1
|
Viano ME, Baez NS, Savid-Frontera C, Baigorri RE, Dinatale B, Pacini MF, Bulfoni Balbi C, Gonzalez FB, Fozzatti L, Lidón NL, Young HA, Hodge DL, Cerban F, Stempin CC, Pérez AR, Rodriguez-Galán MC. Systemic inflammatory Th1 cytokines during Trypanosoma cruzi infection disrupt the typical anatomical cell distribution and phenotypic/functional characteristics of various cell subsets within the thymus. Microbes Infect 2024; 26:105337. [PMID: 38615883 PMCID: PMC11227410 DOI: 10.1016/j.micinf.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Maria Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | | | - Laura Fozzatti
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Nicolas Leonel Lidón
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Deborah L Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Fabio Cerban
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPREB), Facultad de Cs. Médicas de la Universidad Nacional de Rosario (UNR), Argentina
| | | |
Collapse
|
2
|
Schuettfort G, Röther C, Berger A, Fokas E, Fraunholz I, Groh A, Haberl A, Khaykin P, Martin D, Rödel C, Vehreschild M, Stephan C. Differences in the Course of CD4 and CD8 Cells After Chemoradiotherapy in People Living with HIV with Anal Cancer. AIDS Res Hum Retroviruses 2024; 40:198-203. [PMID: 37756364 DOI: 10.1089/aid.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Incidence of anal carcinoma (AC) in people living with HIV (PLWH) is increased compared to the general population. Adverse effects of chemoradiotherapy (CRT) on the immune system are associated with a significant detrimental prognosis on overall survival in patients receiving CRT for solid tumors. The aim of this study was to evaluate immunological factors, in particular the differences in recovery of CD4+ and CD8+ cell counts before and after CRT for AC in PLWH. Retrospective single-center chart review extraction to analyze immunological data collected from PLWH with AC; descriptive statistics were used. Thirty-six PLWH with histologically proven AC were included in the analysis. Absolute CD4 cell count 60 months after CRT was 67.2% of the value at the beginning of CRT, whereas the CD8 cell count reached 82.3%. These differences were statistically significant (p = .048), whereas CD4/CD8-ratio remained stable. The findings of the presented study regarding CD4+ and CD8+ cell recovery after CRT are congruent with results from prior studies in non-HIV infected patients. Although not reaching the level of prior CRT T cell numbers, the ability to generate CD8+ cells seems to be better recovered, while CD4+ regeneration is more impaired. These observations are best explained by faster recovery of CD8+ cells via thymic-independent pathways, which are not available for regeneration of CD4+ cells. Further studies with larger numbers of patients are required to analyze the specific CD4+ and CD8+ cell subsets.
Collapse
Affiliation(s)
- Gundolf Schuettfort
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Annemarie Berger
- Department of Virology and University Hospital Frankfurt, Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingeborg Fraunholz
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Ana Groh
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Annette Haberl
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Daniel Martin
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Maria Vehreschild
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Stephan
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Mazzuti L, Turriziani O, Mezzaroma I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023; 11:biomedicines11010159. [PMID: 36672667 PMCID: PMC9856151 DOI: 10.3390/biomedicines11010159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Chronic immune activation has a significant role in HIV-1 disease pathogenesis and CD4+ T-cell depletion. The causes of chronic inflammation and immune activation are incompletely understood, but they are likely multifactorial in nature, involving both direct and indirect stimuli. Possible explanations include microbial translocation, coinfection, and continued presence of competent replicating virus. In fact, long-term viral suppression treatments are unable to normalize elevated markers of systemic immune activation. Furthermore, high levels of pro-inflammatory cytokines increase susceptibility to premature aging of the immune system. The phenomenon of "inflammaging" has begun to be evident in the last decades, as a consequence of increased life expectancy due to the introduction of cART. Quality of life and survival have improved substantially; however, PLWH are predisposed to chronic inflammatory conditions leading to age-associated diseases, such as inflammatory bowel disease, neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities, and non-HIV-associated cancers. Several approaches have been studied in numerous uncontrolled and/or randomized clinical trials with the aim of reducing immune activation/inflammatory status in PLWH, none of which have achieved consistent results.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Savino W, Durães J, Maldonado-Galdeano C, Perdigon G, Mendes-da-Cruz DA, Cuervo P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front Nutr 2022; 9:948488. [PMID: 36225882 PMCID: PMC9549110 DOI: 10.3389/fnut.2022.948488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonathan Durães
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina Maldonado-Galdeano
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Perdigon
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Patricia Cuervo
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
7
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
8
|
Alterations in thymocyte populations under conditions of endotoxin tolerance. Chin Med J (Engl) 2021; 134:1855-1865. [PMID: 34133355 PMCID: PMC8367067 DOI: 10.1097/cm9.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Endotoxin tolerance (ET) is a protective phenomenon in which pre-treatment with a tolerance dose of lipopolysaccharide (LPS) leads to dramatically elevated survival. Accumulating evidence has shown that peripheral T cells contribute to the induction of ET. However, what happens to T cell development in the thymus under ET conditions remains unclear. The purpose of this study was to analyze the alterations in thymocyte populations (double-positive [DP] and single-positive [SP] cells) under ET conditions. Methods: Mice were intraperitoneally injected with LPS at a concentration of 5 mg/kg to establish an LPS tolerance model and were divided into two groups: a group examined 72 h after LPS injection (72-h group) and a group examined 8 days after LPS injection (8-day group). Injection of phosphate-buffered saline was used as a control (control group). Changes in thymus weight, cell counts, and morphology were detected in the three groups. Moreover, surface molecules such as CD4, CD8, CD44, CD69, and CD62L were analyzed using flow cytometry. Furthermore, proliferation, apoptosis, cytokine production, and extracellular signal-regulated kinase (ERK) pathway signaling were analyzed in thymocyte populations. The polymorphism and length of the T-cell receptor (TCR) β chain complementarity-determining region 3 (CDR3) were analyzed using capillary electrophoresis DNA laser scanning analysis (ABI 3730). Results: Thymus weight and cell counts were decreased in the early stage but recovered by the late stage in a murine model of LPS-induced ET. Moreover, the proportions of DP cells (control: 72.130 ± 4.074, 72-h: 10.600 ± 3.517, 8-day: 84.770 ± 2.228), CD4+ SP cells (control: 15.770 ± 4.419, 72-h: 44.670 ± 3.089, 8-day: 6.367 ± 0.513), and CD8+ SP cells (control: 7.000 ± 1.916, 72-h: 34.030 ± 3.850, 8-day: 5.133 ± 0.647) were obviously different at different stages of ET. The polymorphism and length of TCR β chain CDR3 also changed obviously, indicating the occurrence of TCR rearrangement and thymocyte diversification. Further analysis showed that the expression of surface molecules, including CD44, CD69, and CD62L, on thymocyte populations (DP and SP cells) were changed to different degrees. Finally, the proliferation, apoptosis, cytokine production, and ERK pathway signaling of thymocyte populations were changed significantly. Conclusion: These data reveal that alterations in thymocyte populations might contribute to the establishment of ET.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Different factors contribute to the decreased overall long-term survival in treated people living with HIV (PLWH). This paper will review the state of physical frailty which limits successful aging in PLWH. RECENT FINDINGS Identifiable events on the continuum from clinical normality to heightened risk of adverse health outcomes contribute to frailty. These center on chronic inflammation leading to destabilization of autoregulated physiologic systems challenged by environmental and biologic challenges. Frailty assessment can inform the profile of aging PLWH at increased risk of common age-related disorders and geriatric syndromes. Biologic and psychosocial risk factors promoting progression to and reversion from a dynamic state of frailty are being investigated, allowing for preventative interventions to be considered. Insights gained from studying frail PLWH will help adapt an interdisciplinary geriatric model of health care for selected PLWH. This will improve the health and well-being of aging PLWH.
