1
|
Yao XC, Wu JJ, Yuan ST, Yuan FL. Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 2025; 55:53. [PMID: 39886977 PMCID: PMC11781520 DOI: 10.3892/ijmm.2025.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
Collapse
Affiliation(s)
- Xing-Chen Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| | - Sheng-Tao Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
2
|
Naranjo‐Covo MM, Rincón‐Tabares DS, Flórez‐Álvarez L, Hernandez JC, Zapata‐Builes W. Natural Resistance to HIV Infection: Role of Immune Activation. Immun Inflamm Dis 2025; 13:e70138. [PMID: 39998960 PMCID: PMC11854356 DOI: 10.1002/iid3.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Although repeated exposure to HIV-1 can result in infection, some individuals remain seronegative without clinical or serologic evidence of infection; these individuals are known as HIV-1-exposed seronegative individuals. This population has been extensively studied to understand the mechanisms associated with natural resistance to HIV infection. Two main hypotheses have been proposed to explain this resistance: some researchers associated resistance with a low activation phenotype characterized by a decrease in the activation and proliferation of immune system cells linked with infection control and decreased production of cytokines and pro-inflammatory molecules, whereas others suggest that resistance is related to immune system activation and the expression of high levels of chemokines, pro-inflammatory cytokines and antiviral molecules. AIMS Our study aims to review and analyze the most relevant evidence supporting the role of the activation level of the immune system during natural resistance to HIV-1 infection. METHODS A search was conducted via the PubMed, SciELO and ScienceDirect databases. The literature search was performed in a nonsystematic manner. Articles published in the last five decades addressing immune activation mechanisms in natural resistance to HIV were reviewed. RESULTS A low-activation phenotype, characterized by a high frequency of Treg cells; reduced expression of CD25, CD38, and HLA-DR; and lower production of pro-inflammatory cytokines in peripheral and mucosal tissues, plays a key role in reducing the number of activated cells susceptible to infection, but it minimizes chronic inflammation, facilitating viral entry and spread. In contrast, the activation phenotype is associated with high expression of markers such as CD25, CD38, and HLA-DR, along with elevated high levels of interferon-stimulated genes and pro-inflammatory cytokines. This profile could promote infection control while increasing the number of virus-susceptible cells. CONCLUSION The complexity of the immune response during HIV exposure, reflected in the conflicting evidence concerning whether low or high immune activation offers protection against infection, suggests that there may be multiple pathways to HIV-1 resistance, influenced by factors such as the type of viral exposure, the immune environment, and individual genetics. Further research is needed to determine which immune states are protective and how these responses can be modulated to prevent infection.
Collapse
Affiliation(s)
- María M. Naranjo‐Covo
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | | | - Lizdany Flórez‐Álvarez
- Departamento de Parasitología, Instituto de Ciencias BiomédicasUniversidad de Sao PauloSao PauloBrazil
| | - Juan C. Hernandez
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Wildeman Zapata‐Builes
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| |
Collapse
|
3
|
Yang Y, Yuan H, Zhang Y, Luan J, Wang H. Progress in African Swine Fever Vector Vaccine Development. Int J Mol Sci 2025; 26:921. [PMID: 39940691 PMCID: PMC11816837 DOI: 10.3390/ijms26030921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
African swine fever (ASF) is a highly lethal, infectious, hemorrhagic fever disease, characterized by an acute mortality rate approaching 100%. It is highly contagious, and results in significant losses to the global hog industry as it spreads. Despite incremental progress in research on the African swine fever virus (ASFV), a safe and effective commercial vaccine has yet to be developed. Vector vaccines, a promising type of vaccine, offer unique advantages, and are a primary focus in ASFV vaccine research. This paper focuses on the characteristics of viral, bacterial, and yeast vector vaccines; elucidates the immunological mechanisms associated with antigens; lists the types of antigens that have significant potential; discusses the feasibility of using exogenously expressed cytokines to enhance the protective power of vector vaccines; and, finally, discusses the types of vectors that are commonly used and the latest advances in this field.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China; yangyue-@mail.sdu.edu.cn (Y.Y.); (H.Y.); (Y.Z.); (J.L.)
| |
Collapse
|
4
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Hao K, Lin P, Li J, Hu J, Wang J, Li F. IL21 inhibits miR-361-5p to promote MAP3K9 and further aggravate the progression of shoulder arthritis. Aging (Albany NY) 2024; 16:7915-7927. [PMID: 38728237 PMCID: PMC11132011 DOI: 10.18632/aging.205793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.
