1
|
Ma Y, Zhang M, Wang Z, Cao L, Li Y, Wan Z, Kane Y, Wang G, Li X, Zhang C. Short-term antiretroviral therapy may not correct the dysregulations of plasma virome and cytokines induced by HIV-1 infection. Virulence 2025; 16:2467168. [PMID: 39950859 PMCID: PMC11866967 DOI: 10.1080/21505594.2025.2467168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025] Open
Abstract
An expansion of plasma anelloviruses and dysregulation of inflammation was associated with HIV-1 infection. However, how antiretroviral therapy (ART) affects the dynamics of plasma virome and cytokine profile remains largely unknown. To characterize the dynamics of plasma virome and cytokines in HIV-1-infected individuals before and during the first year of ART, a cohort of 26 HIV-1-infected individuals and 19 healthy controls was recruited. Blood samples were collected and subjected to metagenomic analysis and the measurement of 27 cytokines. Metagenomic analysis revealed an increased abundance and prevalence of human pegivirus type 1 (HPgV-1) and a slightly decreased diversity and abundance of anellovirus in plasma of HIV-1-infected individuals after ART. No obvious impact was observed on other plasma commensal viruses. Increased abundance and prevalence of HPgV-1 were further confirmed by RT-qPCR assay in a larger cohort of 114 HIV-1-infected individuals. Notably, most dysregulated cytokines were not fully restored by ART, with extremely abnormal levels of IL-10, GM-CSF, VEGF, and eotaxin, and a significantly increased level of plasma I-FABP. Anelloviruses showed significantly negative correlations with other commensal viruses except HPgV-1 but had positive correlations with several anti-inflammatory and Th1 cytokines. These results suggest that short-term ART may not significantly correct the virome and cytokine dysregulations induced by HIV-1 infection. The results highlight a need for further investigation into the long-term effects of ART on virome and cytokine profiles in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory,Taizhou Fourth People’s Hospital, Taizhou, China
| | - Yakhouba Kane
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Gang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
3
|
Lankarani KB, Yaghobi R, Pourkarim MR, Moayedi J, Mohammadi ZA, Thijssen M, Geramizadeh B, Malekhosseini SA, Maharlouei N, Shahraki HR. Tissue presentation of human pegivirus infection in liver transplanted recipients. Microb Pathog 2022; 167:105571. [PMID: 35550845 DOI: 10.1016/j.micpath.2022.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Human pegivirus-1 (HPgV-1) is known for its protective role in HIV co-infected individuals. This immunomodulatory effect raised questions concerning the possible role of HPgV-1 infection and the risk of rejection in liver transplanted patients. We aimed to evaluate the possible protective effect of HPgV-1 on graft outcome of liver transplanted patients. A total of 283 patients were recruited. Formalin-fixed paraffin-embedded tissue samples were collected from the explanted liver. HBV-DNA, HCV-RNA, and HPgV-1-RNA were determined using PCR and multiplex RT-PCR assays. The clinical course of patients including the occurrence of acute cellular rejection was compared between HPgV-1-infected vs. uninfected patients. HBV-DNA, HCV-RNA and HPgV-1-RNA were detected in 42.6%, 4.9%, and 7.8% of samples, respectively. None of the HPgV-1-infected patients experienced graft rejection. Group LASSO logistic regression revealed that HPgV-1 infection was the only factor which significantly reduced the odds of graft rejection (OR = 0.5, 95% CI = 0.29-0.89). No significant association was found between the presence of HPgV-1 with HBV and HCV infections. The lack of graft rejection in HPgV-1-infected liver transplanted patients might indicate a possible role of this virus for graft surveillance. Since these are still preliminary findings, prospective studies should further elucidate the role of HPgV-1 in liver transplantation outcomes.
Collapse
Affiliation(s)
- Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahmoud Reza Pourkarim
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium; Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Hemmat Exp. Way, 14665-1157, Tehran, Iran
| | - Javad Moayedi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zohreh Ali Mohammadi
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Najmeh Maharlouei
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Raeisi Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
5
|
Samadi M, Salimi V, Haghshenas MR, Miri SM, Mohebbi SR, Ghaemi A. Clinical and molecular aspects of human pegiviruses in the interaction host and infectious agent. Virol J 2022; 19:41. [PMID: 35264187 PMCID: PMC8905790 DOI: 10.1186/s12985-022-01769-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human pegivirus 1 (HPgV-1) is a Positive-sense single-stranded RNA (+ ssRNA) virus, discovered in 1995 as a Flaviviridae member, and the closest human virus linked to HCV. In comparison to HCV, HPgV-1 seems to be lymphotropic and connected to the viral group that infects T and B lymphocytes. HPgV-1 infection is not persuasively correlated to any known human disease; nevertheless, multiple studies have reported a connection between chronic HPgV-1 infection and improved survival in HPgV-1/HIV co-infected patients with a delayed and favorable impact on HIV infection development. While the process has not been thoroughly clarified, different mechanisms for these observations have been proposed. HPgV-1 is categorized into seven genotypes and various subtypes. Infection with HPgV-1 is relatively common globally. It can be transferred parenterally, sexually, and through vertical ways, and thereby its co-infection with HIV and HCV is common. In most cases, the clearance of HPgV-1 from the body can be achieved by developing E2 antibodies after infection. Main body In this review, we thoroughly discuss the current knowledge and recent advances in understanding distinct epidemiological, molecular, and clinical aspects of HPgV-1. Conclusion Due to the unique characteristics of the HPgV-1, so advanced research on HPgV-1, particularly in light of HIV co-infection and other diseases, should be conducted to explore the essential mechanisms of HIV clearance and other viruses and thereby suggest novel strategies for viral therapy in the future.
Collapse
Affiliation(s)
- Mehdi Samadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Miri
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
6
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Cebriá-Mendoza M, Bracho MA, Arbona C, Larrea L, Díaz W, Sanjuán R, Cuevas JM. Exploring the Diversity of the Human Blood Virome. Viruses 2021; 13:v13112322. [PMID: 34835128 PMCID: PMC8621239 DOI: 10.3390/v13112322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023] Open
Abstract
Metagenomics is greatly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. The vast expansion of currently known viral diversity has revealed a large fraction of non-pathogenic viruses, and offers a new perspective in which viruses function as important components of many ecosystems. In this vein, studies of the human blood virome are often motivated by the search for new viral diseases, especially those associated with blood transfusions. However, these studies have revealed the common presence of apparently non-pathogenic viruses in blood, particularly human anelloviruses and, to a lower extent, human pegiviruses (HPgV). To shed light on the diversity of the human blood virome, we subjected pooled plasma samples from 587 healthy donors in Spain to a viral enrichment protocol, followed by massive parallel sequencing. This showed that anelloviruses were clearly the major component of the blood virome and showed remarkable diversity. In total, we assembled 332 complete or near-complete anellovirus genomes, 50 of which could be considered new species. HPgV was much less frequent, but we, nevertheless, recovered 17 different isolates that we subsequently used for characterizing the diversity of this virus. In-depth investigation of the human blood virome should help to elucidate the ecology of these viruses, and to unveil potentially associated diseases.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 València, Spain; (M.C.-M.); (W.D.); (R.S.)
| | - María A. Bracho
- Joint Research Unit “Infection and Public Health”, FISABIO-Universitat de València I2SysBio, 46020 València, Spain;
- CIBER in Epidemiology and Public Health (CIBERESP), 46020 València, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunidad Valenciana, 46020 València, Spain; (C.A.); (L.L.)
| | - Luís Larrea
- Centro de Transfusión de la Comunidad Valenciana, 46020 València, Spain; (C.A.); (L.L.)
| | - Wladimiro Díaz
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 València, Spain; (M.C.-M.); (W.D.); (R.S.)
- Department of Informatics, Universitat de València, 46020 València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 València, Spain; (M.C.-M.); (W.D.); (R.S.)
- Department of Genetics, Universitat de València, 46020 València, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 València, Spain; (M.C.-M.); (W.D.); (R.S.)
- Department of Genetics, Universitat de València, 46020 València, Spain
- Correspondence:
| |
Collapse
|
8
|
Zimmerman J, Blackard JT. Human pegivirus type 1 infection in Asia-A review of the literature. Rev Med Virol 2021; 32:e2257. [PMID: 34038600 DOI: 10.1002/rmv.2257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
The human pegivirus type 1 (HPgV-1)-as known as hepatitis G virus and GB virus C-is a common single-stranded RNA flavivirus. Because few studies have demonstrated an association between HPgV-1 infection and disease, screening for HPgV-1 is not performed routinely. Nonetheless, a beneficial impact of HPgV-1 infection on HIV disease progression has been reported in multiple studies. Given the burden of HIV in Asia and the complex interactions between viral co-infections and the host, we provide a comprehensive overview of the existing data from Asia on HPgV-1 infection, including the prevalence and circulating genotypes in all Asian countries with data reported. This review highlights the research conducted thus far and emphasizes the need for additional studies on HPgV-1 across the Asian continent.
