1
|
Jia F(F, Brew BJ. Neuropathogenesis of acute HIV: mechanisms, biomarkers, and therapeutic approaches. Curr Opin HIV AIDS 2025; 20:199-208. [PMID: 40110851 PMCID: PMC11970608 DOI: 10.1097/coh.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The neuropathogenesis of acute HIV leads to rapid central nervous system (CNS) involvement, characterized by early viral entry, immune activation, and the formation of viral reservoirs. Despite effective antiretroviral therapy (ART), these reservoirs persist, drive neuroinflammation and injury and lead to HIV-associated neurodegenerative disorders (HAND). This review provides an updated synthesis of the mechanisms in acute HIV neuropathogenesis, biomarkers of CNS injury and emerging therapeutic approaches. A deeper understanding of these mechanisms is critical for addressing persistent HAND in ART-treated individuals. RECENT FINDINGS Growing evidence now supports the principal role of infected CD4 + T cells in mediating HIV neuroinvasion alongside monocytes, resulting in seeding in perivascular macrophages, pericytes, and adjacent microglia and astrocytes. These reservoirs contribute to ongoing transcriptional activity and viral persistence despite antiretroviral therapy. Neuroinflammation, driven by activated microglia, astrocytes, inflammasomes, and neurotoxic viral proteins, disrupts neuronal homeostasis. Emerging therapies, including latency-reversing agents and transcription inhibitors, show promise in reducing neuroinflammation and reservoir activity. SUMMARY Understanding the mechanisms of HIV neuropathogenesis and reservoir persistence has significant implications for developing targeted therapies to mitigate HAND. Strategies to eliminate CNS reservoirs and reduce neuroinflammation should be prioritized to improve long-term cognitive outcomes in people with HIV.
Collapse
Affiliation(s)
- Fangzhi (Frank) Jia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Department of Neurology, St Vincent's Hospital, Darlinghurst
- Department of Neurology, Royal North Shore Hospital, St Leonards
| | - Bruce J. Brew
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Departments of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent's Hospital, University of New South Wales and University of Notre Dame, Darlinghurst, Sydney NSW, Australia
| |
Collapse
|
2
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
3
|
Huff HV, Sportiello K, Bearden DR. Central Nervous System Complications of HIV in Children. Curr HIV/AIDS Rep 2024; 21:40-51. [PMID: 38252368 DOI: 10.1007/s11904-024-00689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Affiliation(s)
- Hanalise V Huff
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Building 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kristen Sportiello
- Department of Neurology, Division of Child Neurology, University of Rochester Medical Center, 160 Elmwood Ave, Rochester, NY, 14618, USA
| | - David R Bearden
- Department of Educational Psychology, University of Zambia, Independence Ave, Lusaka, Zambia.
- Department of Neurology, Division of Child Neurology, University of Rochester Medical Center, 160 Elmwood Ave, Rochester, NY, 14618, USA.
| |
Collapse
|
4
|
Tse WS, Pochwat B, Szewczyk B, Misztak P, Bobula B, Tokarski K, Worch R, Czarnota-Bojarska M, Lipton SA, Zaręba-Kozioł M, Bijata M, Wlodarczyk J. Restorative effect of NitroSynapsin on synaptic plasticity in an animal model of depression. Neuropharmacology 2023; 241:109729. [PMID: 37797736 DOI: 10.1016/j.neuropharm.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
In the search for new options for the pharmacological treatment of major depressive disorder, compounds with a rapid onset of action and high efficacy but lacking a psychotomimetic effect are of particular interest. In the present study, we evaluated the antidepressant potential of NitroSynapsin (NS) at behavioural, structural, and functional levels. NS is a memantine derivative and a dual allosteric N-methyl-d-aspartate receptors (NMDAR) antagonist using targeted delivery by the aminoadamantane of a warhead nitro group to inhibitory redox sites on the NMDAR. In a chronic restraint stress (CRS) mouse model of depression, five doses of NS administered on three consecutive days evoked antidepressant-like activity in the chronically stressed male C57BL/6J mice, reversing CRS-induced behavioural disturbances in sucrose preference and tail suspension tests. CRS-induced changes in morphology and density of dendritic spines in cerebrocortical neurons in the medial prefrontal cortex (mPFC) were also reversed by NS. Moreover, CRS-induced reduction in long-term potentiation (LTP) in the mPFC was found to be prevented by NS based on the electrophysiological recordings. Our study showed that NS restores structural and functional synaptic plasticity and reduces depressive behaviour to the level found in naïve animals. These results preliminarily revealed an antidepressant-like potency of NS.
Collapse
Affiliation(s)
- Wing Sze Tse
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Bartłomiej Pochwat
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; Department of Medicine and Surgery, University of Milano-Bicocca, 20-900, Monza, Italy
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Remigiusz Worch
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Marta Czarnota-Bojarska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Neurosciences, University of California, School of Medicine, La Jolla, San Diego, CA 92093, United States
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Marinkovic K, White DR, Alderson Myers A, Parker KS, Arienzo D, Mason GF. Cortical GABA Levels Are Reduced in Post-Acute COVID-19 Syndrome. Brain Sci 2023; 13:1666. [PMID: 38137114 PMCID: PMC10741691 DOI: 10.3390/brainsci13121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - David R. White
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Austin Alderson Myers
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Katie S. Parker
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Donatello Arienzo
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Graeme F. Mason
- Department of Radiology and Biomedical Imaging, Psychiatry, and Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
6
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
8
|
Goodkin K, Evering TH, Anderson AM, Ragin A, Monaco CL, Gavegnano C, Avery RJ, Rourke SB, Cysique LA, Brew BJ. The comorbidity of depression and neurocognitive disorder in persons with HIV infection: call for investigation and treatment. Front Cell Neurosci 2023; 17:1130938. [PMID: 37206666 PMCID: PMC10190964 DOI: 10.3389/fncel.2023.1130938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023] Open
Abstract
Depression and neurocognitive disorder continue to be the major neuropsychiatric disorders affecting persons with HIV (PWH). The prevalence of major depressive disorder is two to fourfold higher among PWH than the general population (∼6.7%). Prevalence estimates of neurocognitive disorder among PWH range from 25 to over 47% - depending upon the definition used (which is currently evolving), the size of the test battery employed, and the demographic and HIV disease characteristics of the participants included, such as age range and sex distribution. Both major depressive disorder and neurocognitive disorder also result in substantial morbidity and premature mortality. However, though anticipated to be relatively common, the comorbidity of these two disorders in PWH has not been formally studied. This is partly due to the clinical overlap of the neurocognitive symptoms of these two disorders. Both also share neurobehavioral aspects - particularly apathy - as well as an increased risk for non-adherence to antiretroviral therapy. Shared pathophysiological mechanisms potentially explain these intersecting phenotypes, including neuroinflammatory, vascular, and microbiomic, as well as neuroendocrine/neurotransmitter dynamic mechanisms. Treatment of either disorder affects the other with respect to symptom reduction as well as medication toxicity. We present a unified model for the comorbidity based upon deficits in dopaminergic transmission that occur in both major depressive disorder and HIV-associated neurocognitive disorder. Specific treatments for the comorbidity that decrease neuroinflammation and/or restore associated deficits in dopaminergic transmission may be indicated and merit study.
Collapse
Affiliation(s)
- Karl Goodkin
- Department of Psychiatry, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
- Institute of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
| | - Teresa H. Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ann Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cynthia L. Monaco
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Christina Gavegnano
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Chemical Biology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Atlanta Veteran’s Affairs Medical Center, Atlanta, GA, United States
- Center for Bioethics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Ryan J. Avery
- Division of Nuclear Medicine, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sean B. Rourke
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lucette A. Cysique
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Bruce J. Brew
- Department of Neurology, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, Faculty of Medicine, University of Notre Dame, Sydney, NSW, Australia
| |
Collapse
|
9
|
Thela L, Decloedt E, Zetterberg H, Gisslén M, Lesosky M, Gleich M, Koutsilieri E, Scheller C, Hye A, Joska J. Blood and cerebrospinal fluid biomarker changes in patients with HIV-associated neurocognitive impairment treated with lithium: analysis from a randomised placebo-controlled trial. J Neurovirol 2023; 29:156-166. [PMID: 36790601 DOI: 10.1007/s13365-023-01116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of antiretroviral therapy (ART). Thus, ART does not completely halt or reverse the pathological processes behind HAND. Adjuvant mitigating treatments are, therefore, prudent. Lithium treatment is known to promote neuronal brain-derived neurotrophic factors (BDNF). Lithium is also an inhibitor of glycogen synthase kinase-3 beta (GSK-3-β). We analyzed biomarkers obtained from participants in a randomized placebo-controlled trial of lithium in ART-treated individuals with moderate or severe HAND. We assayed markers at baseline and 24 weeks across several pathways hypothesized to be affected by HIV, inflammation, or degeneration. Investigated biomarkers included dopamine, BDNF, neurofilament light chain, and CD8 + lymphocyte activation (CD38 + HLADR +). Alzheimer's Disease (AD) biomarkers included soluble amyloid precursor protein alpha and beta (sAPPα/β), Aβ38, 40, 42, and ten other biomarkers validated as predictors of mild cognitive impairment and progression in previous studies. These include apolipoprotein C3, pre-albumin, α1-acid glycoprotein, α1-antitrypsin, PEDF, CC4, ICAM-1, RANTES, clusterin, and cystatin c. We recruited 61 participants (placebo = 31; lithium = 30). The age baseline mean was 40 (± 8.35) years and the median CD4 + T-cell count was 498 (IQR: 389-651) cells/μL. Biomarker concentrations between groups did not differ at baseline. However, both groups' blood dopamine levels decreased significantly after 24 weeks (adj. p < 002). No other marker was significantly different between groups, and we concluded that lithium did not confer neuroprotection following 24 weeks of treatment. However, the study was limited in duration and sample size.
