1
|
Ka'e AC, Santoro MM, Duca L, Chenwi CA, Ngoufack Jagni Semengue E, Nka AD, Etame NK, Togna Pabo WL, Beloumou G, Mpouel ML, Djupsa S, Takou D, Sosso SM, Tchidjou HK, Colizzi V, Halle-Ekane GE, Perno CF, Lewin S, Jones RB, Tiemessen CT, Ceccherini-Silberstein F, Fokam J. Evaluation of HIV-1 DNA levels among adolescents living with perinatally acquired HIV-1 in Yaounde, Cameroon: A contribution to paediatric HIV cure research in Sub-Saharan Africa. J Virus Erad 2024; 10:100367. [PMID: 38601701 PMCID: PMC11004643 DOI: 10.1016/j.jve.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Background With the advent of antiretroviral therapy (ART), most children living with HIV in sub-Saharan Africa (SSA) are growing toward adolescence, with scarcity of evidence on the size of viral reservoirs to enhance paediatric cure research strategies. This study aims to compare HIV-1 proviral DNA levels according to virological response among adolescents living with perinatally acquired HIV-1 (ALPHIV) and identify associated-factors in the Cameroonian context. Methods In this observational cohort study, HIV-1 RNA viremia and CD4+ T-cell count were assessed through RT-PCR and flow cytometry respectively at three time-points over 18 months of observation. At the third time-point, 80 randomly-selected participants were classified as with viremia (≥50 HIV-1 copies/mL; n = 40) or without viremia (<50 HIV-1 copies/mL; n = 40); immune-competent (≥500 CD4+ T cells/mm3) or immunocompromised (<500 CD4+ T cells/mm3). Among these participants, total HIV-1 DNA load was quantified through droplet digital PCR using Bio-Rad QX200. Results Of the 80 randomly-selected adolescents, median [IQR] age was 15 (13-17) years, 56.2% were female, duration on ART was 9.3 [5.4-12.2] years. Among the 40 viremic ones (median viremia 7312 [283-71482]) HIV-1 copies/ml, 75.0% (30/40) were in virological failure (≥1000 HIV-1 copies/ml), while median of CD4 T cells were 494 [360-793] cell/mm3 with 48.8% (39/80) immunocompromised. No significant variation in HIV-1 RNA viremia and CD4 T cell count was observed between the three time-points, and 13.7% (11/80) adolescents remained aviremic and immune-competent throughout (stable adolescents). A positive and moderate correlation (r = 0.59; p < 0.001) was found between HIV-1 DNA levels and HIV- 1 RNA viremia. Regarding the CD4 T cell count, a negative and weak correlation (r = -0.28; p = 0.014) was found with HIV-1 DNA loads only among adolescents with viremia. Starting ART within the first year of life, ART for over 9 years and aviremia appear as predictors of low HIV-1 DNA loads. Conclusion Among ALPHIV, high HIV-1 RNA indicates an elevated viral reservoir size, representing a drawback to cure research. Interestingly, early ART initiation and longer ARTduration lead to sustained viral control and limited HIV-1 reservoir size. As limited size of viral reservoir appears consistent with viral control and immune competence, adolescents with sustained viral control (about 14% of this target population) would be candidates for analytical ART interruptions toward establishing paediatric post-treatment controllers in SSA.
Collapse
Affiliation(s)
- Aude Christelle Ka'e
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- HIV Research for Cure Academy, International AIDS Society, Geneva, Switzerland
| | | | - Leonardo Duca
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Collins Ambe Chenwi
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alex Durand Nka
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Naomi-Karell Etame
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Willy Leroi Togna Pabo
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- University of Antwerp, Antwerp, Belgium
| | - Grace Beloumou
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Marie Laure Mpouel
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- University of Yaounde I, Yaounde, Cameroon
| | - Sandrine Djupsa
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Desire Takou
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Samuel Martin Sosso
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | | | | | | | | | - Sharon Lewin
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - R Brad Jones
- HIV Research for Cure Academy, International AIDS Society, Geneva, Switzerland
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Caroline T. Tiemessen
- HIV Research for Cure Academy, International AIDS Society, Geneva, Switzerland
- Centre for HIV and STIs, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Joseph Fokam
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- HIV Research for Cure Academy, International AIDS Society, Geneva, Switzerland
- University of Yaounde I, Yaounde, Cameroon
- Central Technical Group, National AIDS Control Committee, Yaoundé, Cameroon
- National HIV Drug Resistance Working Group, Ministry of Public Health, Yaounde, Cameroon
| |
Collapse
|
2
|
Kibirige CN, Manak M, King D, Abel B, Hack H, Wooding D, Liu Y, Fernandez N, Dalel J, Kaye S, Imami N, Jagodzinski L, Gilmour J. Development of a sensitive, quantitative assay with broad subtype specificity for detection of total HIV-1 nucleic acids in plasma and PBMC. Sci Rep 2022; 12:1550. [PMID: 35091568 PMCID: PMC8799642 DOI: 10.1038/s41598-021-03016-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
An LTR-based quantitative PCR (qPCR) assay was modified and optimized for the quantification of total HIV-1 nucleic acids in plasma and PBMC. TaqMan qPCR primers and probes were designed against the NCBI/LANL HIV-1 compendium database by analyzing sequences used in assays for sensitive cross-clade detection of HIV-1 as reported in the literature and elucidating regions of improved cross-subtype specificity. Inosine and mixed nucleotide bases were included at polymorphic sites. Real-time RT-qPCR and qPCR were performed on plasma viral RNA and cellular lysates. A step-up amplification approach to allow binding of primers across polymorphic regions showed improved sensitivity compared to universal cycling. Unlike a lead competing laboratory-developed assay, all major HIV-1 subtypes, and a wide range of recombinants from a 127-member diversity panel were detected and accurately quantified in spiked plasmas. Semi-nested PCR increased detection sensitivity even further. The assay was able to detect down to 88 copies/mL of HIV-1 in plasma with 95% efficiency or the equivalent of a single infected cell. The PCR assay will be valuable in studies that monitor very low viral levels including residual or break through HIV-1 in patients receiving antiretroviral therapy, in HIV-1 cure, and in other research studies.
Collapse
Affiliation(s)
- C N Kibirige
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK.
