1
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
2
|
Guo Z, Kubiatowicz LJ, Fang RH, Zhang L. Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Luke J. Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
3
|
Selection and immune recognition of HIV-1 MPER mimotopes. Virology 2020; 550:99-108. [PMID: 32980676 DOI: 10.1016/j.virol.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by several neutralizing antibodies (NAbs) and is of interest for vaccine design. In this study, we identified novel MPER peptide mimotopes and evaluated their reactivity with HIV + plasma antibodies to characterize the diversity of the immune responses to MPER during natural infection. We utilized phage display technology to generate novel mimotopes that fit antigen-binding sites of MPER NAbs 4E10, 2F5 and Z13. Plasma antibodies from 10 HIV + patients were mapped by phage immunoprecipitation, to identify unique patient MPER binding profiles that were distinct from, and overlapping with, those of MPER NAbs. 4E10 mimotope binding profiles correlated with plasma neutralization of HIV-2/HIV-1 MPER chimeric virus, and with overall plasma neutralization breadth and potency. When administered as vaccines, 4E10 mimotopes elicited low titer NAb responses in mice. HIV mimotopes may be useful for detailed analysis of plasma antibody specificity.
Collapse
|
4
|
Shao S, Huang WC, Lin C, Hicar MD, LaBranche CC, Montefiori DC, Lovell JF. An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice. Ann Biomed Eng 2019; 48:1991-2001. [PMID: 31832930 DOI: 10.1007/s10439-019-02398-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
A vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer. The present study generated various his-tagged, synthetic MPER fragments, which were bound to liposomes containing CoPoP and a synthetic monophosphoryl lipid A (MPLA) and assessed for immunogenicity in mice. MPER peptides with amino acids stretches originating from the membrane insertion point that were at least 25 amino acids in length, had greater 2F5 reactivity and induced stronger antibody responses, compared to shorter ones. Immunization with the lipid-presented MPER elicited stronger antibody responses compared to Alum and Montanide adjuvants, which could recognize recombinant gp41 and gp140 proteins that contained MPER sequences. The induced antibodies neutralized a tier 1A virus that is sensitive to neutralizing antibodies (W61D(TCLA)0.71), but not another tier 1A nor a tier 2 strain. Co-formulation of the MPER peptide with an unrelated malaria protein antigen (Pfs25) that is effectively adjuvanted with liposomes containing CoPoP and MPLA resulted in elicitation of higher MPER antibody levels, but did not improve neutralization, possibly due to interference with proper peptide presentation in the membrane. Murine hybridomas were generated that produced MPER antibodies, but they were non-neutralizing. These results do not show that bnAbs could be generated with MPER peptides and CoPoP liposomes, but do not rule out this possibility with additional improvements to the approach.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan, China
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Mark D Hicar
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
5
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Brinkkemper M, Sliepen K. Nanoparticle Vaccines for Inducing HIV-1 Neutralizing Antibodies. Vaccines (Basel) 2019; 7:E76. [PMID: 31362378 PMCID: PMC6789800 DOI: 10.3390/vaccines7030076] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.
Collapse
Affiliation(s)
- Mitch Brinkkemper
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
8
|
Vzorov AN, Uryvaev LV. Requirements for the Induction of Broadly Neutralizing Antibodies against HIV-1 by Vaccination. Mol Biol 2017. [DOI: 10.1134/s0026893317060176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Front Immunol 2017; 8:1154. [PMID: 28970835 PMCID: PMC5609547 DOI: 10.3389/fimmu.2017.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated by the human immune system and their elicitation by vaccination will be a key point to protect against the wide range of viral diversity. The membrane proximal external region (MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is considered as an attractive vaccine target. However, despite many attempts to design MPER-based immunogens, further study is still needed to understand its structural complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. These particular features compromise the development of MPER-specific neutralizing responses during natural infection and limit the number of bNAbs isolated against this region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles for immunogen development. Nevertheless, the analysis of MPER humoral responses elicited during natural infection as well as the MPER bNAbs isolated to date highlight that the human immune system is capable of generating MPER protective antibodies. Here, we discuss the recent advances describing the immunologic and biochemical features that make the MPER a unique HIV-1 vulnerability site, the different strategies to generate MPER-neutralizing antibodies in immunization protocols and point the importance of extending our knowledge toward new MPER epitopes by the isolation of novel monoclonal antibodies. This will be crucial for the redesign of immunogens able to skip non-neutralizing MPER determinants.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| |
Collapse
|
10
|
Pancera M, Changela A, Kwong PD. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr Opin HIV AIDS 2017; 12:229-240. [PMID: 28422787 PMCID: PMC5557343 DOI: 10.1097/coh.0000000000000360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. RECENT FINDINGS Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. SUMMARY A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Aikins ME, Bazzill J, Moon JJ. Vaccine nanoparticles for protection against HIV infection. Nanomedicine (Lond) 2017; 12:673-682. [PMID: 28244816 DOI: 10.2217/nnm-2016-0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of a successful vaccine against HIV is a major global challenge. Antiretroviral therapy is the standard treatment against HIV-1 infection. However, only 46% of the eligible people received the therapy in 2015. Furthermore, suboptimal adherence poses additional obstacles. Therefore, there is an urgent need for an HIV-1 vaccine. The most promising clinical trial to date is Phase III RV144, which for the first time demonstrated the feasibility of vaccine-mediated immune protection against HIV-1. Nevertheless, its 31% efficacy and limited durability underscore major hurdles. Here, we discuss recent progress in HIV-1 vaccine development with a special emphasis on nanovaccines, which are at the forefront of efforts to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Marisa E Aikins
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Bazzill
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
13
|
Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. mSphere 2016; 1:mSphere00086-16. [PMID: 27303748 PMCID: PMC4888892 DOI: 10.1128/msphere.00086-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses. The gp41 membrane-proximal external region (MPER) is a target for broadly neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1). However, replication-defective virus vaccines currently under evaluation in clinical trials do not efficiently elicit MPER-specific antibodies. Structural modeling suggests that the MPER forms an α-helical coiled coil that is required for function and immunogenicity. To maintain the native MPER conformation, we used reverse genetics to engineer replication-competent reovirus vectors that displayed MPER sequences in the α-helical coiled-coil tail domain of viral attachment protein σ1. Sequences in reovirus strain type 1 Lang (T1L) σ1 were exchanged with sequences encoding HIV-1 strain Ba-L MPER epitope 2F5 or the entire MPER. Individual 2F5 or MPER substitutions were introduced at virion-proximal or virion-distal sites in the σ1 tail. Recombinant reoviruses containing heterologous HIV-1 sequences were viable and produced progeny yields comparable to those with wild-type virus. HIV-1 sequences were retained following 10 serial passages in cell culture, indicating that the substitutions were genetically stable. Recombinant viruses engineered to display the 2F5 epitope or full-length MPER in σ1 were recognized by purified 2F5 antibody. Inoculation of mice with 2F5-containing vectors or rabbits with 2F5- or MPER-containing vectors elicited anti-reovirus antibodies, but HIV-1-specific antibodies were not detected. Together, these findings indicate that heterologous sequences that form α-helices can functionally replace native sequences in the α-helical tail domain of reovirus attachment protein σ1. However, although these vectors retain native antigenicity, they were not immunogenic, illustrating the difficulty of experimentally inducing immune responses to this essential region of HIV-1. IMPORTANCE Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses.