Collapse
Affiliation(s)
- Julian Falutz
- Division of Geriatrics, Director, Comprehensive HIV and Aging Initiative, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Carvalho-Silva WHV, Andrade-Santos JL, Souto FO, Coelho AVC, Crovella S, Guimarães RL. Immunological recovery failure in cART-treated HIV-positive patients is associated with reduced thymic output and RTE CD4+ T cell death by pyroptosis. J Leukoc Biol 2019; 107:85-94. [PMID: 31691351 DOI: 10.1002/jlb.4a0919-235r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
Despite more than three decades of studies and advances in combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV), the mechanisms that precisely determine immune reconstitution failure have not been completely elucidated yet. Thus, this study aimed to investigate the thymic function, immune activation, and cell death by pyroptosis and apoptosis in virologically suppressed HIV-positive patients receiving cART. Immunophenotyping analyses were performed in 57 cART-treated HIV-infected patients with undetectable plasma viral load, who were classified as immunological nonresponders (INR = 29) and immunologic responders (IR = 28). Sociodemographic and clinical data were also assessed from medical records. Twelve healthy volunteers were also included in this study. The INR showed lower pretreatment CD4+ T cell count that remained low even after 1 yr of treatment, lower CD4/CD8 ratio, lower percentage of recent thymic emigrant (RTE) CD4+ T cell (CD45RA+CD31+) and naïve CD4+ T cell (CD45RA+CD62L+), higher levels of effector memory CD4+ T cells (CD45RA-CD62L-), and higher pyroptosis levels of RTE CD4+ T cells (CD31+FLICA-Caspase1+) when compared with IR. Our findings indicate that reduced thymic function and RTE CD4+ T cell death by pyroptosis are the major mechanisms of immunological recovery failure in HIV-infected patients receiving cART.
Collapse
Affiliation(s)
| | - José Leandro Andrade-Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Fabrício Oliveira Souto
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.,Agreste Academic Center (CAA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Antonio Victor Campos Coelho
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Sergio Crovella
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Rafael Lima Guimarães
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Furler RL, Newcombe KL, Del Rio Estrada PM, Reyes-Terán G, Uittenbogaart CH, Nixon DF. Histoarchitectural Deterioration of Lymphoid Tissues in HIV-1 Infection and in Aging. AIDS Res Hum Retroviruses 2019; 35:1148-1159. [PMID: 31474115 DOI: 10.1089/aid.2019.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Impaired immunity is a common symptom of aging and advanced Human Immunodeficiency Virus type 1 (HIV-1) disease. In both diseases, a decline in lymphocytic function and cellularity leads to ineffective adaptive immune responses to opportunistic infections and vaccinations. Furthermore, despite sustained myeloid cellularity there is a background of chronic immune activation and a decrease in innate immune function in aging. In HIV-1 disease, myeloid cellularity is often more skewed than in normal aging, but similar chronic activation and innate immune dysfunction typically arise. Similarities between aging and HIV-1 infection have led to several investigations into HIV-1-mediated aging of the immune system. In this article, we review various studies that report alterations of leukocyte number and function during aging, and compare those alterations with those observed during progressive HIV-1 disease. We pay particular attention to changes within lymphoid tissue microenvironments and how histoarchitectural changes seen in these two diseases affect immunity. As we review various immune compartments including peripheral blood as well as primary and secondary lymphoid organs, common themes arise that help explain the decline of immunity in the elderly and in HIV-1-infected individuals with advanced disease. In both conditions, lymphoid tissues often show signs of histoarchitectural deterioration through fat accumulation and/or fibrosis. These structural changes can be attributed to a loss of communication between leukocytes and the surrounding stromal cells that produce the extracellular matrix components and growth factors necessary for cell migration, cell proliferation, and lymphoid tissue function. Despite the common general impairment of immunity in aging and HIV-1 progression, deterioration of immunity is caused by distinct mechanisms at the cellular and tissue levels in these two diseases.
Collapse
Affiliation(s)
- Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin L. Newcombe
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Perla M. Del Rio Estrada
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Gustavo Reyes-Terán
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, Medicine-Pediatrics, UCLA AIDS Institute and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
12
|
Abstract
Three decades of research in hematopoietic stem cell transplantation and HIV/AIDS fields have shaped a picture of immune restoration disorders. This manuscript overviews the molecular biology of interferon networks, the molecular pathogenesis of immune reconstitution inflammatory syndrome, and post-hematopoietic stem cell transplantation immune restoration disorders (IRD). It also summarizes the effects of thymic involution on T cell diversity, and the results of the assessment of diagnostic biomarkers of IRD, and tested targeted immunomodulatory treatments.
Collapse
Affiliation(s)
- Hesham Mohei
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Usha Kellampalli
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
13
|
Rb-Silva R, Nobrega C, Azevedo C, Athayde E, Canto-Gomes J, Ferreira I, Cheynier R, Yates AJ, Horta A, Correia-Neves M. Thymic Function as a Predictor of Immune Recovery in Chronically HIV-Infected Patients Initiating Antiretroviral Therapy. Front Immunol 2019; 10:25. [PMID: 30804925 PMCID: PMC6370619 DOI: 10.3389/fimmu.2019.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Poor immunological responders (PIR) are HIV-infected patients with virologic suppression upon antiretroviral therapy (ART) but persistently low CD4+ T cell counts. Early identification of PIR is important given their higher morbimortality compared to adequate immune responders (AIR). In this study, 33 patients severely lymphopenic at ART onset, were followed for at least 36 months, and classified as PIR or AIR using cluster analysis grounded on their CD4+ T cell count trajectories. Based on a variety of immunological parameters, we built predictive models of PIR/AIR outcome using logistic regression. All PIR had CD4+ T cell counts consistently below 500 cells/μL, while all AIR reached this threshold. AIR showed a higher percentage of recent thymic emigrants among CD4+ T cells; higher numbers of sj-TRECs and greater sj/β TREC ratios; and significant increases in thymic volume from baseline to 12 months of ART. We identified mathematical models that correctly predicted PIR/AIR outcome after 36 months of therapy in 77-87% of the cases, based on observations made until 2-6 months after ART onset. This study highlights the importance of thymic activity in the immune recovery of severely lymphopenic patients, and may help to select the patients that will benefit from closer follow-up or novel therapeutic approaches.