Collapse
Affiliation(s)
- Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Pengchao Lin
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Jing Li
- Department of Nursing, Hebei Province Eighth People’s Hospital, Shijiazhuang 050011, Hebei, P.R. China
| | - Jie Hu
- Department of Radiology, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Jiangyong Wang
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Fei Li
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| |
Collapse
|
6
|
Saulle I, Garziano M, Cappelletti G, Limanaqi F, Strizzi S, Vanetti C, Lo Caputo S, Poliseno M, Santantonio TA, Clerici M, Biasin M. Salivary miRNA Profiles in COVID-19 Patients with Different Disease Severities. Int J Mol Sci 2023; 24:10992. [PMID: 37446170 DOI: 10.3390/ijms241310992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, the SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we showed that of the 84 miRNAs analyzed, 8 were differently expressed in the plasma and saliva of SD patients. In particular: (1) miRNAs let-7a-5p, let-7b-5p, and let-7c-5p were significantly downregulated; and (2) miR-23a and b and miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, and miR-146) were significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9, and TNFα) and chemokines (CCL2 and RANTES) increased in both the saliva and plasma of SD and MD patients. Notably, disease severity correlated with NA and immune activation. Monitoring these parameters could help predict disease outcomes and identify new markers of disease progression.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Micaela Garziano
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Fiona Limanaqi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mariacristina Poliseno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Teresa Antonia Santantonio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
7
|
Tumolo MR, Scoditti E, Guarino R, Grassi T, Bagordo F, Sabina S. MIR-29A-3P, MIR-29C-3P, MIR-146B-5P AND MIR-150-5P, Their Target Genes and lncrnas in HIV Infection: A Bioinformatic Study. Curr HIV Res 2023; 21:128-139. [PMID: 37226785 DOI: 10.2174/1570162x21666230524151328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Increasing evidence suggests that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have emerged as attractive targets in viral infections, including Human immunodeficiency virus (HIV). OBJECTIVE To deepen the understanding of the molecular mechanisms that lead to HIV and provide potential targets for the future development of molecular therapies for its treatment. METHODS Four miRNAs were selected as candidates based on a previous systematic review. A combination of bioinformatic analyses was performed to identify their target genes, lncRNAs and biological processes that regulate them. RESULTS In the constructed miRNA-mRNA network, 193 gene targets are identified. These miRNAs potentially control genes from several important processes, including signal transduction and cancer. LncRNA-XIST, lncRNA-NEAT1 and lncRNA-HCG18 interact with all four miRNAs. CONCLUSION This preliminary result forms the basis for improving reliability in future studies to fully understand the role these molecules and their interactions play in HIV.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesco Bagordo
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| |
Collapse
|
8
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
9
|
Fenizia C, Cetin I, Mileto D, Vanetti C, Saulle I, Di Giminiani M, Saresella M, Parisi F, Trabattoni D, Clerici M, Biasin M, Savasi V. Pregnant Women Develop a Specific Immunological Long-Lived Memory Against SARS-COV-2. Front Immunol 2022; 13:827889. [PMID: 35251011 PMCID: PMC8889908 DOI: 10.3389/fimmu.2022.827889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
It is well established that pregnancy induces deep changes in the immune system. This is part of the physiological adaptation of the female organism to the pregnancy and the immunological tolerance toward the fetus. Indeed, over the three trimesters, the suppressive T regulatory lymphocytes are progressively more represented, while the expression of co-stimulatory molecules decreases overtime. Such adaptations relate to an increased risk of infections and progression to severe disease in pregnant women, potentially resulting in an altered generation of long-lived specific immunological memory of infection contracted during pregnancy. How potent is the immune response against SARS-CoV-2 in infected pregnant women and how long the specific SARS-CoV-2 immunity might last need to be urgently addressed, especially considering the current vaccinal campaign. To address