Collapse
|
14
|
Banerjee S, Shi H, Habte HH, Qin Y, Cho MW. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology 2016; 490:17-26. [PMID: 26803471 DOI: 10.1016/j.virol.2016.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 01/31/2023]
Abstract
The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; (671)NWFDITNWLWYIK(683)) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Heliang Shi
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Habtom H Habte
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Yali Qin
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Michael W Cho
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
15
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
16
|
Habte HH, Banerjee S, Shi H, Qin Y, Cho MW. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology 2015; 486:187-97. [PMID: 26454663 DOI: 10.1016/j.virol.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 01/15/2023]
Abstract
The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive target for vaccine development. Thus, better understanding of its immunogenic properties in various structural contexts is important. We previously described the crystal structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the heptad repeat regions 1 and 2 and the MPER. The protein was efficiently recognized by broadly neutralizing antibodies. Here, we describe its immunogenic properties in rabbits. The protein was highly immunogenic, especially the C-terminal end of the MPER containing 4E10 and 10E8 epitopes ((671)NWFDITNWLWYIK(683)). Although antibodies exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was not detected. Detailed mapping analyses indicated that amino acid residues critical for recognition resided on faces of the alpha helix that are either opposite of or perpendicular to the epitopes recognized by 4E10 and 10E8. These results provide critical information for designing the next generation of MPER-based immunogens.
Collapse
Affiliation(s)
- Habtom H Habte
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Saikat Banerjee
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Heliang Shi
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Yali Qin
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Michael W Cho
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA.
| |
Collapse
|
17
|
Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21. Vaccine 2015; 33:5578-5587. [PMID: 26372857 DOI: 10.1016/j.vaccine.2015.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022]
Abstract
Liposomes have shown promise as constituents of adjuvant formulations in vaccines to parasitic and viral diseases. A particular type of liposomal construct, referred to as Army Liposome Formulation (ALF), containing neutral and anionic saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA), has been used as an adjuvant for many years. Here we investigated the effects of physical and chemical changes of ALF liposomes on adjuvanted immune responses to CN54 gp140, a recombinant HIV-1 envelope protein. While holding the total amounts of liposomal MPLA and the gp140 antigen constant, different liposome sizes and liposomal MPLA:phospholipid molar ratios, and the effect of adding QS21 to the liposomes were compared for inducing immune responses to the gp140. For liposomes lacking QS21, higher titers of IgG binding antibodies to gp140 were induced by small unilamellar vesicle (SUV) rather than by large multilamellar vesicle (MLV) liposomes, and the highest titers were obtained with SUV having the MPLA:phospholipid ratio of 1:5.6. ALF plus QS21 (ALFQ) liposomes induced the same maximal binding antibody titers regardless of the MPLA:phospholipid ratio. ALF MLV liposomes induced mainly IgG1 and very low IgG2a antibodies, while ALF SUV liposomes induced IgG1≥IgG2a>IgG2b antibodies. Liposomes containing QS21 induced IgG1>IgG2a>IgG2b>IgG3 antibodies. ELISPOT analysis of splenocytes from immunized mice revealed that ALF liposomes induced low levels of IFN-γ, but ALFQ induced high levels. ALF and ALFQ liposomes each induced approximately equivalent high levels of IL-4. Based on antibody subtypes and cytokine secretion, we conclude that ALF liposomes predominantly stimulate Th2, while ALFQ strongly induces both Th1 and Th2 immunity. When CN54 gp140 was adjuvanted with either ALF or ALFQ liposomes, antibodies were induced that neutralized two HIV-1 tier 1 clade C strain pseudoviruses.
Collapse
|
18
|
Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. J Virol 2015; 89:7478-93. [PMID: 25972551 DOI: 10.1128/jvi.00412-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.