Collapse
Affiliation(s)
- Rita Rb-Silva
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Onco-Hematology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Claudia Nobrega
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecilia Azevedo
- Department of Mathematics and Applications, School of Sciences, University of Minho, Braga, Portugal.,Center of Mathematics, University of Minho, Braga, Portugal
| | - Emilia Athayde
- Department of Mathematics and Applications, School of Sciences, University of Minho, Braga, Portugal.,Center of Mathematics, University of Minho, Braga, Portugal
| | - João Canto-Gomes
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ivo Ferreira
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Department of Infection, Immunity and Inflammation, Université Paris Decartes, Paris, France
| | - Andrew J Yates
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
| | - Ana Horta
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Infectious Diseases, Centro Hospitalar do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Tsukamoto T. HIV Impacts CD34 + Progenitors Involved in T-Cell Differentiation During Coculture With Mouse Stromal OP9-DL1 Cells. Front Immunol 2019; 10:81. [PMID: 30761146 PMCID: PMC6361802 DOI: 10.3389/fimmu.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 causes the loss of CD4+ T cells via depletion or impairment of their production. The latter involves infection of thymocytes, but the involvement of hematopoietic CD34+ cells remains unclear even though HIV-positive patients frequently manifest myelosuppression. In order to have a closer look at the impact of HIV-1 on T-lineage differentiation, this study utilized the OP9-DL1 coculture system, which supports in vitro T-lineage differentiation of human hematopoietic stem/progenitor cells. In the newly developed in vitro OP9-DL1/HIV-1 model, cord-derived CD34+ cells were infected with CXCR4-tropic HIV-1NL4−3 and cocultured. The HIV-infected cocultures exhibited reduced CD4+ T-cell growth at weeks 3–5 post infection compared to autologous uninfected cocultures. Further assays and analyses revealed that CD34+CD7+CXCR4+ cells can be quickly depleted as early as 1 week after infection of the subset, and this was accompanied by the emergence of rare CD34+CD7+CD4+ cells. A subsequent theoretical model analysis suggested potential influence of HIV-1 on the differentiation rate or death rate of lymphoid progenitor cells. These results indicate that CXCR4-tropic HIV-1 strains may impact the dynamics of CD34+CD7+ lymphoid progenitor cell pools, presumably leading to impaired T-cell production potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia.,Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
15
|
Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. HIV as a Cause of Immune Activation and Immunosenescence. Mediators Inflamm 2017; 2017:6825493. [PMID: 29209103 PMCID: PMC5676471 DOI: 10.1155/2017/6825493] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic immune activation has emerged as an essential component of the immunopathogenesis of HIV. It not only leads to faster disease progression, but also to accelerated decline of overall immune competence. HIV-associated immune activation is characterized by an increase in proinflammatory mediators, dysfunctional T regulatory cells, and a pattern of T-cell-senescent phenotypes similar to those seen in the elderly. These changes predispose HIV-infected persons to comorbid conditions that have been linked to immunosenescence and inflamm-ageing, such as atherosclerosis and cardiovascular disease, neurodegeneration, and cancer. In the antiretroviral treatment era, development of such non-AIDS-defining, age-related comorbidities is a major cause of morbidity and mortality. Treatment strategies aimed at curtailing persistent immune activation and inflammation may help prevent the development of these conditions. At present, the most effective strategy appears to be early antiretroviral treatment initiation. No other treatment interventions have been found effective in large-scale clinical trials, and no adjunctive treatment is currently recommended in international HIV treatment guidelines. This article reviews the role of systemic immune activation in the immunopathogenesis of HIV infection, its causes and the clinical implications linked to immunosenescence in adults, and the therapeutic interventions that have been investigated.
Collapse
Affiliation(s)
- T. Sokoya
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - H. C. Steel
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - M. Nieuwoudt
- South African Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch 7600, South Africa
| | - T. M. Rossouw
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
16
|
Cai R, Liu L, Luo B, Wang J, Shen J, Shen Y, Zhang R, Chen J, Lu H. Caspase-1 Activity in CD4 T Cells Is Downregulated Following Antiretroviral Therapy for HIV-1 Infection. AIDS Res Hum Retroviruses 2017; 33:164-171. [PMID: 27832707 DOI: 10.1089/aid.2016.0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both Caspase 1-induced cell death and Caspase 3-induced cell death were reported to be the causes of CD4+ T cell depletion in HIV infection. We measured by flow cytometry the expression of key proteins associated with pyroptosis (Caspase 1), apoptosis (Caspase 3, Caspase 8, Caspase 9), and immune activation in peripheral T cells. The percentages of CD4+ T cells that expressed Caspase 1 and Caspase 3 were significantly higher in untreated human immunodeficiency virus 1 (HIV-1) patients compared with healthy control (Caspase 1: 19.40% vs. 4.65%, p = .006; Caspase 3: 12.75% vs. 4.18%, p < .001). However, the percentages of Caspase 3 in CD8+ T cells increased significantly, while the percentages of Caspase 1 in CD8+ T cells did not change significantly (Caspase 1: 3.33% vs. 1.99%, p = .821; Caspase 3: 20.35% vs 4.74%, p < .001). The percentages of HLA-DR+ CD38+ CD8+ T cells were positively correlated with those of Caspase 1+ CD4+ T cells, but not with those of Caspase 3+ CD4+ T cells. After highly active antiretroviral therapy, the percentages of Caspase 1, but not of Caspase 3, -expressing CD4+ T cells decreased to a level comparable with those of healthy controls (Caspase 1: 6.05% vs. 4.65%, p = .514; Caspase 3: 9.67% vs. 4.18%, p < .001). Our study indicated that CD4+ T cells experience both pyroptosis and apoptosis, while CD8+ T cells undergo only apoptosis in HIV-1 infection. Pyroptosis, but not apoptosis, in CD4+ T cells may be inhibited by effective antiretroviral therapy.