Collapse
Affiliation(s)
- Lindokuhle Thela
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa.
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Stellenbosch University, Cape Town, South Africa
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Magnus Gisslén
- Department of Infectious Disease, Institute of Biomedicine, the Sahlngreska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Disease, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Maia Lesosky
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Melanie Gleich
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eleni Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carsten Scheller
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, and NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - John Joska
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
10
|
Minadakis G, Tomazou M, Dietis N, Spyrou GM. Vir2Drug: a drug repurposing framework based on protein similarities between pathogens. Brief Bioinform 2022; 24:6895455. [PMID: 36513376 PMCID: PMC9851336 DOI: 10.1093/bib/bbac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets. Vir2Drug is a useful and yet informative tool for drug repurposing against known or unknown pathogens especially in periods where the emergence for repurposed drugs plays significant role in handling viral outbreaks, until reaching a vaccine. The web tool is available at: https://bioinformatics.cing.ac.cy/vir2drug, https://vir2drug.cing-big.hpcf.cyi.ac.cy.
Collapse
Affiliation(s)
- George Minadakis
- Corresponding author: George Minadakis, Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus. Tel.: +357-22-392852; Fax: +357-22-358238; E-mail:
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
11
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Kolson DL. Developments in Neuroprotection for HIV-Associated Neurocognitive Disorders (HAND). Curr HIV/AIDS Rep 2022; 19:344-357. [PMID: 35867211 PMCID: PMC9305687 DOI: 10.1007/s11904-022-00612-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Reducing the risk of HIV-associated neurocognitive disorders (HAND) is an elusive treatment goal for people living with HIV. Combination antiretroviral therapy (cART) has reduced the prevalence of HIV-associated dementia, but milder, disabling HAND is an unmet challenge. As newer cART regimens that more consistently suppress central nervous system (CNS) HIV replication are developed, the testing of adjunctive neuroprotective therapies must accelerate. RECENT FINDINGS Successes in modifying cART regimens for CNS efficacy (penetrance, chemokine receptor targeting) and delivery (nanoformulations) in pilot studies suggest that improving cART neuroprotection and reducing HAND risk is achievable. Additionally, drugs currently used in neuroinflammatory, neuropsychiatric, and metabolic disorders show promise as adjuncts to cART, likely by broadly targeting neuroinflammation, oxidative stress, aerobic metabolism, and/or neurotransmitter metabolism. Adjunctive cognitive brain therapy and aerobic exercise may provide additional efficacy. Adjunctive neuroprotective therapies, including available FDA-approved drugs, cognitive therapy, and aerobic exercise combined with improved cART offer plausible strategies for optimizing the prevention and treatment of HAND.
Collapse
Affiliation(s)
- Dennis L Kolson
- Department of Neurology, University of Pennsylvania, Room 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Khodr CE, Chen L, Al-Harthi L, Hu XT. HIV-Induced Hyperactivity of Striatal Neurons Is Associated with Dysfunction of Voltage-Gated Calcium and Potassium Channels at Middle Age. MEMBRANES 2022; 12:737. [PMID: 36005652 PMCID: PMC9415409 DOI: 10.3390/membranes12080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Despite combination antiretroviral therapy, HIV-associated neurocognitive disorders (HAND) occur in ~50% of people living with HIV (PLWH), which are associated with dysfunction of the corticostriatal pathway. The mechanism by which HIV alters the neuronal activity in the striatum is unknown. The goal of this study is to reveal the dysfunction of striatal neurons in the context of neuroHIV during aging. Using patch-clamping electrophysiology, we evaluated the functional activity of medium spiny neurons (MSNs), including firing, Ca2+ spikes mediated by voltage-gated Ca2+ channels (VGCCs), and K+ channel-mediated membrane excitability, in brain slices containing the dorsal striatum (a.k.a. the caudate-putamen) from 12-month-old (12mo) HIV-1 transgenic (HIV-1 Tg) rats. We also assessed the protein expression of voltage-gated Cav1.2/Cav1.3 L-type Ca2+ channels (L-channels), NMDA receptors (NMDAR, NR2B subunit), and GABAA receptors (GABAARs, β2,3 subunit) in the striatum. We found that MSNs had significantly increased firing in 12mo HIV-1 Tg rats compared to age-matched non-Tg control rats. Unexpectedly, Ca2+ spikes were significantly reduced, while Kv channel activity was increased, in MSNs of HIV-1 Tg rats compared to non-Tg ones. The reduced Ca2+ spikes were associated with an abnormally increased expression of a shorter, less functional Cav1.2 L-channel form, while there was no significant change in the expression of NR2Bs or GABAARs. Collectively, the present study initially reveals neuroHIV-induced dysfunction of striatal MSNs in 12mo-old (middle) rats, which is uncoupled from VGCC upregulation and reduced Kv activity (that we previously identified in younger HIV-1 Tg rats). Notably, such striatal dysfunction is also associated with HIV-induced hyperactivity/neurotoxicity of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) that send excitatory input to the striatum (demonstrated in our previous studies). Whether such MSN dysfunction is mediated by alterations in the functional activity instead of the expression of NR2b/GABAAR (or other subtypes) requires further investigation.
Collapse
Affiliation(s)
| | | | | | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Cohn Research Building, Rm.610, 1735 W. Harrison Street, Chicago, IL 60612, USA; (C.E.K.); (L.C.); (L.A.-H.)
| |
Collapse
|
14
|
Du C, Hua Y, Clare K, Park K, Allen CP, Volkow ND, Hu XT, Pan Y. Memantine Attenuates Cocaine and neuroHIV Neurotoxicity in the Medial Prefrontal Cortex. Front Pharmacol 2022; 13:895006. [PMID: 35694269 PMCID: PMC9174902 DOI: 10.3389/fphar.2022.895006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with substance use disorder are at a higher risk of contracting HIV and progress more rapidly to AIDS as drugs of abuse, such as cocaine, potentiate the neurotoxic effects of HIV-associated proteins including, but not limited to, HIV-1 trans-activator of transcription (Tat) and the envelope protein Gp120. Neurotoxicity and neurodegeneration are hallmarks of HIV-1-associated neurocognitive disorders (HANDs), which are hypothesized to occur secondary to excitotoxicity from NMDA-induced neuronal calcium dysregulation, which could be targeted with NMDA antagonist drugs. Multiple studies have examined how Gp120 affects calcium influx and how cocaine potentiates this influx; however, they mostly focused on single cells and did not analyze effects in neuronal and vascular brain networks. Here, we utilize a custom multi-wavelength imaging platform to simultaneously study the neuronal activity (detected using genetically encoded Ca2+ indicator, GcaMP6f, expressed in neurons) and hemodynamic changes (measured by total hemoglobin and oxygenated hemoglobin within the tissue) in the prefrontal cortex (PFC) of HIV-1 Tg rats in response to cocaine and evaluate the effects of the selective NMDA antagonist drug memantine on cocaine and HIV neurotoxicity compared to those of non-HIV-1 Tg animals (controls). Our results show that memantine improved cocaine-induced deficit in cerebral blood volume while also attenuating an abnormal increase of the neuronal calcium influx and influx duration in both control rats and HIV-1 Tg rats. Cocaine-induced neuronal and hemodynamic dysregulations were significantly greater in HIV-1 Tg rats than in control rats. With memantine pretreatment, HIV-1 Tg rats showed attenuated cocaine’s effects on neuronal and hemodynamic responses, with responses similar to those observed in control rats. These imaging results document an enhancement of neuronal Ca2+ influx, hypoxemia, and ischemia with cocaine in the PFC of HIV-1 Tg rats that were attenuated by memantine pretreatment. Thus, the potential utility of memantine in the treatment of HAND and of cocaine-induced neurotoxicity deserves further investigation.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kevin Clare
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Craig P. Allen
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Nora D. Volkow
- National Institute on Drug Abuse, Bethesda, MD, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| |
Collapse
|
15
|
MR spectroscopy in HIV associated neurocognitive disorder in the era of cART: a review. AIDS Res Ther 2021; 18:65. [PMID: 34625091 PMCID: PMC8501619 DOI: 10.1186/s12981-021-00388-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. The pathophysiology of HAND is chiefly driven by neuroinflammation. Despite adhering to cART, low levels of viraemia probably persist in the brain in some patients leading to chronic immune activation with resultant neuroinflammation and consequent neuronal injury. MR spectroscopy has been widely used as a biomarker for the presence and severity of HAND in several studies. By studying the MRS signatures, it is possible to characterise the presence of neuroinflammation and neural injury. Furthermore, metabolite concentrations measured by MRS could be used as a quantitative indicator of HIV cerebral involvement, thereby affording the opportunity to assess the efficacy of cART in HAND. However, currently there are three significant limitations in the MRS HIV research literature: the relative paucity of prospective studies, the small number of regions of interrogation due to current methodology (single voxel MRS), and the evolving understanding of the impact of co-morbidities (e.g. ageing, mood disorders, alcoholism etc.) on MRS measurements. This review critically addresses the current literature of MRS studies in people living with HIV (PWH) with HAND to determine its value, especially in the context of the current cART era. In addition, we discuss technical considerations related to the disease and the future direction in HAND using MRS.