Collapse
|
19
|
Shao S, Geng J, Yi HA, Gogia S, Neelamegham S, Jacobs A, Lovell JF. Functionalization of cobalt porphyrin-phospholipid bilayers with his-tagged ligands and antigens. Nat Chem 2015; 7:438-46. [PMID: 25901823 PMCID: PMC4408904 DOI: 10.1038/nchem.2236] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/16/2015] [Indexed: 01/01/2023]
Abstract
Methods to attach polypeptides to lipid bilayers are often indirect and ineffective, and can represent a substantial bottleneck in the formation of functionalized lipid-based materials. Although the polyhistidine tag (his-tag) has been transformative in its simplicity and efficacy in binding to immobilized metals, the successful application of this approach has been challenging in physiological settings. Here we show that lipid bilayers containing porphyrin-phospholipid conjugates that are chelated with cobalt, but not with other metals, can effectively capture his-tagged proteins and peptides. The binding follows a Co(II) to Co(III) transition and occurs within the sheltered hydrophobic bilayer, resulting in an essentially irreversible attachment in serum or in a million fold excess of competing imidazole. Using this approach we anchored homing peptides into the bilayer of preformed and cargo-loaded liposomes to enable tumour targeting without disrupting the bilayer integrity. As a further demonstration, a synthetic protein fragment derived from the human immunodeficiency virus was bound to immunogenic liposomes for potent antibody generation for an otherwise non-antigenic peptide.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Shobhit Gogia
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Amy Jacobs
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
20
|
Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, Kim M, Reinherz EL, Irvine DJ. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 2015; 33:861-8. [PMID: 25559188 DOI: 10.1016/j.vaccine.2014.12.045] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
An HIV vaccine capable of inducing high and durable levels of broadly neutralizing antibodies has thus far proven elusive. A promising antigen is the membrane-proximal external region (MPER) from gp41, a segment of the viral envelope recognized by a number of broadly neutralizing antibodies. Though an attractive vaccine target due to the linear nature of the epitope and its highly conserved sequence, MPER peptides are poorly immunogenic and may require display on membranes to achieve a physiological conformation matching the native virus. Here we systematically explored how the structure and composition of liposomes displaying MPER peptides impacts the strength and durability of humoral responses to this antigen as well as helper T-cell responses in mice. Administration of MPER peptides anchored to the surface of liposomes induced MPER-specific antibodies whereas MPER administered in oil-based emulsion adjuvants or alum did not, even when combined with Toll-like receptor agonists. High-titer IgG responses to liposomal MPER required the inclusion of molecular adjuvants such as monophosphoryl lipid A. Anti-MPER humoral responses were further enhanced by incorporating high-Tm lipids in the vesicle bilayer and optimizing the MPER density to a mean distance of ∼10-15 nm between peptides on the liposomes' surfaces. Encapsulation of helper epitopes within the vesicles allowed efficient "intrastructural" T-cell help, which promoted IgG responses to MPER while minimizing competing B-cell responses against the helper sequence. These results define several key properties of liposome formulations that promote durable, high-titer antibody responses against MPER peptides, which will be a prerequisite for a successful MPER-targeting vaccine.
Collapse
Affiliation(s)
- Melissa C Hanson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica P Crespo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie H Chen
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haipeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Greg Lee Szeto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mikyung Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Bird GH, Irimia A, Ofek G, Kwong PD, Wilson IA, Walensky LD. Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nat Struct Mol Biol 2014; 21:1058-67. [PMID: 25420104 PMCID: PMC4304871 DOI: 10.1038/nsmb.2922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
Abstract
Hydrocarbon stapling can restore bioactive α-helical structure to natural peptides, yielding research tools and prototype therapeutics to dissect and target protein interactions. Here we explore the capacity of peptide stapling to generate high-fidelity, protease-resistant mimics of antigenic structures for vaccine development. HIV-1 has been refractory to vaccine technologies thus far, although select human antibodies can broadly neutralize HIV-1 by targeting sequences of the gp41 juxtamembrane fusion apparatus. To develop candidate HIV-1 immunogens, we generated and characterized stabilized α-helices of the membrane-proximal external region (SAH-MPER) of gp41. SAH-MPER peptides were remarkably protease resistant and bound to the broadly neutralizing 4E10 and 10E8 antibodies with high affinity, recapitulating the structure of the MPER epitope when differentially engaged by the two anti-HIV Fabs. Thus, stapled peptides may provide a new opportunity to develop chemically stabilized antigens for vaccination.
Collapse
Affiliation(s)
- Gregory H. Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adriana Irimia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Loren D. Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Novel neutralising antibodies targeting the N-terminal helical region of the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV). Immunol Res 2014; 58:9-19. [PMID: 23729215 DOI: 10.1007/s12026-013-8430-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previously, immunising different species with the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV), neutralising antibodies were induced which recognised epitopes in the fusion peptide proximal region (FPPR) and in the membrane-proximal external region (MPER). Only the MPER-specific antibodies were shown to neutralise and these antibodies targeted epitopes in the MPER similarly localised as the epitopes recognised by antibodies broadly neutralising HIV-1 such as 2F5 and 4E10. To study whether neutralising antibodies could be induced immunising with subunits of p15E, recombinant proteins corresponding to the N-terminal, the C-terminal helical region (NHR, CHR) and a p15E with a mutation in the Cys-Cys loop were produced. Whereas none of these antigens induced MPER-specific neutralising antibodies, the animals immunised with the FPPR/NHR subunit and the mutated p15E produced neutralising antibodies binding to the NHR. Therefore, for the first time, antibodies specific for the NHR and neutralising PERV were described.
Collapse
|
24
|
Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21:79. [PMID: 25160824 PMCID: PMC4256929 DOI: 10.1186/s12929-014-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes. Results The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera. Conclusions Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
25
|
Sims KH, Tytler EM, Tipton J, Hill KL, Burgess SW, Shaw WA. Avanti lipid tools: connecting lipids, technology, and cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1038-48. [PMID: 24954118 DOI: 10.1016/j.bbalip.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/15/2022]
Abstract
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Kacee H Sims
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Ewan M Tytler
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - John Tipton
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Kasey L Hill
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Stephen W Burgess
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Walter A Shaw
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| |
Collapse
|
26
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
27
|
Hardy GJ, Wong GC, Nayak R, Anasti K, Hirtz M, Shapter JG, Alam SM, Zauscher S. HIV-1 antibodies and vaccine antigen selectively interact with lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2662-9. [PMID: 25019685 DOI: 10.1016/j.bbamem.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.
Collapse
Affiliation(s)
- Gregory J Hardy
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Gene C Wong
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Rahul Nayak
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Kara Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - S Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Stefan Zauscher
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
28
|
Chemically modified peptides based on the membrane-proximal external region of the HIV-1 envelope induce high-titer, epitope-specific nonneutralizing antibodies in rabbits. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1086-93. [PMID: 24872518 DOI: 10.1128/cvi.00320-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing monoclonal antibodies (bNAbs) 2F5 and 4E10 bind to the membrane proximal external region (MPER) of gp41 and also cross-react with phospholipids. In this study, we investigated if chemical modifications on the MPER adjacent to 2F5 and 4E10 epitopes using mimetics of inflammation-associated posttranslational modifications to induce 2F5- and 4E10-like bNAbs can break tolerance. We synthesized a series of chemically modified peptides spanning the MPER. The serine, threonine, and tyrosine residues in the peptides were modified with sulfate, phosphate, or nitrate moieties and presented in liposomes for rabbit immunizations. All immunizations resulted in high antisera titers directed toward both the modified and unmodified immunogens. Tyrosine modification was observed to significantly suppress antiepitope responses. Sera with strong anti-gp140 titers were purified by affinity chromatography toward the MPER peptide and found to possess a higher affinity toward the MPER than did the bNAbs 2F5 and 4E10. Modest neutralization was observed in the H9 neutralization assay, but neutralization was not observed in the TZM-bl cell or peripheral blood mononuclear cell (PBMC) neutralization assay platforms. Although neutralizing antibodies were not induced by this approach, we conclude that chemical modifications can increase the immune responses to poorly immunogenic antigens, suggesting that chemical modification in an appropriate immunization protocol should be explored further as an HIV-1 vaccine strategy.
