yet, to date, a consistent pattern of HIV-associated dysbiosis has not been identified. What is becoming clear, however, is that status as a man who has sex with men (MSM) may profoundly impact the structure of the gut microbiota, and that this factor likely confounded many HIV-related intestinal microbiome studies. However, what factor associated with MSM status drives these gut microbiota-related changes is unclear, and what impact, if any, these changes may have on the health of MSM is unknown. In this review, we outline available data on changes in the structure of the gut microbiome in HIV, based on studies that controlled for MSM status. We then examine what is known regarding the gut microbiota in MSM, and consider possible implications for research and the health of this population. Lastly, we discuss knowledge gaps and needed future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| | - Wei Li Koay
- Department of Infectious Disease, Children’s
National Hospital, Washington, D.C.;,School of Medicine and Health Sciences, George Washington
University, Washington, D.C
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| |
Collapse
|
31
|
Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL. The Impact of Human Immunodeficiency Virus Infection on Gut Microbiota α-Diversity: An Individual-level Meta-analysis. Clin Infect Dis 2020; 70:615-627. [PMID: 30921452 PMCID: PMC7319268 DOI: 10.1093/cid/ciz258] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Whether human immunodeficiency virus (HIV) infection impacts gut microbial α-diversity is controversial. We reanalyzed raw 16S ribosomal RNA (rRNA) gene sequences and metadata from published studies to examine α-diversity measures between HIV-uninfected (HIV-) and HIV-infected (HIV+) individuals. METHODS We conducted a systematic review and individual level meta-analysis by searching Embase, Medline, and Scopus for original research studies (inception to 31 December 2017). Included studies reported 16S rRNA gene sequences of fecal samples from HIV+ patients. Raw sequence reads and metadata were obtained from public databases or from study authors. Raw reads were processed through standardized pipelines with use of a high-resolution taxonomic classifier. The χ2 test, paired t tests, and generalized linear mixed models were used to relate α-diversity measures and clinical metadata. RESULTS Twenty-two studies were identified with 17 datasets available for analysis, yielding 1032 samples (311 HIV-, 721 HIV+). HIV status was associated with a decrease in measures of α-diversity (P < .001). However, in stratified analysis, HIV status was associated with decreased α-diversity only in women and in men who have sex with women (MSW) but not in men who have sex with men (MSM). In analyses limited to women and MSW, controlling for HIV status, women displayed increased α-diversity compared with MSW. CONCLUSIONS Our study suggests that HIV status, sexual risk category, and gender impact gut microbial community α-diversity. Future studies should consider MSM status in gut microbiome analyses.
Collapse
Affiliation(s)
| | - Wei Li A Koay
- Children’s National Medical Center, Baltimore, Maryland
- George Washington University, Washington, District of Columbia, Baltimore, Maryland
| | - Ni Zhao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Khalil G Ghanem
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Jenkins WD, Beach LB, Rodriguez C, Choat L. How the evolving epidemics of opioid misuse and HIV infection may be changing the risk of oral sexually transmitted infection risk through microbiome modulation. Crit Rev Microbiol 2020; 46:49-60. [PMID: 31999202 DOI: 10.1080/1040841x.2020.1716683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The epidemiology of sexually transmitted infections (STI) is constantly evolving, and the mechanisms of infection risk in the oral cavity (OC) are poorly characterized. Evidence indicates that microbial community (microbiota) compositions vary widely between the OC, genitalia and the intestinal and rectal mucosa, and microbiome-associated STI susceptibility may also similarly vary. The opioid misuse epidemic is at an epidemic scale, with >11 million US residents misusing in the past 30 days. Opioids can substantially influence HIV progression, microbiota composition and immune function, and these three factors are all mutually influential via direct and indirect pathways. While many of these pathways have been explored independently, the supporting data are mostly derived from studies of gut and vaginal microbiotas and non-STI infectious agents. Our purpose is to describe what is known about the combination of these pathways, how they may influence microbiome composition, and how resultant oral STI susceptibility may change. A better understanding of how opioid misuse influences oral microbiomes and STI risk may inform better mechanisms for oral STI screening and intervention. Further, the principles of interaction described may well be applied to other aspects of disease risk of other health conditions which may be impacted by the opioid epidemic.
