1
|
Kordy K, Tobin NH, Aldrovandi GM. HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract. ACTA ACUST UNITED AC 2019; 15:139-152. [PMID: 33312088 DOI: 10.2174/1573395514666180605085313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cell-associated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.
Collapse
Affiliation(s)
- Kattayoun Kordy
- Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Li H, Omange RW, Czarnecki C, Correia-Pinto JF, Crecente-Campo J, Richmond M, Li L, Schultz-Darken N, Alonso MJ, Whitney JB, Plummer FA, Luo M. Mauritian cynomolgus macaques with M3M4 MHC genotype control SIVmac251 infection. J Med Primatol 2018; 46:137-143. [PMID: 28748659 DOI: 10.1111/jmp.12300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Understanding natural HIV control may lead to new preventative or therapeutic strategies. Several protective major histocompatibility complex (MHC) genotypes were found in humans and rhesus macaques. Here, we report a simian immunodeficiency virus (SIV) controller MHC genotype in Mauritian cynomolgus macaques (MCMs). METHODS Twelve MHC-genotyped MCMs were infected with SIVmac251 and monitored for viral loads and CD4+ T-cell counts. RESULTS Two macaques with M3M4 genotype exhibited the lowest peak viral loads (log plasma SIV RNA copies/mL), nearly 3 logs lower than those in most macaques with other MHC haplotype combinations, and set point viral loads below the level of detection limit by RT-qPCR (<2 log RNA copies/mL). They maintained healthy CD4+ T-cell counts of >500 cells/μL blood, while CD4 counts in the vast majority of other macaques were below this level. CONCLUSIONS The M3M4 MHC genotype may confer enhanced control of SIV replication in MCMs.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Robert W Omange
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chris Czarnecki
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jorge F Correia-Pinto
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Crecente-Campo
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Meika Richmond
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Lin Li
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Maria J Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
3
|
Li H, Nykoluk M, Li L, Liu LR, Omange RW, Soule G, Schroeder LT, Toledo N, Kashem MA, Correia-Pinto JF, Liang B, Schultz-Darken N, Alonso MJ, Whitney JB, Plummer FA, Luo M. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS One 2017; 12:e0186079. [PMID: 28982126 PMCID: PMC5628977 DOI: 10.1371/journal.pone.0186079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023] Open
Abstract
Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline) antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10), respectively (PCS peptides), and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mikaela Nykoluk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lin Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R. Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W. Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoff Soule
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lukas T. Schroeder
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jorge F. Correia-Pinto
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, La Coruña, Spain
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Maria J. Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, La Coruña, Spain
| | - James B. Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Francis A. Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail: ,
| |
Collapse
|
4
|
Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omange RW, Best K, Luo M, Hraber PT, Andersen-Elyard H, Ojeda EFC, Huang S, Vanlandingham DL, Higgs S, Perelson AS, Estes JD, Safronetz D, Lewis MG, Whitney JB. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 2016; 22:1448-1455. [PMID: 27694931 PMCID: PMC5293594 DOI: 10.1038/nm.4206] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
Infection with Zika virus has been associated with serious neurological complications and fetal abnormalities. However, the dynamics of viral infection, replication and shedding are poorly understood. Here we show that both rhesus and cynomolgus macaques are highly susceptible to infection by lineages of Zika virus that are closely related to, or are currently circulating in, the Americas. After subcutaneous viral inoculation, viral RNA was detected in blood plasma as early as 1 d after infection. Viral RNA was also detected in saliva, urine, cerebrospinal fluid (CSF) and semen, but transiently in vaginal secretions. Although viral RNA during primary infection was cleared from blood plasma and urine within 10 d, viral RNA was detectable in saliva and seminal fluids until the end of the study, 3 weeks after the resolution of viremia in the blood. The control of primary Zika virus infection in the blood was correlated with rapid innate and adaptive immune responses. We also identified Zika RNA in tissues, including the brain and male and female reproductive tissues, during early and late stages of infection. Re-infection of six animals 45 d after primary infection with a heterologous strain resulted in complete protection, which suggests that primary Zika virus infection elicits protective immunity. Early invasion of Zika virus into the nervous system of healthy animals and the extent and duration of shedding in saliva and semen underscore possible concern for additional neurologic complications and nonarthropod-mediated transmission in humans.