Collapse
|
29
|
Strasz N, Morozov VA, Kreutzberger J, Keller M, Eschricht M, Denner J. Immunization with hybrid proteins containing the membrane proximal external region of HIV-1. AIDS Res Hum Retroviruses 2014; 30:498-508. [PMID: 24392780 DOI: 10.1089/aid.2013.0191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transmembrane envelope (TM) protein gp41 of HIV-1 is an attractive target when designing a vaccine to induce neutralizing antibodies. A few broadly neutralizing antibodies (2F5, 4E10, and 10E8) that target conserved epitopes in the membrane proximal external region (MPER) of gp41 have been isolated from infected individuals. However, attempts to induce such antibodies by immunizations with gp41 and Env derivatives containing the MPER were successful only to some extent. In contrast, immunizations with the ectodomain of the TM protein p15E of different gamma retroviruses resulted in the induction of neutralizing antibodies. These sera recognized epitopes located in the MPER and in the fusion peptide proximal region (FPPR) of p15E. Based on these results, both regions of p15E were substituted with the corresponding sequences derived from gp41 of HIV-1. Thus, four different hybrid antigens were produced. One of the inserted sequences contained the epitopes of 2F5 and 4E10 in the MPER; the other corresponded to the FPPR. Vaccination of rats, guinea pigs, and a goat induced binding antibodies directed against the FPPR of gp41 and the 2F5 epitope (ELDKWA) located in the MPER. Despite the exact recognition of the 2F5 epitope, no or very weak neutralization of HIV-1NL4-3 by the immune sera was demonstrated. Nonetheless, using the strategy of hybrid proteins, antibodies targeting the desired epitope were successfully induced.
Collapse
|
30
|
Serrano S, Araujo A, Apellániz B, Bryson S, Carravilla P, de la Arada I, Huarte N, Rujas E, Pai EF, Arrondo JLR, Domene C, Jiménez MA, Nieva JL. Structure and immunogenicity of a peptide vaccine, including the complete HIV-1 gp41 2F5 epitope: implications for antibody recognition mechanism and immunogen design. J Biol Chem 2014; 289:6565-6580. [PMID: 24429284 DOI: 10.1074/jbc.m113.527747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane-proximal external region (MPER) of gp41 harbors the epitope recognized by the broadly neutralizing anti-HIV 2F5 antibody, a research focus in HIV-1 vaccine development. In this work, we analyze the structure and immunogenic properties of MPERp, a peptide vaccine that includes the following: (i) the complete sequence protected from proteolysis by the 2F5 paratope; (ii) downstream residues postulated to establish weak contacts with the CDR-H3 loop of the antibody, which are believed to be crucial for neutralization; and (iii) an aromatic rich anchor to the membrane interface. MPERp structures solved in dodecylphosphocholine micelles and 25% 1,1,1,3,3,3-hexafluoro-2-propanol (v/v) confirmed folding of the complete 2F5 epitope within continuous kinked helices. Infrared spectroscopy (IR) measurements demonstrated the retention of main helical conformations in immunogenic formulations based on alum, Freund's adjuvant, or two different types of liposomes. Binding to membrane-inserted MPERp, IR, molecular dynamics simulations, and characterization of the immune responses further suggested that packed helical bundles partially inserted into the lipid bilayer, rather than monomeric helices adsorbed to the membrane interface, could encompass effective MPER peptide vaccines. Together, our data constitute a proof-of-concept to support MPER-based peptides in combination with liposomes as stand-alone immunogens and suggest new approaches for structure-aided MPER vaccine development.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Aitziber Araujo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Steve Bryson
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Pablo Carravilla
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Emil F Pai
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - José L R Arrondo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom; Department of Chemistry, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain.