Collapse
|
16
|
Terry PH, Seoudy K, Lee MS, Stevenson KA. Memantine for the Treatment of Behavioral Disturbance in Unspecified Major Neurocognitive Disorder. Cureus 2021; 13:e17685. [PMID: 34650860 PMCID: PMC8489596 DOI: 10.7759/cureus.17685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
In this case report, we aimed to examine how the use of memantine in an elderly gentleman with unspecified major neurocognitive disorder (NCD) led to significant clinical improvement in his behavioral disturbances. After presenting to the psychiatric ward due to aggressive behavior at his assisted living facility, the patient continued to exhibit numerous disruptive and confrontational behaviors while hospitalized. Memantine was started at 5 mg daily with gradual titration up to 10 mg twice daily over the course of four weeks, with marked improvement in behavior as well as an increase in Montreal Cognitive Assessment (MoCA) score by five points after seven weeks of treatment. Given our experience and the safety profile of memantine, we conclude that memantine may have a role in the treatment of behavioral disturbances in patients with unspecified major NCD, though further research will be necessary to define this role.
Collapse
Affiliation(s)
- Peyton H Terry
- Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, USA
| | - Kareem Seoudy
- Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, USA
| | - Meredith S Lee
- Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, USA
| | - Keri A Stevenson
- Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, USA
| |
Collapse
|
17
|
Tivarus ME, Zhuang Y, Wang L, Murray KD, Venkataraman A, Weber MT, Zhong J, Qiu X, Schifitto G. Mitochondrial toxicity before and after combination antiretroviral therapy, a Magnetic Resonance Spectroscopy study. NEUROIMAGE-CLINICAL 2021; 31:102693. [PMID: 34020161 PMCID: PMC8144469 DOI: 10.1016/j.nicl.2021.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/21/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to quantify, via Magnetic Resonance Spectroscopy (MRS), the effect of combination antiretroviral therapy (cART) on brain metabolites and characterize any possible associations between changes in metabolites, age, blood biomarkers of neuronal damage, functional connectivity and cognitive performance. As cART has dramatically increased the life expectancy of HIV-infected (HIV + ) individuals and unmasked an increase in HIV-associated neurocognitive disorders, it is still not clear whether cART neurotoxicity contributes to these disorders. We hypothesized a bimodal effect, with early cART treatment of HIV infection decreasing inflammation as measured by MRS metabolites and improving cognitive performance, and chronic exposure to cART contributing to persistence of cognitive impairment via its effect on mitochondrial function. Basal ganglia metabolites, functional connectivity, cognitive scores, as well as plasma levels of neurofilament light chain (NfL) and tau protein were measured before and after 12 weeks, 1 year and 2 years of cART in a cohort of 50 cART-naïve HIV + subjects and 72 age matched HIV- healthy controls. Glutamate (Glu) levels were lower in the cART naïve patients than in healthy controls and were inversely correlated with plasma levels of NfL. There were no other significant metabolite differences between HIV + and uninfected individuals. Treatment improved Glu levels in HIV+, however, no associations were found between Glu, functional connectivity and cognitive performance. Stable brain metabolites and plasma levels of NfL and Tau over two-years of follow-ups suggest there are no signs of cART neurotoxicity in this relatively young cohort of HIV + individuals.
Collapse
Affiliation(s)
- Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester NY, USA.
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester NY, USA
| | - Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester NY, USA
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, Rochester NY, USA
| | - Miriam T Weber
- Department of Neurology, University of Rochester Medical Center, Rochester NY, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Physics and Astronomy, University of Rochester, Rochester NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester NY, USA
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester NY, USA
| |
Collapse
|
18
|
Lanman T, Letendre S, Ma Q, Bang A, Ellis R. CNS Neurotoxicity of Antiretrovirals. J Neuroimmune Pharmacol 2021; 16:130-143. [PMID: 31823251 PMCID: PMC7282963 DOI: 10.1007/s11481-019-09886-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
The development of novel antiretroviral treatments has led to a significant turning point in the fight against HIV. Although therapy leads to virologic suppression and prolonged life expectancies, HIV-associated neurocognitive disorder (HAND) remains prevalent. While various hypotheses have been proposed to explain this phenomenon, a growing body of literature explores the neurotoxic effects of antiretroviral therapy. Research to date brings into question the potential role of such medications in neurocognitive and neuropsychiatric impairment seen in HIV-positive patients. This review highlights recent findings and controversies in cellular, molecular, and clinical neurotoxicity of antiretrovirals. It explores the pathogenesis of such toxicity and relates it to clinical manifestations in each medication class. The concept of accelerated aging in persons living with HIV (PLWH) as well as potential treatments for HAND are also discussed. Ultimately, this article hopes to educate clinicians and basic scientists about the neurotoxic effects of antiretrovirals and spur future scientific investigation into this important topic. Graphical Abstract.
Collapse
Affiliation(s)
- Tyler Lanman
- Department of Neurosciences, University of California San Diego School of Medicine, 200 W Arbor Dr, San Diego, La Jolla, CA, 92103, USA
| | - Scott Letendre
- Department of Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Qing Ma
- Pharmacotherapy Research Center, University of Buffalo, School of Pharmacy & Pharmaceutical Sciences, Buffalo, NY, USA
| | - Anne Bang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ronald Ellis
- Department of Neurosciences, University of California San Diego School of Medicine, 200 W Arbor Dr, San Diego, La Jolla, CA, 92103, USA.
| |
Collapse
|
19
|
McLaurin KA, Li H, Cook AK, Booze RM, Mactutus CF. S-EQUOL: a neuroprotective therapeutic for chronic neurocognitive impairments in pediatric HIV. J Neurovirol 2020; 26:704-718. [PMID: 32870477 DOI: 10.1007/s13365-020-00886-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Chronic neurocognitive impairments, commonly associated with pediatric human immunodeficiency virus type 1 (PHIV), are a detrimental consequence of early exposure to HIV-1 viral proteins. Strong evidence supports S-Equol (SE) as an efficacious adjunctive neuroprotective and/or neurorestorative therapeutic for neurocognitive impairments in adult ovariectomized female HIV-1 transgenic (Tg) rats. There remains, however, a critical need to assess the therapeutic efficacy of SE when treatment occurs at an earlier age (i.e., resembling a therapeutic for children with PHIV) and across the factor of biological sex. Utilization of a series of signal detection operant tasks revealed prominent, sex-dependent neurocognitive deficits in the HIV-1 Tg rat, characterized by alterations in stimulus-reinforcement learning, the response profile, and temporal processing. Early (i.e., postnatal day 28) initiation of SE treatment precluded the development of chronic neurocognitive impairments in all (i.e., 100%) HIV-1 Tg animals, albeit not for all neurocognitive domains. Most notably, the therapeutic effects of SE are generalized across the factor of biological sex, despite the presence of endogenous hormones. Results support, therefore, the efficacy of SE as a neuroprotective therapeutic for chronic neurocognitive impairments in the post-cART era; an adjunctive therapeutic that demonstrates high efficacy in both males and females. Optimizing treatment conditions by evaluating multiple factors (i.e., age, neurocognitive domains, and biological sex) associated with PHIV and HIV-1 associated neurocognitive disorders (HAND) affords a key opportunity to improve the therapeutic efficacy of SE.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Anna K Cook
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
20
|
Abstract
Both Alzheimer’s disease (AD) and HIV-associated neurocognitive disorders (HAND) could progress to dementia, a severe consequence of neurodegenerative diseases. Cumulating evidence suggests that the β-amyloid (Aβ) theory, currently thought to be the predominant mechanism underlying AD and AD-related dementia (ADRD), needs re-evaluation, considering all treatments and new drug trials based upon this theory have been unsuccessful. Similar intention for treating HAND, including HIV-associated dementia (HAD), has also failed. Thus, novel theory, hypothesis, and therapeutic strategies are desperately needed for future study and effective treatments of AD/ADRD and HAND. There are numerous potential upstream mechanisms that may cause AD and/or HAND; but it is unrealistic to identify all of them. However, it is realistic and feasible to intervene the downstream mechanism of these two devastating neurodegenerative diseases by blocking the final common path to neurotoxicity mediated by overactivation of NMDA receptors (NMDARs) and voltage-gated calcium channels (VGCCs). Such a combined pharmacological intervention will likely ameliorate neuronal Ca2+ homeostasis by diminishing overactivated NMDAR and VGCC-mediated Ca2+ dysregulation (i.e., by reducing excessive Ca2+ influx and intracellular levels, [Ca2+]in)-induced hyperactivity, injury, and death of neurons in the critical brain regions that regulate neurocognition in the context of AD/ADRD or HAND, especially during aging. Here we present a novel theoretical concept, hypothesis, and working model for switching the battlefield from searching-and-fighting the original mechanism that may cause AD or HAND, to abolishing AD- and neuroHIV-induced neurotoxicity mediated by NMDAR and VGCC over activation, which may ultimately improve the therapeutic strategies for treating AD and HAND.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, USA
| |
Collapse
|
21
|
Lin SP, Calcagno A, Letendre SL, Ma Q. Clinical Treatment Options and Randomized Clinical Trials for Neurocognitive Complications of HIV Infection: Combination Antiretroviral Therapy, Central Nervous System Penetration Effectiveness, and Adjuvants. Curr Top Behav Neurosci 2020; 50:517-545. [PMID: 33604875 DOI: 10.1007/7854_2020_186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The etiology and pathogenesis of human immunodeficiency virus type-I (HIV)-associated neurocognitive disorders (HAND) remain undetermined and are likely the produce of multiple mechanisms. This can mainly include neuronal injury from HIV, inflammatory processes, and mental health issues. As a result, a variety of treatment options have been tested including NeuroHIV-targeted regimens based on the central nervous system (CNS) penetration effectiveness (CPE) of antiretroviral therapy (ART) and adjuvant therapies for HAND. NeuroHIV-targeted ART regimens have produced consistent and statistically significant HIV suppression in the CNS, but this is not the case for cognitive and functional domains. Most adjuvant therapies such as minocycline, memantine, and selegiline have negligible benefit in the improvement of cognitive function of people living with HIV (PLWH) with mild to moderate neurocognitive impairment. Newer experimental treatments have been proposed to target cognitive and functional symptoms of HAND as well as potential underlying pathogenesis. This review aims to provide an analytical overview of the clinical treatment options and clinical trials for HAND by focusing on NeuroHIV-targeted ART regimen development, CPE, and adjuvant therapies.