these questions, we analyzed the long-term immunological response upon SARS-CoV-2 infection in pregnant women from delivery to a six-months follow-up. In particular, we investigated the specific antibody production, T cell memory subsets, and inflammation profile. Results show that 80% developed an anti-SARS-CoV-2-specific IgG response, comparable with the general population. While IgG were present only in 50% of the asymptomatic subjects, the antibody production was elicited by infection in all the mild-to-critical patients. The specific T-cell memory subsets rebalanced over-time, and the pro-inflammatory profile triggered by specific SARS-CoV-2 stimulation faded away. These results shed light on SARS-CoV-2-specific immunity in pregnant women; understanding the immunological dynamics of the immune system in response to SARS-CoV-2 is essential for defining proper obstetric management of pregnant women and fine tune gender-specific vaccinal plans.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Woman, Mother and Neonate Buzzi Children’s Hospital, ASST Fatebenefratelli‐Sacco, Milan, Italy
| | - Davide Mileto
- Clinical Microbiology, Virology and Bio-emergence Diagnosis, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Maria Di Giminiani
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Francesca Parisi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione don Carlo Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valeria Savasi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
10
|
Ghafouri-Fard S, Mahmud Hussen B, Abak A, Taheri M, Abdulmajid Ayatollahi S. Emerging role of non-coding RNAs in the course of HIV infection. Int Immunopharmacol 2021; 103:108460. [PMID: 34942460 DOI: 10.1016/j.intimp.2021.108460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/05/2022]
Abstract
Recent studies have shown that non-coding region of the human genome can exert important regulatory roles on critical biological functions, including response to viral infections, among them is human immunodeficiency virus (HIV). HIV/AIDS is characterized by a gradual diminution of CD4 + T cells resulting in progressive deterioration of host immune responses and eventually high vulnerability to opportunistic infections and cancer. T cells functions have been shown to be delicately regulated by an active functional network of non-coding RNAs. Several lncRNAs such as MALAT1, NEAT1, GAS5, LOC102549805, NKILA, BACE1-AS, LINC00313, RP11-539L10.2, PVT1, LINC00173, NRON and AK130181 have been found to affect response of immune system to HIV or its pathological consequences. Moreover, numerous miRNAs such as hsa-miR-191-5p, miR-155, miR-103, miR-107, miR-150, miR-144, miR-125b, miR-146a, miR-146b-5p and miR-15a are involved in this process. In the current manuscript, we explain the role of lncRNAs and miRNAs in the regulation of response to HIV infection, apoptosis and activity of T cells, reactivation or latency of this virus and even pathological manifestations such as Tat-mediated induction of astrocytic amyloidosis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
12
|
Chen XL, Wang JH, Zhao W, Shi CW, Yang KD, Niu TM, Yang GL, Cao X, Jiang YL, Wang JZ, Huang HB, Zeng Y, Wang N, Yang WT, Wang CF. Lactobacillus plantarum surface-displayed ASFV (p54) with porcine IL-21 generally stimulates protective immune responses in mice. AMB Express 2021; 11:114. [PMID: 34383171 PMCID: PMC8360262 DOI: 10.1186/s13568-021-01275-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
African classical swine fever virus (ASFV) has spread seriously around the world and has dealt with a heavy blow to the pig breeding industry due to the lack of vaccines. In this study, we produced recombinant Lactobacillus plantarum (L. plantarum) expressing an ASFV p54 and porcine IL-21 (pIL-21) fusion protein and evaluated the immune effect of NC8-pSIP409-pgsA'-p54-pIL-21 in a mouse model. First, we verified that the ASFV p54 protein and p54-pIL-21 fusion protein were anchored on the surface of L. plantarum NC8 by flow cytometry, immunofluorescence and Western blotting. Then, the results were verified by flow cytometry, ELISA and MTT assays. Mouse-specific humoral immunity and mucosal and T cell-mediated immune responses were induced by recombinant L. plantarum. The results of feeding mice recombinant L. plantarum showed that the levels of serum IgG and mucosal secreted IgA (SIgA), the number of CD4 and CD8 T cells, and the expression of IFN-γ in CD4 and CD8 T cells increased significantly, and lymphocyte proliferation occurred under stimulation with the ASFV p54 protein. Our data lay a foundation for the development of oral vaccines against ASFV in the future.