| | - José L Nieva
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
31
|
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013; 13:693-701. [PMID: 23969737 DOI: 10.1038/nri3516] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of HIV-1 vaccine research has seen a renaissance with the identification of antibodies that neutralize most circulating HIV-1 strains. An understanding of the structural mode of target recognition that these antibodies use and the immune pathways that lead to their development is emerging. This knowledge has provided fundamental insights into the pathways that elicit broadly neutralizing antibodies and provides a foundation for active and passive immunization strategies to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
32
|
Chenine AL, Wieczorek L, Sanders-Buell E, Wesberry M, Towle T, Pillis DM, Molnar S, McLinden R, Edmonds T, Hirsch I, O’Connell R, McCutchan FE, Montefiori DC, Ochsenbauer C, Kappes JC, Kim JH, Polonis VR, Tovanabutra S. Impact of HIV-1 backbone on neutralization sensitivity: neutralization profiles of heterologous envelope glycoproteins expressed in native subtype C and CRF01_AE backbone. PLoS One 2013; 8:e76104. [PMID: 24312165 PMCID: PMC3843658 DOI: 10.1371/journal.pone.0076104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 01/24/2023] Open
Abstract
Standardized assays to assess vaccine and antiviral drug efficacy are critical for the development of protective HIV-1 vaccines and drugs. These immune assays will be advanced by the development of standardized viral stocks, such as HIV-1 infectious molecular clones (IMC), that i) express a reporter gene, ii) are representative of globally diverse subtypes and iii) are engineered to easily exchange envelope (env) genes for expression of sequences of interest. Thus far, a subtype B IMC backbone expressing Renilla luciferase (LucR), and into which the ectodomain of heterologous env coding sequences can be expressed has been successfully developed but as execution of HIV-1 vaccine efficacy trials shifts increasingly to non-subtype B epidemics (Southern African and Southeast Asia), non-subtype B HIV-1 reagents are needed to support vaccine development. Here we describe two IMCs derived from subtypes C and CRF01_AE HIV-1 primary isolates expressing LucR (IMC.LucR) that were engineered to express heterologous gp160 Envs. 18 constructs expressing various subtypes C and CRF01_AE Envs, mostly acute, in subtype-matched and -unmatched HIV backbones were tested for functionality and neutralization sensitivity. Our results suggest a possible effect of non-env HIV-1 genes on the interaction of Env and neutralizing antibodies and highlight the need to generate a library of IMCs representative of the HIV-1 subtype spectrum to be used as standardized neutralization assay reagents for assessing HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Agnès-Laurence Chenine
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Lindsay Wieczorek
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Eric Sanders-Buell
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Maggie Wesberry
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Teresa Towle
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Devin M. Pillis
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Sebastian Molnar
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Robert McLinden
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Tara Edmonds
- University of Alabama, Birmingham, Birmingham, Alabama, United States of America
| | - Ivan Hirsch
- Inserm UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Robert O’Connell
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | | | - John C. Kappes
- University of Alabama, Birmingham, Birmingham, Alabama, United States of America
| | - Jerome H. Kim
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- Military HIV Research Program, Silver Spring, Maryland, United States of America
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sodsai Tovanabutra
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Silver Spring, Maryland, United States of America
| |
Collapse
|
33
|
McLinden RJ, LaBranche CC, Chenine AL, Polonis VR, Eller MA, Wieczorek L, Ochsenbauer C, Kappes JC, Perfetto S, Montefiori DC, Michael NL, Kim JH. Detection of HIV-1 neutralizing antibodies in a human CD4⁺/CXCR4⁺/CCR5⁺ T-lymphoblastoid cell assay system. PLoS One 2013; 8:e77756. [PMID: 24312168 PMCID: PMC3842913 DOI: 10.1371/journal.pone.0077756] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Sensitive assays are needed to meaningfully assess low levels of neutralizing antibodies (NAbs) that may be important for protection against the acquisition of HIV-1 infection in vaccine recipients. The current assay of choice uses a non-lymphoid cell line (TZM-bl) that may lack sensitivity owing to over expression of CD4 and CCR5. We used transfection of a human CD4+/CXCR4+/α4β7+ T-lymphoblastoid cell line (A3.01) with a CMV IE promoter-driven CCR5neo vector to stably express CCR5. The resulting line, designated A3R5, is permissive to a wide range of CCR5-tropic circulating strains of HIV-1, including HIV-1 molecular clones containing a Tat-inducible Renilla luciferase reporter gene and expressing multiple Env subtypes. Flow cytometric analysis found CCR5 surface expression on A3R5 cells to be markedly less than TZM-bl but similar to CD3.8 stimulated PBMC. More importantly, neutralization mediated by a diverse panel of monoclonal antibodies, HIV-1 positive polyclonal sera and sCD4 was consistently greater in A3R5 compared to TZM-bl cells. The A3R5 cell line provides a novel approach to guide the development and qualification of promising new HIV-1 vaccine immunogens.
Collapse
Affiliation(s)
- Robert J. McLinden
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Celia C. LaBranche
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Agnès-Laurence Chenine
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Michael A. Eller
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Lindsay Wieczorek
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, United States of America
| | - Stephen Perfetto
- Vaccine Research Center, NIH, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Nelson L. Michael
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| |
Collapse
|
34
|
Bashratyan R, Sheng H, Regn D, Rahman MJ, Dai YD. Insulinoma-released exosomes activate autoreactive marginal zone-like B cells that expand endogenously in prediabetic NOD mice. Eur J Immunol 2013; 43:2588-97. [PMID: 23817982 DOI: 10.1002/eji.201343376] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 12/21/2022]
Abstract
Exosomes (EXOs) are nano-sized secreted microvesicles that can function as potent endogenous carriers of adjuvant and antigens. To examine a possible role in autoimmunity for EXOs, we studied EXO-induced immune responses in nonobese diabetic (NOD) mice, an autoimmune-prone strain with tissue-specific targeting at insulin-secreting beta cells. EXOs released by insulinoma cells can activate various antigen-presenting cells to secrete several proinflammatory cytokines and chemokines. A subset of B cells responded to EXO stimulation in culture by proliferation, and expressed surface markers representing marginal zone B cells, which was independent of T helper cells. Importantly, splenic B cells from prediabetic NOD mice, but not diabetic-resistant mice, exhibited increased reactivity to EXOs, which was correlated with a high level of serum EXOs. We found that MyD88-mediated innate TLR signals were essential for the B-cell response; transgenic B cells expressing surface immunoglobulin specific for insulin reacted to EXO stimulation, and addition of a calcineurin inhibitor FK506 abrogated the EXO-induced B-cell response, suggesting that both innate and antigen-specific signals may be involved. Thus, EXOs may contribute to the development of autoimmunity and type 1 diabetes in NOD mice, partially via activating autoreactive marginal zone-like B cells.