| | - M Manak
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, 20910, USA
- Turesol Consulting, 314 S. Henderson Road, King of Prussia, PA, 19406, USA
| | - D King
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - B Abel
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - H Hack
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, 20910, USA
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - D Wooding
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Y Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, 20910, USA
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - N Fernandez
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - J Dalel
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Steve Kaye
- Molecular Diagnostics Unit, Imperial College London, Jefferiss Trust Laboratory, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - N Imami
- Centre for Immunology and Vaccinology, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - L Jagodzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, 20910, USA
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - J Gilmour
- IAVI, Human Immunology Laboratory, Imperial College London, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
3
|
Antiviral Activity and Resistance Profile of the Novel HIV-1 Non-Catalytic Site Integrase Inhibitor, JTP-0157602. J Virol 2022; 96:e0184321. [PMID: 35045265 DOI: 10.1128/jvi.01843-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 integrase (IN) is an essential enzyme for viral replication. Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 IN inhibitors and a potential new class of antiretrovirals. In this report, we identified a novel NCINI, JTP-0157602, with an original scaffold. JTP-0157602 exhibited potent antiviral activity against HIV-1 and showed a serum-shifted EC90 of 138 nM, which is comparable to the FDA-approved IN strand transfer inhibitors (INSTIs). This compound was fully potent against a wide range of recombinant viruses with IN polymorphisms, including amino acids 124/125, a hot spot of IN polymorphisms. In addition, JTP-0157602 retained potent antiviral activity against a broad panel of recombinant viruses with INSTI-related resistant mutations, including multiple substitutions that emerged in clinical studies of INSTIs. Resistance selection experiments of JTP-0157602 led to the emergence of A128T and T174I mutations, which are located at the lens epithelium-derived growth factor/p75 binding pocket of IN. JTP-0157602 inhibited HIV-1 replication mainly during the late-phase of the replication cycle, and HIV-1 virions produced by reactivation from HIV-1 latently-infected Jurkat cells in the presence of JTP-0157602 were non-infectious. These results suggest that JTP-0157602 and analog compounds can be used to treat HIV-1 infectious diseases. IMPORTANCE Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 integrase (IN) inhibitors that bind to the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. NCINIs are expected to be a new class of anti-HIV-1 agents. In this study, we present a novel NCINI, JTP-0157602, which has potent activity against a broad range of HIV-1 strains with IN polymorphisms. Furthermore, JTP-0157602 shows strong antiviral activity against IN strand transfer inhibitor-resistant mutations, suggesting JTP-0157602 and its analogs are potential agents to treat HIV-1 infections. Structural modeling indicated that JTP-0157602 binds to the LEDGF/p75 binding pocket of IN, and the results of in vitro resistance induction revealed the JTP-0157602-resistance mechanism of HIV-1. These data shed light on developing novel NCINIs, which exhibit potent activity against HIV-1 with broad IN polymorphisms and multi-drug resistant HIV-1 variants.
Collapse
|
4
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
5
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
6
|
Quantitative Imaging Analysis of the Spatial Relationship between Antiretrovirals, Reverse Transcriptase Simian-Human Immunodeficiency Virus RNA, and Collagen in the Mesenteric Lymph Nodes of Nonhuman Primates. Antimicrob Agents Chemother 2021; 65:AAC.00019-21. [PMID: 33782003 DOI: 10.1128/aac.00019-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) persistence in tissue reservoirs is a major barrier to HIV cure. While antiretrovirals (ARVs) suppress viral replication, antiretroviral therapy (ART) interruption results in rapid rebound viremia that may originate from lymphoid tissues. To understand the relationship between anatomic distribution of ARV exposure and viral expression in lymph nodes, we performed mass spectrometry imaging (MSI) of 6 ARVs, RNAscope in situ hybridization for viral RNA (vRNA), and immunohistochemistry of collagen in mesenteric lymph nodes from 8 uninfected and 10 reverse transcriptase simian/human immunodeficiency virus (RT-SHIV)-infected rhesus macaques dosed to steady state with combination ART. MATLAB-based quantitative imaging analysis was used to evaluate spatial and pharmacological relationships between these ARVs, viral RNA (both vRNA+ cells and follicular dendritic cell [FDC]-bound virions), and collagen deposition. Using MSI, 31% of mesenteric lymph node tissue area was found to be not covered by any ARV. Additionally, 28% of FDC-trapped virions and 21% of infected cells were not exposed to any detected ARV. Of the 69% of tissue area that was covered by cumulative ART exposure, nearly 100% of concentrations were greater than in vitro 50% inhibitory concentration (IC50) values; however, 52% of total tissue coverage was from only one ARV, primarily maraviroc. Collagen covered ∼35% of tissue area but did not influence ARV distribution heterogeneity. Our findings are consistent with our hypothesis that ARV distribution, in addition to total-tissue drug concentration, must be considered when evaluating viral persistence in lymph nodes and other reservoir tissues.
Collapse
|
7
|
Prolonged administration of maraviroc reactivates latent HIV in vivo but it does not prevent antiretroviral-free viral rebound. Sci Rep 2020; 10:22286. [PMID: 33339855 PMCID: PMC7749169 DOI: 10.1038/s41598-020-79002-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 01/24/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains incurable due to latent viral reservoirs established in non-activated CD4 T cells that cannot be eliminated via antiretroviral therapy. Current efforts to cure HIV are focused on identifying drugs that will induce viral gene expression in latently infected cells, commonly known as latency reversing agents (LRAs). Some drugs have been shown to reactivate latent HIV but do not cause a reduction in reservoir size. Therefore, finding new LRAs or new combinations or increasing the round of stimulations is needed to cure HIV. However, the effects of these drugs on viral rebound after prolonged treatment have not been evaluated. In a previous clinical trial, antiretroviral therapy intensification with maraviroc for 48 weeks caused an increase in residual viremia and episomal two LTR-DNA circles suggesting that maraviroc could reactivate latent HIV. We amended the initial clinical trial to explore additional virologic parameters in stored samples and to evaluate the time to viral rebound during analytical treatment interruption in three patients. Maraviroc induced an increase in cell-associated HIV RNA during the administration of the drug. However, there was a rapid rebound of viremia after antiretroviral therapy discontinuation. HIV-specific T cell response was slightly enhanced. These results show that maraviroc can reactivate latent HIV in vivo but further studies are required to efficiently reduce the reservoir size.
Collapse
|
8
|
Hepatitis C Virus Influences HIV-1 Viral Splicing in Coinfected Patients. J Clin Med 2020; 9:jcm9072091. [PMID: 32635221 PMCID: PMC7408928 DOI: 10.3390/jcm9072091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Coinfection with hepatitis C virus (HCV) influences HIV reservoir size. However, it is unknown whether this coinfection also induces a higher provirus transcription. Viral transcription is promoted by synergy between cellular factors such as NF-κB and the viral regulator Tat. The impact of HCV coinfection on HIV provirus transcription was analyzed in resting (r)CD4 T+ cells (CD3+CD4+CD25-CD69-HLADR-) and rCD4 T cells-depleted PBMCs (rCD4 T- PBMCs) from a multicenter cross-sectional study of 115 cART-treated HIV patients: 42 HIV+/HCV+ coinfected individuals (HIV+/HCV+), 34 HIV+ patients with HCV spontaneous clearance (HIV+/HCV−) and 39 HIV patients (HIV+). Viral transcription was assessed in total RNA through the quantification of unspliced, single spliced, and multiple spliced viral mRNAs by qPCR. Linear correlations between viral reservoir size and viral splicing were determined. A 3-fold increase of multiple spliced transcripts in rCD4 T+ cells of HIV+/HCV+ patients was found compared to HIV+ individuals (p < 0.05). As Tat is synthesized by multiple splicing, the levels of Tat were also quantified in these patients. Significant differences in single and multiple spliced transcripts were also observed in rCD4 T- PBMCs. Levels of multiple spliced mRNAs were increased in rCD4 T+ cells isolated from HIV+/HCV+ subjects, which could indicate a higher Tat activity in these cells despite their resting state.