Collapse
Affiliation(s)
- Shih-Ping Lin
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA.,Taichung Veterans General Hospital, Taichung, Taiwan
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Scott L Letendre
- Department of Medicine and Psychiatry, HIV Neurobehavioral Research Center, University of California San Diego, San Diego, CA, USA
| | - Qing Ma
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
22
|
Nedelcovych MT, Kim BH, Zhu X, Lovell LE, Manning AA, Kelschenbach J, Hadas E, Chao W, Prchalová E, Dash RP, Wu Y, Alt J, Thomas AG, Rais R, Kamiya A, Volsky DJ, Slusher BS. Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2019; 14:391-400. [PMID: 31209775 DOI: 10.1007/s11481-019-09859-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .
Collapse
Affiliation(s)
- Michael T Nedelcovych
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Xiaolei Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyndah E Lovell
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arena A Manning
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Jennifer Kelschenbach
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eva Prchalová
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Bougea A, Spantideas N, Galanis P, Gkekas G, Thomaides T. Optimal treatment of HIV-associated neurocognitive disorders: myths and reality. A critical review. Ther Adv Infect Dis 2019; 6:2049936119838228. [PMID: 31001421 PMCID: PMC6454832 DOI: 10.1177/2049936119838228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/11/2023] Open
Abstract
Background: The aim of this study was to review the clinical data on the effectiveness of
the pharmacotherapy of HIV-associated neurocognitive disorders (HANDs). Methods: A literature search of PubMed was performed (from January
1996 to October 2018) using the terms: ‘HIV-associated neurocognitive
disorders’, ‘HIV-associated dementia’, ‘mild neurocognitive disorder (MND)’,
‘asymptomatic neurocognitive impairment (ANI)’, ‘adjuvant therapies’,
‘antiretroviral treatment (cART)’, ‘neurotoxicity’, ‘cART intensification’,
‘fluid markers’, ‘cerebrospinal fluid’, ‘protease inhibitors’,
‘nonnucleoside reverse transcriptase inhibitor’, ‘nucleoside reverse
transcriptase inhibitors’, and ‘integrase strand transfer inhibitors’.
Additional references were identified from a review of literature citations.
All English language clinical studies of adjunctive therapies and neuronal
markers were selected in order to evaluate a closer relationship between the
early involvement and the onset of cognitive decline. We identified 407
relevant studies, of which 248 were excluded based on abstract analysis.
Finally, we analyzed 35 articles, organizing the results by cART, adjuvant
and neuronal markers (total of 7716 participants). Results: It is important to inform clinicians about the importance of accurate
phenotyping of HIV patients, incorporating an array of markers relevant to
HAND pathophysiology, in order to assess the individual’s risk and potential
response to future personalized antiretroviral treatment Conclusion: So far, no clinical trials of HAND therapies are effective beyond optimal
suppression of HIV replication in the central nervous system. Combination of
validated neuronal markers should be used to distinguish between milder HAND
subtypes and improve efficiency of clinical trials, after strict control of
confounders.
Collapse
Affiliation(s)
- Anastasia Bougea
- National and Kapodistrian University of Athens, Faculty of Medicine, Vassilisis Sofias Avenue 72, Athens, 11527, Greece
| | - Nikolaos Spantideas
- National and Kapodistrian University of Athens Aiginitio Hospital, Athens, Greece
| | - Petros Galanis
- National and Kapodistrian University of Athens, Athinon, Greece
| | - George Gkekas
- 'St. Panteleimon' General State Hospital of Piraeus, Athens, Greece
| | | |
Collapse
|
24
|
McShane R, Westby MJ, Roberts E, Minakaran N, Schneider L, Farrimond LE, Maayan N, Ware J, Debarros J, Cochrane Dementia and Cognitive Improvement Group. Memantine for dementia. Cochrane Database Syst Rev 2019; 3:CD003154. [PMID: 30891742 PMCID: PMC6425228 DOI: 10.1002/14651858.cd003154.pub6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Memantine is a moderate affinity uncompetitive antagonist of glutamate NMDA receptors. It is licensed for use in moderate and severe Alzheimer's disease (AD); in the USA, it is also widely used off-label for mild AD. OBJECTIVES To determine efficacy and safety of memantine for people with dementia. To assess whether memantine adds benefit for people already taking cholinesterase inhibitors (ChEIs). SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's register of trials (http://www.medicine.ox.ac.uk/alois/) up to 25 March 2018. We examined clinical trials registries, press releases and posters of memantine manufacturers; and the web sites of the FDA, EMEA and NICE. We contacted authors and companies for missing information. SELECTION CRITERIA Double-blind, parallel group, placebo-controlled, randomised trials of memantine in people with dementia. DATA COLLECTION AND ANALYSIS We pooled and analysed data from four clinical domains across different aetiologies and severities of dementia and for AD with agitation. We assessed the impact of study duration, severity and concomitant use of ChEIs. Consequently, we restricted analyses to the licensed dose (20 mg/day or 28 mg extended release) and data at six to seven months duration of follow-up, and analysed separately results for mild and moderate-to-severe AD.We transformed results for efficacy outcomes into the difference in points on particular outcome scales. MAIN RESULTS Across all types of dementia, data were available from almost 10,000 participants in 44 included trials, most of which were at low or unclear risk of bias. For nearly half the studies, relevant data were obtained from unpublished sources. The majority of trials (29 in 7885 participants) were conducted in people with AD.1. Moderate-to-severe AD (with or without concomitant ChEIs). High-certainty evidence from up to 14 studies in around 3700 participants consistently shows a small clinical benefit for memantine versus placebo: clinical global rating (CGR): 0.21 CIBIC+ points (95% confidence interval (CI) 0.14 to 0.30); cognitive function (CF): 3.11 Severe Impairment Battery (SIB) points (95% CI 2.42 to 3.92); performance on activities of daily living (ADL): 1.09 ADL19 points (95% CI 0.62 to 1.64); and behaviour and mood (BM): 1.84 Neuropsychiatric Inventory (NPI) points (95% CI 1.05 to 2.76). There may be no difference in the number of people discontinuing memantine compared to placebo: risk ratio (RR) 0.93 (95% CI 0.83 to 1.04) corresponding to 13 fewer people per 1000 (95% CI 31 fewer to 7 more). Although there is moderate-certainty evidence that fewer people taking memantine experience agitation as an adverse event: RR 0.81 (95% CI 0.66 to 0.99) (25 fewer people per 1000, 95% CI 1 to 44 fewer), there is also moderate-certainty evidence, from three additional studies, suggesting that memantine is not beneficial as a treatment for agitation (e.g. Cohen Mansfield Agitation Inventory: clinical benefit of 0.50 CMAI points, 95% CI -3.71 to 4.71) .The presence of concomitant ChEI does not impact on the difference between memantine and placebo, with the possible exceptions of the BM outcome (larger effect in people taking ChEIs) and the CF outcome (smaller effect).2. Mild AD (Mini Mental State Examination (MMSE) 20 to 23): mainly moderate-certainty evidence based on post-hoc subgroups from up to four studies in around 600 participants suggests there is probably no difference between memantine and placebo for CF: 0.21 ADAS-Cog points (95% CI -0.95 to 1.38); performance on ADL: -0.07 ADL 23 points (95% CI -1.80 to 1.66); and BM: -0.29 NPI points (95% CI -2.16 to 1.58). There is less certainty in the CGR evidence, which also suggests there may be no difference: 0.09 CIBIC+ points (95% CI -0.12 to 0.30). Memantine (compared with placebo) may increase the numbers of people discontinuing treatment because of adverse events (RR 2.12, 95% CI 1.03 to 4.39).3. Mild-to-moderate vascular dementia. Moderate- and low-certainty evidence from two studies in around 750 participants indicates there is probably a small clinical benefit for CF: 2.15 ADAS-Cog points (95% CI 1.05 to 3.25); there may be a small clinical benefit for BM: 0.47 NOSGER disturbing behaviour points (95% CI 0.07 to 0.87); there is probably no difference in CGR: 0.03 CIBIC+ points (95% CI -0.28 to 0.34); and there may be no difference in ADL: 0.11 NOSGER II self-care subscale points (95% CI -0.35 to 0.54) or in the numbers of people discontinuing treatment: RR 1.05 (95% CI 0.83 to 1.34).There is limited, mainly low- or very low-certainty efficacy evidence for other types of dementia (Parkinson's disease and dementia Lewy bodies (for which CGR may show a small clinical benefit; four studies in 319 people); frontotemporal dementia (two studies in 133 people); and AIDS-related Dementia Complex (one study in 140 people)).There is high-certainty evidence showing no difference between memantine and placebo in the proportion experiencing at least one adverse event: RR 1.03 (95% CI 1.00 to 1.06); the RR does not differ between aetiologies or severities of dementia. Combining available data from all trials, there is moderate-certainty evidence that memantine is 1.6 times more likely than placebo to result in dizziness (6.1% versus 3.9%), low-certainty evidence of a 1.3-fold increased risk of headache (5.5% versus 4.3%), but high-certainty evidence of no difference in falls. AUTHORS' CONCLUSIONS We found important differences in the efficacy of memantine in mild AD compared to that in moderate-to-severe AD. There is a small clinical benefit of memantine in people with moderate-to-severe AD, which occurs irrespective of whether they are also taking a ChEI, but no benefit in people with mild AD.Clinical heterogeneity in AD makes it unlikely that any single drug will have a large effect size, and means that the optimal drug treatment may involve multiple drugs, each having an effect size that may be less than the minimum clinically important difference.A definitive long-duration trial in mild AD is needed to establish whether starting memantine earlier would be beneficial over the long term and safe: at present the evidence is against this, despite it being common practice. A long-duration trial in moderate-to-severe AD is needed to establish whether the benefit persists beyond six months.