Collapse
Affiliation(s)
- Roman Bashratyan
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
35
|
Zhang L, Miao L, Gong X, Zhang H, Yang L, Shi Y, Kong W, Jiang C, Shan Y. Multiple antigen peptide mimetics containing gp41 membrane-proximal external region elicit broad neutralizing antibodies against human immunodeficiency virus type 1 in guinea pigs. J Pept Sci 2013; 19:491-8. [DOI: 10.1002/psc.2526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Lishuang Zhang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Liang Miao
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Xin Gong
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Huayan Zhang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Lan Yang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Yuhua Shi
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Wei Kong
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Chunlai Jiang
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| | - Yaming Shan
- National Engineering Laboratory of AIDS Vaccine, College of Life Science; Jilin University; Changchun China
| |
Collapse
|
36
|
Matyas GR, Mayorov AV, Rice KC, Jacobson AE, Cheng K, Iyer MR, Li F, Beck Z, Janda KD, Alving CR. Liposomes containing monophosphoryl lipid A: a potent adjuvant system for inducing antibodies to heroin hapten analogs. Vaccine 2013; 31:2804-10. [PMID: 23624097 PMCID: PMC4120113 DOI: 10.1016/j.vaccine.2013.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 12/21/2022]
Abstract
In order to create an effective immunization approach for a potential vaccine to heroin, liposomes containing monophosphoryl lipid A [L(MPLA)] were tested as an adjuvant system to induce antibodies to heroin hapten analogs. Four synthetic haptens and two immunization strategies were employed. In the first strategy, a hydrophobic 23 amino acid immunogenic peptide derived from the membrane proximal external region of gp41 from HIV-1 envelope protein was embedded as a carrier in the outer surface of L(MPLA), to which was conjugated a 15 amino acid universal T cell epitope and a terminal heroin hapten analog. In the second strategy, tetanus toxoid (TT) carrier protein was decorated with haptens by conjugation, and the hapten-conjugated protein was mixed with L(MPLA). After immunization of mice, each of the immunization strategies was effective for induction of IgG anti-hapten antibodies. The first immunization strategy induced a mean end-point IgG titer against one of two haptens tested of approximately 12,800; however, no detectable antibodies were induced against the liposome-associated HIV-1 carrier peptide. In the second immunization strategy, depending on the hapten used for decorating the TT, end-point IgG titers ranged from 100,000 to 6,500,000. In this strategy, in which hapten was conjugated to the TT, end-point IgG titers of 400,000 to the TT carrier were observed with each conjugate. However, upon mixing unconjugated TT with L(MPLA), anti-TT titers of 6,500,000 were observed. We conclude that L(MPLA) serves as a potent adjuvant for inducing antibodies to candidate heroin haptens. However, antibodies to the carrier peptide or protein were partly or completed inhibited by the presence of conjugated hapten.
Collapse
Affiliation(s)
- Gary R. Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Alexander V. Mayorov
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 5625 Fishers Lane, Rockville 20852 MD USA
| | - Arthur E. Jacobson
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 5625 Fishers Lane, Rockville 20852 MD USA
| | - Kejun Cheng
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 5625 Fishers Lane, Rockville 20852 MD USA
| | - Malliga R. Iyer
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville 20852 MD USA
| | - Fuying Li
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 5625 Fishers Lane, Rockville 20852 MD USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology and Worm Institute of Research and Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Carl R. Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| |
Collapse
|
37
|
Forced virus evolution reveals functional crosstalk between the disulfide bonded region and membrane proximal ectodomain region of HIV-1 gp41. Retrovirology 2013; 10:44. [PMID: 23618462 PMCID: PMC3643854 DOI: 10.1186/1742-4690-10-44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/26/2013] [Indexed: 01/22/2023] Open
Abstract
Background The disulfide-bonded region (DSR) of HIV-1 gp41 mediates association with gp120 and plays a role in transmission of receptor-induced conformational changes in gp120 to gp41 that activate membrane fusion function. In this study, forced viral evolution of a DSR mutant that sheds gp120 was employed to identify domains within gp120-gp41 that are functionally linked to the glycoprotein association site. Results The HIV-1AD8 mutant, W596L/K601D, was serially passaged in U87.CD4.CCR5 cells until replication was restored. Whereas the W596L mutation persisted throughout the cultures, a D601H pseudoreversion in the DSR partially restored cell-free virus infectivity and virion gp120-gp41 association, with further improvements to cell-free virus infectivity following a 2nd-site D674E mutation in the membrane-proximal external region (MPER) of gp41. In an independent culture, D601H appeared with a deletion in V4 (Thr-394-Trp-395) and a D674N substitution in the MPER, however this MPER mutation was inhibitory to W596L/K601H cell-free virus infectivity. While cell-free virus infectivity was not fully restored for the revertant genotypes, their cell-to-cell transmission approached the levels observed for WT. Interestingly, the functional boost associated with the addition of D674E to W596L/K601H was not observed for cell-cell fusion where the cell-surface expressed glycoproteins function independently of virion assembly. The W596L/K601H and W596L/K601H/D674E viruses exhibited greater sensitivity to neutralization by the broadly reactive MPER directed monoclonal antibodies, 2F5 and 4E10, indicating that the reverting mutations increase the availability of conserved neutralization epitopes in the MPER. Conclusions The data indicate for the first time that functional crosstalk between the DSR and MPER operates in the context of assembled virions, with the Leu-596-His-601-Glu-674 combination optimizing viral spread via the cell-to-cell route. Our data also indicate that changes in the gp120-gp41 association site may increase the exposure of conserved MPER neutralization epitopes in virus.
Collapse
|
38
|
Chen W, Ying T, Dimitrov DS. Antibody-based candidate therapeutics against HIV-1: implications for virus eradication and vaccine design. Expert Opin Biol Ther 2013; 13:657-71. [PMID: 23293858 DOI: 10.1517/14712598.2013.761969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The currently available anti-HIV-1 drugs can control the infection but do not eradicate the virus. Their long-term use can lead to side effects and resistance to therapy. Therefore, eradication of the virus has been a major goal of research. Biological therapeutics including broadly neutralizing monoclonal antibodies (bnAbs) are promising tools to reach this goal. They could also help design novel vaccine immunogens potentially capable of eliciting bnAbs targeting the HIV-1 envelope glycoproteins (Envs). AREAS COVERED We review HIV-1 bnAbs and their potential as candidate prophylactics and therapeutics used individually, in combination, or as bispecific fusion proteins. We also discuss their potential use in the 'activation-elimination' approach for HIV-1 eradication in infected patients receiving antiretroviral treatment as well as current vaccine design efforts based on understanding of interactions of candidate vaccine immunogens with matured bnAbs and their putative germline predecessors, and related antibody maturation pathways. EXPERT OPINION Exploration of HIV-1 bnAbs has provided and will continue to provide useful knowledge that helps develop novel types of biotherapeutics and vaccines. It is possible that bnAb-based candidate therapeutics could help eradicate HIV-1. Development of vaccine immunogens capable of eliciting potent bnAbs in humans remains a fundamental challenge.
Collapse
Affiliation(s)
- Weizao Chen
- National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Protein Interactions Group, Miller Drive, Building 469, Room 144, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
39
|
Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. PLoS One 2012; 7:e52740. [PMID: 23285173 PMCID: PMC3528738 DOI: 10.1371/journal.pone.0052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal external region (MPER) of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP) can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.