Collapse
|
9
|
Abstract
Although highly active antiretroviral therapy (HAART) has been introduced over twenty years ago to treat Human Immunodeficiency Virus (HIV) positive patients, acquired immunodeficiency syndrome (AIDS) is still one of the deadliest diseases found worldwide. AIDS prevalence and mortality rates are usually more pronounced in resource-constrained countries than in the developed world. The lack of trained medical technicians, sophisticated diagnostic equipment, and the overall scarcity of medical infrastructures have severely impacted HIV/AIDS diagnostics, which hinders the initiation and periodic monitoring of antiretroviral therapy (ART). Currently, available HIV viral load assays are not well-suited for resource-limited settings due to their high cost and a requirement for medical/technical infrastructures. In this paper, we review current and emerging diagnostic assays for HIV detection, with a focus on point-of-care (POC) based immunoassays for viral load measurement, drug resistance, and HIV recurrence. We also discuss the limitations of the available HIV assays and highlight the technological advancements in cellphone, paper, and flexible material-based assays which have the potential to improve HIV diagnosis and monitoring, thus assisting with the management of the disease.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Massimo Caputi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA.,Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
10
|
Arca-Suarez J, Corrales-Cuevas M, Pascual-Pérez S, Trujillo-Soto T, Fernández-Gutiérrez Del Álamo C, Cuesta-Sancho S, Rodríguez-Iglesias M, Girón-González JA. HIV antibodies level as a marker of HIV persistence: the role of hepatitis C virus coinfection. Eur J Clin Microbiol Infect Dis 2020; 39:1503-1512. [PMID: 32232689 DOI: 10.1007/s10096-020-03875-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus (HIV) antibodies have been proposed as a measure of the size of the HIV reservoir. The aim of our study is to quantify the anti-HIV antibodies level in a cohort of people living with HIV (PLWH), stratified based on the presence of continuous undetectable HIV viral load and the co-existence of hepatitis C virus infection. A sample of 229 HIV-monoinfected (n = 114) or HIV/HCV-coinfected [either with resolved HCV infection (n = 75) or active HCV coinfection (n = 40)] patients, followed up a median of 34 (IQR 20-44) months, was studied. Anti-HIV index was obtained as the 1:800 dilution of HIV antibodies. CD4+ T cell count, time with undetectable HIV viral load, annual increase of CD4+ T cell count, anti-HCV therapy, and diagnosis of cirrhosis were analyzed. Patients with a continued suppressed HIV viral load had significant lower anti-HIV index compared with those with virologic failure during the follow-up. Significant higher CD4+ T cell increase was observed in those with a lower anti-HIV index. HIV-monoinfected patients showed an anti-HIV index significantly lower than patients with HCV coinfection. Resolved HCV infection after interferon-based therapy, but not with direct acting antivirals, was associated with a lower anti-HIV index. HIV/HCV-coinfected patients showed higher HIV antibodies level when compared with HIV-monoinfected individuals. A decrease in anti-HIV index in HIV/HCV-coinfected patients was detected when a sustained virological HCV response was obtained after interferon-based therapy, in possible relation with the direct or indirect effect of interferon on PLWH CD4 T cells.
Collapse
Affiliation(s)
- Jorge Arca-Suarez
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Manuel Corrales-Cuevas
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Susana Pascual-Pérez
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Teresa Trujillo-Soto
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Clotilde Fernández-Gutiérrez Del Álamo
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Sara Cuesta-Sancho
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José-Antonio Girón-González
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
11
|
Abstract
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Collapse
|
12
|
Interferon-Inducible MicroRNA miR-128 Modulates HIV-1 Replication by Targeting TNPO3 mRNA. J Virol 2019; 93:JVI.00364-19. [PMID: 31341054 DOI: 10.1128/jvi.00364-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR), miR-128, represses retrotransposon long interspaced element 1 (L1) by a dual mechanism, namely, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three TNPO proteins (transportins TNPO1, TNPO2, and TNPO3). Here, we establish that miR-128 also influences HIV-1 replication by repressing TNPO3, a factor that regulates HIV-1 nuclear import and viral; replication of TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that type I interferon (IFN)-inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly downregulating TNPO3 mRNA and protein expression levels. Challenging miR-modulated Jurkat cells or primary CD4+ T-cells with wild-type (WT), replication-competent HIV-1 demonstrated that miR-128 reduces viral replication and delays spreading of infection. Manipulation of miR-128 levels in HIV-1 target cell lines and in primary CD4+ T-cells by overexpression or knockdown showed that reduction of TNPO3 levels by miR-128 significantly affects HIV-1 replication but not murine leukemia virus (MLV) infection and that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus, suggesting that miR-128-indued TNPO3 repression contributes to the inhibition of HIV-1 replication. Finally, we determine that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Thus, we have established a novel role of miR-128 in antiviral defense in human cells, namely inhibiting HIV-1 replication by altering the cellular milieu through targeting factors that include TNPO3.IMPORTANCE HIV-1 is the causative agent of AIDS. During HIV-1 infection, type I interferons (IFNs) are induced, and their effectors limit HIV-1 replication at multiple steps in its life cycle. However, the cellular targets of INFs are still largely unknown. In this study, we identified the interferon-inducible microRNA (miR) miR-128, a novel antiviral mediator that suppresses the expression of the host gene TNPO3, which is known to modulate HIV-1 replication. Notably, we observe that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Elucidation of the mechanisms through which miR-128 impairs HIV-1 replication may provide novel candidates for the development of therapeutic interventions.
Collapse
|
13
|
Wang J, Yang Z, Cheng L, Lu L, Pan K, Yang J, Wu N. Retinoblastoma binding protein 4 represses HIV-1 long terminal repeat-mediated transcription by recruiting NR2F1 and histone deacetylase. Acta Biochim Biophys Sin (Shanghai) 2019; 51:934-944. [PMID: 31435636 DOI: 10.1093/abbs/gmz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV) transcription is closely associated with chromatin remodeling. Retinoblastoma binding protein 4 (RBBP4) is a histone chaperone implicated in chromatin remodeling. However, the role of RBBP4 in HIV-1 infection and the underlying mechanism remain elusive. In the present study, we showed that RBBP4 plays a negative regulatory role during HIV-1 infection. RBBP4 expression was significantly increased in HIV-1-infected T cells. RBBP4 binds to the HIV-1 long terminal repeat (LTR), represses HIV-1 LTR-mediated transcription through recruiting nuclear receptor subfamily 2 group F member 1(NR2F1) and histone deacetylase 1 and 2 (HDAC1/2) to HIV-1 LTR, and further controls local histone 3 (H3) deacetylation and chromatin compaction. Furthermore, the occupancy of RBBP4, HDAC1/2, and NR2F1 on LTR in HIV-latent J-lat cells was significantly higher than that in HIV-1-activated cells. In conclusion, our results establish RBBP4 as a new potent antiretroviral factor, which may provide theoretical basis for the treatment of HIV in the future.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kenv Pan
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Jin Yang
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Burgunder E, Fallon JK, White N, Schauer AP, Sykes C, Remling-Mulder L, Kovarova M, Adamson L, Luciw P, Garcia JV, Akkina R, Smith PC, Kashuba ADM. Antiretroviral Drug Concentrations in Lymph Nodes: A Cross-Species Comparison of the Effect of Drug Transporter Expression, Viral Infection, and Sex in Humanized Mice, Nonhuman Primates, and Humans. J Pharmacol Exp Ther 2019; 370:360-368. [PMID: 31235531 PMCID: PMC6695867 DOI: 10.1124/jpet.119.259150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
In a "kick and kill" strategy for human immunodeficiency virus (HIV) eradication, protective concentrations of antiretrovirals (ARVs) in the lymph node are important to prevent vulnerable cells from further HIV infection. However, the factors responsible for drug distribution and concentration into these tissues are largely unknown. Although humanized mice and nonhuman primates (NHPs) are crucial to HIV research, ARV tissue pharmacology has not been well characterized across species. This study investigated the influence of drug transporter expression, viral infection, and sex on ARV penetration within lymph nodes of animal models and humans. Six ARVs were dosed for 10 days in humanized mice and NHPs. Plasma and lymph nodes were collected at necropsy, 24 hours after the last dose. Human lymph node tissue and plasma from deceased patients were collected from tissue banks. ARV, active metabolite, and endogenous nucleotide concentrations were measured by liquid chromatography-tandem mass spectrometry, and drug transporter expression was measured using quantitative polymerase chain reaction and quantitative targeted absolute proteomics. In NHPs and humans, lymph node ARV concentrations were greater than or equal to plasma, and tenofovir diphosphate/deoxyadenosine triphosphate concentration ratios achieved efficacy targets in lymph nodes from all three species. There was no effect of infection or sex on ARV concentrations. Low drug transporter expression existed in lymph nodes from all species, and no predictive relationships were found between transporter gene/protein expression and ARV penetration. Overall, common preclinical models of HIV infection were well suited to predict human ARV exposure in lymph nodes, and low transporter expression suggests primarily passive drug distribution in these tissues. SIGNIFICANCE STATEMENT: During human immunodeficiency virus (HIV) eradication strategies, protective concentrations of antiretrovirals (ARVs) in the lymph node prevent vulnerable cells from further HIV infection. However, ARV tissue pharmacology has not been well characterized across preclinical species used for HIV eradication research, and the influence of drug transporters, HIV infection, and sex on ARV distribution and concentration into the lymph node is largely unknown. Here we show that two animal models of HIV infection (humanized mice and nonhuman primates) were well suited to predict human ARV exposure in lymph nodes. Additionally, we found that drug transporter expression was minimal and-along with viral infection and sex-did not affect ARV penetration into lymph nodes from any species.