Collapse
Affiliation(s)
- Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Deleage
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan D Griffin
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Derek Stein
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | | | | | - Katharine Best
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ma Luo
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | - Scott Huang
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | | | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | | | - Jacob D Estes
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - David Safronetz
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | | | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Monjure CJ, Tatum CD, Panganiban AT, Arainga M, Traina-Dorge V, Marx PA, Didier ES. Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA. J Med Primatol 2013; 43:31-43. [PMID: 24266615 DOI: 10.1111/jmp.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. METHODS The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized. RESULTS Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification. CONCLUSIONS Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs.
Collapse
Affiliation(s)
- C J Monjure
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Chang HH, Soderberg K, Skinner JA, Banchereau J, Chaussabel D, Haynes BF, Ramoni M, Letvin NL. Transcriptional network predicts viral set point during acute HIV-1 infection. J Am Med Inform Assoc 2012; 19:1103-9. [PMID: 22700869 DOI: 10.1136/amiajnl-2012-000867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND HIV-1-infected individuals with higher viral set points progress to AIDS more rapidly than those with lower set points. Predicting viral set point early following infection can contribute to our understanding of early control of HIV-1 replication, to predicting long-term clinical outcomes, and to the choice of optimal therapeutic regimens. METHODS In a longitudinal study of 10 untreated HIV-1-infected patients, we used gene expression profiling of peripheral blood mononuclear cells to identify transcriptional networks for viral set point prediction. At each sampling time, a statistical analysis inferred the optimal transcriptional network that best predicted viral set point. We then assessed the accuracy of this transcriptional model by predicting viral set point in an independent cohort of 10 untreated HIV-1-infected patients from Malawi. RESULTS The gene network inferred at time of enrollment predicted viral set point 24 weeks later in the independent Malawian cohort with an accuracy of 87.5%. As expected, the predictive accuracy of the networks inferred at later time points was even greater, exceeding 90% after week 4. The composition of the inferred networks was largely conserved between time points. The 12 genes comprising this dynamic signature of viral set point implicated the involvement of two major canonical pathways: interferon signaling (p<0.0003) and membrane fraction (p<0.02). A silico knockout study showed that HLA-DRB1 and C4BPA may contribute to restricting HIV-1 replication. CONCLUSIONS Longitudinal gene expression profiling of peripheral blood mononuclear cells from patients with acute HIV-1 infection can be used to create transcriptional network models to early predict viral set point with a high degree of accuracy.
Collapse
Affiliation(s)
- Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ, Ismagilov RF. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 2011; 133:17705-12. [PMID: 21995644 PMCID: PMC3216675 DOI: 10.1021/ja2060116] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, we are working toward a problem of great importance to global health: determination of viral HIV and hepatitis C (HCV) loads under point-of-care and resource limited settings. While antiretroviral treatments are becoming widely available, viral load must be evaluated at regular intervals to prevent the spread of drug resistance and requires a quantitative measurement of RNA concentration over a wide dynamic range (from 50 up to 10(6) molecules/mL for HIV and up to 10(8) molecules/mL for HCV). "Digital" single molecule measurements are attractive for quantification, but the dynamic range of such systems is typically limited or requires excessive numbers of compartments. Here we designed and tested two microfluidic rotational SlipChips to perform multivolume digital RT-PCR (MV digital RT-PCR) experiments with large and tunable dynamic range. These designs were characterized using synthetic control RNA and validated with HIV viral RNA and HCV control viral RNA. The first design contained 160 wells of each of four volumes (125 nL, 25 nL, 5 nL, and 1 nL) to achieve a dynamic range of 5.2 × 10(2) to 4.0 × 10(6) molecules/mL at 3-fold resolution. The second design tested the flexibility of this approach, and further expanded it to allow for multiplexing while maintaining a large dynamic range by adding additional wells with volumes of 0.2 nL and 625 nL and dividing the SlipChip into five regions to analyze five samples each at a dynamic range of 1.8 × 10(3) to 1.2 × 10(7) molecules/mL at 3-fold resolution. No evidence of cross-contamination was observed. The multiplexed SlipChip can be used to analyze a single sample at a dynamic range of 1.7 × 10(2) to 2.0 × 10(7) molecules/mL at 3-fold resolution with limit of detection of 40 molecules/mL. HIV viral RNA purified from clinical samples were tested on the SlipChip, and viral load results were self-consistent and in good agreement with results determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test. With further validation, this SlipChip should become useful to precisely quantify viral HIV and HCV RNA for high-performance diagnostics in resource-limited settings. These microfluidic designs should also be valuable for other diagnostic and research applications, including detecting rare cells and rare mutations, prenatal diagnostics, monitoring residual disease, and quantifying copy number variation and gene expression patterns. The theory for the design and analysis of multivolume digital PCR experiments is presented in other work by Kreutz et al.