Collapse
Affiliation(s)
- Rentian Cai
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bin Luo
- Department of Infectious Diseases, Wenzhou Medical College, Wenzhou, China
| | - Jiangrong Wang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiayin Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
- Medical College of Fudan University, Shanghai, China
| |
Collapse
|
17
|
Matteucci C, Grelli S, Balestrieri E, Minutolo A, Argaw-Denboba A, Macchi B, Sinibaldi-Vallebona P, Perno CF, Mastino A, Garaci E. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol 2017; 12:141-155. [PMID: 28106477 DOI: 10.2217/fmb-2016-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In spite of the consistent benefits for HIV-1 infected patients undergoing antiretroviral therapy, a complete immune reconstitution is usually not achieved. Actually, antiretroviral therapy may be frequently accompanied by immunological unresponsiveness, persistent inflammatory conditions and inefficient cytotoxic T-cell response. Thymosin alpha 1 is a thymic peptide that demonstrates a peculiar ability to restore immune system homeostasis in different physiological and pathological conditions (i.e., infections, cancer, immunodeficiency, vaccination and aging) acting as multitasking protein depending on the host state of inflammation or immune dysfunction. This review reports the present knowledge on the in vitro and in vivo studies concerning the use of thymosin alpha 1 in HIV-1 infection. Recent findings and future perspectives of therapeutic intervention are discussed.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Beatrice Macchi
- Department of System Medicine, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy.,Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Enrico Garaci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,IRCSS San Raffaele Pisana, Scientific Institute for Research, Hospitalization & Health Care, Via di Val Cannuta, 247, Roma 00166, Italy
| |
Collapse
|
18
|
Bertoli D, Re A, Chiarini M, Sottini A, Serana F, Giustini V, Roccaro AM, Cattaneo C, Caimi L, Rossi G, Imberti L. B- and T-lymphocyte number and function in HIV +/HIV - lymphoma patients treated with high-dose chemotherapy and autologous bone marrow transplantation. Sci Rep 2016; 6:37995. [PMID: 27905485 PMCID: PMC5131356 DOI: 10.1038/srep37995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023] Open
Abstract
Combination of anti-retroviral therapy, high-dose chemotherapy (HCT) and autologous stem cell transplantation (ASCT) has led to an improved survival of HIV+ non-Hodgkin lymphoma (NHL) patients. We compared T- and B-cell subset recovery and related capability to respond to in-vitro stimulation, as well as T-cell repertoire modifications of HIV+ and HIV− NHL patients undergoing HCT and ASCT as first-line consolidation or salvage treatment, using sequential blood samples obtained before and at 3, 6, 12 and 24 months after ASCT. B lymphocyte recovery occurred earlier, reaching higher levels in HIV+ patients as compared to HIV− patients and healthy controls; in particular, immature and naïve B cells were significantly higher in HIV+ patients who had received rituximab in the pre-ASCT period. These lymphocytes equally responded to in-vitro stimulation. Newly produced T cells similarly increased in HIV+ and HIV− NHL patients, but their levels remained constantly lower than in healthy controls. T lymphocytes showed a reduced proliferative capacity, but their repertoire was reassorted by the treatment. The functional and numeric B-cell recovery and the qualitative modifications of T-cell receptor repertoire may explain, at least in part, the success of this aggressive therapeutic approach in HIV+ patients.
Collapse
Affiliation(s)
- Diego Bertoli
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Marco Chiarini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Federico Serana
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Viviana Giustini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Aldo M Roccaro
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Luigi Caimi
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
19
|
Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, Sartori A, Burger E, Verinaud L. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS One 2016; 11:e0164745. [PMID: 27736987 PMCID: PMC5063316 DOI: 10.1371/journal.pone.0164745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
T cell maturation takes place within the thymus, a primary lymphoid organ that is commonly targeted during infections. Previous studies showed that acute infection with Paracoccidioides brasiliensis (Pb), the causative agent of paracoccidioidomycosis (PCM), promotes thymic atrophy that is associated with the presence of yeast cells in the organ. However, as human PCM is a chronic infection, it is imperative to investigate the consequences of Pb infection over the thymic structure and function in chronic infection. In this sense, we developed a new experimental model where Pb yeast cells are injected through the intraperitoneal route and mice are evaluated over 120 days of infection. Thymuses were analyzed in chronically infected mice and we found that the thymus underwent extensive morphological alterations and severe infiltration of P. brasiliensis yeast cells. Further analyses showed an altered phenotype and function of thymocytes that are commonly found in peripheral mature T lymphocytes. We also observed activation of the NLRP3 inflammasome in the thymus. Our data provide new information on the severe changes observed in the thymic microenvironment in a model of PCM that more closely mimics the human infection.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Resop RS, Douaisi M, Craft J, Jachimowski LCM, Blom B, Uittenbogaart CH. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. J Allergy Clin Immunol 2016; 138:551-557.e8. [PMID: 27056271 PMCID: PMC7007110 DOI: 10.1016/j.jaci.2015.12.1339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The mechanisms that govern the egress of mature thymocytes from the human thymus to the periphery remain understudied yet are of utmost importance to the field of basic immunology, as well as T-cell reconstitution in various immunodeficiencies. We examined the expression and function of sphingosine-1-phosphate (S1P) receptors in human thymocyte egress. OBJECTIVES We aimed to determine whether S1P receptors (S1P-Rs) play a role in mature human thymocyte egress and to identify the thymocyte population or populations that express S1P-Rs and respond to S1P by migrating across a concentration gradient. METHODS Human thymocytes were exposed to S1P in Transwell plate migration assays coupled to flow cytometry to evaluate the response to S1P of thymocytes at different stages of maturation. Constitutive S1P-R expression was quantified by means of real-time PCR in sorted thymocyte subsets and flow cytometry. S1P-R1 and Kruppel-like factor 2 expression were monitored after S1P exposure by using flow cytometry and quantitative PCR. RESULTS S1P-R1 was the prevalent S1P receptor on mature human thymocytes (CD3(hi)CD27(+)CD69(-)), the population that also demonstrated the greatest response to S1P in migration assays. Pretreatment with FTY720, an S1P-R1 nonselective modulator significantly reduced migration and suggested a role for S1P-R2 in retaining thymocytes in the tissue. Lastly, surface S1P-R1 expression, as well S1PR1 and Kruppel-like factor 2 (KLF2) transcripts, were significantly decreased in mature thymocytes on exposure to S1P. CONCLUSION Mature human thymocytes rely on S1P-R1 to migrate toward S1P. Taken in the context of murine work demonstrating that S1P is required for thymocyte egress to the periphery, our data highlight a new key chemokine for human thymocyte egress.
Collapse
Affiliation(s)
- Rachel S Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif; UCLA AIDS Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Calif
| | - Marc Douaisi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | - Joshua Craft
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | | | - Bianca Blom
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christel H Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; UCLA AIDS Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Calif; Department of Pediatrics, University of California Los Angeles, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Di Gangi R, Alves da Costa T, Thomé R, Peron G, Burger E, Verinaud L. Paracoccidioides brasiliensis infection promotes thymic disarrangement and premature egress of mature lymphocytes expressing prohibitive TCRs. BMC Infect Dis 2016; 16:209. [PMID: 27189089 PMCID: PMC4869377 DOI: 10.1186/s12879-016-1561-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis, a chronic granulomatous fungal disease caused by Paracoccidioides brasiliensis yeast cells affects mainly rural workers, albeit recently cases in immunosuppressed individuals has been reported. Protective immune response against P. brasiliensis is dependent on the activity of helper T cells especially IFN-γ-producing Th1 cells. It has been proposed that Paracoccidioides brasiliensis is able to modulate the immune response towards a permissive state and that the thymus plays a major role in it. METHODS In this paper, we show that acute infection of BALB/c mice with P. brasiliensis virulent isolate (Pb18) might cause alterations in the thymic environment as well as the prohibitive TCR-expressing T cells in the spleens. RESULTS After seven days of infection, we found yeast cells on the thymic stroma, the thymic epithelial cells (TEC) were altered regarding their spatial-orientation and inflammatory mediators gene expression was increased. Likewise, thymocytes (differentiating T cells) presented higher migratory ability in ex vivo experiments. Notwithstanding, P. brasiliensis-infected mice showed an increased frequency of prohibitive TCR-expressing T cells in the spleens, suggesting that the selection processes that occur in the thymus may be compromised during the acute infection. CONCLUSION In this paper, for the first time, we show that acute infection with Paracoccidioides brasiliensis yeast cells promotes thymic alterations leading to a defective repertoire of peripheral T cells. The data presented here may represent new mechanisms by which P. brasiliensis subverts the immune response towards the chronic infection observed in humans.