Collapse
Affiliation(s)
- Wiley D Jenkins
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lauren B Beach
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Christofer Rodriguez
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lesli Choat
- Illinois Department of Public Health, Springfield, IL, USA
| |
Collapse
|
33
|
Flygel TT, Sovershaeva E, Claassen-Weitz S, Hjerde E, Mwaikono KS, Odland JØ, Ferrand RA, Mchugh G, Gutteberg TJ, Nicol MP, Cavanagh JP, Flægstad T. Composition of Gut Microbiota of Children and Adolescents With Perinatal Human Immunodeficiency Virus Infection Taking Antiretroviral Therapy in Zimbabwe. J Infect Dis 2020; 221:483-492. [PMID: 31549151 PMCID: PMC7457326 DOI: 10.1093/infdis/jiz473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection causes impairment of the gastrointestinal barrier, with substantial depletion of CD4+ T cells in the gut. Antiretroviral therapy (ART) restores CD4+ counts and may have beneficial effects on gut microbiota in adults. Little is known about effect of long-term ART on gut microbiome in HIV-infected children. We investigated composition of gut microbiota in HIV-infected and -uninfected children and assessed associations between gut microbiota and patient characteristics. METHODS In a cross-sectional study, rectal swabs were collected from 177 HIV-infected and 103 HIV-uninfected controls. Gut microbial composition was explored using 16S ribosomal ribonucleic acid sequencing. RESULTS Human immunodeficiency virus-infected children had significantly lower alpha-diversity and higher beta-diversity compared to HIV-uninfected. No association was observed between microbiome diversity and CD4+ T-cell count, HIV viral load, or HIV-associated chronic lung disease. We found enriched levels of Corynebacterium (P < .01), Finegoldia (P < .01), and Anaerococcus (P < .01) in HIV-infected participants and enrichment of Enterobacteriaceae (P = .02) in participants with low CD4+ counts (<400 cells/mm3). Prolonged ART-treatment (≥10 years) was significantly associated with a richer gut microbiota by alpha diversity. CONCLUSIONS Human immunodeficiency virus-infected children have altered gut microbiota. Prolonged ART may restore the richness of the microbiota closer to that of HIV-uninfected children.
Collapse
Affiliation(s)
- Trym T Flygel
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Evgeniya Sovershaeva
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Community Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kilaza S Mwaikono
- Computational Biology Division, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jon Ø Odland
- Department of Community Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rashida A Ferrand
- Biomedial Research and Training Institute, Harare, Zimbabwe.,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grace Mchugh
- Biomedial Research and Training Institute, Harare, Zimbabwe
| | - Tore J Gutteberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jorunn P Cavanagh
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Trond Flægstad
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | | |
Collapse
|
34
|
Pellicano C, Leodori G, Innocenti GP, Gigante A, Rosato E. Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes? Nutrients 2019; 11:E2629. [PMID: 31684052 PMCID: PMC6893726 DOI: 10.3390/nu11112629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies highlighted the importance of the interaction between microbiota and the immune system in the development and maintenance of the homeostasis of the human organism. Dysbiosis is associated with proinflammatory and pathological state-like metabolic diseases, autoimmune diseases and HIV infection. In this review, we discuss the current understanding of the possible role of dysbiosis in triggering and/or exacerbating symptoms of autoimmune diseases and HIV infection. There are no data about the influence of the microbiome on the development of autoimmune diseases during HIV infection. We can hypothesize that untreated patients may be more susceptible to the development of autoimmune diseases, due to the presence of dysbiosis. Eubiosis, re-established by probiotic administration, can be used to reduce triggers for autoimmune diseases in untreated HIV patients, although clinical studies are needed to evaluate the role of the microbiome in autoimmune diseases in HIV patients.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giorgia Leodori
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Antonietta Gigante