Collapse
Affiliation(s)
- Erin Burgunder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - John K Fallon
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Nicole White
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Amanda P Schauer
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Craig Sykes
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Leila Remling-Mulder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Martina Kovarova
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Lourdes Adamson
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Paul Luciw
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - J Victor Garcia
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Ramesh Akkina
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Philip C Smith
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Angela D M Kashuba
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| |
Collapse
|
15
|
Panaampon J, Kudo E, Kariya R, Okada S. Ephedrine enhances HIV-1 reactivation from latency through elevating tumor necrosis factor receptor II (TNFRII) expression. Heliyon 2019; 5:e02490. [PMID: 31687583 PMCID: PMC6819846 DOI: 10.1016/j.heliyon.2019.e02490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 persists during antiretroviral therapy (ART) due to long-lived and proliferating latently-infected host cells, with the outcome being an incomplete cure. The latently-infected cells, or reservoir cells, are transcriptionally absent and invisible to the immune response. Elimination of latency is one strategy in activating virus production, making it visible to immune clearance. We previously showed that Ephedrae herba reactivated HIV-1 from latency. In this study, we used ephedrine, a major component of Ephedra herba, to reactivate HIV-1 from latency. The results showed that ephedrine enhances HIV-1 reactivation in the presence of TNFα. Combination treatment demonstrates a synergistic effect of HIV-1 reactivation compared to TNFα alone. Ephedrine treatment shows a higher TNFRII expression level, which is related to increased HIV-1 reactivation. However, the mechanism of ephedrine in HIV-1 reactivation is still unclear, and may be related to TNFRII receptor expression. Our results indicate that ephedrine enhances HIV-1 reactivation from latency in combination with TNFα treatment. This new reagent could be a promising latency reversal agent (LRA).
Collapse
Affiliation(s)
| | | | | | - Seiji Okada
- Division of Hematopoiesis, Graduate School of Medical Sciences, and Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| |
Collapse
|
16
|
Jagodzinski LL, Manak MM, Hack HR, Liu Y, Malia JA, Freeman J, Phanuphak N, de Souza M, Kroon ED, Colby DJ, Chomchey N, Lally MA, Michael NL, Ananworanich J, Peel SA. Impact of Early Antiretroviral Therapy on Detection of Cell-Associated HIV-1 Nucleic Acid in Blood by the Roche Cobas TaqMan Test. J Clin Microbiol 2019; 57:e01922-18. [PMID: 30842229 PMCID: PMC6498003 DOI: 10.1128/jcm.01922-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
The Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test, v2.0 (the CAP/CTM assay), was used to quantify cell-associated HIV-1 (CAH) nucleic acid in peripheral blood mononuclear cells (PBMC) from well-characterized clinical specimens from HIV-1-infected individuals on antiretroviral therapy (ART). Chronically infected individuals on ART with no detectable plasma HIV-1 RNA demonstrated average CAH burdens of 3.2 HIV-1 log10 copies/million cells. Assay sensitivity and specificity were 98.9% and 100%, respectively, with the positive and negative predictive values being 100% and 98.6%, respectively. The CAH burden was also measured at weeks 0, 1, 2, 8, and 60 in 37 participants (RV254/SEARCH010, Bangkok, Thailand) stratified by Fiebig stage (Fiebig stage I [FI] to FVI) at ART initiation. Prior to ART initiation, the average CAH burden was 1.4, 4.1, and 3.6 log10 copies/million PBMCs for individuals who initiated ART at FI, FII, and FIII to FVI, respectively. Initiation of ART resulted in a rapid decline of CAH in all individuals, with the greatest decrease being observed in individuals who initiated ART at FI to FIII. By week 60, 100% (FI), 71.8% (FII/FIII), and 20.5% (FIV to FVI) of samples from individuals initiating treatment were at or near the limit of quantitation. Residual CAH was detectable at 60 weeks in most individuals who initiated ART at later stages (FIV to FVI) and averaged 1.9 ± 0.7 log10 copies/million PBMCs. The modified Roche CAP/CTM assay provides a convenient, standardized approach to measure residual HIV in blood and may be useful for monitoring patients under therapy or those participating in HIV remission studies.
Collapse
Affiliation(s)
- Linda L Jagodzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mark M Manak
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Holly R Hack
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ying Liu
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jennifer A Malia
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joanna Freeman
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Mark de Souza
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Eugène D Kroon
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Donn J Colby
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nitiya Chomchey
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Michelle A Lally
- Miriam Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | |
Collapse
|
17
|
Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, Tan LL, Ciacchi L, Reid HH, Rossjohn J, Chakrabarti LA, Gras S. CD4 + T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol 2019; 3:3/24/eaat0687. [PMID: 29884618 DOI: 10.1126/sciimmunol.aat0687] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.
Collapse
Affiliation(s)
- Moran Galperin
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Daniela Benati
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Li Lynn Tan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Lisa A Chakrabarti
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France.,INSERM, U1108, Paris, France
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
19
|
CHANG CC, NARANBHAI V, STERN J, ROCHE M, DANTANARAYANA A, KE R, TENNAKOON S, SOLOMON A, HOH R, HARTOGENSIS W, HECHT FM, SIKARIS K, PRICE DJ, ELLIOTT JH, DEEKS SG, CHURCHILL M, CAMERON PU, HENGARTNER N, PERELSON AS, LEWIN SR. Variation in cell-associated unspliced HIV RNA on antiretroviral therapy is associated with the circadian regulator brain-and-muscle-ARNT-like-1. AIDS 2018; 32:2119-2128. [PMID: 30005017 PMCID: PMC6173794 DOI: 10.1097/qad.0000000000001937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE(S) To determine whether variation in cell-associated unspliced (CA-US) HIV RNA in HIV-infected individuals on antiretroviral therapy (ART) has a circadian basis. METHODS Prospective observational study of HIV-infected individuals on ART. Blood was collected on three occasions and CA-US HIV RNA and mRNA of the circadian-locomotor-output-cycles-kaput (CLOCK)-associated genes quantified by real time PCR. CLOCK-associated proteins were over-expressed in a cell line stably transfected with an HIV long-terminal repeat (LTR) luciferase reporter. RESULTS Using a mixed effects model, there was a significant increase in log-CA-US RNA at the third visit compared with the first visit (effect size of 0.619 with standard error (SE) of 0.098, P < 0.001) and an independent effect of time of blood draw (effect size 0.051 (SE 0.025), P = 0.040). The CLOCK-associated gene, brain-and-muscle-ARNT-like-1 (BMAL-1) had a significant relationship with log CA-US HIV RNA (effect size 8.508 (SE 3.777), P = 0.028) and also with time (P = 0.045). Over expression of BMAL-1 and CLOCK in a cell line stably transfected with an HIV-LTR luciferase reporter resulted in an increase in luciferase expression and this was reduced following mutation of the second E-box in the HIV-LTR. CONCLUSION The basal level of HIV transcription on ART can vary significantly and is modulated by the circadian regulator BMAL-1, amongst other factors.