Collapse
Affiliation(s)
- Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Bing Sun
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Jason E. Kreutz
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Elena K. Davydova
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Wenbin Du
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| | - Poluru L. Reddy
- Department of Pathology, University of Chicago Medical Center, 5481 S. Maryland Ave, Chicago, IL 60637
| | - Loren J. Joseph
- Department of Pathology, University of Chicago Medical Center, 5481 S. Maryland Ave, Chicago, IL 60637
| | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East. 57th St., Chicago, Illinois 60637
| |
Collapse
|
8
|
The TRIM5 gene modulates penile mucosal acquisition of simian immunodeficiency virus in rhesus monkeys. J Virol 2011; 85:10389-98. [PMID: 21775457 DOI: 10.1128/jvi.00854-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is considerable variability in host susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, but the host genetic determinants of that variability are not well understood. In addition to serving as a block for cross-species retroviral infection, TRIM5 was recently shown to play a central role in limiting primate immunodeficiency virus replication. We hypothesized that TRIM5 may also contribute to susceptibility to mucosal acquisition of simian immunodeficiency virus (SIV) in rhesus monkeys. We explored this hypothesis by establishing 3 cohorts of Indian-origin rhesus monkeys with different TRIM5 genotypes: homozygous restrictive, heterozygous permissive, and homozygous permissive. We then evaluated the effect of TRIM5 genotype on the penile transmission of SIVsmE660. We observed a significant effect of TRIM5 genotype on mucosal SIVsmE660 acquisition in that no SIV transmission occurred in monkeys with only restrictive TRIM5 alleles. In contrast, systemic SIV infections were initiated after preputial pocket exposures in monkeys that had at least one permissive TRIM5 allele. These data demonstrate that host genetic factors can play a critical role in restricting mucosal transmission of a primate immunodeficiency virus. In addition, we used our understanding of TRIM5 to establish a novel nonhuman primate penile transmission model for AIDS mucosal pathogenesis and vaccine research.
Collapse
|
9
|
Letvin NL, Rao SS, Montefiori DC, Seaman MS, Sun Y, Lim SY, Yeh WW, Asmal M, Gelman RS, Shen L, Whitney JB, Seoighe C, Lacerda M, Keating S, Norris PJ, Hudgens MG, Gilbert PB, Buzby AP, Mach LV, Zhang J, Balachandran H, Shaw GM, Schmidt SD, Todd JP, Dodson A, Mascola JR, Nabel GJ. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys. Sci Transl Med 2011; 3:81ra36. [PMID: 21543722 PMCID: PMC3718279 DOI: 10.1126/scitranslmed.3002351] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.