Collapse
Affiliation(s)
- Rupert McShane
- University of OxfordRadcliffe Department of MedicineJohn Radcliffe HospitalLevel 4, Main Hospital, Room 4401COxfordOxfordshireUKOX3 9DU
| | - Maggie J Westby
- University of Manchester, Manchester Academic Health Science CentreDivision of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and HealthJean McFarlane BuildingOxford RoadManchesterUKM13 9PL
| | - Emmert Roberts
- King's College LondonDepartment of Psychological Medicine and National Addiction CentreWeston Education CentreLondonLondonUKSE5 9RJ
| | - Neda Minakaran
- Moorfields Eye Hospital NHS Foundation TrustDepartment of Ophthalmology162 City RoadLondonUKEC1V 2PD
| | - Lon Schneider
- Keck School of Medicine of the University of Southern California1540 Alcazar Street, CHP 216Los AngelesCAUSA90033
| | - Lucy E Farrimond
- Oxford University Hospitals NHS Foundation TrustNeurosciences DepartmentJohn Radcliffe HospitalOxfordUKOX3 9DU
| | - Nicola Maayan
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Jennifer Ware
- University of OxfordCochrane Dementia and Cognitive Improvement GroupOxfordUKOX3 9DU
| | - Jean Debarros
- University of OxfordNuffield Department of Clinical Neurosciences (NDCN)Level 6, West Wing, John Radcliffe HospitalOxfordUKOX3 9DU
| | | |
Collapse
|
25
|
Churchill D, Waters L, Ahmed N, Angus B, Boffito M, Bower M, Dunn D, Edwards S, Emerson C, Fidler S, Fisher M, Horne R, Khoo S, Leen C, Mackie N, Marshall N, Monteiro F, Nelson M, Orkin C, Palfreeman A, Pett S, Phillips A, Post F, Pozniak A, Reeves I, Sabin C, Trevelion R, Walsh J, Wilkins E, Williams I, Winston A. British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2015. HIV Med 2018; 17 Suppl 4:s2-s104. [PMID: 27568911 DOI: 10.1111/hiv.12426] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | - Mark Bower
- Chelsea and Westminster Hospital, London, UK
| | | | - Simon Edwards
- Central and North West London NHS Foundation Trust, UK
| | | | - Sarah Fidler
- Imperial College School of Medicine at St Mary's, London, UK
| | | | | | | | | | | | | | | | - Mark Nelson
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Anton Pozniak
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | - Caroline Sabin
- Royal Free and University College Medical School, London, UK
| | | | - John Walsh
- Imperial College Healthcare NHS Trust, London, UK
| | | | - Ian Williams
- Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
26
|
González RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 2018; 13:e0196949. [PMID: 29750804 PMCID: PMC5947913 DOI: 10.1371/journal.pone.0196949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Collapse
Affiliation(s)
- R. Gilberto González
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Robert Fell
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Julian He
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Campbell
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | | | - Faramarz Taheri
- New England Primate Research Center, Southborough, MA, United States of America
| | - Termara Parker
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Elkan F. Halpern
- Harvard Medical School, Boston, MA, United States of America
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark Vangel
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States of America
| | | | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
27
|
Abstract
A defining feature of HIV-associated neurocognitive disorder (HAND) is the loss of excitatory synaptic connections. Synaptic changes that occur during exposure to HIV appear to result, in part, from a homeostatic scaling response. Here we discuss the mechanisms of these changes from the perspective that they might be part of a coping mechanism that reduces synapses to prevent excitotoxicity. In transgenic animals expressing the HIV proteins Tat or gp120, the loss of synaptic markers precedes changes in neuronal number. In vitro studies have shown that HIV-induced synapse loss and cell death are mediated by distinct mechanisms. Both in vitro and animal studies suggest that HIV-induced synaptic scaling engages new mechanisms that suppress network connectivity and that these processes might be amenable to therapeutic intervention. Indeed, pharmacological reversal of synapse loss induced by HIV Tat restores cognitive function. In summary, studies indicate that there are temporal, mechanistic and pharmacological features of HIV-induced synapse loss that are consistent with homeostatic plasticity. The increasingly well delineated signaling mechanisms that regulate synaptic scaling may reveal pharmacological targets suitable for normalizing synaptic function in chronic neuroinflammatory states such as HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jonathan D Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Thaney VE, Sanchez AB, Fields JA, Minassian A, Young JW, Maung R, Kaul M. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuroAIDS research. J Neurovirol 2017; 24:156-167. [PMID: 29075998 DOI: 10.1007/s13365-017-0584-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
HIV-1 infection causes injury to the central nervous system (CNS) and is often associated with neurocognitive disorders. One model for brain damage seen in AIDS patients is the transgenic (tg) mouse expressing a soluble envelope protein gp120 of HIV-1 LAV in the brain in astrocytes under the control of the promoter of glial fibrillary acidic protein. These GFAP-gp120tg mice manifest several key neuropathological features observed in AIDS brains, such as decreased synaptic and dendritic density, increased numbers of activated microglia, and pronounced astrocytosis. Several recent studies show that brains of GFAP-gp120tg mice and neurocognitively impaired HIV patients share also a significant number of differentially regulated genes, activation of innate immunity and other cellular signaling pathways, disturbed neurogenesis, and learning deficits. These findings support the continued relevance of the GFAP-gp120tg mouse as a useful model to investigate neurodegenerative mechanisms and develop therapeutic strategies to mitigate the consequences associated with HIV infection of the CNS, neuroAIDS, and HAND.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jerel A Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
29
|
Paroxetine and fluconazole therapy for HIV-associated neurocognitive impairment: results from a double-blind, placebo-controlled trial. J Neurovirol 2017; 24:16-27. [PMID: 29063516 DOI: 10.1007/s13365-017-0587-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Paroxetine and fluconazole have neuroprotective effects in an in vitro model of HIV protein-mediated neuronal injury. This study evaluated the safety, tolerability, and efficacy of both paroxetine and fluconazole for the treatment of HIV-associated neurocognitive disorder (HAND). A 24-week randomized double-blind, placebo-controlled 2 × 2 factorial design study was used. HIV+ individuals with cognitive impairment were enrolled in the 24-week trial. Participants were randomly assigned to one of four groups: (1) paroxetine 20 mg/day, (2) fluconazole 100 mg every 12 h, (3) paroxetine and fluconazole, or (4) placebo. Safety, tolerability, and efficacy were evaluated. Forty-five HIV+ individuals were enrolled. Medications were well tolerated. Compared to no paroxetine arms, HIV+ individuals receiving paroxetine showed improved NPZ8 summary scores, (mean change = 0.25 vs - 0.19, p = 0.049), CalCAP sequential test reaction time (mean change = 0.34 vs -0.23, p = 0.014), Trail Making Part B test performance (mean change = 0.49 vs - 0.33, p = 0.041), and FAS verbal fluency (mean change = 0.25 vs 0.02, p = 0.020) but a decline in the Letter number sequencing test (mean change = - 0.40 vs 0.26, p = 0.023). Biomarkers of cellular stress, inflammation, and neuronal damage were not affected by paroxetine. HIV+ individuals receiving fluconazole did not show a benefit in cognition and showed an increase in multiple markers of cellular stress compared to the no fluconazole arms. In conclusion, paroxetine was associated with improvement in a summary neuropsychological test measure and in several neuropsychological tests but worse performance in one neuropsychological test. Further studies of paroxetine for the treatment of HAND and to define its precise neuroprotective properties are warranted.