Collapse
Affiliation(s)
- Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Aitziber Araujo
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Rocio Arranz
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Heribert Quendler
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - José M. Valpuesta
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - José L. Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- * E-mail:
| |
Collapse
|
40
|
Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines 2012; 11:733-44. [PMID: 22873129 DOI: 10.1586/erv.12.35] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liposomes containing monophosphoryl lipid A (MPLA) have previously exhibited considerable potency and safety in human trials with a variety of candidate vaccines, including vaccines to malaria, HIV-1 and several different types of cancer. The long history of research and development of MPLA and liposomal MPLA as vaccine adjuvants reveals that there are numerous opportunities for creation and development of generic (nonproprietary) adjuvant system formulations with these materials that are not only highly potent and safe, but also readily available as native materials or as synthetic compounds. They are easily manufactured as potentially inexpensive and easy to use adjuvant systems and might be effective even with synthetic peptides as antigens.
Collapse
Affiliation(s)
- Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | |
Collapse
|
41
|
Rational design of membrane proximal external region lipopeptides containing chemical modifications for HIV-1 vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:39-45. [PMID: 23114698 DOI: 10.1128/cvi.00615-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inability to generate broadly neutralizing antibody (bnAb) responses to the membrane proximal external region (MPER) of HIV-1 gp41 using current vaccine strategies has hampered efforts to prevent the spread of HIV. To address this challenge, we investigated a novel hypothesis to help improve the anti-MPER antibody response. Guided by structural insights and the unique lipid reactivity of anti-MPER bnAbs, we considered whether amino acid side chain modifications that emulate hydrophilic phospholipid head groups could contribute to the generation of 2F5-like or 4E10-like neutralizing anti-MPER antibodies. To test this hypothesis, we generated a series of chemically modified MPER immunogens through derivatization of amino acid side chains with phosphate or nitrate groups. We evaluated the binding affinity of the chemically modified peptides to their cognate monoclonal antibodies, 2F5 and 4E10, using surface plasmon resonance. The modifications had little effect on binding to the antibodies and did not influence epitope secondary structure when presented in liposomes. We selected five of the chemically modified sequences to immunize rabbits and found that an immunogen containing both the 2F5 and 4E10 epitopes and a phosphorylated threonine at T676 elicited the highest anti-peptide IgG titers, although the high antipeptide titers did not confer higher neutralizing activity. These data indicate that side chain modifications adjacent to known neutralizing antibody epitopes are capable of eliciting antibody responses to the MPER but that these chemically modified gp41 epitopes do not induce neutralizing antibodies.
Collapse
|
42
|
Wahome N, Pfeiffer T, Ambiel I, Yang Y, Keppler OT, Bosch V, Burkhard P. Conformation-specific Display of 4E10 and 2F5 Epitopes on Self-assembling Protein Nanoparticles as a Potential HIV Vaccine. Chem Biol Drug Des 2012; 80:349-57. [DOI: 10.1111/j.1747-0285.2012.01423.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
An anti-phosphoinositide-specific monoclonal antibody that neutralizes HIV-1 infection of human monocyte-derived macrophages. Virology 2012; 430:110-9. [PMID: 22633000 DOI: 10.1016/j.virol.2012.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
Abstract
HIV-1 entry into cells requires the interaction of both HIV-1 envelope proteins and membrane lipids. We investigated the mechanism of neutralization of HIV-1 infection of primary monocyte-derived macrophages (MDM) by a murine monoclonal antibody (mAb) WR321. WR321 specifically binds phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. These phosphoinositides are present not only on the inner surface of the plasma membranes of cells but also on the surface of virions. HIV-1 acquires these lipids during the budding process. Pre-incubation of WR321 with the virus but not with MDM neutralized HIV-1 infection of MDM. Our results demonstrate that WR321 was internalized only when it was bound to HIV-1. WR321 did not prevent the entry of HIV-1 into MDM. However, once WR321 was internalized along with HIV-1 the mAb acted intracellulary to prevent the release of virions from MDM and also triggered the release of β-chemokines.
Collapse
|
44
|
Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, Stewart S, Bowman C, Xia SM, Zhang R, Shen X, Scearce RM, Ofek G, Yang Y, Kwong PD, Santra S, Liao HX, Tomaras G, Letvin NL, Chen B, Alam SM, Haynes BF. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. PLoS One 2011; 6:e27824. [PMID: 22140469 PMCID: PMC3227606 DOI: 10.1371/journal.pone.0027824] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022] Open
Abstract
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope ⁶⁶⁴DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.
Collapse
Affiliation(s)
- S. Moses Dennison
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Laura L. Sutherland
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Frederick H. Jaeger
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kara M. Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Parks
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shelley Stewart
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cindy Bowman
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shi-Mao Xia
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruijun Zhang
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Richard M. Scearce
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sampa Santra
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia Tomaras
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - S. Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| | - Barton F. Haynes
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| |
Collapse
|
45
|
Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol 2011; 86:1820-31. [PMID: 22090143 DOI: 10.1128/jvi.05489-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The broadly neutralizing monoclonal antibodies (MAbs) 4E10, 2F5, and Z13e1 target membrane-proximal external region (MPER) epitopes of HIV-1 gp41 in a manner that remains controversial. The requirements for initial lipid bilayer binding and/or CD4 ligation have been proposed. To further investigate these issues, we probed for binding of these MAbs to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. We found moderate levels of PAG associated with unliganded HIV-1 and SIV virions incubated with the three MAbs. Significantly higher levels of PAG were associated with CD4-liganded HIV-1 (epitope-positive) but not SIV (epitope-negative) virions. A chimeric SIV virion displaying the HIV-1 4E10 epitope also showed significantly higher PAG association after CD4 ligation and incubation with 4E10. MAbs accumulated rapidly on CD4-liganded virions and slowly on unliganded virions, although both reached similar levels in time. Anti-MPER epitope-specific binding was stable to washout. Virions incubated with an irrelevant MAb or CD4-only (no MAb) showed negligible PAG association, as did a vesicle-rich fraction devoid of virions. Preincubation with Fab 4E10 inhibited both specific and nonspecific 4E10 IgG binding. Our data provide evidence for moderate association of anti-MPER MAbs to viral surfaces but not lipid vesicles, even in the absence of cognate epitopes. Significantly greater MAb interaction occurs in epitope-positive virions following long incubation or CD4 ligation. These findings are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.