Collapse
Affiliation(s)
- Joseph Zimmerman
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Silva ADSN, Silva CP, Barata RR, da Silva PVR, Monteiro PDJ, Lamarão L, Burbano RMR, Nunes MRT, de Lima PDL. Human pegivirus (HPgV, GBV-C) RNA in volunteer blood donors from a public hemotherapy service in Northern Brazil. Virol J 2020; 17:153. [PMID: 33054824 PMCID: PMC7556973 DOI: 10.1186/s12985-020-01427-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human pegivirus (HPgV)-formerly known as GBV-C-is a member of the Flaviviridae family and belongs to the species Pegivirus C. It is a non-pathogenic virus and is transmitted among humans mainly through the exposure to contaminated blood and is often associated with human immunodeficiency virus (HIV) infection, among other viruses. This study aimed to determine the prevalence of HPgV viremia, its association with HIV and clinical epidemiological factors, as well as the full-length sequencing and genome characterization of HPgV recovered from blood donors of the HEMOPA Foundation in Belém-PA-Brazil. METHODS Plasma samples were obtained from 459 donors, tested for the presence of HPgV RNA by the RT-qPCR. From these, a total of 26 RT-qPCR positive samples were submitted to the NGS sequencing approach in order to obtain the full genome. Genome characterization and phylogenetic analysis were conducted. RESULTS The prevalence of HPgV was 12.42%. We observed the highest prevalences among donors aged between 18 and 30 years old (16.5%), with brown skin color (13.2%) and men (15.8%). The newly diagnosed HIV-1 prevalence was 26.67%. The HPgV genotype 2 (2a and 2b) was identified. No data on viral load value was found to corroborate the protective effect of HPgV on HIV evolution. CONCLUSIONS This study provided information regarding the HPgV infection among blood donors from HEMOPA Foundation. Furthermore, we genetically characterized the HPgV circulating strains and described by the first time nearly complete genomes of genotype 2 in Brazilian Amazon.
Collapse
Affiliation(s)
- Aniel de Sarom Negrão Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil.
| | - Clayton Pereira Silva
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Rafael Ribeiro Barata
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Pedro Victor Reis da Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| | - Patrícia Danin Jordão Monteiro
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | - Letícia Lamarão
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | | | | | - Patrícia Danielle Lima de Lima
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| |
Collapse
|
10
|
Heffron AS, Lauck M, Somsen ED, Townsend EC, Bailey AL, Sosa M, Eickhoff J, Capuano III S, Newman CM, Kuhn JH, Mejia A, Simmons HA, O’Connor DH. Discovery of a Novel Simian Pegivirus in Common Marmosets ( Callithrix jacchus) with Lymphocytic Enterocolitis. Microorganisms 2020; 8:microorganisms8101509. [PMID: 33007921 PMCID: PMC7599636 DOI: 10.3390/microorganisms8101509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis, we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus). We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of 34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis, compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets screened during transfer from the New England Primate Research Center, suggesting SOBV could be exerting confounding influences on comparisons of common marmoset studies from multiple colonies.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth D. Somsen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth C. Townsend
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Megan Sosa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Saverio Capuano III
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA;
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
- Correspondence: ; Tel.: +1-608-890-0845
| |
Collapse
|
11
|
Mirahmadizadeh A, Yaghobi R, Soleimanian S. Viral ecosystem: An epidemiological hypothesis. Rev Med Virol 2019; 29:e2053. [PMID: 31206234 DOI: 10.1002/rmv.2053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Viruses are incomplete elements that require other organisms to survive and multiply, hence constantly mutate during its evolution, resulting from adaptations in response to environmental changes such as the immune response of the host. In this line, they are responsible for many diseases, but today, there is evidence that viruses have many benefits and even have a unique ecosystem to control the different species or strain of themselves. While highlighting the benefits of some viruses and the undesirable effects of their eradication, the present review expresses the idea of the viral ecosystem and its importance, which has been supported in several studies. There are countless articles about virus-related illnesses and the undesirable effects of therapeutic interventions in eliminating the less pathogenic viruses or manipulating viral ecosystems. By simulating the viral ecosystem with an ecosystem found among the snakes, it can be assumed that the viruses have concentric zones, which its inner zone includes the most dangerous viruses for humans and each zone is surrounded and controlled by an outer zone of less dangerous viruses for humans. The outermost zone consists of viruses that are least dangerous to humans such as common cold that protect humans and possibly other living organisms against more dangerous viruses in inner zone, causing the activation of immune system by playing a unique and pivotal role in the ecosystems. Therefore, manipulating the ecosystem and disrupting the balance might have epidemics and harmful consequences for the plants, animals, and human.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Singh S, Blackard JT. Human pegivirus (HPgV) infection in sub-Saharan Africa-A call for a renewed research agenda. Rev Med Virol 2017; 27. [PMID: 29148108 DOI: 10.1002/rmv.1951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The human pegivirus (HPgV)-formerly GB virus C-has a beneficial impact on HIV disease progression that has been described in multiple studies. Given the high prevalence of HIV in sub-Saharan Africa and the continuing need to suppress HIV replication, this review provides a comprehensive overview of the existing data on HPgV infection in sub-Saharan Africa, with a particular focus on studies of prevalence and the circulating HPgV genotypes. This review also highlights the need for additional studies of HPgV conducted on the African continent and proposes a research agenda for evaluation of HPgV.
Collapse
Affiliation(s)
- Shivank Singh
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Pegivirus avoids immune recognition but does not attenuate acute-phase disease in a macaque model of HIV infection. PLoS Pathog 2017; 13:e1006692. [PMID: 29073258 PMCID: PMC5675458 DOI: 10.1371/journal.ppat.1006692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/07/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the mechanism of this protective effect remains poorly understood. We sequentially infected cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV) to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis-as measured by SIV viral load, CD4+ T cell destruction, immune activation, or adaptive immune responses-suggesting that HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also examined the immune response to SPgV in unprecedented detail, and found that this virus elicits virtually no activation of the immune system despite persistently high titers in the blood over long periods of time. Overall, this study expands our understanding of the pegiviruses-an understudied group of viruses with a high prevalence in the global human population-and suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily during the chronic phase of HIV infection.
Collapse
|
14
|
Pace of Coreceptor Tropism Switch in HIV-1-Infected Individuals after Recent Infection. J Virol 2017; 91:JVI.00793-17. [PMID: 28659473 DOI: 10.1128/jvi.00793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
HIV-1 entry into target cells influences several aspects of HIV-1 pathogenesis, including viral tropism, HIV-1 transmission and disease progression, and response to entry inhibitors. The evolution from CCR5- to CXCR4-using strains in a given human host is still unpredictable. Here we analyzed timing and predictors for coreceptor evolution among recently HIV-1-infected individuals. Proviral DNA was longitudinally evaluated in 66 individuals using Geno2pheno[coreceptor] Demographics, viral load, CD4+ and CD8+ T cell counts, CCR5Δ32 polymorphisms, GB virus C (GBV-C) coinfection, and HLA profiles were also evaluated. Ultradeep sequencing was performed on initial samples from 11 selected individuals. A tropism switch from CCR5- to CXCR4-using strains was identified in 9/49 (18.4%) individuals. Only a low baseline false-positive rate (FPR) was found to be a significant tropism switch predictor. No minor CXCR4-using variants were identified in initial samples of 4 of 5 R5/non-R5 switchers. Logistic regression analysis showed that patients with an FPR of >40.6% at baseline presented a stable FPR over time whereas lower FPRs tend to progressively decay, leading to emergence of CXCR4-using strains, with a mean evolution time of 27.29 months (range, 8.90 to 64.62). An FPR threshold above 40.6% determined by logistic regression analysis may make it unnecessary to further determine tropism for prediction of disease progression related to emergence of X4 strains or use of CCR5 antagonists. The detection of variants with intermediate FPRs and progressive FPR decay over time not only strengthens the power of Geno2pheno in predicting HIV tropism but also indirectly confirms a continuous evolution from earlier R5 variants toward CXCR4-using strains.IMPORTANCE The introduction of CCR5 antagonists in the antiretroviral arsenal has sparked interest in coreceptors utilized by HIV-1. Despite concentrated efforts, viral and human host features predicting tropism switch are still poorly understood. Limited longitudinal data are available to assess the influence that these factors have on predicting tropism switch and disease progression. The present study describes longitudinal tropism evolution in a group of recently HIV-infected individuals to determine the prevalence and potential correlates of tropism switch. We demonstrated here that a low baseline FPR determined by the Geno2pheno[coreceptor] algorithm can predict tropism evolution from CCR5 to CXCR4 coreceptor use.