Collapse
Affiliation(s)
- Rosaria Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Eva Burger
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil.
| |
Collapse
|
22
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
23
|
Abstract
OBJECTIVES AIDS is caused by CD4 T-cell depletion. Although combination antiretroviral therapy can restore blood T-cell numbers, the clonal diversity of the reconstituting cells, critical for immunocompetence, is not well defined. METHODS We performed an extensive analysis of parameters of thymic function in perinatally HIV-1-infected (n = 39) and control (n = 28) participants ranging from 13 to 23 years of age. CD4 T cells including naive (CD27 CD45RA) and recent thymic emigrant (RTE) (CD31/CD45RA) cells, were quantified by flow cytometry. Deep sequencing was used to examine T-cell receptor (TCR) sequence diversity in sorted RTE CD4 T cells. RESULTS Infected participants had reduced CD4 T-cell levels with predominant depletion of the memory subset and preservation of naive cells. RTE CD4 T-cell levels were normal in most infected individuals, and enhanced thymopoiesis was indicated by higher proportions of CD4 T cells containing TCR recombination excision circles. Memory CD4 T-cell depletion was highly associated with CD8 T-cell activation in HIV-1-infected persons and plasma interlekin-7 levels were correlated with naive CD4 T cells, suggesting activation-driven loss and compensatory enhancement of thymopoiesis. Deep sequencing of CD4 T-cell receptor sequences in well compensated infected persons demonstrated supranormal diversity, providing additional evidence of enhanced thymic output. CONCLUSION Despite up to two decades of infection, many individuals have remarkable thymic reserve to compensate for ongoing CD4 T-cell loss, although there is ongoing viral replication and immune activation despite combination antiretroviral therapy. The longer term sustainability of this physiology remains to be determined.
Collapse
|
24
|
Bruchfeld J, Correia-Neves M, Källenius G. Tuberculosis and HIV Coinfection. Cold Spring Harb Perspect Med 2015; 5:a017871. [PMID: 25722472 DOI: 10.1101/cshperspect.a017871] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) constitute the main burden of infectious disease in resource-limited countries. In the individual host, the two pathogens, Mycobacterium tuberculosis and HIV, potentiate one another, accelerating the deterioration of immunological functions. In high-burden settings, HIV coinfection is the most important risk factor for developing active TB, which increases the susceptibility to primary infection or reinfection and also the risk of TB reactivation for patients with latent TB. M. tuberculosis infection also has a negative impact on the immune response to HIV, accelerating the progression from HIV infection to AIDS. The clinical management of HIV-associated TB includes the integration of effective anti-TB treatment, use of concurrent antiretroviral therapy (ART), prevention of HIV-related comorbidities, management of drug cytotoxicity, and prevention/treatment of immune reconstitution inflammatory syndrome (IRIS).
Collapse
Affiliation(s)
- Judith Bruchfeld
- Unit of Infectious Diseases, Institution of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 77, Sweden
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Gunilla Källenius
- Karolinska Institutet, Department of Clinical Science and Education, Stockholm SE-118 83, Sweden
| |
Collapse
|
25
|
Kingkeow D, Srithep S, Praparattanapan J, Supparatpinyo K, Pornprasert S. Thymic Function during 12 Months of Highly Active Antiretroviral Therapy in Thai HIV-Infected Patients with Normal and Slow Immune Recovery. Jpn J Infect Dis 2015; 68:353-6. [PMID: 25720642 DOI: 10.7883/yoken.jjid.2014.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine and compare thymic output during 12 months of highly active antiretroviral therapy (HAART) in HIV-infected patients with different types of immune recovery. In total, 18 Thai HIV-infected patients with normal immune recovery (NR) and 13 Thai HIV-infected patients with slow immune recovery (SR) were enrolled. T-cell receptor rearrangement excision circle (TREC) levels in peripheral blood mononuclear cells (PBMCs) and CD4(+) T cells were quantified at baseline, and after 6 and 12 months of HAART. CD4(+) T-cell counts in NR patients were significantly higher than those in SR patients after 6 and 12 months of HAART. However, the median TREC levels in PBMCs and CD4(+) T cells in both groups were comparable. Moreover, TREC levels showed similar trends in PBMCs and CD4(+) T cells in both groups during 12 months of HAART. Only patients with SR had significant increases in median TREC levels in PBMCs and CD4(+) T-cells during the first 6 months of HAART. No correlations were found between CD4(+) T-cell count and TREC levels in PBMCs and CD4(+) T cells. These results imply that the increase in CD4(+) T-cell count in SR patients after 12 months of HAART is likely attributable to thymic output and other sources.
Collapse
|
26
|
Resop RS, Uittenbogaart CH. Human T-Cell Development and Thymic Egress: An Infectious Disease Perspective. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2015; 6:33-49. [PMID: 28670486 PMCID: PMC5489135 DOI: 10.1615/forumimmundisther.2015014226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emigration of mature naïve CD4 SP T cells from the human thymus to the periphery is not fully understood, although elucidation of the mechanisms that govern egress of T cells is crucial to understanding both basic immunology and the immune response in diseases such as HIV infection. Recent work has brought to light the requirement for sphingosine-1-phosphate (S1P) and its receptors in a variety of fields including mature naïve T-cell egress from the thymus of mice. We are examining the expression and function of this novel requisite T-cell egress receptor within the human thymus, characterizing changes observed in the expression and function of this receptor in infectious diseases. To perform this work, we use a variety of humanized murine models reviewed in this article. Future work in the field of T-cell egress, especially as it pertains to S1P receptors, should advance the fields of basic T-cell immunology and immunopathology and open new avenues for exploration into novel therapeutics.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- Department of Pediatrics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- Department of Pediatrics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- University of California at Los Angeles AIDS Institute, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen Medical School at UCLA, Los Angeles, CA 90095
| |
Collapse
|
27
|
Abstract
The intersection and syndemic interaction between the human immunodeficiency virus (HIV) and tuberculosis (TB) epidemics have global prevalence with devastating morbidity and massive mortality. Using FDG-PET imaging it was shown that in HIV-infected individuals, involvement of the head and neck precedes that of the chest and of the abdomen. The sequence of lymph node involvement observed suggests the existence of a diffusible activation mediator that may be targeted via therapeutic intervention strategies. Furthermore, the degree of FDG uptake proved directly related to viral load and inversely related to CD4 cell count. Available data in acquired immune deficiency syndrome (AIDS)-defining cancers further suggest that FDG-PET/CT imaging may be useful for prognostication of cervical cancer and for identifying appropriate sites for biopsy, staging, and monitoring lymphoproliferative activity owing to HIV-associated Kaposi sarcoma and multicentric Castleman disease. Inversely, in HIV-associated lymphoma, FDG uptake in HIV-involved lymphoid tissue was shown to reduce the specificity of FDG-PET imaging findings, the effect of which in clinical practice warrants further investigation. In the latter setting, knowledge of viremia appears to be essential for FDG-PET image interpretation. Early HIV-associated neurocognitive disorder, formerly known as AIDS dementia complex, proved to be characterized by striatal hypermetabolism and progressive HIV-associated neurocognitive disorder or AIDS dementia complex by a decrease in subcortical and cortical metabolism. In lipodystrophic HIV-infected individuals, lipodystrophy proved associated with increased glucose uptake by adipose tissue, likely resulting from the metabolic stress of adipose tissue in response to highly active antiretroviral therapy. Furthermore, ongoing chronic low-grade infection in arteries of HIV-infected individuals could be depicted by FDG-PET/CT imaging. And there is promising data that FDG-PET/CT in HIV may serve as a new marker for the evaluation of thymic function in HIV-infected patients. In the setting of TB, FDG-PET has proven unable to differentiate malignancy from TB in patients presenting with solitary pulmonary nodules, including those suffering from HIV, and thus cannot be used as a tool to reduce futile biopsy or thoracotomy in these patients. In patients presenting with extrapulmonary TB, FDG-PET imaging was found to be significantly more efficient when compared with CT for the identification of more sites of involvement. Thus supporting that FDG-PET/CT can demonstrate lesion extent, serve as guide for biopsy with aspiration for culture, assist surgery planning and contribute to follow-up. Limited available data suggest that quantitative FDG-PET findings may allow for prediction or rapid assessment, at 4 months following treatment instigation, of response to antituberculostatics in TB-infected HIV patients. These results and more recent findings suggest a role for FDG-PET/CT imaging in the evaluation of therapeutic response in TB patients.