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Edoardo Rosato
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
35
|
Ceccarani C, Marangoni A, Severgnini M, Camboni T, Laghi L, Gaspari V, D'Antuono A, Foschi C, Re MC, Consolandi C. Rectal Microbiota Associated With Chlamydia trachomatis and Neisseria gonorrhoeae Infections in Men Having Sex With Other Men. Front Cell Infect Microbiol 2019; 9:358. [PMID: 31681634 PMCID: PMC6813206 DOI: 10.3389/fcimb.2019.00358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023] Open
Abstract
Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent the most common agents of sexually transmitted rectal infections among men having sex with other men (MSM). In this study, we assessed the bacterial composition of the rectal microbiota associated with CT and/or NG infections in a cohort of men reporting unsafe rectal intercourse. A total of 125 rectal swabs were collected and four groups were compared: non-infected subjects (n = 53), patients with CT (n = 37), or NG rectal infection (n = 17) and patients with contemporary positivity for CT/NG (n = 18). CT and NG infections were detected by a real-time commercial test and the rectal microbiota composition was analyzed from rectal swabs through sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. The rectal microbiota of all subgroups was dominated by Prevotellaceae, Enterobacteriaceae, and Ruminococcaceae families. Irrespective of the analyzed subgroup, we found that the rectal environment of all the enrolled MSM was rich in Prevotella and Escherichia genera. Moreover, a shift in the bacterial composition between patients with sexually transmitted rectal infections and controls was noticed: infected patients were characterized by a depletion of Escherichia species, associated with an increase of anaerobic genera, including Peptoniphilus, Peptostreptococcus, and Parvimonas. Overall, the presence of rectal symptoms did not significantly modify the rectal microbiota profiles among the four groups of analyzed patients. We confirmed that HIV-positive patients are characterized by a lower bacterial richness than HIV-negative subjects. However, we found that the presence of HIV has a different impact on bacterial rectal communities compared to CT and NG infections, modifying the relative abundance of several genera, including Gardnerella, Lactobacillus, Corynebacterium, and Sutterella. Information about the rectal microbiota composition in CT and NG infections could shed light on the pathogenesis of these conditions and could contribute to the onset of new strategies for their control.
Collapse
Affiliation(s)
- Camilla Ceccarani
- National Research Council, Institute of Biomedical Technologies, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Marco Severgnini
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| | - Tania Camboni
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| | - Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | | | | | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- National Research Council, Institute of Biomedical Technologies, Milan, Italy
| |
Collapse
|
36
|
Crakes KR, Jiang G. Gut Microbiome Alterations During HIV/SIV Infection: Implications for HIV Cure. Front Microbiol 2019; 10:1104. [PMID: 31191468 PMCID: PMC6539195 DOI: 10.3389/fmicb.2019.01104] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Gut mucosal damage, associated with Human Immunodeficiency Virus-1 (HIV) infection, is characterized by depletion in CD4+ T cells and persistent immune activation as a result of early epithelial barrier disruption and systemic translocation of microbial products. Unique approaches in studying both HIV infection in human patients and Simian Immunodeficiency Virus (SIV) infection in rhesus macaques have provided critical evidence for the pathogenesis and treatment of HIV/AIDS. While there is vast resemblance between SIV and HIV infection, the development of gut dysbiosis attributed to HIV infection in chronically infected patients has not been consistently reported in SIV infection in the non-human primate model of AIDS, raising concerns for the translatability of gut microbiome studies in rhesus macaques. This review outlines our current understanding of gut microbial signatures across various stages of HIV versus SIV infection, with an emphasis on the impact of microbiome-based therapies in restoring gut mucosal immunity as well as their translational potential to supplement current HIV cure efforts.