Collapse
|
15
|
Avelino-Silva VI, Miyaji KT, Hunt PW, Huang Y, Simoes M, Lima SB, Freire MS, Caiaffa-Filho HH, Hong MA, Costa DA, Dias JZC, Cerqueira NB, Nishiya AS, Sabino EC, Sartori AM, Kallas EG. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients. PLoS Negl Trop Dis 2016; 10:e0005219. [PMID: 27941965 PMCID: PMC5179051 DOI: 10.1371/journal.pntd.0005219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/22/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation–characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity—may influence vaccine response in this population. Methods We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. Results 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV–infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. Conclusions HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio. Yellow Fever (YF) vaccine is considered one of the most effective vaccines ever produced. However, previous studies suggest that HIV impairs YF vaccine response. In this study, we assessed if HIV infection impacts the risk of adverse events and could reduce antibody response to YF vaccine. We explored if laboratory markers of persistent inflammation, frequently present among HIV-infected patients, could predict antibody response to YF vaccine in this population. We found that HIV had no significant effect on adverse events or levels of antibodies through 3 months after vaccination, but this may be limited by the small sample size of 12 HIV-infected and 45-uninfected participants in the study. However, we were able to show that, compared to HIV-uninfected participants, HIV–infected patients had lower antibody titers 1 year following YF vaccine even after statistical adjustment for the potential effects of sex, age and prior vaccination. Persistent inflammation seems to reduce YF vaccine antibody response in HIV-infected participants. In conclusion, HIV-infected individuals have impaired antibody response to YFV due to a poorer persistence of antibodies, despite a seemingly normal initial response. HIV-infected patients at permanent or recurring risk of YF infection may benefit from a booster dose of YF vaccine.
Collapse
Affiliation(s)
- Vivian I. Avelino-Silva
- Department of Infectious and Parasitic Diseases, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| | - Karina T. Miyaji
- Department of Infectious and Parasitic Diseases, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | - Helio H. Caiaffa-Filho
- Instituto Adolfo Lutz, São Paulo, Brazil
- Laboratory of Medical Investigation LIM-3, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marisa A. Hong
- Instituto Adolfo Lutz, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Dayane Alves Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Zanatta C. Dias
- Division of Clinical Immunology and Allergy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia B. Cerqueira
- Division of Clinical Immunology and Allergy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ester Cerdeira Sabino
- Department of Infectious and Parasitic Diseases, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Fundação Pro-Sangue Hemocentro de Sao Paulo, Sao Paulo, Brazil
| | - Ana M. Sartori
- Department of Infectious and Parasitic Diseases, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Jõgeda EL, Huik K, Pauskar M, Kallas E, Karki T, Des Jarlais D, Uusküla A, Lutsar I, Avi R. Prevalence and genotypes of GBV-C and its associations with HIV infection among persons who inject drugs in Eastern Europe. J Med Virol 2016; 89:632-638. [PMID: 27603233 DOI: 10.1002/jmv.24683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/26/2022]
Abstract
We aimed to determine the rate of GBV-C viremia, seropositivity, and genotypes among people who inject drugs (PWID) and healthy volunteers in Estonia and to evaluate associations between GBV-C and sociodemographic factors, intravenous drug use, co-infections. The study included 345 Caucasian PWID and 118 healthy volunteers. The presence of GBV-C RNA (viremia) was determined by reverse transcriptase-nested PCR in 5' long terminal repeat. PCR products were sequenced and genotyped by phylogenetic analysis. GBV-C seropositivity was determined by ELISA. One third of PWID (114/345) and 6% (7/118) of healthy volunteers (OR = 7.8, 95% CI = 3.5-20.5, P < 0.001) were GBV-C viremic. In PWID group, 79% of sequences belonged to subtype 2a, 19% to subtype 2b, and two remained unclassified. In healthy volunteers, six out of seven sequences belonged to subtype 2a and one to subtype 2b. We found HIV+ PWID to have two times increased odds of being GBV-C viremic compared to HIV- PWID (62% vs. 38%; OR = 2.13, 95% CI = 1.34-3.36, P = 0.001). In addition, odds of being GBV-C viremic decreased with increasing age (OR = 0.94, 95% CI = 0.90-0.98, P = 0.001). HIV positivity remained associated with GBV-C viremia in multivariate analysis after adjustment for age (OR = 2.23, 95% CI = 1.39-3.58, P = 0.001). GBV-C seropositivity was similar among PWID and healthy volunteers (2.3% vs. 1.7%, respectively; OR = 1.4, 95% CI =0.3-13.5, P = 1). In an Eastern European country we demonstrated that GBV-C viremia is common among PWID, but uncommon among healthy volunteers, and GBV-C seropositivity is infrequent among both groups. Similarly to other European countries and USA, GBV-C 2a is the most common genotype in Estonia. J. Med. Virol. 89:632-638, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ene-Ly Jõgeda
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Huik
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Merit Pauskar
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eveli Kallas
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tõnis Karki
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Anneli Uusküla
- Faculty of Medicine, Department of Epidemiology and Biostatistics, Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Irja Lutsar
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Radko Avi
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Bailey AL, Lauck M, Mohns M, Peterson EJ, Beheler K, Brunner KG, Crosno K, Mejia A, Mutschler J, Gehrke M, Greene J, Ericsen AJ, Weiler A, Lehrer-Brey G, Friedrich TC, Sibley SD, Kallas EG, Capuano S, Rogers J, Goldberg TL, Simmons HA, O'Connor DH. Durable sequence stability and bone marrow tropism in a macaque model of human pegivirus infection. Sci Transl Med 2016; 7:305ra144. [PMID: 26378244 DOI: 10.1126/scitranslmed.aab3467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human pegivirus (HPgV)-formerly known as GB virus C and hepatitis G virus-is a poorly characterized RNA virus that infects about one-sixth of the global human population and is transmitted frequently in the blood supply. We create an animal model of HPgV infection by infecting macaque monkeys with a new simian pegivirus (SPgV) discovered in wild baboons. Using this model, we provide a high-resolution, longitudinal picture of SPgV viremia where the dose, route, and timing of infection are known. We detail the highly variable acute phase of SPgV infection, showing that the viral load trajectory early in infection is dependent on the infecting dose, whereas the chronic-phase viremic set point is not. We also show that SPgV has an extremely low propensity for accumulating sequence variation, with no consensus-level variants detected during the acute phase of infection and an average of only 1.5 variants generated per 100 infection-days. Finally, we show that SPgV RNA is highly concentrated in only two tissues: spleen and bone marrow, with bone marrow likely producing most of the virus detected in plasma. Together, these results reconcile several paradoxical observations from cross-sectional analyses of HPgV in humans and provide an animal model for studying pegivirus biology.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Mariel Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Eric J Peterson
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kerry Beheler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kevin G Brunner
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - James Mutschler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Matthew Gehrke
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Justin Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Adam J Ericsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Andrea Weiler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabrielle Lehrer-Brey
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Samuel D Sibley
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 01310-911, Brazil
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Jeffrey Rogers
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tony L Goldberg
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | | | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA.
| |
Collapse
|
18
|
CD4/CD8 Ratio Predicts Yellow Fever Vaccine-Induced Antibody Titers in Virologically Suppressed HIV-Infected Patients. J Acquir Immune Defic Syndr 2016; 71:189-95. [PMID: 26361176 DOI: 10.1097/qai.0000000000000845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Yellow fever vaccine (YFV) induces weaker immune responses in HIV-infected individuals. However, little is known about YFV responses among antiretroviral-treated patients and potential immunological predictors of YFV response in this population. METHODS We enrolled 34 antiretroviral therapy (ART)-treated HIV-infected and 58 HIV-uninfected adults who received a single YFV dose to evaluate antibody levels and predictors of immunity, focusing on CD4(+) T-cell count, CD4(+)/CD8(+) ratio, and Human Pegivirus (GBV-C) viremia. Participants with other immunosuppressive conditions were excluded. RESULTS Median time since YFV was nonsignificantly shorter in HIV-infected participants than in HIV-uninfected participants (42 and 69 months, respectively, P = 0.16). Mean neutralizing antibody (NAb) titers was lower in HIV-infected participants than HIV-uninfected participants (3.3 vs. 3.6 log10mIU/mL, P = 0.044), a difference that remained significant after adjustment for age, sex, and time since vaccination (P = 0.024). In HIV-infected participants, lower NAb titers were associated with longer time since YFV (rho: -0.38, P = 0.027) and lower CD4(+)/CD8(+) ratio (rho: 0.42, P = 0.014), but not CD4(+) T-cell count (P = 0.52). None of these factors were associated with NAb titers in HIV-uninfected participant. GBV-C viremia was not associated with difference in NAb titers overall or among HIV-infected participants. CONCLUSIONS ART-treated HIV-infected individuals seem to have impaired and/or less durable responses to YFV than HIV-uninfected individuals, which were associated with lower CD4(+)/CD8(+) ratio, but not with CD4(+) T-cell count. These results supports the notion that low CD4(+)/CD8(+) ratio, a marker linked to persistent immune activation, is a better indicator of functional immune disturbance than CD4(+) T-cell count in patients with successful ART.