Collapse
Affiliation(s)
- Christina C CHANG
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Vivek NARANBHAI
- Nuffield Dept. of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jared STERN
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Michael ROCHE
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Ashanti DANTANARAYANA
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ruian KE
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Surekha TENNAKOON
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha SOLOMON
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Rebecca HOH
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Wendy HARTOGENSIS
- Division of Biostatistics, University of California San Francisco, San Francisco, CA
| | - Frederick M HECHT
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA
| | | | - David J PRICE
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne
| | - Julian H ELLIOTT
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Steven G DEEKS
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Melissa CHURCHILL
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Paul U CAMERON
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Nicolas HENGARTNER
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Alan S. PERELSON
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Sharon R LEWIN
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
20
|
Analytical antiretroviral therapy interruption does not irreversibly change preinterruption levels of cellular HIV. AIDS 2018; 32:1763-1772. [PMID: 30045057 DOI: 10.1097/qad.0000000000001909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The impact of short-term analytical treatment interruptions (ATI) on the levels of cellular HIV and of residual activation after subsequent antiretroviral therapy (ART)-mediated plasma HIV viral load re-suppression remains under active investigation. DESIGN Peripheral blood mononuclear cells (PBMC) from 23 ART-suppressed, chronically HIV-1-infected patients were evaluated at the initiation of an ATI, during ATI, and following plasma re-suppression of HIV with ART. METHODS T-cell activation was measured by flow cytometry. Total cellular HIV DNA, and episomal 2-long terminal repeat (2-LTR) circles were measured by droplet digital PCR (ddPCR). Cellular HIV multiply spliced RNA (tat/rev), unspliced (gag), and poly(A) tailed transcripts [poly(A)] were measured by reverse transcriptase-ddPCR. Analyses were performed using R version 2.5.1 or JMP Pro 11. RESULTS ATI (median ATI duration, 4 weeks) resulted in a rise of plasma HIV RNA (median = 72900 copies/ml), decrease in CD4+ T cells/μl (median = 511.5 cells/μl; P = 0.0001), increase in T-cell activation, and increase in cellular HIV DNA and RNA. Mean fluorescence intensity of CD38 on CD4+HLA-DR+ T cells at baseline was positively associated with total HIV DNA levels during ATI (pol: P = 0.03, Rho = 0.44). Upon ART resumption, plasma HIV re-suppression occurred after a median of 13 weeks and resulted in restoration of pre-ATI CD4+ T cells/μl, T-cell activation, and levels of cellular HIV DNA and RNA. CONCLUSION Monitored viremia and immune activation during an ATI in ART-suppressed chronic HIV-infected patients does not change the amount of persistent cellular HIV RNA or total HIV DNA after ART-mediated re-suppression.
Collapse
|
21
|
Clutton GT, Jones RB. Diverse Impacts of HIV Latency-Reversing Agents on CD8+ T-Cell Function: Implications for HIV Cure. Front Immunol 2018; 9:1452. [PMID: 29988382 PMCID: PMC6023971 DOI: 10.3389/fimmu.2018.01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral therapy regimens durably suppress HIV replication, but do not cure infection. This is partially attributable to the persistence of long-lived pools of resting CD4+ T-cells harboring latent replication-competent virus. Substantial clinical and pre-clinical research is currently being directed at purging this viral reservoir by combining pharmacological latency reversal with immune effectors, such as HIV-specific CD8+ T-cells, capable of eliminating reactivated targets-the so-called "shock-and-kill" approach. However, several studies indicate that the latency-reversing agents (LRAs) may affect CD8+ T-cell function. The current review aims to frame recent advances, and ongoing challenges, in implementing "shock-and-kill" strategies from the perspective of effectively harnessing CD8+ T-cells. We review and contextualize findings indicating that LRAs often have unintended impacts on CD8+ T-cell function, both detrimental and beneficial. We identify and attempt to bridge the gap between viral reactivation, as measured by the detection of RNA or protein, and bona fide presentation of viral antigens to CD8+ T-cells. Finally, we highlight factors on the effector (CD8+) and target (CD4+) cell sides that contribute to whether or not infected-cell recognition results in killing/elimination. These perspectives may contribute to an integrated view of "shock-and-kill," with implications for therapeutic development.
Collapse
Affiliation(s)
- Genevieve Tyndale Clutton
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - R. Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
- Infectious Disease Division, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
22
|
Anne Crock E. HIV and AIDS: An overview of the current issues, treatment and prevention. Nurs Stand 2017; 32:51-63. [PMID: 29210536 DOI: 10.7748/ns.2017.e11045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 11/09/2022]
Abstract
The theme of World AIDS Day 2017 is 'let's end it'. After almost 40 years since the first occurrences of human immunodeficiency virus (HIV), it is possible to envision an end to the HIV epidemic, one of the most serious health and development challenges humanity has faced. This article provides an overview of the current approaches to the treatment, care and support of people living with HIV and acquired immune deficiency syndrome (AIDS). It also discusses the challenges associated with HIV and AIDS that remain, HIV prevention strategies, and the nurse's role in caring for people living with HIV. It outlines the Australian partnership approach to HIV, which provides a background for reflection on the response to HIV and AIDS in the UK and worldwide.
Collapse
|
23
|
Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control. J Virol 2017; 91:JVI.00441-17. [PMID: 28592538 PMCID: PMC5533920 DOI: 10.1128/jvi.00441-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia (P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/β-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor (IL27RA) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and the blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach (“communicome”) has the potential to significantly improve our knowledge of effective host immunity and accelerate the HIV cure agenda. Including 140 subjects with variable viral loads and measuring the plasma levels of >600 soluble proteins, our data highlight the importance of Th17 cells and Wnt/β-catenin signaling in HIV control and especially identify the IL-27/IL-27 receptor subunit alpha (IL-27RA) axis as a predictor of plasma viral load and proviral copy number in the peripheral blood. These data may provide important guidance to therapeutic approaches in the HIV cure agenda.
Collapse
|
24
|
A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4 + T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients. mBio 2017; 8:mBio.00876-17. [PMID: 28698276 PMCID: PMC5513707 DOI: 10.1128/mbio.00876-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells that actively transcribe HIV-1 have been defined as the “active viral reservoir” in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4+ T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4+ T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4+ T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4+ T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence.