Collapse
Affiliation(s)
- Katti R. Crakes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute for Global Health & Infectious Diseases, UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
37
|
Hensley-McBain T, Wu MC, Manuzak JA, Cheu RK, Gustin A, Driscoll CB, Zevin AS, Miller CJ, Coronado E, Smith E, Chang J, Gale M, Somsouk M, Burgener AD, Hunt PW, Hope TJ, Collier AC, Klatt NR. Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathog 2019; 15:e1007672. [PMID: 30973942 PMCID: PMC6459500 DOI: 10.1371/journal.ppat.1007672] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/02/2019] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal (GI) mucosal dysfunction predicts and likely contributes to non-infectious comorbidities and mortality in HIV infection and persists despite antiretroviral therapy. However, the mechanisms underlying this dysfunction remain incompletely understood. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species and other potentially harmful effector molecules. Here we used a flow cytometry approach to investigate increased neutrophil lifespan as a mechanism for GI neutrophil accumulation in chronic, treated HIV infection and a potential role for gastrointestinal dysbiosis. We report that increased neutrophil survival contributes to neutrophil accumulation in colorectal biopsy tissue, thus implicating neutrophil lifespan as a new therapeutic target for mucosal inflammation in HIV infection. Additionally, we characterized the intestinal microbiome of colorectal biopsies using 16S rRNA sequencing. We found that a reduced Lactobacillus: Prevotella ratio associated with neutrophil survival, suggesting that intestinal bacteria may contribute to GI neutrophil accumulation in treated HIV infection. Finally, we provide evidence that Lactobacillus species uniquely decrease neutrophil survival and neutrophil frequency in vitro, which could have important therapeutic implications for reducing neutrophil-driven inflammation in HIV and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Tiffany Hensley-McBain
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Michael C. Wu
- Biostatistics and Biomathematics Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jennifer A. Manuzak
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Ryan K. Cheu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Andrew Gustin
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Connor B. Driscoll
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Alexander S. Zevin
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Charlene J. Miller
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Ernesto Coronado
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael Gale
- Washington National Primate Research Center, Seattle, WA, United States of America
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Departments of Obstetrics & Gynecology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Thomas J. Hope
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
38
|
Nowak RG, Bentzen SM, Ravel J, Crowell TA, Dauda W, Ma B, Liu H, Blattner WA, Baral SD, Charurat ME, Charurat M, Ake J, Adebajo S, Baral S, Billings E, Crowell T, Eluwa G, Fasina A, Gaydos C, Ketende S, Kokogho A, Liu H, Malia J, Makanjuola O, Michael N, Ndembi N, Njab J, Nowak R, Olawore O, Parker Z, Peel S, Ramadhani H, Robb M, Rodriguez-Hart C, Sanders-Buell E, Tovanabutra S. Anal Microbial Patterns and Oncogenic Human Papillomavirus in a Pilot Study of Nigerian Men Who Have Sex with Men at Risk for or Living with HIV. AIDS Res Hum Retroviruses 2019; 35:267-275. [PMID: 30215262 DOI: 10.1089/aid.2018.0158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To cluster anal microbiota and define microbial patterns associated with biological, clinical, and behavioral correlates among Nigerian men who have sex with men (MSM) living with or at risk for HIV. In this cross-sectional pilot study, the 15 most abundant 16S taxa in the anal microbiota of 113 MSM underwent unsupervised K-means clustering and z-score comparisons to define similarities and dissimilarities among 4 microbiota taxonomic profiles. Distributions of oncogenic HPV (high-risk human papillomavirus [HR-HPV]), concurrent HIV, antiretroviral therapy (ART), and other clinical and behavioral data were evaluated using Fisher's exact and Kruskal-Wallis tests to determine biological signatures of cluster membership. Prevotella was consistently represented in each cluster, but the average composition ranged from 14% to 44%. Cluster 2 was enriched with a member of the Fusobacteria phylum, Sneathia (29%). More participants of cluster 2 were HIV infected and taking ART (83%, 5/6), were virally suppressed (80%, 4/5), had HPV-16 (66.7%, 4/6), and reported no vaginal sex partners (83%, 5/6). HPV-35, a highly prevalent oncogenic HPV in Nigeria, was observed in all clusters except cluster 2 (0%, 0/6). Other covariates were similar across clusters (all p > .05). K-means unsupervised clustering, a canonical pattern recognition method, generalized the microbial community composition and structure while accounting for among sample variability. Further studies are needed to evaluate whether an anal microbial community enriched with members of the Fusobacteria phylum is associated with HIV-infected MSM who are virally suppressed and have a concurrent HPV-16.