Collapse
|
30
|
Alam S, Lingenfelter KS, Bender AM, Lindsley CW. Classics in Chemical Neuroscience: Memantine. ACS Chem Neurosci 2017; 8:1823-1829. [PMID: 28737885 DOI: 10.1021/acschemneuro.7b00270] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Memantine was the first breakthrough medication for the treatment of moderate to severe Alzheimer's disease (AD) patients and represents a fundamentally new mechanism of action (moderate-affinity, uncompetitive, voltage-dependent, N-methyl-d-aspartate (NMDA) receptor antagonist that exhibits fast on/off kinetics) to modulate glutamatergic dysfunction. Since its approval by the FDA in 2003, memantine, alone and in combination with donepezil, has improved patient outcomes in terms of cognition, behavioral disturbances, daily functioning, and delaying time to institutionalization. In this review, we will highlight the historical significance of memantine to AD (and other neuropsychiatric disorders) as well as provide an overview of the synthesis, pharmacology, and drug metabolism of this unique NMDA uncompetitive antagonist that clearly secures its place among the Classics in Chemical Neuroscience.
Collapse
Affiliation(s)
- Shahrina Alam
- Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kaelyn Skye Lingenfelter
- Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center
for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
31
|
Cross-sectional and longitudinal small animal PET shows pre and post-synaptic striatal dopaminergic deficits in an animal model of HIV. Nucl Med Biol 2017; 55:27-33. [PMID: 29031113 DOI: 10.1016/j.nucmedbio.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/01/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In vivo imaging biomarkers of various HIV neuropathologies, including dopaminergic dysfunction, are still lacking. Towards developing dopaminergic biomarkers of brain involvement in HIV, we assessed the pre and postsynaptic components of the dopaminergic system in the HIV-1 transgenic rat (Tg), a well-characterized model of treated HIV+ patients, using small-animal PET imaging. METHODS Fifteen to 18 month-old Tg and wild type (WT) rats were imaged with both [18F]-FP-CMT, a dopamine transporter (DAT) ligand (n=16), and [18F]-Fallypride, a D2/D3 dopamine receptor (D2/D3DR) ligand (n=16). Five to 8 month-old Tg and WT rats (n=18) were also imaged with [18F]-FP-CMT. A subset of animals was imaged longitudinally at 7 and 17 months of age. Multiplex immunohistochemistry staining for DAT, tyrosine hydroxylase, D2DR, D3DR, GFAP, Iba1 and NeuN was performed on a subgroup of the scanned animals. RESULTS [18F]-FP-CMT and [18F]-Fallypride binding potential (BPND) values were significantly lower in 15-18 month-old Tg compared to age-matched WT rats (p<0.0001 and 0.001, respectively). [18F]-FP-CMT BPND values in 5-8 month-old rats, however, were not significantly different. Longitudinal age-related decrease in [18F]-FP-CMT BPND was exacerbated in the Tg rat. Immunohistochemistry showed decreased staining of dopaminergic markers in Tg rats. Rats with higher serum gp120 had lower mean BPND values for both ligands. CONCLUSIONS We found presynaptic and postsynaptic dopaminergic dysfunction/loss in older Tg compared to WT rats. We believe this to be related to neurotoxicity of viral proteins present in the Tg rats' serum and brain. ADVANCES IN KNOWLEDGE Our findings confirm prior reports of neurobehavioral abnormalities suggestive of dopaminergic dysfunction in this model. They also suggest similarities between the Tg rat and HIV+ patients as far as dopaminergic dysfunction. IMPLICATIONS FOR PATIENT CARE The Tg rat, along with the above-described quantitative PET imaging biomarkers, can have a role in the evaluation of HIV neuroprotective therapies prior to human translation.
Collapse
|
32
|
Nedelcovych MT, Tenora L, Kim BH, Kelschenbach J, Chao W, Hadas E, Jančařík A, Prchalová E, Zimmermann SC, Dash RP, Gadiano AJ, Garrett C, Furtmüller G, Oh B, Brandacher G, Alt J, Majer P, Volsky DJ, Rais R, Slusher BS. N-(Pivaloyloxy)alkoxy-carbonyl Prodrugs of the Glutamine Antagonist 6-Diazo-5-oxo-l-norleucine (DON) as a Potential Treatment for HIV Associated Neurocognitive Disorders. J Med Chem 2017; 60:7186-7198. [PMID: 28759224 DOI: 10.1021/acs.jmedchem.7b00966] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aberrant excitatory neurotransmission associated with overproduction of glutamate has been implicated in the development of HIV-associated neurocognitive disorders (HAND). The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON, 14) attenuates glutamate synthesis in HIV-infected microglia/macrophages, offering therapeutic potential for HAND. We show that 14 prevents manifestation of spatial memory deficits in chimeric EcoHIV-infected mice, a model of HAND. 14 is not clinically available, however, because its development was hampered by peripheral toxicities. We describe the synthesis of several substituted N-(pivaloyloxy)alkoxy-carbonyl prodrugs of 14 designed to circulate inert in plasma and be taken up and biotransformed to 14 in the brain. The lead prodrug, isopropyl 6-diazo-5-oxo-2-(((phenyl(pivaloyloxy)methoxy)carbonyl)amino)hexanoate (13d), was stable in swine and human plasma but liberated 14 in swine brain homogenate. When dosed systemically in swine, 13d provided a 15-fold enhanced CSF-to-plasma ratio and a 9-fold enhanced brain-to-plasma ratio relative to 14, opening a possible clinical path for the treatment of HAND.
Collapse
Affiliation(s)
| | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi , 166 10 Prague, Czech Republic
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Andrej Jančařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi , 166 10 Prague, Czech Republic
| | - Eva Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi , 166 10 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi , 166 10 Prague, Czech Republic
| | - David J Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | | | | |
Collapse
|
33
|
Gevorkyan QA, Arutyunyan AD, Arutyunyan GL, Gasparyan SP, Danagulyan GG. Synthesis of novel pyrazolyl derivatives of 1,3-diazaadamantane. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Veerman SRT, Schulte PFJ, Deijen JB, de Haan L. Adjunctive memantine in clozapine-treated refractory schizophrenia: an open-label 1-year extension study. Psychol Med 2017; 47:363-375. [PMID: 27776560 DOI: 10.1017/s0033291716002476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In a recent placebo-controlled, double-blind crossover trial (n = 52), significant beneficial effects on memory (d = 0.30) and negative symptoms (d = 0.29) were found after 12 weeks of memantine augmentation in patients with clozapine-refractory schizophrenia. In this open-label 1-year extension study we report the long-term effects and tolerability of memantine add-on therapy to clozapine. METHOD Completers of the first trial who experienced beneficial effects during 12 weeks of memantine treatment received memantine for 1 year. Primary endpoints were memory and executive function using the Cambridge Neuropsychological Test Automated Battery, the Positive and Negative Syndrome Scale (PANSS), and the Clinical Global Impression Severity Scale (CGI-S). RESULTS Of 31 randomized controlled trial completers who experienced beneficial effects from memantine, 24 received memantine for 1 year. The small improvement in memory found in the memantine condition in the placebo-controlled trial remained stable in the extension study. Executive function did not improve. After 26 weeks of memantine add-on therapy to clozapine, PANSS negative symptoms (r = 0.53), PANSS positive symptoms (r = 0.50) and PANSS total symptoms (r = 0.54) significantly improved. Even further significant improvement in all these measures was observed between 26 weeks and 52 weeks of memantine, with effect sizes varying from 0.39 to 0.51. CGI-S showed a non-significant moderate improvement at 26 weeks (r = 0.36) and 52 weeks (r = 0.34). Memantine was well tolerated without serious adverse effects. CONCLUSIONS In the 1-year extension phase the favourable effect of adjunctive memantine on memory was sustained and we observed further improvement of negative, positive and overall symptoms in patients with clozapine-treated refractory schizophrenia.