Collapse
|
13
|
Saulle I, Garziano M, Fenizia C, Cappelletti G, Parisi F, Clerici M, Cetin I, Savasi V, Biasin M. MiRNA Profiling in Plasma and Placenta of SARS-CoV-2-Infected Pregnant Women. Cells 2021; 10:1788. [PMID: 34359957 PMCID: PMC8305278 DOI: 10.3390/cells10071788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are gene expression regulators associated with several human pathologies, including those generated by viral infections. Their role in SARS-CoV-2 infection and COVID-19 has been investigated and reviewed in many informative studies; however, a thorough miRNA outline in SARS-CoV-2-infected pregnant women (SIPW), at both systemic and placental levels, is missing. To fill this gap, blood and placenta biopsies collected at delivery from 15 asymptomatic SIPW were immediately analysed for: miRNA expression (n = 84) (QPCR array), antiviral/immune mRNA target expression (n = 74) (QGene) and cytokine/chemokines production (n = 27) (Multiplex ELISA). By comparing these results with those obtained from six uninfected pregnant women (UPW), we observed that, following SARS-CoV-2 infection, the transcriptomic profile of pregnant women is significantly altered in different anatomical districts, even in the absence of clinical symptoms and vertical transmission. This characteristic combination of miRNA and antiviral/immune factors seems to control both the infection and the dysfunctional immune reaction, thus representing a positive correlate of protection and a potential therapeutic target against SARS-CoV-2.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
| | - Francesca Parisi
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Department of Biological and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.P.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
- Department of Woman, Mother and Neonate Buzzi Children’s Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Valeria Savasi
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Department of Biological and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.P.)
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (I.S.); (M.G.); (C.F.); (G.C.); (I.C.); (V.S.)
| |
Collapse
|
14
|
Abel T, Moodley J, Naicker T. The Involvement of MicroRNAs in SARS-CoV-2 Infection Comorbid with HIV-Associated Preeclampsia. Curr Hypertens Rep 2021; 23:20. [PMID: 33847825 PMCID: PMC8042355 DOI: 10.1007/s11906-021-01138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review This review investigated the potential role of microRNAs (miRNAs) in the synergy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, preeclampsia (PE), and human immunodeficiency virus (HIV) infection. Maternal health is a great concern when treating pregnant women fighting this triad of diseases, which is highly prevalent in South Africa. MicroRNAs are involved in fine-tuning of physiological processes. Disruptions to the balance of this minute protein can lead to various physiological changes that are sometimes pathological. Recent Findings MicroRNAs have recently been implicated in PE and have been linked to the anti-angiogenic imbalance evident in PE. Recent in silico studies have identified potential host miRNAs with anti-viral properties against SARS-CoV-2 infection. Studies have demonstrated dysregulated expression of several miRNAs in HIV-1 infection along with the ability of HIV-1 to downregulate anti-viral host microRNAs. Summary This review has highlighted the significant gap in literature on the potential of miRNAs in women with HIV-associated PE in synergy with the novel SARS-CoV-2 infection. In addition, this review has provided evidence of the critical role that the epigenetic regulatory mechanism of miRNA plays in viral infections and PE, thereby providing a foundation for further research investigating the potential of therapeutic miRNA development with fewer side-effects for pregnant women.