Collapse
Affiliation(s)
- Rebecca G. Nowak
- Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Søren M. Bentzen
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trevor A. Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Wuese Dauda
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hongjie Liu
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland
| | - William A. Blattner
- Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stefan D. Baral
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Man E. Charurat
- Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fukui Y, Aoki K, Ishii Y, Tateda K. The palatine tonsil bacteriome, but not the mycobiome, is altered in HIV infection. BMC Microbiol 2018; 18:127. [PMID: 30290791 PMCID: PMC6173881 DOI: 10.1186/s12866-018-1274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Microbial flora in several organs of HIV-infected individuals have been characterized; however, the palatine tonsil bacteriome and mycobiome and their relationship with each other remain unclear. Determining the palatine tonsil microbiome may provide a better understanding of the pathogenesis of oral and systemic complications in HIV-infected individuals. We conducted a cross-sectional study to characterize the palatine tonsil microbiome in HIV-infected individuals. Results Palatine tonsillar swabs were collected from 46 HIV-infected and 20 HIV-uninfected individuals. The bacteriome and mycobiome were analyzed by amplicon sequencing using Illumina MiSeq. The palatine tonsil bacteriome of the HIV-infected individuals differed from that of HIV-uninfected individuals in terms of the decreased relative abundances of the commensal genera Neisseria and Haemophilus. At the species level, the relative abundances and presence of Capnocytophaga ochracea, Neisseria cinerea, and Selenomonas noxia were higher in the HIV-infected group than those in the HIV-uninfected group. In contrast, fungal diversity and composition did not differ significantly between the two groups. Microbial intercorrelation analysis revealed that Candida and Neisseria were negatively correlated with each other in the HIV-infected group. HIV immune status did not influence the palatine tonsil microbiome in the HIV-infected individuals. Conclusions HIV-infected individuals exhibit dysbiotic changes in their palatine tonsil bacteriome, independent of immunological status. Electronic supplementary material The online version of this article (10.1186/s12866-018-1274-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuto Fukui
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Infectious Diseases, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
40
|
Lee SC, Chua LL, Yap SH, Khang TF, Leng CY, Raja Azwa RI, Lewin SR, Kamarulzaman A, Woo YL, Lim YAL, Loke P, Rajasuriar R. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep 2018; 8:14277. [PMID: 30250162 PMCID: PMC6155144 DOI: 10.1038/s41598-018-32585-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
We explored the gut microbiota profile among HIV-infected individuals with diverse immune recovery profiles following long-term suppressive ART and investigated the relationship between the altered bacteria with markers of immune dysfunction. The microbiota profile of rectal swabs from 26 HIV-infected individuals and 20 HIV-uninfected controls were examined. Patients were classified as suboptimal responders, sIR (n = 10, CD4 T-cell <350 cells/ul) and optimal responders, oIR (n = 16, CD4 T-cell >500 cells/ul) after a minimum of 2 years on suppressive ART. Canonical correlation analysis(CCA) and multiple regression modelling were used to explore the association between fecal bacterial taxa abundance and immunological profiles in optimal and suboptimal responders. We found Fusobacterium was significantly enriched among the HIV-infected and the sIR group. CCA results showed that Fusobacterium abundance was negatively correlated with CD4 T-cell counts, but positively correlated with CD4 T-cell activation and CD4 Tregs. Multiple linear regression analysis adjusted for age, baseline CD4 T-cell count, antibiotic exposure and MSM status indicated that higher Fusobacterium relative abundance was independently associated with poorer CD4 T-cell recovery following ART. Enrichment of Fusobacterium was associated with reduced immune recovery and persistent immune dysfunction following ART. Modulating the abundance of this bacterial taxa in the gut may be a viable intervention to improve immune reconstitution in our setting.