Collapse
Affiliation(s)
- S R T Veerman
- Mental Health Service Noord-Holland Noord,Community Mental Health Division,Flexible Assertive Community Treatment,Alkmaar,The Netherlands
| | - P F J Schulte
- Mental Health Service Noord-Holland Noord,Division for Specialized Treatment,Treatment Centre for Bipolar Disorders,Alkmaar,The Netherlands
| | - J B Deijen
- Vrije Universiteit,Faculty of Behavioural and Movement Sciences,Section Clinical Neuropsychology,Amsterdam,The Netherlands
| | - L de Haan
- Early Psychosis Department,Academic Medical Centre,University of Amsterdam,Academic Psychiatric Centre,Arkin,Amsterdam,The Netherlands
| |
Collapse
|
35
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Khodr CE, Chen L, Dave S, Al-Harthi L, Hu XT. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons. Neurobiol Dis 2016; 94:85-94. [PMID: 27326669 PMCID: PMC4983475 DOI: 10.1016/j.nbd.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC.
Collapse
Affiliation(s)
- Christina E Khodr
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lihua Chen
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sonya Dave
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lena Al-Harthi
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
37
|
Li W, Tong HI, Gorantla S, Poluektova LY, Gendelman HE, Lu Y. Neuropharmacologic Approaches to Restore the Brain's Microenvironment. J Neuroimmune Pharmacol 2016; 11:484-94. [PMID: 27352074 PMCID: PMC4985494 DOI: 10.1007/s11481-016-9686-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Maintaining the central nervous system microenvironment after injury, infection, inflammatory and degenerative diseases is contingent upon adequate control of glial homeostatic functions. Disease is caused by microbial, environmental and endogenous factors that compromise ongoing nervous system functions. The final result is neuronal injury, dropout and nerve connection loss, and these underlie the pathobiology of Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, stroke, and bacterial, parasitic and viral infections. However, what promotes disease are homeostatic changes in the brain's microenvironment affected by innate glial immune pro-inflammatory and adaptive immune responses. These events disturb the brain's metabolic activities and communication abilities. How the process affects the brain's regulatory functions that can be harnessed for therapeutic gain is the subject at hand. Specific examples are provided that serve to modulate inflammation and improve disease outcomes specifically for HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Weizhe Li
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hsin-I Tong
- Department of Public Health Sciences, Environmental Health Laboratory, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Yuanan Lu
- Department of Public Health Sciences, Environmental Health Laboratory, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
38
|
Schafer JJ, Gill TK, Sherman EM, McNicholl IR. ASHP Guidelines on Pharmacist Involvement in HIV Care. Am J Health Syst Pharm 2016; 73:468-94. [PMID: 26892679 DOI: 10.2146/ajhp150623] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jason J Schafer
- Department of Pharmacy Practice, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA
| | - Taylor K Gill
- Internal Medicine, Via Christi Hospitals Wichita, Wichita, KS
| | - Elizabeth M Sherman
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, and South Broward Community Health Services, Memorial Healthcare System, Hollywood, FL
| | | |
Collapse
|
39
|
The neurobiology of HIV and its impact on cognitive reserve: A review of cognitive interventions for an aging population. Neurobiol Dis 2016; 92:144-56. [PMID: 26776767 DOI: 10.1016/j.nbd.2016.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
The medications used to treat HIV have reduced the severity of cognitive deficits; yet, nearly half of adults with HIV still exhibit some degree of cognitive deficits, referred to as HIV-associated neurocognitive disorder or HAND. These cognitive deficits interfere with everyday functioning such as emotional regulation, medication adherence, instrumental activities of daily living, and even driving a vehicle. As adults are expected to live a normal lifespan, the process of aging in this clinical population may exacerbate such cognitive deficits. Therefore, it is important to understand the neurobiological mechanisms of HIV on cognitive reserve and develop interventions that are either neuroprotective or compensate for such cognitive deficits. Within the context of cognitive reserve, this article delivers a state of the science perspective on the causes of HAND and provides possible interventions for addressing such cognitive deficits. Suggestions for future research are also provided.
Collapse
|
40
|
Nakanishi N, Kang YJ, Tu S, McKercher SR, Masliah E, Lipton SA. Differential Effects of Pharmacologic and Genetic Modulation of NMDA Receptor Activity on HIV/gp120-Induced Neuronal Damage in an In Vivo Mouse Model. J Mol Neurosci 2015; 58:59-65. [PMID: 26374431 DOI: 10.1007/s12031-015-0651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 12/01/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND. Interestingly, we found that while both NitroMemantine and GluN3A have been shown to inhibit NMDAR activity, NitroMemantine protected synapses in gp120-tg mice, but overexpression of GluN3A augmented the damage. Given recent findings in the field, one explanation for this apparently paradoxical result is the location of the NMDARs primarily affected, with NitroMemantine inhibiting predominantly extrasynaptic pathologically activated NMDARs, but GluN3A disrupting normal NMDAR-mediated neuroprotective activity via inhibition of synaptic NMDARs.
Collapse
Affiliation(s)
- Nobuki Nakanishi
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Yeon-Joo Kang
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Shichun Tu
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Scott R McKercher
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stuart A Lipton
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA. .,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
41
|
Watkins CC, Treisman GJ. Cognitive impairment in patients with AIDS - prevalence and severity. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2015; 7:35-47. [PMID: 25678819 PMCID: PMC4319681 DOI: 10.2147/hiv.s39665] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The advent of highly active antiretroviral therapy has prolonged the life expectancy of HIV patients and decreased the number of adults who progress to AIDS and HIV-associated dementia. However, neurocognitive deficits remain a pronounced consequence of HIV/AIDS. HIV-1 infection targets the central nervous system in subcortical brain areas and leads to high rates of delirium, depression, opportunistic central nervous system infections, and dementia. Long-term HIV replication in the brain occurs in astrocytes and microglia, allowing the virus to hide from antiviral medication and later compromise neuronal function. The associated cognitive disturbance is linked to both viral activity and inflammatory and other mediators from these immune cells that lead to the damage associated with HIV-associated neurocognitive disorders, a general term given for these disturbances. We review the severity and prevalence of the neuropsychiatric complications of HIV including delirium, neurobehavioral impairments (depression), minor cognitive-motor dysfunction, and HIV-associated dementia.
Collapse
Affiliation(s)
- Crystal C Watkins
- The Memory Center in Neuropsychiatry, Sheppard Pratt Health System, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Glenn J Treisman
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Steiner JP, Bachani M, Wolfson-Stofko B, Lee MH, Wang T, Li G, Li W, Strayer D, Haughey NJ, Nath A. Interaction of paroxetine with mitochondrial proteins mediates neuroprotection. Neurotherapeutics 2015; 12:200-16. [PMID: 25404050 PMCID: PMC4322069 DOI: 10.1007/s13311-014-0315-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
There are severe neurological complications that arise from HIV infection, ranging from peripheral sensory neuropathy to cognitive decline and dementia for which no specific treatments are available. The HIV proteins secreted from infected macrophages, gp120 and Tat, are neurotoxic. The goal of this study was to screen, identify and develop neuroprotective compounds relevant to HIV-associated neurocognitive disorders (HAND). We screened more than 2000 compounds that included FDA approved drugs for protective efficacy against oxidative stress-mediated neurodegeneration and identified selective serotonin reuptake inhibitors (SSRIs) as potential neuroprotectants. Numerous SSRIs were then extensively evaluated as protectants against neurotoxicity as measured by changes in neuronal cell death, mitochondrial potential, and axodendritic degeneration elicited by HIV Tat and gp120 and other mitochondrial toxins. While many SSRIs demonstrated neuroprotective actions, paroxetine was potently neuroprotective (100 nM potency) against these toxins in vitro and in vivo following systemic administration in a gp120 neurotoxicity model. Interestingly, the inhibition of serotonin reuptake by paroxetine was not required for neuroprotection, since depletion of the serotonin transporter had no effect on its neuroprotective properties. We determined that paroxetine interacts selectively and preferentially with brain mitochondrial proteins and blocks calcium-dependent swelling but had less effect on liver mitochondria. Additionally, paroxetine induced proliferation of neural progenitor cells in vitro and in vivo in gp120 transgenic animals. Therefore, SSRIs such as paroxetine may provide a novel adjunctive neuroprotective and neuroregenerative therapy to treat HIV-infected individuals.