Collapse
Affiliation(s)
- Tashlen Abel
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
15
|
Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, Trabattoni D, Clerici M, Biasin M. ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:1609-1617. [PMID: 33619214 DOI: 10.4049/jimmunol.2000991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Recombinant human (rh) ERAP2-treated PBMCs are less susceptible to in vitro HIV-1 infection even when CD8+ T cells are depleted. We therefore investigated whether ERAP2 can trigger other immunocompetent cells, boosting their antiviral potential. To this end, human monocyte-derived macrophages (MDMs) differentiated from PBMCs of 15 healthy donors were in vitro HIV-1 infected in the presence/absence of 100 ng/ml of rhERAP2, rhERAP1, or rhERAP1+rhERAP2. Notably, rhERAP2 treatment resulted in a 7-fold reduction of HIV-1 replication in MDMs (p < 0.05). This antiviral activity was associated with an increased mRNA expression of CD80, IL-1β, IL-18, and TNF-α (p < 0.01 for cytokine) in in vitro ERAP2-treated HIV-1-infected MDMs and a greater release of IL-1β, TNF-α, IL-6, and IL-8 (p < 0.01 for each cytokine). The rhERAPs addition also induced the functional inflammasome activation by ASC speck formation in monocytes (p < 0.01) and in THP1-derived macrophages (p < 0.01) as well as a rise in the percentage of activated classical (CD14+CD16-HLA-DRII+CCR7+) and intermediate (CD14++CD16+HLA-DRII+CCR7+) monocytes (p < 0.02). Finally, THP-1-derived macrophages showed an increased phagocytosis following all ERAPs treatments. The discovery that ERAPs are able to trigger several antiviral mechanisms in monocyte/macrophages suggests that their anti-HIV potential is not limited to their canonical role in Ag presentation and CD8+ T cell activation. These findings pose the premise to further investigate the role of ERAPs in both innate and adaptive immunostimulatory pathways and suggest their potential use in novel preventive and therapeutic approaches against HIV-1 infection.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | | | | | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and.,Fondazione IRCCS Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy;
| |
Collapse
|
16
|
Megalocytivirus Induces Complicated Fish Immune Response at Multiple RNA Levels Involving mRNA, miRNA, and circRNA. Int J Mol Sci 2021; 22:ijms22063156. [PMID: 33808870 PMCID: PMC8003733 DOI: 10.3390/ijms22063156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
Collapse
|
17
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
18
|
Moghoofei M, Najafipour S, Mostafaei S, Tavakoli A, Bokharaei-Salim F, Ghorbani S, Javanmard D, Ghaffari H, Monavari SH. MicroRNAs Profiling in HIV, HCV, and HIV/HCV Co-Infected Patients. Curr HIV Res 2021; 19:27-34. [PMID: 32900348 DOI: 10.2174/1570162x18666200908112113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections are important public health issues. OBJECTIVE This study aimed to assess the association between microRNAs expression leveland immunological and viral markers in HIV, HCV, and HIV/HCV co-infected patients. METHODS The expression level of miR-29, miR-149, miR-199, miR-let7, miR-223, miR-155, miR-122, and miR-150 was evaluated in 20 HIV, 20 HCV, 20 co-infected patients, and 20 healthy controls using real-time PCR assay. HIV and HCVviral loads were measuredby real-time PCR, and also, CD4+ T-lymphocyte count was measuredby the PIMA CD4 analyzer. RESULTS The miRNA expression pattern in each mentioned group showed significantly different expression profiles, but some miRNA species were shared between the groups. MiR-122 and miR-155 were upregulated, while miR-29 and miR-223 were downregulated in three patients groups compared to healthy controls. A significant positive correlation was observed between the expression of miR-122 and HIV/HCV loads. But, miR-29 and let-7 were negatively correlated with HIV load, and miR-149 and let-7 were negatively correlated with HCV load. Also, miR-155 was positively correlated with HCV load. MiR-122 and miR-199 were negative while others were positively correlated with CD4+ T cell count. CONCLUSION These miRNAs are probably involved in the clinical progression and pathogenesis of HIV and HCV infections. Therefore, determining and manipulating these miRNAs can lead to opening a new gate to control these important infections.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shayan Mostafaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Tavakoli