Collapse
Affiliation(s)
- Soo Ching Lee
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ling Ling Chua
- University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tsung Fei Khang
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,University of Malaya Centre for Data Analytics, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chan Yoon Leng
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raja Iskandar Raja Azwa
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital; Royal Melbourne Hospital, Melbourne, Australia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yin Ling Woo
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P'ng Loke
- Department of Microbiology and Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW This article discusses the interaction between HIV infection, the gut microbiome, inflammation and immune activation, and HIV reservoirs, along with interventions to target the microbiome and their implications for HIV remission and cure. RECENT FINDINGS Most studies show that HIV-infected adults have a gut microbiome associated with decreased bacterial richness and diversity, and associated systemic inflammation and immune activation. A unique set of individuals, elite controllers, who spontaneously control HIV replication, have a similar microbiome to HIV-uninfected individuals. Conversely, exposure to maternal HIV in infants was shown to alter the gut microbiome, even in infants who escaped perinatal infection. Emerging research highlights the importance of the metabolomics and metaproteomics of the gut microbiome, which may have relevance for HIV remission and cure. Together, these studies illustrate the complexity of the relationship between HIV infection, the gut microbiome, and its systemic effects. SUMMARY Understanding the association of HIV with the microbiome, metabolome, and metaproteome may lead to novel therapies to decrease inflammation and immune activation, and impact HIV reservoir size and vaccine responses. Further research in this area is important to inform HIV remission and cure treatments.
Collapse
|
42
|
Deusch S, Serrano-Villar S, Rojo D, Martínez-Martínez M, Bargiela R, Vázquez-Castellanos JF, Sainz T, Barbas C, Moya A, Moreno S, Gosalbes MJ, Estrada V, Seifert J, Ferrer M. Effects of HIV, antiretroviral therapy and prebiotics on the active fraction of the gut microbiota. AIDS 2018; 32:1229-1237. [PMID: 29683848 DOI: 10.1097/qad.0000000000001831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE In a recent blinded randomized study, we found that in HIV-infected individuals a short supplementation with prebiotics (scGOS/lcFOS/glutamine) ameliorates dysbiosis of total gut bacteria, particularly among viremic untreated patients. Our study goal was to determine the fraction of the microbiota that becomes active during the intervention and that could provide additional functional information. DESIGN A total of six healthy individuals, and 16 HIV-infected patients comprising viremic untreated patients (n = 5) and antiretroviral therapy-treated patients that are further divided into immunological responders (n = 7) and immunological nonresponders (n = 4) completed the 6-week course of prebiotic treatment, including six patients receiving a placebo. METHODS Alpha and beta diversity of potentially active and total gut microbiota was evaluated using shotgun proteomics and 16S rRNA gene sequencing. RESULTS HIV infection decreased dormancy and increased alpha diversity of active bacteria in comparison with the healthy controls, whose richness was not further influenced by the prebiotic intervention. The effect of the prebiotics was most evident at the beta-diversity of active bacteria, particularly within viremic untreated patients. We found that the prebiotics did not only ameliorate dysbiosis of total bacteria in viremic untreated patients but also increased the abundance of active bacteria with strong immunomodulatory properties and amino acids metabolism, namely Bifidobacteriaceae, at similar levels to those in healthy individuals. This effect was attenuated in ART-treated individuals. CONCLUSION The effect of prebiotics was greater among ART-naive HIV-infected individuals than in ART-treated patients and healthy controls. This highlights the importance of therapies aimed at manipulating the microbiome in this group of patients.
Collapse
Affiliation(s)
- Simon Deusch
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS)
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, CEU San Pablo University
| | | | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid
| | - Jorge F Vázquez-Castellanos
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto de Biología Integrativa de Sistemas (Universidad de Valencia y CSIC), Valencia
- CIBER en Epidemiología y Salud Pública (CIBERESP)
| | - Talía Sainz
- Department of Pediatrics, Tropical and Infectious Diseases Unit, Hospital La Paz and La Paz Research Institute (IdiPAZ)
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, CEU San Pablo University
| | - Andrés Moya
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto de Biología Integrativa de Sistemas (Universidad de Valencia y CSIC), Valencia
- CIBER en Epidemiología y Salud Pública (CIBERESP)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS)
| | - María J Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto de Biología Integrativa de Sistemas (Universidad de Valencia y CSIC), Valencia
- CIBER en Epidemiología y Salud Pública (CIBERESP)
| | - Vicente Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid
| |
Collapse
|
43
|
|