Collapse
Affiliation(s)
- Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| | | | | |
Collapse
|
28
|
Blanche S, Scott-Algara D, Le Chenadec J, Didier C, Montange T, Avettand-Fenoel V, Rouzioux C, Melard A, Viard JP, Dollfus C, Bouallag N, Warszawski J, Buseyne F. Naive T Lymphocytes and Recent Thymic Emigrants Are Associated With HIV-1 Disease History in French Adolescents and Young Adults Infected in the Perinatal Period: The ANRS-EP38-IMMIP Study. Clin Infect Dis 2013; 58:573-87. [DOI: 10.1093/cid/cit729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Deobagkar-Lele M, Victor ES, Nandi D. c-Jun NH2 -terminal kinase is a critical node in the death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Eur J Immunol 2013; 44:137-49. [PMID: 24105651 DOI: 10.1002/eji.201343506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/15/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Thymic atrophy, due to the depletion of CD4(+) CD8(+) thymocytes, is observed during infections with numerous pathogens. Several mechanisms, such as glucocorticoids and inflammatory cytokines, are known to be involved in this process; however, the roles of intracellular signaling molecules have not been investigated. In this study, the functional role of c-Jun NH2 -terminal kinase (JNK) during infection-induced thymic atrophy was addressed. The levels of phosphorylated JNK in immature CD4(+) CD8(+) thymocytes from C57BL/6 (Nramp-deficient) and 129/SvJ (Nramp-sufficient) mice were increased upon oral infection of mice with Salmonella enterica serovar Typhimurium (S. typhimurium). Furthermore, inhibition of JNK signaling, but not ERK or p38 MAPK, prevented the in vitro death of infected thymocytes. Importantly, the in vivo inhibition of JNK signaling with SP600125 protected C57BL/6 CD4(+) CD8(+) thymocytes from depletion via multiple mechanisms as follows: lower intracellular ROS, inflammatory cytokines, Bax and caspase 3 activity, increase in Bcl-xL amounts, and prevention of the loss in mitochondrial membrane potential. Notably, thymic architecture was preserved in infected mice treated with SP600125. Overall, this study identifies a novel role for JNK as a crucial regulator of the death of CD4(+) CD8(+) thymocytes during S. typhimurium infection.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
30
|
Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J 2013; 7:57-71. [PMID: 23986795 PMCID: PMC3751038 DOI: 10.2174/1874357920130621001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France
| | | |
Collapse
|
31
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
32
|
Deobagkar-Lele M, Chacko SK, Victor ES, Kadthur JC, Nandi D. Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4(+) CD8(+) thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 2013. [PMID: 23186527 DOI: 10.1111/imm.12047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S. typhimurium). Significant death of CD4(+) CD8(+) thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4(+) CD8(+) thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon-γ (IFN-γ), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifnγ(-/-) mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN-γ and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifnγ(-/-) mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifnγ(-/-) mice. Importantly, the number of CD4(+) CD8(+) thymocytes is significantly higher in Ifnγ(-/-) mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN-γ-mediated pathways are parallel but synergize in an additive manner to induce death of CD4(+) CD8(+) thymocytes during S. typhimurium infection. The implications of this study for host responses during infection are discussed.
Collapse
|
33
|
Ahmed Rahim MM, Chrobak P, Priceputu E, Hanna Z, Jolicoeur P. Normal development and function but impaired memory phenotype of CD8+ T cells in transgenic mice expressing HIV-1 Nef in its natural target cells. Virology 2013; 438:84-97. [DOI: 10.1016/j.virol.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/08/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
34
|
Imami N, Westrop SJ, Grageda N, Herasimtschuk AA. Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses. Front Immunol 2013; 4:58. [PMID: 23459797 PMCID: PMC3585435 DOI: 10.3389/fimmu.2013.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 12/30/2022] Open
Abstract
Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1(+) patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1(+) patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a "functional cure" may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.
Collapse
Affiliation(s)
- Nesrina Imami
- Department of Medicine, Imperial College LondonLondon, UK
| | | | | | | |
Collapse
|
35
|
Nobrega C, Nunes-Alves C, Cerqueira-Rodrigues B, Roque S, Barreira-Silva P, Behar SM, Correia-Neves M. T cells home to the thymus and control infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1646-58. [PMID: 23315077 DOI: 10.4049/jimmunol.1202412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The thymus is a target of multiple pathogens. How the immune system responds to thymic infection is largely unknown. Despite being considered an immune-privileged organ, we detect a mycobacteria-specific T cell response in the thymus following dissemination of Mycobacterium avium or Mycobacterium tuberculosis. This response includes proinflammatory cytokine production by mycobacteria-specific CD4(+) and CD8(+) T cells, which stimulates infected cells and controls bacterial growth in the thymus. Importantly, the responding T cells are mature peripheral T cells that recirculate back to the thymus. The recruitment of these cells is associated with an increased expression of Th1 chemokines and an enrichment of CXCR3(+) mycobacteria-specific T cells in the thymus. Finally, we demonstrate it is the mature T cells that home to the thymus that most efficiently control mycobacterial infection. Although the presence of mature T cells in the thymus has been recognized for some time, to our knowledge, these data are the first to show that T cell recirculation from the periphery to the thymus is a mechanism that allows the immune system to respond to thymic infection. Maintaining a functional thymic environment is essential to maintain T cell differentiation and prevent the emergence of central tolerance to the invading pathogens.