Collapse
Affiliation(s)
- Joseph P. Steiner
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Translational Neuroscience Center, National Institute of Neurological Diseases and Stroke, National Bldg 10, Room 7C-105, 10 Center Drive, Bethesda, MD 20892 USA
| | - Muznabanu Bachani
- />Translational Neuroscience Center, National Institute of Neurological Diseases and Stroke, National Bldg 10, Room 7C-105, 10 Center Drive, Bethesda, MD 20892 USA
| | - Brett Wolfson-Stofko
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Myoung-Hwa Lee
- />Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institute of Health, Bldg 10, Room 7C103, 10 Center Drive, Bethesda, MD 20892 USA
| | - Tonguang Wang
- />Translational Neuroscience Center, National Institute of Neurological Diseases and Stroke, National Bldg 10, Room 7C-105, 10 Center Drive, Bethesda, MD 20892 USA
| | - Guanhan Li
- />Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institute of Health, Bldg 10, Room 7C103, 10 Center Drive, Bethesda, MD 20892 USA
| | - Wenxue Li
- />Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institute of Health, Bldg 10, Room 7C103, 10 Center Drive, Bethesda, MD 20892 USA
| | - David Strayer
- />Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Norman J. Haughey
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Avindra Nath
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- />Translational Neuroscience Center, National Institute of Neurological Diseases and Stroke, National Bldg 10, Room 7C-105, 10 Center Drive, Bethesda, MD 20892 USA
- />Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institute of Health, Bldg 10, Room 7C103, 10 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
43
|
McGuire JL, Barrett JS, Vezina HE, Spitsin S, Douglas SD. Adjuvant therapies for HIV-associated neurocognitive disorders. Ann Clin Transl Neurol 2014; 1:938-52. [PMID: 25540809 PMCID: PMC4265066 DOI: 10.1002/acn3.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a frequent and heterogeneous complication of HIV, affecting nearly 50% of infected individuals in the combined antiretroviral therapy (cART) era. This is a particularly devastating statistic because the diagnosis of HAND confers an increased risk of HIV-associated morbidity and mortality in affected patients. While cART is helpful in the treatment of the more severe forms of HAND, there is a therapeutic gap in the milder forms of HAND, where cART is less effective. Multiple adjuvant therapies with various mechanisms of action have been studied (N-methyl D-aspartate [NMDA]-receptor antagonists, MAO-B inhibitors, tetracycline-class antibiotics, and others), but none have shown a clear positive effect in HAND. While this lack of efficacy may be because the appropriate therapeutic targets have not yet been determined, we aimed to discuss that study results may also influenced by clinical trial design. METHODS This report is a systematic review of clinical trials of adjuvant therapies for HAND performed from January 1996 through June 2014. RESULTS Possible drawbacks in study design, including lack of standardized case definitions, poorly defined target populations, inappropriate dose selection and measurable outcomes, and brief study durations may have masked true underlying mechanistic effects of previously investigated adjuvant therapies for HAND in specific patient populations. CONCLUSIONS A proposal for streamlining and maximizing the likelihood of success in future clinical studies using a 'learning and confirming' investigational paradigm, incorporating stronger adaptive Phase I/II study designs, computerized modeling, and population/goal of treatment-specific Phase III clinical trials is presented.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, The Children’s Hospital of
PhiladelphiaPhiladelphia, Pennsylvania
- Department of Neurology, The Perelman School of Medicine
at the University of PennsylvaniaPhiladelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics,
Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, Pennsylvania
| | - Jeffrey S Barrett
- Laboratory for Applied PK/PD, Division of Clinical
Pharmacology & Therapeutics, The Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Heather E Vezina
- Laboratory for Applied PK/PD, Division of Clinical
Pharmacology & Therapeutics, The Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Sergei Spitsin
- The Children’s Hospital of Philadelphia Research
InstitutePhiladelphia, Pennsylvania
| | - Steven D Douglas
- The Children’s Hospital of Philadelphia Research
InstitutePhiladelphia, Pennsylvania
- Division of Allergy & Immunology, The
Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
- Department of Pediatrics, The Perelman School of Medicine
at the University of PennsylvaniaPhiladelphia, Pennsylvania
| |
Collapse
|
44
|
Prescripciones inconvenientes en el tratamiento del paciente con deterioro cognitivo. Neurologia 2014; 29:523-32. [DOI: 10.1016/j.nrl.2012.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 11/22/2022] Open
|
45
|
|
46
|
Kolson D, Buch S. More than two HANDs to tango. J Neuroimmune Pharmacol 2014; 8:1051-4. [PMID: 24233518 PMCID: PMC3889221 DOI: 10.1007/s11481-013-9513-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
Abstract
Developing a validated tool for the rapid and efficient assessment of cognitive functioning in HIV-infected patients in a typical outpatient clinical setting has been an unmet goal of HIV research since the recognition of the syndrome of HIV-associated dementia (HAD) nearly 20 years ago. In this issue of JNIP Cross et al. report the application of the International HIV Dementia Scale (IHDS) in a U.S.-based urban outpatient clinic to evaluate its utility as a substitute for the more time- and effort-demanding formalized testing criteria known as the Frascati criteria that was developed in 2007 to define the syndrome of HIV-associated neurocognitive disorders (HAND). In this study an unselected cohort of 507 individuals (68 % African American) that were assessed using the IHDS in a cross-sectional study revealed a 41 % prevalence of cognitive impairment (labeled ‘symptomatic HAND’) that was associated with African American race, older age, unemployment, education level, and depression. While the associations between cognitive impairment and older age, education, unemployment status and depression in HIV-infected patients are not surprising, the association with African American ancestry and cognitive impairment in the setting of HIV infection is a novel finding of this study. This commentary discusses several important issues raised by the study, including the pitfalls of assessing cognitive functioning with rapid screening tools, cognitive testing criteria, normative testing control groups, accounting for HAND co-morbidity factors, considerations for clinical trials assessing HAND, and selective population vulnerability to HAND.
Collapse
|
47
|
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 2014; 9:26. [PMID: 24980976 PMCID: PMC4107468 DOI: 10.1186/1750-1326-9-26] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. RESULTS We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington's disease, Parkinson's disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function. CONCLUSIONS Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Glutamate metabolism and HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:315-31. [PMID: 24867611 DOI: 10.1007/s13365-014-0258-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
HIV-1 infection can lead to neurocognitive impairment collectively known as HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral treatment (cART) has significantly ameliorated HIV's morbidity and mortality, persistent neuroinflammation and neurocognitive dysfunction continue. This review focuses on the current clinical and molecular evidence of the viral and host factors that influence glutamate-mediated neurotoxicity and neuropathogenesis as an important underlying mechanism during the course of HAND development. In addition, discusses potential pharmacological strategies targeting the glutamatergic system that may help prevent and improve neurological outcomes in HIV-1-infected subjects.
Collapse
|
49
|
The role of neuroplasticity and cognitive reserve in aging with HIV: recommendations for cognitive protection and rehabilitation. J Neurosci Nurs 2014; 45:306-16. [PMID: 24025470 DOI: 10.1097/jnn.0b013e31829d8b29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By and large, the immune systems of people infected with HIV are being protected and maintained by advances in highly active antiretroviral therapy; as such, this is extending the lives of people into old age. Unfortunately, for many living with this disease, HIV is associated with neuroinflammation, co-morbidities, and accelerated aging which can compromise brain function, resulting in cognitive deficits. The purpose of this article is to highlight how to interpret these deficits within the framework of neuroplasticity and cognitive reserve for this clinical population. We suggest several recommendations for cognitive rehabilitation and mitigation such as addressing lifestyle factors, psychostimulants, cognitive remediation therapy, and treatment of depression and anxiety. Implications for nursing research and practice are posited.
Collapse
|
50
|
Sanmarti M, Ibáñez L, Huertas S, Badenes D, Dalmau D, Slevin M, Krupinski J, Popa-Wagner A, Jaen A. HIV-associated neurocognitive disorders. J Mol Psychiatry 2014; 2:2. [PMID: 25945248 PMCID: PMC4416263 DOI: 10.1186/2049-9256-2-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/25/2014] [Indexed: 01/03/2023] Open
Abstract
Currently, neuropsychological impairment among HIV+ patients on antiretroviral therapy leads to a reduction in the quality of life and it is an important challenge due to the high prevalence of HIV-associated neurocognitive disorders and its concomitant consequences in relation to morbidity and mortality- including those HIV+ patients with adequate immunological and virological status. The fact that the virus is established in CNS in the early stages and its persistence within the CNS can help us to understand HIV-related brain injury even when highly active antiretroviral therapy is effective. The rising interest in HIV associated neurocognitive disorders has let to development new diagnostic tools, improvement of the neuropsychological tests, and the use of new biomarkers and new neuroimaging techniques that can help the diagnosis. Standardization and homogenization of neurocognitive tests as well as normalizing and simplification of easily accessible tools that can identify patients with increased risk of cognitive impairment represent an urgent requirement. Future efforts should also focus on diagnostic keys and searching for useful strategies in order to decrease HIV neurotoxicity within the CNS.
Collapse
Affiliation(s)
- Montserrat Sanmarti
- />Servei de Medicina Interna, Unitat VIH/Sida, Hospital Universitari MútuaTerrassa, Pl.Dr.Robert, 5, 088221 Terrassa, Barcelona, Spain
- />Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Laura Ibáñez
- />Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Sonia Huertas
- />Servei de Neurologia, Hospital Universitari MútuaTerrassa, Barcelona, Spain
| | - Dolors Badenes
- />Servei de Neurologia, Hospital Universitari MútuaTerrassa, Barcelona, Spain
| | - David Dalmau
- />Servei de Medicina Interna, Unitat VIH/Sida, Hospital Universitari MútuaTerrassa, Pl.Dr.Robert, 5, 088221 Terrassa, Barcelona, Spain
- />Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Mark Slevin
- />Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jerzy Krupinski
- />Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- />Servei de Neurologia, Hospital Universitari MútuaTerrassa, Barcelona, Spain
- />Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Aurel Popa-Wagner
- />Clinic for Psychiatry and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Angeles Jaen
- />Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| |
Collapse
|