Collapse
|
46
|
Maeso R, Huarte N, Julien JP, Kunert R, Pai EF, Nieva JL. Interaction of anti-HIV type 1 antibody 2F5 with phospholipid bilayers and its relevance for the mechanism of virus neutralization. AIDS Res Hum Retroviruses 2011; 27:863-76. [PMID: 21142698 DOI: 10.1089/aid.2010.0265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Broadly neutralizing monoclonal antibody (MAb) 2F5 targets a linear epitope within the highly conserved membrane proximal external region (MPER) of the HIV-1 envelope protein gp41 integral subunit. Prospective vaccine developments warrant efforts currently underway to unveil the mechanistic and structural basis of its mode of action. One open question relates to the putative role that membrane phospholipids might play in the neutralization process. In this work, we establish experimental conditions that allow monitoring 2F5 insertion into lipid bilayers. Then, we compare the abilities of 2F5-based MAb, Fabs, and 2F5-specific antibodies recovered from immunized rabbits to directly penetrate into lipid bilayers and block the lytic activity of MPER-derived peptides. Antibody insertion induced membrane perturbation, which was blocked on interacting with the peptide epitope, thereby suggesting that such phenomenon was primarily mediated by the epitope-binding site. The long, hydrophobic complementarity-determining region (CDR)-H3 loop contributed little to this effect. In contrast, the CDR-H3 loop was required for blocking the lytic activity of MPER-based peptides and viral neutralization. Thus, our results suggest that core epitope binding plus association with lipid bilayers are not in conjunction sufficient to support viral neutralization by 2F5. Moreover, they support a role for the CDR-H3 loop in establishing secondary interactions with lipids and/or gp41 that would block the membrane-perturbing activity of MPER during fusion.
Collapse
Affiliation(s)
- Rubén Maeso
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | | | - Renate Kunert
- Institute of Applied Microbiology, University of Agriculture, Vienna, Austria
| | - Emil F. Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | - José L. Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| |
Collapse
|
47
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
48
|
Singh H, Henry KA, Wu SS, Chruscinski A, Utz PJ, Scott JK. Reactivity profiles of broadly neutralizing anti-HIV-1 antibodies are distinct from those of pathogenic autoantibodies. AIDS 2011; 25:1247-57. [PMID: 21508803 PMCID: PMC3334283 DOI: 10.1097/qad.0b013e32834785cf] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Broadly neutralizing antibodies (bNt Abs) against HIV-1 are rarely produced during natural infection, and efforts to induce such Abs by vaccination have been unsuccessful. Thus, elucidating the nature and cellular origins of bNt Abs is a high priority for vaccine research. As the bNt monoclonal Abs (MAbs) 2F5, 4E10 and 2G12 have been reported to bind select autoantigens, we investigated whether these MAbs display a broader range of autoreactivity and how their autoreactivity compares with that of pathogenic autoAbs. METHODS An autoantigen microarray comprising 106 connective tissue disease-related autoantigens and control antigens was developed and used, in combination with ELISAs, to compare the reactivity profiles of MAbs 4E10, 2F5 and 2G12 to those of four pathogenic autoAbs derived from patients with antiphospholipid-syndrome (APS), and to serum from a patient with systemic lupus erythematosus (SLE). RESULTS The APS MAbs and SLE serum reacted strongly with multiple autoantigens on the microarray, whereas anti-HIV-1 MAb reactivity was limited mainly to HIV-1-related antigens. The APS autoAbs reacted strongly with CL, yet only 4E10 bound CL at high concentrations; both 2F5 and 4E10 bound their HIV-1 epitopes with a 2-3-log higher apparent affinity than CL. Moreover, the polyreactivity of 4E10, but not CL15, could be blocked with dried milk. CONCLUSION The reactivity profiles of bNt anti-HIV-1 MAbs are fundamentally distinct from those of pathogenic autoAbs that arise from dysregulated tolerance mechanisms. This suggests that the limited polyreactivity observed for the bNt MAbs, and for HIV-1-Nt Abs in general, may arise through alternative mechanisms, such as extensive somatic mutation due to persistent antigen selection during chronic infection.
Collapse
Affiliation(s)
- Harvir Singh
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin A. Henry
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sampson S.T. Wu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrzej Chruscinski
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
49
|
Antigen-specific enhancement of natural human IgG antibodies to phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol-4-phosphate, cholesterol, and lipid A by a liposomal vaccine containing lipid A. Vaccine 2011; 29:5137-44. [PMID: 21624414 DOI: 10.1016/j.vaccine.2011.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Natural IgG antibodies (NA) to lipids are ubiquitously distributed in sera of healthy humans and are believed to serve beneficial functions. Although NA to lipids generally exhibit germ line or near germ line binding specificities, the antibodies commonly increase transiently in the acute phases of most, if not all, infectious diseases and may serve as a first line of defense. In order to determine whether similar anti-lipid antibodies can be induced by a vaccine in humans, we examined stored sera obtained from volunteers who had previously received a candidate vaccine to Plasmodium falciparum. The vaccine had consisted of liposomes that contained both the recombinant protein antigen and also contained monophosphoryl lipid A (MPLA) as an adjuvant. All of the pre-immune sera contained NA to one or more of the liposomal lipids in the vaccine: dimyristol phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), cholesterol, and MPLA. After initial immunization, followed by a boost, increased levels of IgG antibodies to all of the liposomal lipids, especially DMPG and MPLA, were observed by ELISA. Antibodies to phosphatidylinositol-4-phosphate (PIP) above the normal pre-immune NA to PIP were also observed. Although PIP was not present in the immunizing liposomes, based on the adsorption of anti-PIP antibodies by DMPG the anti-PIP antibodies were thought to represent cross-reacting anti-DMPG antibodies. The immune response was apparently antigen-specific in that NA to unrelated lipids, other than PIP, that were not present in the liposomes, galactosyl ceramide and ganglioside GM1, were not increased by the immunization. We conclude that antibodies to DMPC, DMPG, PIP, cholesterol, and MPLA can be induced in humans by immunization with liposomes containing MPLA.
Collapse
|
50
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|