Collapse
Affiliation(s)
- Claudia Nobrega
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Costanza V, Rivadeneira P, Biafore F, D’Attellis C. Optimizing thymic recovery in HIV patients through multidrug therapies. Biomed Signal Process Control 2013. [DOI: 10.1016/j.bspc.2012.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Initiation of c-ART in HIV-1 Infected Patients Is Associated With a Decrease of the Metabolic Activity of the Thymus Evaluated Using FDG-PET/Computed Tomography. J Acquir Immune Defic Syndr 2012; 61:56-63. [DOI: 10.1097/qai.0b013e3182615b62] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
|
39
|
Menson EN, Mellado MJ, Bamford A, Castelli G, Duiculescu D, Marczyńska M, Navarro ML, Scherpbier HJ, Heath PT. Guidance on vaccination of HIV-infected children in Europe. HIV Med 2012; 13:333-6; e1-14. [PMID: 22296225 DOI: 10.1111/j.1468-1293.2011.00982.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2011] [Indexed: 02/02/2023]
Affiliation(s)
- E N Menson
- Department of General Paediatrics, Evelina Children's Hospital @St Thomas' Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhatia R, Ryscavage P, Taiwo B. Accelerated aging and human immunodeficiency virus infection: emerging challenges of growing older in the era of successful antiretroviral therapy. J Neurovirol 2011; 18:247-55. [PMID: 22205585 DOI: 10.1007/s13365-011-0073-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022]
Abstract
HIV-infected patients are living longer as a result of potent antiretroviral therapy. Immuno-inflammatory phenomena implicated in the normal aging process, including immune senescence, depreciation of the adaptive immune system, and heightened systemic inflammation are also pathophysiologic sequelae of HIV infection, suggesting HIV infection can potentiate the biological mechanisms of aging. Aging HIV-infected patients manifest many comorbidities at earlier ages, and sometimes with more aggressive phenotypes compared to seronegative counterparts. In this review, we describe relevant biologic changes shared by normal aging and HIV infection and explore the growing spectrum of clinical manifestations associated with the accelerated aging phenotype in HIV-infected individuals.
Collapse
Affiliation(s)
- Ramona Bhatia
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
41
|
Krogstad P, Aldrovandi G. Editorial: developmental regulation of P-glycoprotein and HIV therapy: spare the thymus but spoil the child? J Leukoc Biol 2011; 90:639-41. [PMID: 21965311 DOI: 10.1189/jlb.0311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Hung WL, Lin YH, Wang PY, Chang MH. HIV-associated myasthenia gravis and impacts of HAART: One case report and a brief review. Clin Neurol Neurosurg 2011; 113:672-4. [DOI: 10.1016/j.clineuro.2011.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/27/2011] [Indexed: 11/27/2022]
|
43
|
Shegokar R, Singh KK. Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int J Pharm 2011; 421:341-52. [PMID: 21986114 DOI: 10.1016/j.ijpharm.2011.09.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022]
Abstract
Most of the time HIV virus escape immunological burden exerted by antiretroviral drugs and develops resistance against therapy. For complete eradication of virus from body one has to use long term chemotherapies, which results in drug toxicity, drug resistance and eventually poor patient compliance. Nevirapine (NNRTI, non nucleoside reverse transcriptase inhibitor) nanosuspensions were developed and surface modified with serum albumin, polysaccharide and polyethylene glycol to enhance its targeting potential. The biodistribution studies revealed improved antiretroviral drug accumulation in various organs of rat for nanosuspensions as compared to the plain drug solution when administered intravenously. Nanosuspension after surface modification showed further enhancement in accumulation. Higher MRT values of surface coated nanosuspension in brain, liver and spleen as compared to pure drug solution ensured enhanced bioavailability and prolonged residence of the drug at the target site.
Collapse
Affiliation(s)
- Ranjita Shegokar
- C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Santacruz (W), Mumbai 400049, India
| | | |
Collapse
|
44
|
Tamagno M, Bibas BJ, Bernardi F, Lian YC, Bammann RH, Fernandez A, Jatene FB. Giant multilocular thymic cyst in an HIV-infected adolescent. J Pediatr Surg 2011; 46:1842-5. [PMID: 21930000 DOI: 10.1016/j.jpedsurg.2011.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022]
Abstract
A girl with vertically acquired HIV infection presented with a 6-month history of dyspnea and chest pain. Computed tomography of the thorax showed a heterogenous mass measuring 13 × 9 × 17 cm located in the anterior mediastinum. Complete surgical resection was accomplished with no complications. The final diagnosis was multilocular thymic cyst, a distinct pathologic entity that is morphologically distinguishable and unrelated to congenital thymic cyst.
Collapse
Affiliation(s)
- Mauro Tamagno
- Division of Thoracic Surgery, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Haraguchi S, Ho SK, Morrow M, Goodenow MM, Sleasman JW. Developmental regulation of P-glycoprotein activity within thymocytes results in increased anti-HIV protease inhibitor activity. J Leukoc Biol 2011; 90:653-60. [PMID: 21504949 DOI: 10.1189/jlb.0111-009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The thymus harbors HIV-1 and supports its replication. Treatment with PI-containing ART restores thymic output of naïve T cells. This study demonstrates that CXCR4-using WT viruses are more sensitive to PI in fetal thymcocytes than mature T cells with average IC(50) values for two PIs, RTV and IDV, of 1.5 nM (RTV) and 4.4 nM (IDV) in thymocytes versus 309.4 nM (RTV) and 27.3 nM (IDV) in mature T cells. P-gp activity, as measured using Rh123 efflux and quantitation of P-gp mRNA, increased with thymocyte maturation into CD4 and CD8 lineage T cells. P-gp activity is developmentally regulated in the thymus. Thymocytes developed increased levels of P-gp activity as maturation from DP to SP CD4 or CD8 T cells occurred, although CD4 T cells acquired activity more rapidly. Reduced P-gp activity in thymocytes is one mechanism for effectiveness of PI therapy in suppressing viral replication in the thymus and in reconstitution of naïve T cells, particularly among children receiving PI-containing ART.
Collapse
Affiliation(s)
- Soichi Haraguchi
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida, St. Petersburg, Florida 33701, USA
| | | | | | | | | |
Collapse
|
46
|
Michieli M, Mazzucato M, Tirelli U, De Paoli P. Stem Cell Transplantation for Lymphoma Patients with HIV Infection. Cell Transplant 2011; 20:351-70. [DOI: 10.3727/096368910x528076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The advent of Highly Active Antiretroviral Therapy (HAART) has radically changed incidence characteristics and prognosis of HIV-positive patients affected by lymphomas. At this time there is consensus in the literature that, in first line, HIV-positive patients should always be treated with curative intent preferentially following the same approach used in the HIV-negative counterpart. On the contrary, an approach of salvage therapy in HIV-positive lymphomas is still a matter of debate given that for a wide range of relapsed or resistant HIV-negative Hodgkin's disease (HD) and non-Hodgkin lymphoma (NHL) patients, autologous peripheral or allogeneic stem cell transplantation are among the established options. In the pre-HAART era, therapeutic options derived from pioneering experiences gave only anecdotal success, either when transplantation was used to cure lymphomas or to improve HIV infection itself. Concerns relating to the entity, quality, and kinetics of early and late immune reconstitutions and the possible worsening of underlying viroimmunological conditions were additional obstacles. Currently, around 100 relapsed or resistant HIV-positive lymphomas have been treated with an autologous peripheral stem cell transplantation (APSCT) in the HAART era. Published data compared favorably with any previous salvage attempt showing a percentage of complete remission ranging from 48% to 90%, and overall survival ranging from 36% to 85% at median follow-up approaching 3 years. However, experiences are still limited and have given somewhat confounding indications, especially concerning timing and patients' selection for APSCT and feasibility and outcome for allogeneic stem cell transplant. Moreover, little data exist on the kinetics of immunological reconstitution after APSCT or relevant to the outcome of HIV infection. The aim of this review is to discuss current knowledge of the role of allogeneic and autologous stem cell transplantation as a modality in the cure of HIV and hemopoietic cancer patients. Several topics dealing with practical aspects concerning the management of APSCT in HIV-positive patients, including patient selection, timing of transplant, conditioning regimen, and relapse or nonrelapse mortality, are discussed. Data relating to the effects of mobilization and transplantation on virological parameters and pre- and posttransplant immune reconstitution are reviewed. Finally, in this review, we examine several ethical and legal issues relative to banking infected or potentially infected peripheral blood stem cells and we describe our experience and strategies to protect positive and negative donors/recipients and the health of caretakers.