Collapse
|
25
|
Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications. Clin Microbiol Rev 2017; 29:859-80. [PMID: 27559075 DOI: 10.1128/cmr.00015-16] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 DNA persists in infected cells despite combined antiretroviral therapy (cART), forming viral reservoirs. Recent trials of strategies targeting latent HIV reservoirs have rekindled hopes of curing HIV infection, and reliable markers are thus needed to evaluate viral reservoirs. Total HIV DNA quantification is simple, standardized, sensitive, and reproducible. Total HIV DNA load influences the course of the infection and is therefore clinically relevant. In particular, it is predictive of progression to AIDS and death, independently of HIV RNA load and the CD4 cell count. Baseline total HIV DNA load is predictive of the response to cART. It declines during cART but remains quantifiable, at a level that reflects both the history of infection (HIV RNA zenith, CD4 cell count nadir) and treatment efficacy (residual viremia, cumulative viremia, immune restoration, immune cell activation). Total HIV DNA load in blood is also predictive of the presence and severity of some HIV-1-associated end-organ disorders. It can be useful to guide individual treatment, notably, therapeutic de-escalation. Although it does not distinguish between replication-competent and -defective latent viruses, the total HIV DNA load in blood, tissues, and cells provides insights into HIV pathogenesis, probably because all viral forms participate in host cell activation and HIV pathogenesis. Total HIV DNA is thus a biomarker of HIV reservoirs, which can be defined as all infected cells and tissues containing all forms of HIV persistence that participate in pathogenesis. This participation may occur through the production of new virions, creating new cycles of infection and disseminating infected cells; maintenance or amplification of reservoirs by homeostatic cell proliferation; and viral transcription and synthesis of viral proteins without new virion production. These proteins can induce immune activation, thus participating in the vicious circle of HIV pathogenesis.
Collapse
|
26
|
Lifson MA, Ozen MO, Inci F, Wang S, Inan H, Baday M, Henrich TJ, Demirci U. Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv Drug Deliv Rev 2016; 103:90-104. [PMID: 27262924 PMCID: PMC4943868 DOI: 10.1016/j.addr.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.
Collapse
Affiliation(s)
- Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mehmet Ozgun Ozen
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; Medicine Faculty, Zirve University, Gaziantep, Turkey
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
27
|
Wang J, Yang J, Yang Z, Lu X, Jin C, Cheng L, Wu N. RbAp48, a novel inhibitory factor that regulates the transcription of human immunodeficiency virus type 1. Int J Mol Med 2016; 38:267-274. [PMID: 27222146 DOI: 10.3892/ijmm.2016.2598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma binding protein 4 (RbAp48) is a histone chaperone which has been suggested to play a role in gene silencing. However, the role of RbAp48 in human immunodeficiency virus type 1 (HIV-1) infection and gene replication has not been determined to date, to the best of our knowledge. For this purpose, we demonstrated in the present study that RbAp48 expression was upregulated by HIV-1 infection, whereas the knockdown of RbAp48 promoted HIV infection and the production of virus particles. The ectopic expression of RbAp48 inhibited HIV-1 expression, and this inhibition correlated with a marked decrease in the expression of HIV-1 genomic RNA and various RNA transcripts. Further experiments to determine the mechanism responsible for the inhibitory effects of RbAp48 revealed that the ectopic expression of RbAp48 repressed HIV-1 long terminal repeat (LTR)-mediated basal transcription as well as TNF-α- and phorbol 12-myristate 13-acetate (PMA)‑activated transcription. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis revealed that RbAp48 binds to the HIV-1 LTR in vitro. Taken together, these findings demonstrate that, as a transcriptional cofactor, RbAp48 is likely to act as a potent antiretroviral defense.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jin Yang
- Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, Zhejiang 330100, P.R. China
| | - Zongxing Yang
- Xixi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
28
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
29
|
Long-Term Spontaneous Control of HIV-1 Is Related to Low Frequency of Infected Cells and Inefficient Viral Reactivation. J Virol 2016; 90:6148-6158. [PMID: 27122576 DOI: 10.1128/jvi.00419-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED HIV establishes reservoirs of infected cells that persist despite effective antiretroviral therapy (ART). In most patients, the virus begins to replicate soon after treatment interruption. However, a low frequency of infected cells at the time of treatment interruption has been associated with delayed viral rebound. Likewise, individuals who control the infection spontaneously, so-called HIV-1 controllers (HICs), carry particularly low levels of infected cells. It is unclear, however, whether and how this small number of infected cells contributes to durable viral control. Here we compared 38 HICs with 12 patients on effective combined antiretroviral therapy (cART) and found that the low frequency of infected cells in the former subjects was associated both with less efficient viral reactivation in resting CD4(+) T cells and with less efficient virion production ex vivo We also found that a potent HIV-specific CD8(+) T cell response was present only in those HICs whose CD4(+) T cells produced virus ex vivo Long-term spontaneous control of HIV infection in HICs thus appears to be sustained on the basis of the inefficient reactivation of viruses from a limited number of infected cells and the capacity of HICs to activate a potent HIV-specific CD8(+) T cell response to counteract efficient viral reactivation events. IMPORTANCE There is a strong scientific interest in developing strategies to eradicate the HIV-1 reservoir. Very rare HIV-1-infected patients are able to spontaneously control viremia for long periods of time (HIV-1 controllers [HICs]) and are put forward as a model of HIV-1 remission. Here, we show that the low viral reservoirs found in HICs are a critical part of the mechanisms underlying viral control and result in a lower probability of HIV-1 reactivation events, resulting in limited HIV-1 release and spread. We found that those HICs in whom viral reactivation and spread from CD4(+) T cells in vitro were the most difficult were those with diminished CD8(+) T cell responses. These results suggest that, in some settings, low HIV-1 reservoirs decisively contribute to at least the temporary control of infection without antiretroviral therapy. We believe that this work provides information of relevance in the context of the search for HIV-1 remission.
Collapse
|
30
|
Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 2016; 12:e1005472. [PMID: 26938995 PMCID: PMC4777389 DOI: 10.1371/journal.ppat.1005472] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. Current HIV-1 research aims to find a cure for HIV-1, either by pursuing viral eradication or by attempting to attain an immune-mediated functional cure. For the purpose of interpreting the findings of these eradication strategies, a validated representative biomarker of the replication-competent latent HIV-1 reservoir is urgently needed. In this study we have evaluated several cell-associated HIV-1 persistence markers, and we have measured replication-competent reservoir using the viral outgrowth assay (VOA). The results show a correlation between the pool of HIV-1 DNA and the replication-competent reservoir. Our data show that the pool of HIV-1 DNA (total or integrated HIV-1 DNA) can predict the amount of replication-competent latent HIV-1 in patients receiving treatment. Hence, PCR based assays quantifying integrated and/or total HIV-1 DNA can play an important role in future studies aiming at HIV-1 eradication.
Collapse
|
31
|
Sarmati L, D'Ettorre G, Parisi SG, Andreoni M. HIV Replication at Low Copy Number and its Correlation with the HIV Reservoir: A Clinical Perspective. Curr HIV Res 2016; 13:250-7. [PMID: 25845389 PMCID: PMC4460281 DOI: 10.2174/1570162x13666150407142539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/27/2015] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Abstract
The efficacy of combination therapy (antiretroviral therapy - ARV) is demonstrated by the high rates of viral suppression achieved in most treated HIV patients. Whereas contemporary
treatments may continuously suppress HIV replication, they do not eliminate the latent reservoir, which can reactivate HIV infection if ARV is discontinued. The persistence of HIV proviral DNA and
infectious viruses in CD4+ T cells and others cells has long been considered a major obstacle in eradicating the HIV virus in treated patients. Moreover, recent studies have demonstrated the
persistence of HIV replication at low copies in most patients on suppressive ARV. The source of this ‘residual viraemia’ and whether it declines over years of therapy remain unknown. Similarly, little is known regarding the biological
relationships between the HIV reservoir and viral replication at low copies. The question of whether this ‘residual viraemia’ represents active replication or the release of non-productive virus from the reservoir has not been adequately
resolved. From a clinical perspective, both the quantification of the HIV reservoir and the detection of low levels of replication in full-responder patients on prolonged ARV may provide important information regarding the effectiveness of treatment
and the eradication of HIV. To date, the monitoring of these two parameters has been conducted only for research purposes; the routine use of standardised tests procedure is lacking.