Collapse
Affiliation(s)
- Norman L. Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Srinivas S. Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yue Sun
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - So-Yon Lim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wendy W. Yeh
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammed Asmal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rebecca S. Gelman
- Department of Biostatistics, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA, USA
| | - Ling Shen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - James B. Whitney
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Miguel Lacerda
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Sheila Keating
- Blood Systems Research Institute, University of California, San Francisco, CA, USA
| | - Philip J. Norris
- Blood Systems Research Institute, University of California, San Francisco, CA, USA
| | - Michael G. Hudgens
- Department of Biostatistics, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Peter B. Gilbert
- Vaccine Infectious Disease Institute, Fred Hutchinson Cancer Research Center and Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam P. Buzby
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linh V. Mach
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinrong Zhang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - George M. Shaw
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL. Genital tract sequestration of SIV following acute infection. PLoS Pathog 2011; 7:e1001293. [PMID: 21379569 PMCID: PMC3040679 DOI: 10.1371/journal.ppat.1001293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus “spillover” into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves. Methods to reduce the transmission of HIV-1 are hindered by a lack of information regarding early viral dynamics and evolution in the male genital tract. In the present study, we show that SIV in the blood and genital tract are homogeneous during early infection, indicating facile virus gene flow between these compartments. Importantly, the coincidence of the resolution of primary viremia with the decreased virus levels in genital secretions suggest that the dramatic fall in virus replication during early infection underlies the development of viral compartmentalization. Our demonstration of early virus compartmentalization in the male genital tract has important implications for the understanding of early events leading to infection of the male genital tract and the nature of the transmitted virus during primary retrovirus infection.
Collapse
Affiliation(s)
- James B Whitney
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Salivary diagnostics is a dynamic and emerging field utilizing nanotechnology and molecular diagnostics to aid in the diagnosis of oral and systemic diseases. In this article the author critically reviews the latest advances using oral biomarkers for disease detection. The use of oral fluids is broadening perspectives in clinical diagnosis, disease monitoring, and decision making for patient care. Important elements determining the future possibilities and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Daniel Malamud
- Department of Basic Sciences, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
12
|
Thomas JS, Lacour N, Kozlowski PA, Nelson S, Bagby GJ, Amedee AM. Characterization of SIV in the oral cavity and in vitro inhibition of SIV by rhesus macaque saliva. AIDS Res Hum Retroviruses 2010; 26:901-11. [PMID: 20672998 DOI: 10.1089/aid.2009.0235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) infections are rarely acquired via an oral route in adults. Previous studies have shown that human whole saliva inhibits HIV infection in vitro, and multiple factors present in human saliva have been shown to contribute to this antiviral activity. Despite the widespread use of simian immunodeficiency virus (SIV)-infected rhesus macaques as models for HIV pathogenesis and transmission, few studies have monitored SIV in the oral cavity of infected rhesus macaques and evaluated the viral inhibitory capacity of macaque saliva. Utilizing a cohort of rhesus macaques infected with SIV(Mac251), we monitored virus levels and genotypic diversity in the saliva throughout the course of the disease; findings were similar to previous observations in HIV-infected humans. An in vitro infectivity assay was utilized to measure inhibition of HIV/SIV infection by normal human and rhesus macaque whole saliva. Both human and macaque saliva were capable of inhibiting HIV and SIV infection. The inhibitory capacity of saliva samples collected from a cohort of animals postinfection with SIV increased over the course of disease, coincident with the development of SIV-specific antibodies in the saliva. These findings suggest that both innate and adaptive factors contribute to inhibition of SIV by whole macaque saliva. This work also demonstrates that SIV-infected rhesus macaques provide a relevant model to examine the innate and adaptive immune responses that inhibit HIV/SIV in the oral cavity.
Collapse
Affiliation(s)
- Jessica S. Thomas
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nedra Lacour
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Steve Nelson
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J. Bagby
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Angela M. Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
13
|
Abstract
Recent findings suggest that most sexual transmission of human immunodeficiency virus type 1 (HIV-1) occurs during the acute phase of infection when viral replication is most intense. Here, we show that vaccine-elicited cellular immune responses can significantly reduce simian immunodeficiency virus levels in the semen during the period of primary infection in monkeys. A vaccine that decreases the quantity of HIV-1 in the semen of males during primary infection might decrease HIV-1 transmission in human populations and therefore affect the spread of AIDS.
Collapse
|