Collapse
Affiliation(s)
- Mariagrazia Michieli
- Cell Therapy and High Dose Chemotherapy Unit, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Collection and Processing Unit, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Umberto Tirelli
- Medical Oncology A, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Paolo De Paoli
- Scientific Directorate, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| |
Collapse
|
47
|
Abstract
Although highly active antiretroviral therapy has enabled constant progress in reducing HIV-1 replication, in some patients who are "aviremic" during treatment, the problem of insufficient immune restoration remains, and this exposes them to the risk of immune deficiency-associated pathologies. Various mechanisms may combine and account for this impaired immunologic response to treatment. A first possible mechanism is immune activation, which may be because of residual HIV production, microbial translocation, co-infections, immunosenescence, or lymphopenia per se. A second mechanism is ongoing HIV replication. Finally, deficient thymus output, sex, and genetic polymorphism influencing apoptosis may impair immune reconstitution. In this review we will discuss the tools at our disposal to identify the various mechanisms at work in a given patient and the specific therapeutic strategies we could propose based on this etiologic diagnosis.
Collapse
|
48
|
Mariani SA, Vicenzi E, Poli G. Asymmetric HIV-1 co-receptor use and replication in CD4(+) T lymphocytes. J Transl Med 2011; 9 Suppl 1:S8. [PMID: 21284907 PMCID: PMC3105508 DOI: 10.1186/1479-5876-9-s1-s8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to infection by the human immunodeficiency virus type-1 (HIV-1), both in vitro and in vivo, requires the interaction between its envelope (Env) glycoprotein gp120 Env and the primary receptor (R), CD4, and Co-R, either CCR5 or CXCR4, members of the chemokine receptor family. CCR5-dependent (R5) viruses are responsible for both inter-individual transmission and for sustaining the viral pandemics, while CXCR4-using viruses, usually dualtropic R5X4, emerge in ca. 50% of individuals only in the late, immunologically suppressed stage of disease. The hypothesis that such a major biological asymmetry is explained exclusively by the availability of cells expressing CCR5 or CXCR4 is challenged by several evidences. In this regard, binding of the HIV-1 gp120 Env to the entry R complex, i.e. CD4 and a chemokine R, leads to two major events: virion-cell membrane fusion and a cascade of cell signaling. While the fusion/entry process has been well defined, the role of R/Co-R signaling in the HIV-1 life cycle has been less characterized. Indeed, depending on the cellular model studied, the capacity of HIV-1 to trigger a flow of events favoring either its own latency or replication remains a debated issue. In this article, we will review the major findings related to the role of HIV R/Co-R signaling in the steps following viral entry and leading to viral spreading in CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Samanta A Mariani
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
49
|
Rozmyslowicz T, Murphy SL, Conover DO, Gaulton GN. HIV-1 infection inhibits cytokine production in human thymic macrophages. Exp Hematol 2010; 38:1157-66. [PMID: 20817073 DOI: 10.1016/j.exphem.2010.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/13/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The thymus serves as a critical site of T-lymphocyte ontogeny and selection. Thymic infection by HIV-1 is known to disrupt thymocyte maturation by both direct and indirect means; however, the mechanism behind these effects remains poorly defined. Macrophages represent one of the most important peripheral targets of HIV-1 infection, are resident in the thymic stroma, and play a central role in thymocyte maturation. MATERIALS AND METHODS Studies presented here define three primary features and outcomes of thymic macrophages (TM) and HIV-1 infection: (1) The distinctive TM phenotype (surface markers and cytokine production measured by immunofluorescence, fluorescence-activated cell sorting, and reverse transcriptase polymerase chain reaction) relative to macrophages from other sources (blood [monocyte-derived macrophages] and bone marrow); (2) infection of TM by different HIV-1 subtypes (X4, R5, and X4/R5) measured by enzyme-linked immunosorbent assay and polymerase chain reaction; and (3) consequences of HIV-1 infection on cytokine production by TM measured by reverse transcriptase polymerase chain reaction. RESULTS The results demonstrate that TM display a distinctive phenotype of HIV-1 receptors (CD4(lo), CXCR4(lo), CCR5(med), CCR3(hi)), chemokine production (macrophage inflammatory protein-1α(+); regulated on activation, normal T expressed and secreted(+); macrophage inflammatory protein-1b(-); stromal cell-derived factor -1(-)); and cytokine production (tumor necrosis factor-α(+), interleukin-8(+), macrophage colony-stimulating factor(+), interleukin-6(-)) relative to either monocyte-derived macrophages or bone marrow. TM were infected in vitro with R5 and X4/R5-tropic HIV-1 subtypes, and developed syncytia formation during long-term X4/R5 culture. In contrast, TM supported only transient replication of X4-tropic HIV-1. Lastly, infection of TM with HIV-1 abolished the production of all cytokines tested in long-term in vitro cultures. CONCLUSIONS Taken together, these results indicate that TM are a potential direct target of in situ HIV-1 infection, and that this infection may result in the disruption of macrophage functions that govern normal thymocyte maturation.
Collapse
Affiliation(s)
- Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
50
|
Nobrega C, Roque S, Nunes-Alves C, Coelho A, Medeiros I, Castro AG, Appelberg R, Correia-Neves M. Dissemination of mycobacteria to the thymus renders newly generated T cells tolerant to the invading pathogen. THE JOURNAL OF IMMUNOLOGY 2009; 184:351-8. [PMID: 19949112 DOI: 10.4049/jimmunol.0902152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of the thymus to generate a population of T cells that is, for the most part, self-restricted and self-tolerant depends to a great extent on the Ags encountered during differentiation. We recently showed that mycobacteria disseminate to the thymus, which raised the questions of how mycobacteria within the thymus influence T cell differentiation and whether such an effect impacts host-pathogen interactions. Athymic nude mice were reconstituted with thymic grafts from Mycobacterium avium-infected or control noninfected donors. T cells generated from thymi of infected donors seemed generally normal, because they retained the ability to reconstitute the periphery and to respond to unspecific stimuli in vitro as well as to antigenic stimulation with third-party Ags, such as OVA, upon in vivo immunization. However, these cells were unable to mount a protective immune response against a challenge with M. avium. The observation that thymic infection interferes with T cell differentiation, generating T cells that are tolerant to pathogen-specific Ags, is of relevance to understand the immune response during chronic persistent infections. In addition, it has potential implications for the repertoire of T cells generated in patients with a mycobacterial infection recovering from severe lymphopenia, such as patients coinfected with HIV and receiving antiretroviral therapy.
Collapse
Affiliation(s)
- Claudia Nobrega
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|