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Davod Javanmard
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadi Ghaffari
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
19
|
Non Detection of HIV-1 Proviral DNA in PBMCs of the Neonates Born to Iranian HIV-Infected Mothers in PMTCT Program. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Early diagnosis of immunodeficiency virus-1 infection in children and access to treatment for this infection is critical in decreasing infant mortality. Objectives: The aim of the current survey was to determine the presence of HIV-1 genomic RNA in plasma and proviral DNA in peripheral blood mononuclear cell (PBMC) specimens of neonates born to HIV-infected mothers. Methods: From March 2014 to February 2018, 73 neonates born to HIV-1-infected mothers covered by the prevention of mother-to-child transmission (PMTCT) program were enrolled in this study to compare two different diagnostic methods. After the extraction of viral RNA of plasma and genomic DNA of PBMC specimens, HIV-1 RNA and proviral DNA was tested by amplification of the long terminal repeat (LTR) region of HIV-1 using real-time PCR. Results: Out of 73 evaluated infants, 41 infants (56.2%) were male. The average age of the mothers with HIV-1 infection was 30.7 ± 5.2 (range: 19–47) years. The results revealed that none of the infants were infected with HIV-1, and also all were negative for HIV-1 genomic RNA in plasma specimen and proviral DNA of HIV-1 in PMBC samples. During the present study, 20 infants born to HIV-1 positive mothers who were not included in the PMTCT project were accidentally identified. Four infants (20%) out of these 20 infants were infected with HIV, all were infected with CRF35-AD of HIV, and none carried variants with surveillance drug-resistant mutations. Conclusions: The results of the present study showed that two molecular methods of detecting HIV infection (presence of genomic RNA of HIV-1 in plasma and proviral DNA of HIV-1 in PBMC specimens) are completely in agreement with each other, and the PMTCT program is possibly an effective program.
Collapse
|
20
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
21
|
Planas D, Fert A, Zhang Y, Goulet JP, Richard J, Finzi A, Ruiz MJ, Marchand LR, Chatterjee D, Chen H, Wiche Salinas TR, Gosselin A, Cohen EA, Routy JP, Chomont N, Ancuta P. Pharmacological Inhibition of PPARy Boosts HIV Reactivation and Th17 Effector Functions, While Preventing Progeny Virion Release and de novo Infection. Pathog Immun 2020; 5:177-239. [PMID: 33089034 PMCID: PMC7556414 DOI: 10.20411/pai.v5i1.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
The frequency and functions of Th17-polarized
CCR6+RORyt+CD4+ T cells are rapidly
compromised upon HIV infection and are not restored with long-term viral
suppressive antiretroviral therapy (ART). In line with this, Th17 cells
represent selective HIV-1 infection targets mainly at mucosal sites, with
long-lived Th17 subsets carrying replication-competent HIV-DNA during ART.
Therefore, novel Th17-specific therapeutic interventions are needed as a
supplement of ART to reach the goal of HIV remission/cure. Th17 cells express
high levels of peroxisome proliferator-activated receptor gamma
(PPARy), which acts as a transcriptional repressor of the HIV provirus and the
rorc gene, which encodes for the Th17-specific master
regulator RORyt. Thus, we hypothesized that the pharmacological inhibition of
PPARy will facilitate HIV reservoir reactivation while enhancing Th17 effector
functions. Consistent with this prediction, the PPARy antagonist T0070907
significantly increased HIV transcription (cell-associated HIV-RNA) and
RORyt-mediated Th17 effector functions (IL-17A). Unexpectedly, the PPARy
antagonism limited HIV outgrowth from cells of ART-treated people living with
HIV (PLWH), as well as HIV replication in vitro.
Mechanistically, PPARy inhibition in CCR6+CD4+ T cells
induced the upregulation of transcripts linked to Th17-polarisation (RORyt,
STAT3, BCL6 IL-17A/F, IL-21) and HIV transcription (NCOA1-3, CDK9, HTATIP2).