Collapse
|
19
|
Da Mota LD, Nishiya AS, Finger-Jardim F, Barral MFM, Silva CM, Nader MM, Gonçalves CV, Da Hora VP, Silveira J, Basso RP, Soares MA, Levi JE, Martínez AMB. Prevalence of human pegivirus (HPgV) infection in patients carrying HIV-1C or non-C in southern Brazil. J Med Virol 2016; 88:2106-2114. [PMID: 27171504 DOI: 10.1002/jmv.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
Previous studies have demonstrated that coinfection with HPgV is a protective factor for human immunodeficiency virus (HIV)-infected patients, leading to slower disease progression, and longer survival after established disease. The present study sought to estimate the prevalence of HPgV infection and associated risk factors in patients harboring C or non-C HIV-1 subtypes followed-up at HU-FURG, southern Brazil. Samples from 347 HIV-1-infected subjects were subjected to plasma RNA extraction, cDNA synthesis, HPgV RNA detection, and HIV-1 genotyping. The overall prevalence of HPgV RNA was 34%. Individuals aged 18-30 years had higher chances of infection compared with those 50 years or older (95%CI 1.18-52.36, P = 0.03). The number of sexual partner between one and three was a risk factor for HPgV infection (95%CI 1.54-10.23; P < 0.01), as well as the time since diagnosis of HIV-1 ≥ 11 years (95%CI 1.01-2.89; P = 0.04). Patients infected with HIV non-C subtypes had six times more chance of being HPgV-infected when compared to subtype C-infected subjects (95%CI 2.28-14.78; P < 0.01). This was the first study conducted in southern Brazil to find the circulation of HPgV. HIV/HPgV coinfection was associated with a longer survival among HIV+ patients. Of novelty, individuals infected by HIV non-C subtypes were more susceptible to HPgV infection. However, additional studies are needed to correlate the HIV-1 subtypes with HPgV infection and to clarify cellular and molecular pathways through which such associations are ruled. J. Med. Virol 88:2106-2114, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luísa Dias Da Mota
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil.
| | | | | | - Maria F M Barral
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Cláudio M Silva
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Maiba M Nader
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | | | - Vanusa P Da Hora
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Jussara Silveira
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Rossana P Basso
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Marcelo A Soares
- Genetics Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Ana M B Martínez
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| |
Collapse
|
20
|
Chivero ET, Bhattarai N, McLinden JH, Xiang J, Stapleton JT. Human Pegivirus (HPgV; formerly known as GBV-C) inhibits IL-12 dependent natural killer cell function. Virology 2015; 485:116-27. [PMID: 26245365 DOI: 10.1016/j.virol.2015.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
Human Pegivirus (HPgV, formally GB virus C) infects lymphocytes and NK cells in vivo, and infection is associated with reduced T cell and NK cell activation in HIV-infected individuals. The mechanism by which HPgV inhibits NK cell activation has not been assessed. Following IL-12 stimulation, IFNγ expression was lower in HIV-HPgV co-infected subjects compared to HIV mono-infected subjects (p=0.02). In addition, HPgV positive human sera, extracellular vesicles containing E2 protein, recombinant E2 protein and synthetic E2 peptides containing a predicted Tyk2 interacting motif inhibited NK cell IL-12-mediated IFNγ release. E2 protein also inhibited Tyk2 activation following IL-12 stimulation. In contrast, cytolytic NK cell function was not altered by HPgV. Inhibition of NK cell-induced proinflammatory/antiviral cytokines may contribute to both HPgV persistence and reduced immune activation during HIV-coinfection. Understanding mechanisms by which HPgV alters immune activation may contribute towards novel immunomodulatory therapies to treat HIV and inflammatory diseases.
Collapse
Affiliation(s)
- Ernest T Chivero
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary program in Molecular and Cellular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Nirjal Bhattarai
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - James H McLinden
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jinhua Xiang
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- The Iowa City Veterans Affairs Medical Center The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary program in Molecular and Cellular Biology, The University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Chivero ET, Stapleton JT. Tropism of human pegivirus (formerly known as GB virus C/hepatitis G virus) and host immunomodulation: insights into a highly successful viral infection. J Gen Virol 2015; 96:1521-32. [PMID: 25667328 DOI: 10.1099/vir.0.000086] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human pegivirus (HPgV; originally called GB virus C/hepatitis G virus) is an RNA virus within the genus Pegivirus of the family Flaviviridae that commonly causes persistent infection. Worldwide, ~750 million people are actively infected (viraemic) and an estimated 0.75-1.5 billion people have evidence of prior HPgV infection. No causal association between HPgV and disease has been identified; however, several studies described a beneficial relationship between persistent HPgV infection and survival in individuals infected with human immunodeficiency virus. The beneficial effect appeared to be related to a reduction in host immune activation. HPgV replicates well in vivo (mean plasma viral loads typically >1×107 genome copies ml-1); however, the virus grows poorly in vitro and systems to study this virus are limited. Consequently, mechanisms of viral persistence and host immune modulation remain poorly characterized, and the primary permissive cell type(s) has not yet been identified. HPgV RNA is found in liver, spleen, bone marrow and PBMCs, including T- and B-lymphocytes, NK-cells, and monocytes, although the mechanism of cell-to-cell transmission is unclear. HPgV RNA is also present in serum microvesicles with properties of exosomes. These microvesicles are able to transmit viral RNA to PBMCs in vitro, resulting in productive infection. This review summarizes existing data on HPgV cellular tropism and the effect of HPgV on immune activation in various PBMCs, and discusses how this may influence viral persistence. We conclude that an increased understanding of HPgV replication and immune modulation may provide insights into persistent RNA viral infection of humans.
Collapse
Affiliation(s)
- Ernest T Chivero
- Medicine Service, Iowa City Veterans Affairs Medical Center, Interdisciplinary Program in Molecular and Cellular Biology, Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- Medicine Service, Iowa City Veterans Affairs Medical Center, Interdisciplinary Program in Molecular and Cellular Biology, Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Abstract
In 49 patients with known Ebola virus disease outcomes during the ongoing outbreak in Sierra Leone, 13 were coinfected with the immunomodulatory pegivirus GB virus C (GBV-C). Fifty-three percent of these GBV-C(+) patients survived; in contrast, only 22% of GBV-C(-) patients survived. Both survival and GBV-C status were associated with age, with older patients having lower survival rates and intermediate-age patients (21 to 45 years) having the highest rate of GBV-C infection. Understanding the separate and combined effects of GBV-C and age on Ebola virus survival may lead to new treatment and prevention strategies, perhaps through age-related pathways of immune activation.
Collapse
|
23
|
Lanteri MC, Vahidnia F, Tan S, Stapleton JT, Norris PJ, Heitman J, Deng X, Keating SM, Brambilla D, Busch MP, Custer B. Downregulation of Cytokines and Chemokines by GB Virus C After Transmission Via Blood Transfusion in HIV-Positive Blood Recipients. J Infect Dis 2014; 211:1585-96. [PMID: 25425697 DOI: 10.1093/infdis/jiu660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND An association between GB virus C (GBV-C) and improved outcomes of human immunodeficiency virus (HIV) infection has been reported in HIV-positive individuals with active GBV-C coinfection. This study provides insights into the immune mechanisms underlying the protective role of GBV-C in HIV-infected patients. METHODS The concentrations of 64 cytokines and chemokines were measured in plasma samples obtained from the Viral Activation Transfusion Study cohort before transfusion and longitudinally from 30 patients positive for both HIV and GBV-C (hereafter, "cases") and 30 patients positive for HIV and negative for GBV-C (hereafter, "controls"). RESULTS Cases had lower HIV viral loads and higher CD4 T-cell counts than controls after acquisition of GBV-C infection. Most of the modulated cytokines and chemokines were reduced after GBV-C detection, including many proinflammatory cytokines, suggesting an overall antiinflammatory effect of GBV-C in HIV-positive subjects. Most pathways and functions of the measured cytokines were downregulated in cases, except cell death pathways, which were upregulated in various cell subsets in the 3 months after GBV-C detection. CONCLUSIONS GBV-C has a protective effect, in part through a competition mechanism leading to decreased inflammation and improved HIV disease outcome in cases. Further studies are necessary to establish whether GBV-C may have deleterious effects on the host at the cellular level, including depleting the cells that are the targets of HIV.