This review aims to assess the current data regarding the correlation between HIV replication at low copies and the HIV reservoir and to provide useful information for clinicians.
Collapse
Affiliation(s)
- Loredana Sarmati
- Clinical Infectious Diseases, Tor Vergata University, V. Montpellier 1, 00133, Roma, Italy.
| | | | | | | |
Collapse
|
32
|
Vergnon-Miszczycha D, Lucht F, Roblin X, Pozzetto B, Paul S, Bourlet T. [Key role played by the gut associated lymphoid tissue during human immunodeficiency virus infection]. Med Sci (Paris) 2015; 31:1092-1101. [PMID: 26672662 DOI: 10.1051/medsci/20153112012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gut associated lymphoid tissue (GALT) is the site of numerous immunological disturbances during HIV-1 infection. It constitutes the largest reservoir for HIV, not or very poorly susceptible to antiretroviral therapy (ART), making it a major obstacle to HIV cure. Moreover, the GALT is involved in systemic immune activation in HIV-infected individuals: intestinal damage due to viral replication and severe CD4(+) T cell depletion in the GALT leads to microbial translocation, a key driver of immune activation, and in turn, disease progression. In this review, we describe the role of the GALT in HIV infection and we discuss therapeutic options to decrease the intestinal viral reservoir and to preserve immune function in the gut of HIV-infected people. Achieving these goals is necessary for a long-term infection control after the interruption of ART.
Collapse
Affiliation(s)
- Delphine Vergnon-Miszczycha
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de maladies infectieuses et tropicales, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Frédéric Lucht
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de maladies infectieuses et tropicales, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Xavier Roblin
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de gastro-entérologie, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Bruno Pozzetto
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire des agents infectieux et d'hygiène, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Stéphane Paul
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire d'immunologie, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Thomas Bourlet
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire des agents infectieux et d'hygiène, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| |
Collapse
|
33
|
Engstrom-Melnyk J, Rodriguez PL, Peraud O, Hein RC. Clinical Applications of Quantitative Real-Time PCR in Virology. METHODS IN MICROBIOLOGY 2015; 42:161-197. [PMID: 38620180 PMCID: PMC7148891 DOI: 10.1016/bs.mim.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since the invention of the polymerase chain reaction (PCR) and discovery of Taq polymerase, PCR has become a staple in both research and clinical molecular laboratories. As clinical and diagnostic needs have evolved over the last few decades, demanding greater levels of sensitivity and accuracy, so too has PCR performance. Through optimisation, the present-day uses of real-time PCR and quantitative real-time PCR are enumerable. The technique, combined with adoption of automated processes and reduced sample volume requirements, makes it an ideal method in a broad range of clinical applications, especially in virology. Complementing serologic testing by detecting infections within the pre-seroconversion window period and infections with immunovariant viruses, real-time PCR provides a highly valuable tool for screening, diagnosing, or monitoring diseases, as well as evaluating medical and therapeutic decision points that allows for more timely predictions of therapeutic failures than traditional methods and, lastly, assessing cure rates following targeted therapies. All of these serve vital roles in the continuum of care to enhance patient management. Beyond this, quantitative real-time PCR facilitates advancements in the quality of diagnostics by driving consensus management guidelines following standardisation to improve patient outcomes, pushing for disease eradication with assays offering progressively lower limits of detection, and rapidly meeting medical needs in cases of emerging epidemic crises involving new pathogens that may result in significant health threats.
Collapse
Affiliation(s)
- Julia Engstrom-Melnyk
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Pedro L Rodriguez
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Olivier Peraud
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| | - Raymond C Hein
- Medical and Scientific Affairs, Roche Diagnostic Corporation, Indianapolis, Indiana, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize the evidence in the literature that supports the central nervous system (CNS) as a viral reservoir for HIV-1 and to prioritize future research efforts. RECENT FINDINGS HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example, Tat). SUMMARY Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of combination antiretroviral therapy or presence of viral load), which do not reflect modern day patients (combination antiretroviral therapy-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine whether the CNS represents a relevant and important viral reservoir.
Collapse
|
35
|
Recruitment and ethical considerations in HIV cure trials requiring treatment interruption. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)31148-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Persaud D, Patel K, Karalius B, Rainwater-Lovett K, Ziemniak C, Ellis A, Chen YH, Richman D, Siberry GK, Van Dyke RB, Burchett S, Seage GR, Luzuriaga K. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr 2014; 168:1138-46. [PMID: 25286283 PMCID: PMC4324476 DOI: 10.1001/jamapediatrics.2014.1560] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IMPORTANCE Combination antiretroviral therapy initiated within several weeks of human immunodeficiency virus (HIV) infection in adults limits proviral reservoirs that preclude HIV cure. Biomarkers of restricted proviral reservoirs may aid in the monitoring of HIV remission or cure. OBJECTIVES To quantify peripheral blood proviral reservoir size in perinatally HIV-infected (PHIV+) adolescents and to identify correlates of limited proviral reservoirs. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study including 144 PHIV+ youths (median age, 14.3 years) enrolled in the United States-based Pediatric HIV/AIDS Cohort Study and receiving durable (median duration, 10.2 years) combination antiretroviral therapy, stratified by age at virologic control. MAIN OUTCOMES AND MEASURES The primary end point was peripheral blood mononuclear cell (PBMC) proviral load after virologic control at different ages. Correlations between proviral load and markers of active HIV production (ie, HIV-specific antibodies, 2-long terminal repeat circles) and markers of immune activation and inflammation were also assessed. RESULTS Proviral reservoir size was markedly reduced in the PHIV+ youth who achieved virologic control before 1 year of age (4.2 [interquartile range, 2.6-8.6] copies per 1 million PBMCs) compared with those who achieved virologic control at 1 to 5 years of age (19.4 [interquartile range, 5.5-99.8] copies per 1 million PBMCs) or after 5 years of age (70.7 [interquartile range, 23.2-209.4] copies per 1 million PBMCs; P < .001). A proviral burden of less than 10 copies per 1 million PBMCs in PHIV+ youth was measured in 11 (79%), 20 (40%), and 13 (18%) participants with virologic control before 1 year, at 1 to 5 years, and after 5 years of age, respectively (P < .001). Lower proviral load was associated with undetectable 2-long terminal repeat circles (P < .001) and HIV-negative or indeterminate serostatus (P < .001) but not with concentrations of soluble immune activation markers CD14 and CD163. CONCLUSIONS AND RELEVANCE Early effective combination antiretroviral therapy with prolonged virologic suppression after perinatal HIV infection leads to negligible peripheral blood proviral reservoirs in adolescence and is associated with negative or indeterminate HIV serostatus. These findings highlight the long-term effect of early effective control of HIV replication on biomarkers of HIV persistence in perinatal infection and the utility of HIV serostatus as a biomarker for small proviral reservoir size, although not necessarily for cure.