Interestingly, several transcripts involved in HIV-restriction were upregulated
(Caveolin-1, TRIM22, TRIM5α, BST2, miR-29), whereas HIV permissiveness
transcripts were downregulated (CCR5, furin), consistent with the decrease in
HIV outgrowth/replication. Finally, PPARy inhibition increased intracellular
HIV-p24 expression and prevented BST-2 downregulation on infected T cells,
suggesting that progeny virion release is restricted by BST-2-dependent
mechanisms. These results provide a strong rationale for considering PPARy
antagonism as a novel strategy for HIV-reservoir purging and restoring
Th17-mediated mucosal immunity in ART-treated PLWH.
Collapse
Affiliation(s)
- Delphine Planas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Jonathan Richard
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Andrés Finzi
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Maria Julia Ruiz
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Debashree Chatterjee
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Annie Gosselin
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal; Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service; Division of Hematology; McGill University Health Centre-Glen site; Montreal, Québec, Canada
| | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| |
Collapse
|
22
|
Abstract
Acquired immunodeficiency syndrome (AIDS) was first reported more than 30 years ago among homosexuals in the United States. The epidemiology of this disease indicates that there are three modes of transmission: Blood, mother-to-child, and sexual contact transmission. The pathogen of AIDS is human immunodeficiency virus (HIV), primarily HIV-1. HIV-1 could not break through the structurally and functionally integral skin, and primarily invades the human body through the mucosa irrespective of their integrity. Therefore, the mucosae are the natural transmission routes for HIV-1. The mucosae involved in HIV-1 transmission include the mucosae of the gastrointestinal tract and the urogenital tract. The risks of HIV-1 transmission vary significantly between mucosal sites and individuals, and are associated with mucosal integrity, abundance of target cells, immune status of the host, commensal microbes, and host genetic background. Many factors are closely related to the barrier function of the mucosa, and studies on their roles in HIV-1 invasion could promote the prevention and control of mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
23
|
Jiang J, Hu X, Li W, Liu J, Liang B, Chen H, Huang J, Zang N, Ning C, Liao Y, Chen R, Lai J, Chu J, Pan P, Cui P, Tang Q, Chen X, Liang H, Ye L. Enhanced Signaling Through the TLR9 Pathway Is Associated With Resistance to HIV-1 Infection in Chinese HIV-1-Exposed Seronegative Individuals. Front Immunol 2020; 11:1050. [PMID: 32547554 PMCID: PMC7274031 DOI: 10.3389/fimmu.2020.01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens and may mediate HIV-1 resistance in HIV-1–exposed seronegative (HESN) individuals. This study aims to identify components of innate immunity that confer natural HIV-1 resistance in Chinese HESN individuals. Specifically, we compared the expression levels of Toll-like receptors (TLRs) and associated pathway molecules in peripheral blood mononuclear cells (PBMCs), monocytes/macrophages, and plasma obtained from HESN and control individuals. HESN individuals had higher expression of TLR9, IRF7, IFN-α/β, RANTES, and MIP-1α/1β in PBMCs and plasma than control subjects. Upon TLR9 stimulation, significantly higher expression of TLR9 and IRF7, as well as higher production of IFN-α/β, RANTES, and MIP-1α/1β, was observed in PBMCs and monocytes/macrophages from HESN individuals than in the corresponding cells from control individuals. More importantly, both with and without TLR9 stimulation, the levels of HIV-1 replication in monocyte-derived macrophages (MDMs) from HESN individuals were significantly lower than those in MDMs from control individuals. These data suggest that increased TLR9 activity and subsequent release of antiviral factors contribute to protection against HIV-1 in HESN individuals.