Collapse
Affiliation(s)
| | | | | | - Jack T Stapleton
- Iowa City Veterans Affairs Hospital University of Iowa Carver College of Medicine, Iowa City
| | - Philip J Norris
- Blood Systems Research Institute Department of Laboratory Medicine Department of Medicine, University of California-San Francisco, California
| | | | | | | | | | - Michael P Busch
- Blood Systems Research Institute Department of Laboratory Medicine
| | - Brian Custer
- Blood Systems Research Institute Department of Laboratory Medicine
| | | |
Collapse
|
24
|
Levi JE, Cabral SPN, Nishiya A, Ferreira S, Romano CM, Polite MBC, Pereira RAA, Mota MA, Kutner JM. Absence of nonprimate hepacivirus-related genomes in blood donors seroreactive for hepatitis C virus displaying indeterminate blot patterns. J Viral Hepat 2014; 21:e164-6. [PMID: 24689976 DOI: 10.1111/jvh.12252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/13/2014] [Indexed: 12/09/2022]
Abstract
Despite intensive search, no primate homologue to the Hepatitis C Virus (HCV) has ever been found. The search for a zoonotic origin for HCV has been renewed recently when a virus, now known as non-primate hepacivirus (NPHV), with a high homology to HCV was found in dogs. A variable proportion of anti-HCV reactive blood donors submitted to the immunoblot (IB) to confirm their HCV status, present indeterminate results. The degree of homology between HCV and NPHV suggests that humans may be infected by NPHV or NPHV-like viruses. Maximum similarity between NHPV and HCV is observed in the nonstructural regions 3 and 5. Peptides representing both domains are present in IB assays, so it is reasonable to suppose that blood donors harboring such viruses may display cross-reactivity to the HCV antigenic fractions. Fifty-nine plasma samples from blood donors found reactive for anti-HCV and presenting IB indeterminate results were submitted to five distinct PCR reactions under low-stringency conditions, employing primers targeting GBV-C 5'UTR and NS3, Flavivirus-genus NS5 and NPHV 5'UTR and NS3. No amplification was obtained with all primer pairs tested except for five samples that amplified both 5'UTR and NS3 fragments from GBV-C. Unbiased next-generation sequencing may prove or rule out the existence of HCV-related viruses in IB indeterminate samples.
Collapse
Affiliation(s)
- J E Levi
- Hospital Israelita Albert Einstein Blood Bank, São Paulo, Brazil; Molecular Biology Department, Fundação Pró-Sangue/Hemocentro de São Paulo, São Paulo, Brazil; Virology Lab, Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chivero ET, Bhattarai N, Rydze RT, Winters MA, Holodniy M, Stapleton JT. Human pegivirus RNA is found in multiple blood mononuclear cells in vivo and serum-derived viral RNA-containing particles are infectious in vitro. J Gen Virol 2014; 95:1307-1319. [PMID: 24668525 DOI: 10.1099/vir.0.063016-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human pegivirus (HPgV; previously called GB virus C/hepatitis G virus) has limited pathogenicity, despite causing persistent infection, and is associated with prolonged survival in human immunodeficiency virus-infected individuals. Although HPgV RNA is found in and produced by T- and B-lymphocytes, the primary permissive cell type(s) are unknown. We quantified HPgV RNA in highly purified CD4(+) and CD8(+) T-cells, including naïve, central memory and effector memory populations, and in B-cells (CD19(+)), NK cells (CD56(+)) and monocytes (CD14(+)) using real-time reverse transcription-PCR. Single-genome sequencing was performed on viruses within individual cell types to estimate genetic diversity among cell populations. HPgV RNA was present in CD4(+) and CD8(+) T-lymphocytes (nine of nine subjects), B-lymphocytes (seven of ten subjects), NK cells and monocytes (both four of five). HPgV RNA levels were higher in naïve (CD45RA(+)) CD4(+) cells than in central memory and effector memory cells (P<0.01). HPgV sequences were highly conserved among subjects (0.117±0.02 substitutions per site; range 0.58-0.14) and within subjects (0.006±0.003 substitutions per site; range 0.006-0.010). The non-synonymous/synonymous substitution ratio was 0.07, suggesting a low selective pressure. Carboxyfluorescein succinimidyl ester (CFSE)-labelled HPgV RNA-containing particles precipitated by a commercial exosome isolation reagent delivered CSFE to uninfected monocytes, NK cells and T- and B-lymphocytes, and HPgV RNA was transferred to PBMCs with evidence of subsequent virus replication. Thus, HPgV RNA-containing serum particles including microvesicles may contribute to delivery of HPgV to PBMCs in vivo, explaining the apparent broad tropism of this persistent human RNA virus.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Medicine Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Nirjal Bhattarai
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Medicine Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Robert T Rydze
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A Winters
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA.,AIDS Research Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mark Holodniy
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA.,AIDS Research Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jack T Stapleton
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Medicine Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
26
|
Tarosso LF, Sanabani SS, Ribeiro SP, Sauer MM, Tomiyama HI, Sucupira MC, Diaz RS, Sabino EC, Kalil J, Kallas EG. Short communication: HIV type 1 subtype BF leads to faster CD4+ T cell loss compared to subtype B. AIDS Res Hum Retroviruses 2014; 30:190-4. [PMID: 23906381 DOI: 10.1089/aid.2012.0243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it has been suggested that biological differences among HIV-1 subtypes exist, their possible influence on disease progression has not been fully revealed. In particular, the increasing emergence of recombinants stresses the need to characterize disease presentation in persons infected by these diverse HIV-1 forms. We explored this issue among 83 Brazilian subjects infected with either HIV-1 subtype B or recombinant subtype BF, all followed since incident infection in a cohort study. Viral subtypes were assigned by full length sequencing of HIV-1 genomes. We observed that the baseline measures for CD4(+) T cells and viral load did not differ between the groups. However, longitudinal analysis revealed that subtype BF was clearly associated with a faster CD4(+) T cell decline compared to infection with subtype B, in spite of a similar plasma HIV-1 load. While subtype B-infected subjects presented a loss of 3.6 CD4(+) T cells/μl per month, subtype BF-infected individuals showed a monthly decay of 6.3 CD4(+) T cells/μl (p<0.01). The time to reach 350 CD4(+) T cells/μl and the time to start antiretroviral treatment were also shorter in subtype BF-infected persons. The elucidation of an accelerated CD4(+) T cell loss associated with subtype BF suggests that this HIV-1 genetic form could be more pathogenic than subtype B.
Collapse
Affiliation(s)
- Leandro F. Tarosso
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sabri S. Sanabani
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Susan P. Ribeiro
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana M. Sauer
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helena I. Tomiyama
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria C. Sucupira
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo S. Diaz
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ester C. Sabino
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
GB virus C infection and B-cell, natural killer cell, and monocyte activation markers in HIV-infected individuals. AIDS 2013; 27:1829-32. [PMID: 23807277 DOI: 10.1097/qad.0b013e328363089f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GB virus C (GBV-C), a pan-lymphotropic flavivirus capable of persistent infection, is associated with prolonged survival and reduced T-cell activation in HIV-infected patients. GBV-C was associated with reduced CD56brt/CD16- natural killer cell and monocyte activation, and a trend toward reduced B-cell activation by measuring cell surface activation markers or HIV entry coreceptors. The GBV-C association was independent of HIV viral load. Thus, GBV-C may influence non-T-cell immune activation in individuals with HIV infection.
Collapse
|
28
|
Bhattarai N, McLinden JH, Xiang J, Landay AL, Chivero ET, Stapleton JT. GB virus C particles inhibit T cell activation via envelope E2 protein-mediated inhibition of TCR signaling. THE JOURNAL OF IMMUNOLOGY 2013; 190:6351-9. [PMID: 23686495 DOI: 10.4049/jimmunol.1300589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Viruses enter into complex interactions within human hosts, leading to facilitation or suppression of each other's replication. Upon coinfection, GB virus C (GBV-C) suppresses HIV-1 replication in vivo and in vitro, and GBV-C coinfection is associated with prolonged survival in HIV-infected people. GBV-C is a lymphotropic virus capable of persistent infection. GBV-C infection is associated with reduced T cell activation in HIV-infected humans, and immune activation is a critical component of HIV disease pathogenesis. We demonstrate that serum GBV-C particles inhibited activation of primary human T cells. T cell activation inhibition was mediated by the envelope glycoprotein E2, because expression of E2 inhibited TCR-mediated activation of Lck. The region on the E2 protein was characterized and revealed a highly conserved peptide motif sufficient to inhibit TCR-mediated signaling. The E2 region contained a predicted Lck substrate site, and substitution of an alanine or histidine for the tyrosine reversed TCR-signaling inhibition. GBV-C E2 protein and a synthetic peptide representing the inhibitory amino acid sequence were phosphorylated by Lck in vitro. The synthetic peptide also inhibited TCR-mediated activation of primary human CD4(+) and CD8(+) T cells. Extracellular microvesicles from GBV-C E2-expressing cells contained E2 protein and inhibited TCR signaling in bystander T cells not expressing E2. Thus, GBV-C reduced global T cell activation via competition between its envelope protein E2 and Lck following TCR engagement. This novel inhibitory mechanism of T cell activation may provide new approaches for HIV and immunoactivation therapy.
Collapse
Affiliation(s)
- Nirjal Bhattarai
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bhattarai N, Stapleton JT. Study design may explain discrepancies in GB virus C effects on interferon-γ and interleukin-2 production and CD38 expression in T lymphocytes. Mem Inst Oswaldo Cruz 2013; 107:568-9; author reply 569. [PMID: 22666874 DOI: 10.1590/s0074-02762012000400023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
30
|
Abstract
OBJECTIVE To identify early determinants of HIV-1 disease progression, which could potentially enable individualized patient treatment, and provide correlates of progression applicable as reference phenotypes to evaluate breakthrough infections in vaccine development. DESIGN High-throughput technologies were employed to interrogate multiple parameters on cryopreserved, retrospective peripheral blood mononuclear cell (PBMC) samples from 51 individuals from São Paulo, Brazil, obtained within 1 year of diagnosing early Clade B HIV-1 infection. Fast Progressors, Slow Progressors, and Controllers were identified based on a 2-year clinical follow-up. METHODS Phenotypic and functional T-cell parameters were tested by flow cytometry and qPCR to identify potential early determinants of subsequent HIV-1 disease progression. RESULTS Major differences were observed between Controllers and Progressors, especially in cell-associated viral load (CAVL), the differentiation pattern and CD38 expression of CD8 T cells, and the cytokine pattern and activation phenotype of HIV-1-specific CD8 T cells. Despite remarkably few other differences between the two Progressor groups, the CAVL had predictive power independent of plasma viral load. CONCLUSION Analysis of three parameters (% CD38 CD8 T cells, total CAVL, % CCR5 CD8 T cells) was sufficient to predict subsequent disease progression (P < 0.001). Use of such prognostic correlates may be crucial when early CD4 T-cell counts and plasma viral load levels fail to discriminate among groups with differing subsequent clinical progression.
Collapse
|
31
|
Eissmann K, Mueller S, Sticht H, Jung S, Zou P, Jiang S, Gross A, Eichler J, Fleckenstein B, Reil H. HIV-1 fusion is blocked through binding of GB Virus C E2-derived peptides to the HIV-1 gp41 disulfide loop [corrected]. PLoS One 2013; 8:e54452. [PMID: 23349893 PMCID: PMC3551756 DOI: 10.1371/journal.pone.0054452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C), since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Kristin Eissmann
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Mueller
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susan Jung
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peng Zou
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Andrea Gross
- Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Eichler
- Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heide Reil
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
32
|
McLinden JH, Stapleton JT, Klinzman D, Murthy KK, Chang Q, Kaufman TM, Bhattarai N, Xiang J. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4⁺ T-cells. J Gen Virol 2013; 94:774-782. [PMID: 23288422 DOI: 10.1099/vir.0.047126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4(+) Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus-HIV interactions.
Collapse
Affiliation(s)
- James H McLinden
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Donna Klinzman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Krishna K Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Qing Chang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Thomas M Kaufman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Nirjal Bhattarai
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jinhua Xiang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Stapleton JT, Chaloner K, Martenson JA, Zhang J, Klinzman D, Xiang J, Sauter W, Desai SN, Landay A. GB virus C infection is associated with altered lymphocyte subset distribution and reduced T cell activation and proliferation in HIV-infected individuals. PLoS One 2012; 7:e50563. [PMID: 23209780 PMCID: PMC3510065 DOI: 10.1371/journal.pone.0050563] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/23/2012] [Indexed: 01/27/2023] Open
Abstract
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38(+)/HLA-DR(+)), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.
Collapse
Affiliation(s)
- Jack T Stapleton
- Research and Medical Services, Iowa City VA Medical Center, Iowa City, Iowa, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bhattarai N, Rydze RT, Chivero ET, Stapleton JT. GB virus C viremia is associated with higher levels of double-negative T cells and lower T-cell activation in HIV-infected individuals receiving antiretroviral therapy. J Infect Dis 2012; 206:1469-72. [PMID: 22927453 PMCID: PMC3466998 DOI: 10.1093/infdis/jis515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/06/2012] [Indexed: 11/12/2022] Open
Abstract
Double-negative T cells (DNTCs; ie, CD3(+)CD4(-)CD8(-) T cells) play a role in limiting chronic immune activation. GB virus C (GBV-C) infection is associated with reduced T-cell activation in human immunodeficiency virus (HIV)-infected individuals. T-cell activation and DNTCs were measured in HIV-infected subjects with a nondetectable HIV load. GBV-C-viremic subjects had significantly reduced CD4(+) and CD8(+) T-cell activation (P = .003 and .034, respectively) and significantly increased DNTCs (P = .038), compared with nonviremic subjects. GBV-C load correlated with DNTC percentage (P = .004). Thus, GBV-C infection is associated with an increase in DNTCs, which may contribute to reduced immune activation during HIV infection.
Collapse
Affiliation(s)
- Nirjal Bhattarai
- Interdisciplinary Program in Molecular and Cellular Biology
- Iowa City Veterans Affairs Medical Center, Iowa City
| | - Robert T. Rydze
- Doris Duke Scholars Program
- Department of Internal Medicine
- Iowa City Veterans Affairs Medical Center, Iowa City
| | - Ernest T. Chivero
- Interdisciplinary Program in Molecular and Cellular Biology
- Iowa City Veterans Affairs Medical Center, Iowa City
| | - Jack T. Stapleton
- Interdisciplinary Program in Molecular and Cellular Biology
- Doris Duke Scholars Program
- Department of Internal Medicine
- Department of Microbiology, Carver College of Medicine, University of Iowa,
- Iowa City Veterans Affairs Medical Center, Iowa City
| |
Collapse
|
35
|
Schwarze-Zander C, Blackard JT, Rockstroh JK. Role of GB virus C in modulating HIV disease. Expert Rev Anti Infect Ther 2012; 10:563-72. [PMID: 22702320 DOI: 10.1586/eri.12.37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
GB virus C (GBV-C) is a member of the Flaviviridae family and the most closely related human virus to HCV. However, GBV-C does not replicate in hepatocytes, but rather in lymphocytes. GBV-C has a worldwide distribution and is transmitted sexually, parenterally and through mother-to-child transmission. Thus, co-infection with HCV and HIV is common. Until now, no human disease has been associated with GBV-C infection. However, there are several reports of a beneficial effect of GBV-C on HIV disease progression in vivo. Different mechanisms to explain these observations have been proposed, including modification of antiviral cytokine production, HIV co-receptor expression, direct inhibition of HIV-1 entry, T-cell activation and Fas-mediated apoptosis. Further understanding of these mechanisms may open new strategies for the treatment of HIV/AIDS.
Collapse
|
36
|
Rydze RT, Bhattarai N, Stapleton JT. GB virus C infection is associated with a reduced rate of reactivation of latent HIV and protection against activation-induced T-cell death. Antivir Ther 2012; 17:1271-9. [PMID: 22951385 DOI: 10.3851/imp2309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND GB virus C (GBV-C) coinfection is associated with reduced immune activation and a block in CD4(+) T-cell proliferation following interleukin-2 (IL-2) therapy in HIV-infected individuals. We examined peripheral blood mononuclear cells (PBMCs) from HIV-infected subjects with and without GBV-C viraemia to determine if GBV-C correlated with reactivation of latent HIV, T-cell proliferation or T-cell survival following in vitro activation with phytohaemagglutinin A and IL-2 (PHA/IL-2). METHODS HIV-infected subjects whose HIV viral load was suppressed on combination antiretroviral therapy (cART) for >6 months were studied. PBMCs were cultured with and without PHA/IL-2 and monitored for HIV reactivation, proliferation and survival. GBV-C viraemia and in vitro replication were detected by real-time RT-PCR. HIV reactivation was determined by measuring HIV p24 antigen in culture supernatants. Proliferation was measured by counting viable cells and survival measured by flow cytometry. RESULTS Of 49 HIV-infected individuals, 26 had GBV-C viraemia. Significantly less HIV reactivation and PBMC proliferation following in vitro activation with PHA/IL-2 was observed in samples from GBV-C viraemic subjects compared with non-viraemic controls. Following 5 weeks in culture, GBV-C replication was associated with preservation of CD4(+) and CD8(+) T-cells compared with non-viraemic controls. CONCLUSIONS GBV-C appears to inhibit immune activation and IL-2 signalling pathways, which might contribute to a reduction in reactivation of latent HIV from cellular reservoirs. In addition, GBV-C viraemia was associated with a reduction in activation-induced T-cell death. GBV-C-associated T-cell effects could contribute to the observed protective effect of GBV-C coinfection in HIV-infected individuals.