Collapse
Affiliation(s)
- Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xi Hu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wenwei Li
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Ning Zang
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jingzhen Lai
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiemei Chu
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Qiao Tang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
25
|
MicroRNAs as new immunity regulators in viral and bacterial infections. ACTA BIOLOGICA 2020. [DOI: 10.18276/ab.2020.27-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Serna-Ortega PA, Aguilar-Jimenez W, Florez-Álvarez L, Trabattoni D, Rugeles MT, Biasin M. IL-21 is associated with natural resistance to HIV-1 infection in a Colombian HIV exposed seronegative cohort. Microbes Infect 2019; 22:371-374. [PMID: 31816393 DOI: 10.1016/j.micinf.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Higher IL-21 levels were associated with natural resistance to HIV infection in an Italian cohort. Thus we wanted to confirm such association in HIV exposed seronegative individuals (HESN) from Colombia. Cells from HESN were less susceptible to infection and expressed higher IL-21 mRNA levels than healthy controls at both baseline and 7-days post-infection; similar results were observed for IL-6, perforin, and granzyme. These results suggest that IL-21/IL-6 increase may be a distinctive quality in the profile of HIV-1 resistance, at least during sexual exposure. However, further studies are necessary to confirm the specific protective mechanisms of these cytokines.
Collapse
Affiliation(s)
- Paula Andrea Serna-Ortega
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy; Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Florez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Maria Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy.
| |
Collapse
|
27
|
Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F, Minisci D, Lori EM, Trabattoni D, Gelfi C, Clerici M, Biasin M. Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces in vitro HIV-1 Infection. Front Immunol 2019; 10:1648. [PMID: 31379846 PMCID: PMC6646713 DOI: 10.3389/fimmu.2019.01648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Haplotype-specific alternative splicing of the endoplasmic reticulum (ER) aminopeptidase type 2 (ERAP2) gene results in either full-length (FL, haplotype A) or alternatively spliced (AS, haplotype B) mRNA. HapA/HapA homozygous (HomoA) subjects show a reduced susceptibility to HIV-1 infection, probably secondary to the modulation of the antigen processing/presenting machinery. ERAP1 was recently shown to be secreted from the plasma membrane in response to activation; we investigated whether ERAP2 can be released as well and if the secreted form of this enzyme retains its antiviral function. Methods: Human monocyte derived macrophages (MDMs) were differentiated from peripheral blood mononuclear cells (PBMCs) isolated from 6 HomoA healthy controls and stimulated with IFNγ and LPS. ERAP2-FL secretion was evaluated by mass spectrometry. PBMCs (14 HomoA and 16 HomoB) and CD8-depleted PBMCs (CD8−PBMCs) (4 HomoA and 4 HomoB) were in vitro HIV-infected in the absence/presence of recombinant human ERAP2-FL (rhERAP2) protein; p24 viral antigen quantification was used to assess viral replication. IFNγ and CD69 mRNA expression, as well as the percentage of perforin-producing CD8+ T Lymphocytes, were analyzed 3 and 7-days post in vitro HIV-1-infection, respectively. The effect of rhERAP2 addition in cell cultures on T cell apoptosis, proliferation, activation, and maturation was evaluated as well on 24 h-stimulated PBMCs. Results: ERAP2 can be secreted from human MDMs in response to IFNγ/LPS stimulation. Notably, the addition of rhERAP2 to PBMC and CD8−PBMC cultures resulted in the reduction of viral replication, though these differences were statistically significant only in PBMCs (p < 0.05 in both HomoA and HomoB). This protective effect was associated with an increase in IFNγ and CD69 mRNA expression and in the percentage of perforin-expressing CD107+CD8+ cells. RhERAP2 addition also resulted in an increase in CD8+ activated lymphocyte (CD25+HLA−DRII+) and Effector Memory/Terminally differentiated CD8+ T cells ratio. Conclusions: This is the first report providing evidence for the release of ERAP2 in the secretome of immunocompetent cells. Data herein also indicate that exogenous ERAP2-FL exerts its protective function against HIV-1 infection, even in HomoB subjects who do not genetically produce it. Presumably, this defensive extracellular feature is only partially dependent on immune system modulation.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Cecilia Vittori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Davide Minisci
- Department of Infectious Disease, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Elisa Maria Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy.,I.R.C.C.S Orthopaedic Institute Galeazzi, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|