Collapse
Affiliation(s)
- Robert T Rydze
- The Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | | | | |
Collapse
|
37
|
Bhattarai N, McLinden JH, Xiang J, Kaufman TM, Stapleton JT. GB virus C envelope protein E2 inhibits TCR-induced IL-2 production and alters IL-2-signaling pathways. THE JOURNAL OF IMMUNOLOGY 2012; 189:2211-6. [PMID: 22844114 DOI: 10.4049/jimmunol.1201324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GB virus type C (GBV-C) viremia is associated with reduced CD4+ T cell expansion following IL-2 therapy and with a reduction in T cell activation in HIV-infected individuals. The mechanism(s) by which GBV-C might alter T cell activation or IL-2 signaling have not been studied. In this study, we assess IL-2 release, IL-2R expression, IL-2 signaling, and cell proliferation in tet-off Jurkat cells expressing the GBV-C envelope glycoprotein (E2) following activation through the TCR. TCR activation was induced by incubation in anti-CD3/CD28 Abs. IL-2 release was measured by ELISA, STAT5 phosphorylation was assessed by immunoblot, and IL-2Rα (CD25) expression and cell proliferation were determined by flow cytometry. IL-2 and IL-2Rα steady-state mRNA levels were measured by real-time PCR. GBV-C E2 expression significantly inhibited IL-2 release, CD25 expression, STAT5 phosphorylation, and cellular proliferation in Jurkat cells following activation through the TCR compared with control cell lines. Reducing E2 expression by doxycycline reversed the inhibitory effects observed in the E2-expressing cells. The N-terminal 219 aa of E2 was sufficient to inhibit IL-2 signaling. Addition of purified recombinant GBV-C E2 protein to primary human CD4+ and CD8+ T cells inhibited TCR activation-induced IL-2 release and upregulation of IL-2Rα expression. These data provide evidence that the GBV-C E2 protein may contribute to the block in CD4+ T cell expansion following IL-2 therapy in HIV-infected individuals. Furthermore, the effects of GBV-C on IL-2 and IL-2-signaling pathways may contribute to the reduction in chronic immune activation observed in GBV-C/HIV-coinfected individuals.
Collapse
Affiliation(s)
- Nirjal Bhattarai
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
38
|
Baggio-Zappia GL, Barbosa ADJ, Brunialti MKC, Salomão R, Granato CFH. Influence of GB virus C on IFN-γ and IL-2 production and CD38 expression in T lymphocytes from chronically HIV-infected and HIV-HCV-co-infected patients. Mem Inst Oswaldo Cruz 2012; 106:662-9. [PMID: 22012219 DOI: 10.1590/s0074-02762011000600004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/19/2011] [Indexed: 01/16/2023] Open
Abstract
This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.
Collapse
Affiliation(s)
- Giovana Lotici Baggio-Zappia
- Disciplina de Infectologia, Laboratório de Virologia e Imunologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | |
Collapse
|
39
|
Xiang J, McLinden JH, Kaufman TM, Mohr EL, Bhattarai N, Chang Q, Stapleton JT. Characterization of a peptide domain within the GB virus C envelope glycoprotein (E2) that inhibits HIV replication. Virology 2012; 430:53-62. [PMID: 22608061 DOI: 10.1016/j.virol.2012.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/15/2022]
Abstract
GB virus C (GBV-C) infection is associated with prolonged survival in HIV-infected cohorts, and GBV-C E2 protein inhibits HIV entry when added to CD4+ T cells. To further characterize E2 effects on HIV replication, stably transfected Jurkat cell lines expressing GBV-C E2 or control sequences were infected with HIV and replication was measured. HIV replication (all 6 isolates studied) was inhibited in all cell lines expressing a region of 17 amino acids of GBV-C E2, but not in cell lines expressing E2 without this region. In contrast, mumps and yellow fever virus replication was not inhibited by E2 protein expression. Synthetic GBV-C E2 17mer peptides did not inhibit HIV replication unless they were fused to a tat-protein-transduction-domain (TAT) for cellular uptake. These data identify the region of GBV-C E2 protein involved in HIV inhibition, and suggest that this GBV-C E2 peptide must gain entry into the cell to inhibit HIV.
Collapse
Affiliation(s)
- Jinhua Xiang
- Department of Internal Medicine, Iowa City Veterans Affairs Medical Center and University of Iowa, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rydze RT, Xiang J, McLinden JH, Stapleton JT. GB virus type C infection polarizes T-cell cytokine gene expression toward a Th1 cytokine profile via NS5A protein expression. J Infect Dis 2012; 206:69-72. [PMID: 22535999 DOI: 10.1093/infdis/jis312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human immunodeficiency virus (HIV) disease progression is associated with a helper T cell 1 (Th1) to helper T cell 2 (Th2) cytokine profile switch. Persistent GB virus type C (GBV-C) infection is associated with survival and a serum Th1 cytokine profile in HIV-infected individuals. We found that GBV-C infection increased gene expression of Th1 cytokines and decreased Th2 cytokine expression in peripheral blood mononuclear cells. Furthermore, expression of GBV-C NS5A protein in a CD4(+) cell line resulted in upregulation of Th1 cytokines (tumor necrosis factor α) and downregulation of Th2 cytokines (interleukin 4, interleukin 5, interleukin 10, interleukin 13). GBV-C-induced modulation in T-cell cytokines may contribute to the beneficial effect of GBV-C in HIV-infected individuals.
Collapse
Affiliation(s)
- Robert T Rydze
- Iowa City Veterans Affairs Medical Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Doris Duke Scholars Program, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
41
|
Sachsenröder J, Twardziok S, Hammerl JA, Janczyk P, Wrede P, Hertwig S, Johne R. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing. PLoS One 2012; 7:e34631. [PMID: 22514648 PMCID: PMC3326065 DOI: 10.1371/journal.pone.0034631] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/02/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus. CONCLUSION The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for further method optimization.
Collapse
Affiliation(s)
| | - Sven Twardziok
- Institute for Molecular Biology and Bioinformatic, Charite, Berlin, Germany
| | | | - Pawel Janczyk
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Paul Wrede
- Institute for Molecular Biology and Bioinformatic, Charite, Berlin, Germany
| | | | - Reimar Johne
- Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
42
|
Vahidnia F, Petersen M, Rutherford G, Busch M, Assmann S, Stapleton JT, Custer B. Transmission of GB virus type C via transfusion in a cohort of HIV-infected patients. J Infect Dis 2012; 205:1436-42. [PMID: 22438325 DOI: 10.1093/infdis/jis209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND GB virus C (GBV-C) infection is transmitted by blood exposure and associated with lower human immunodeficiency virus (HIV) load and slower HIV disease progression. Few studies describe predictors of acute GBV-C infection following transfusion in HIV-infected patients. METHODS We used a limited-access database from the National Heart Lung and Blood Institute's Viral Activation Transfusion Study, a randomized controlled trial of leukoreduced versus nonleukoreduced transfusions received by HIV-infected, transfusion-naive patients. Blood samples from 489 subjects were tested for GBV-C markers in pretransfusion and posttransfusion samples. We estimated the risk of acquiring GBV-C RNA and predictors of GBV-C acquisition, using pooled logistic regression. RESULTS GBV-C RNA was detected ≤120 days following the first transfusion in 22 (7.5%) of 294 subjects who were GBV-C negative before transfusion. The risk of GBV-C RNA acquisition increased with each unit transfused (odds ratio, 1.09; 95% confidence interval, 1.06-1.11). Lower baseline HIV load and use of antiretroviral therapy were associated with subsequent GBV-C RNA acquisition, after control for units of blood transfused. Leukoreduced status of transfused units was not associated with GBV-C transmission. CONCLUSIONS Blood transfusion is associated with a significant risk of GBV-C acquisition among HIV-infected patients. Transmission of GBV-C by blood transfusion was inversely related to HIV load.
Collapse
Affiliation(s)
- Farnaz Vahidnia
- Department of Epidemiology, Blood Systems Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bhattarai N, Stapleton JT. GB virus C: the good boy virus? Trends Microbiol 2012; 20:124-30. [PMID: 22325031 DOI: 10.1016/j.tim.2012.01.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 12/16/2022]
Abstract
GB virus C (GBV-C) is a lymphotropic human virus discovered in 1995 that is related to hepatitis C virus (HCV). GBV-C infection has not been convincingly associated with any disease; however, several studies found an association between persistent GBV-C infection and improved survival in HIV-positive individuals. GBV-C infection modestly alters T cell homeostasis in vivo through various mechanisms, including modulation of chemokine and cytokine release and receptor expression, and by diminution of T cell activation, proliferation and apoptosis, all of which may contribute to improved HIV clinical outcomes. In vitro studies confirm these clinical observations and demonstrate an anti-HIV replication effect of GBV-C. This review summarizes existing data on potential mechanisms by which GBV-C interferes with HIV, and the research needed to capitalize on this epidemiological observation.
Collapse
Affiliation(s)
- Nirjal Bhattarai
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
44
|
Silva SA, Rodrigues CL, Campos AF, Levi JE. Evaluation of GBV-C / HVG viremia in HIV-infected women. Rev Inst Med Trop Sao Paulo 2012; 54:31-5. [PMID: 22370751 DOI: 10.1590/s0036-46652012000100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022] Open
Abstract
The present study aimed at standardizing a real-time quantitative polymerase chain reaction assay to evaluate the presence of GBV-C/HGV RNA. A "TaqMan" assay using primers and probe derived from the 5¢ NCR region was developed and validated. Two hundred and fifty-three plasma samples from HIV-infected women were tested for GBV-C viremia and antibody against the envelope protein 2. GBV-C RNA was detected in 22.5% of the patients whereas the antibody was identified in 25.3% of the cohort. Detection of viral RNA and of antibodies was mutually exclusive. Viral loads showed a mean of 1,777 arbitrary units / mL, being 1.1 and 13,625 arbitrary units / mL respectively the lowest and highest values measured. We conclude that the real-time quantitative polymerase chain reaction method developed is appropriate for the investigation of GBV-C RNA since it was shown to be highly specific and sensitive, as well as requiring few steps, preventing contamination and providing additional information as to the relative viremia of carriers, a parameter that must be included in studies evaluating the co-factors influencing the clinical outcome of HIV/AIDS.
Collapse
|
45
|
Sucupira MCA, Sanabani S, Cortes RM, Giret MTM, Tomiyama H, Sauer MM, Sabino EC, Janini LM, Kallas EG, Diaz RS. Faster HIV-1 disease progression among Brazilian individuals recently infected with CXCR4-utilizing strains. PLoS One 2012; 7:e30292. [PMID: 22291931 PMCID: PMC3266896 DOI: 10.1371/journal.pone.0030292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Primary HIV infection is usually caused by R5 viruses, and there is an association between the emergence of CCXR4-utilizing strains and faster disease progression. We characterized HIV-1 from a cohort of recently infected individuals in Brazil, predicted the virus's co-receptor use based on the env genotype and attempted to correlate virus profiles with disease progression. Methods A total of 72 recently infected HIV patients were recruited based on the Serologic Testing Algorithm for Recent HIV Seroconversion and were followed every three to four months for up to 78 weeks. The HIV-1 V3 region was characterized by sequencing nine to twelve weeks after enrollment. Disease progression was characterized by CD4+ T-cell count decline to levels consistently below 350 cells/µL. Results Twelve out of 72 individuals (17%) were predicted to harbor CXCR4-utilizing strains; a baseline CD4<350 was more frequent among these individuals (p = 0.03). Fifty-seven individuals that were predicted to have CCR5-utilizing viruses and 10 individuals having CXCR4-utilizing strains presented with baseline CD4>350; after 78 weeks, 33 individuals with CCR5 strains and one individual with CXCR4 strains had CD4>350 (p = 0.001). There was no association between CD4 decline and demographic characteristics or HIV-1 subtype. Conclusions Our findings confirm the presence of strains with higher in vitro pathogenicity during early HIV infection, suggesting that even among recently infected individuals, rapid progression may be a consequence of the early emergence of CXCR4-utilizing strains. Characterizing the HIV-1 V3 region by sequencing may be useful in predicting disease progression and guiding treatment initiation decisions.
Collapse
Affiliation(s)
| | - Sabri Sanabani
- Sao Paulo Blood Bank, Fundacao Pro-Sangue, Sao Paulo, Brazil
| | - Rodrigo M. Cortes
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Teresa M. Giret
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Helena Tomiyama
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana M. Sauer
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luiz Mario Janini
- Microbiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Esper Georges Kallas
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
46
|
George SL, Varmaz D, Tavis JE, Chowdhury A. The GB virus C (GBV-C) NS3 serine protease inhibits HIV-1 replication in a CD4+ T lymphocyte cell line without decreasing HIV receptor expression. PLoS One 2012; 7:e30653. [PMID: 22292009 PMCID: PMC3264616 DOI: 10.1371/journal.pone.0030653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/26/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Persistent infection with GBV-C (GB Virus C), a non-pathogenic virus related to hepatitis C virus (HCV), prolongs survival in HIV infection. Two GBV-C proteins, NS5A and E2, have been shown previously to inhibit HIV replication in vitro. We investigated whether the GBV-C NS3 serine protease affects HIV replication. RESULTS GBV-C NS3 protease expressed in a human CD4+ T lymphocyte cell line significantly inhibited HIV replication. Addition of NS4A or NS4A/4B coding sequence to GBV-C NS3 increased the effect on HIV replication. Inhibition of HIV replication was dose-dependent and was not mediated by increased cell toxicity. Mutation of the NS3 catalytic serine to alanine resulted in loss of both HIV inhibition and protease activity. GBV-C NS3 expression did not measurably decrease CD4 or CXCR4 expression. CONCLUSION GBV-C NS3 serine protease significantly inhibited HIV replication without decreasing HIV receptor expression. The requirement for an intact catalytic serine at the active site indicates that inhibition was mediated by proteolytic cleavage of an unidentified target(s).
Collapse
Affiliation(s)
- Sarah L George
- Division of Infectious Diseases, Department of Internal Medicine, St. Louis University, St. Louis, Missouri, United States of America.
| | | | | | | |
Collapse
|
47
|
|
48
|
Giret MTM, Miraglia JL, Sucupira MCA, Nishiya A, Levi JE, Diaz RS, Sabino EC, Kallas EG. Prevalence, incidence density, and genotype distribution of GB virus C infection in a cohort of recently HIV-1-infected subjects in Sao Paulo, Brazil. PLoS One 2011; 6:e18407. [PMID: 21483671 PMCID: PMC3071701 DOI: 10.1371/journal.pone.0018407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/07/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The results of previous studies elsewhere have indicated that GB virus C (GBV-C) infection is frequent in patients infected with the human immunodeficiency virus type 1 (HIV-1) due to similar transmission routes of both viruses. The aim of this study was to determine the prevalence, incidence density and genotypic characteristics of GBV-C in this population. METHODOLOGY/PRINCIPAL FINDINGS The study population included 233 patients from a cohort primarily comprised of homosexual men recently infected with HIV-1 in São Paulo, Brazil. The presence of GBV-C RNA was determined in plasma samples by reverse transcriptase-nested polymerase chain reaction and quantified by real-time PCR. GBV-C genotypes were determined by direct sequencing. HIV viral load, CD4+ T lymphocyte and CD8+ T lymphocyte count were also tested in all patients. The overall prevalence of GBV-C infection was 0.23 (95% CI: 0.18 to 0.29) in the study group. There was no significant difference between patients with and without GBV-C infection and Glycoprotein E2 antibody presence regarding age, sex, HIV-1 viral load, CD4+ and CD8+T cell counts and treatment with antiretroviral drugs. An inverse correlation was observed between GBV-C and HIV-1 loads at enrollment and after one year. Also, a positive but not significant correlation was observed between GBV-C load and CD4+ T lymphocyte. Phylogenetic analysis of the GBV-C isolates revealed the presence of genotype 1 and genotype 2, these sub classified into subtype 2a and 2b. CONCLUSION/SIGNIFICANCE GBV-C infection is common in recently HIV -1 infected patients in Sao Paulo, Brazil and the predominant genotype is 2b. This study provides the first report of the GBV-C prevalence at the time of diagnosis of HIV-1 and the incidence density of GBV-C infection in one year.
Collapse
Affiliation(s)
- Maria Teresa M. Giret
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - João Luiz Miraglia
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - José Eduardo Levi
- Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo S. Diaz
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Santos-Oliveira JR, Giacoia-Gripp CBW, Alexandrino de Oliveira P, Amato VS, Lindoso JÂL, Goto H, Oliveira-Neto MP, Mattos MS, Grinsztejn B, Morgado MG, Da-Cruz AM. High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load. BMC Infect Dis 2010; 10:358. [PMID: 21171992 PMCID: PMC3022832 DOI: 10.1186/1471-2334-10-358] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 12/20/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL) and tegumentary leishmaniasis (ATL) have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. METHODS To address this issue we analyzed CD4+ T absolute counts and the proportion of CD8+ T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. RESULTS We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4+ T cell counts under 200 cells/mm3, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm3). Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4+ T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8+ T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. CONCLUSIONS Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4+ T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.
Collapse
Affiliation(s)
- Joanna R Santos-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz -FIOCRUZ. Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Carmem BW Giacoia-Gripp
- Laboratório de Aids e Imunologia Molecular; Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Priscilla Alexandrino de Oliveira
- Hospital-Dia Profa. Esterina Corsini, Hospital Universitário, Universidade Federal de Mato Grosso do Sul (UFMS). Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Valdir S Amato
- Serviço de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil. CEP 05403-010, São Paulo, Brazil
| | - Jose Ângelo L Lindoso
- Instituto de Medicina Tropical de São Paulo - Universidade de São Paulo, São Paulo, CEP 05403-010, Brazil
| | - Hiro Goto
- Instituto de Medicina Tropical de São Paulo - Universidade de São Paulo, São Paulo, CEP 05403-010, Brazil
| | - Manoel P Oliveira-Neto
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC - FIOCRUZ, Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Marise S Mattos
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC - FIOCRUZ, Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Beatriz Grinsztejn
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC - FIOCRUZ, Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Mariza G Morgado
- Laboratório de Aids e Imunologia Molecular; Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| | - Alda M Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz -FIOCRUZ. Av. Brasil 4365. Rio de Janeiro, CEP 21040-360, Brazil
| |
Collapse
|
50
|
Shankar EM, Balakrishnan P, Vignesh R, Velu V, Jayakumar P, Solomon S. Current Views on the Pathophysiology of GB Virus C Coinfection with HIV-1 Infection. Curr Infect Dis Rep 2010; 13:47-52. [DOI: 10.1007/s11908-010-0142-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|