Collapse
Affiliation(s)
- Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kunjal Patel
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | - Brad Karalius
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | | | - Carrie Ziemniak
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela Ellis
- Frontier Science & Technology Research Foundation, Inc., Buffalo, NY
| | - Ya Hui Chen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Douglas Richman
- University of California San Diego, La Jolla, and the Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - George K. Siberry
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda MD
| | - Russell B. Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans LA
| | - Sandra Burchett
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA
| | - George R. Seage
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, Department of Pediatrics, and Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
37
|
Cross-clade ultrasensitive PCR-based assays to measure HIV persistence in large-cohort studies. J Virol 2014; 88:12385-96. [PMID: 25122785 DOI: 10.1128/jvi.00609-14] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4(+) T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4(+) T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence in HIV-infected individuals from multiple geographical regions. These assays are relatively inexpensive, do not require DNA extraction, and can be completed in a single day. Therefore, they are perfectly adapted to monitor HIV persistence in large cohorts of HIV-infected individuals and, given their sensitivity, can be used to monitor the efficacy of therapeutic strategies aimed at interfering with HIV persistence after prolonged ART.
Collapse
|
38
|
Contribution of human immunodeficiency virus type 1 minority variants to reduced drug susceptibility in patients on an integrase strand transfer inhibitor-based therapy. PLoS One 2014; 9:e104512. [PMID: 25110880 PMCID: PMC4128663 DOI: 10.1371/journal.pone.0104512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-1 minority variants on transmission, pathogenesis, and virologic failure to antiretroviral regimens has been explored; however, most studies of low-level HIV-1 drug-resistant variants have focused in single target regions. Here we used a novel HIV-1 genotypic assay based on deep sequencing, DEEPGEN (Gibson et al 2014 Antimicrob Agents Chemother 58∶2167) to simultaneously analyze the presence of minority variants carrying mutations associated with reduced susceptibility to protease (PR), reverse transcriptase (RT), and integrase strand transfer integrase inhibitors (INSTIs), as well as HIV-1 coreceptor tropism. gag-p2/NCp7/p1/p6/pol-PR/RT/INT and env/C2V3 PCR products were obtained from twelve heavily treatment-experienced patients experiencing virologic failure while participating in a 48-week dose-ranging study of elvitegravir (GS-US-183-0105). Deep sequencing results were compared with (i) virological response to treatment, (ii) genotyping based on population sequencing, (iii) phenotyping data using PhenoSense and VIRALARTS, and (iv) HIV-1 coreceptor tropism based on the phenotypic test VERITROP. Most patients failed the antiretroviral regimen with numerous pre-existing mutations in the PR and RT, and additionally newly acquired INSTI-resistance mutations as determined by population sequencing (mean 9.4, 5.3, and 1.4 PI- RTI-, and INSTI-resistance mutations, respectively). Interestingly, since DEEPGEN allows the accurate detection of amino acid substitutions at frequencies as low as 1% of the population, a series of additional drug resistance mutations were detected by deep sequencing (mean 2.5, 1.5, and 0.9, respectively). The presence of these low-abundance HIV-1 variants was associated with drug susceptibility, replicative fitness, and coreceptor tropism determined using sensitive phenotypic assays, enhancing the overall burden of resistance to all four antiretroviral drug classes. Further longitudinal studies based on deep sequencing tests will help to clarify (i) the potential impact of minority HIV-1 drug resistant variants in response to antiretroviral therapy and (ii) the importance of the detection of HIV minority variants in the clinical practice.
Collapse
|
39
|
Abstract
HIV prevalence is increasing worldwide because people on antiretroviral therapy are living longer, although new infections decreased from 3.3 million in 2002, to 2.3 million in 2012. Global AIDS-related deaths peaked at 2.3 million in 2005, and decreased to 1.6 million by 2012. An estimated 9.7 million people in low-income and middle-income countries had started antiretroviral therapy by 2012. New insights into the mechanisms of latent infection and the importance of reservoirs of infection might eventually lead to a cure. The role of immune activation in the pathogenesis of non-AIDS clinical events (major causes of morbidity and mortality in people on antiretroviral therapy) is receiving increased recognition. Breakthroughs in the prevention of HIV important to public health include male medical circumcision, antiretrovirals to prevent mother-to-child transmission, antiretroviral therapy in people with HIV to prevent transmission, and antiretrovirals for pre-exposure prophylaxis. Research into other prevention interventions, notably vaccines and vaginal microbicides, is in progress.
Collapse
Affiliation(s)
- Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Connie Celum
- Departments of Global Health, Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Australia; Infectious Diseases Unit, Alfred Hospital, Melbourne, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| |
Collapse
|
40
|
Ling B, Piatak M, Rogers L, Johnson AM, Russell-Lodrigue K, Hazuda DJ, Lifson JD, Veazey RS. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques. PLoS One 2014; 9:e102795. [PMID: 25033210 PMCID: PMC4102539 DOI: 10.1371/journal.pone.0102795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). METHODS SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. RESULTS Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. CONCLUSIONS The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Daria J. Hazuda
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
41
|
T-cell activation positively correlates with cell-associated HIV-DNA level in viremic patients with primary or chronic HIV-1 infection. AIDS 2014; 28:1683-7. [PMID: 24841127 DOI: 10.1097/qad.0000000000000319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the relationship between the size of blood HIV reservoirs and T-cell activation in patients with primary HIV infection (PHI) and chronic HIV infection (CHI) before and after antiretroviral therapy (ART) interruption. Levels of T-cell activation strongly positively correlated with HIV-DNA levels in viremic PHI and CHI patients. In ART-treated CHI patients, residual immune activation was not associated with HIV-DNA levels. Interestingly, early levels of HIV-DNA in PHI predicted the extent of residual T-cell proliferation under ART.
Collapse
|
42
|
Autran B, Hamimi C, Katlama C. One Step Closer to HIV Eradication? CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2014. [DOI: 10.1007/s40506-014-0017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Hegedus A, Nyamweya S, Zhang Y, Govind S, Aspinall R, Mashanova A, Jansen VAA, Whittle H, Jaye A, Flanagan KL, Macallan DC. Protection versus pathology in aviremic and high viral load HIV-2 infection-the pivotal role of immune activation and T-cell kinetics. J Infect Dis 2014; 210:752-61. [PMID: 24803534 PMCID: PMC4130319 DOI: 10.1093/infdis/jiu165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background. Many human immunodeficiency virus (HIV)–2-infected individuals remain aviremic and behave as long-term non-progressors but some progress to AIDS. We hypothesized that immune activation and T-cell turnover would be critical determinants of non-progressor/progressor status. Methods. We studied 37 subjects in The Gambia, West Africa: 10 HIV-negative controls, 10 HIV-2-infected subjects with low viral loads (HIV-2-LV), 7 HIV-2-infected subjects with high viral loads (HIV-2-HV), and 10 with HIV-1 infection. We measured in vivo T-cell turnover using deuterium-glucose labeling, and correlated results with T-cell phenotype (by flow cytometry) and T-cell receptor excision circle (TREC) abundance. Results. Immune activation (HLA-DR/CD38 coexpression) differed between groups with a significant trend: controls <HIV-2-LV <HIV-1 <HIV-2-HV (P < .01 for all cell types). A similar trend was observed in the pattern of in vivo turnover of memory CD4+ and CD8+ T-cells and TREC depletion in naive CD4+ T-cells, although naive T-cell turnover was relatively unaffected by either infection. T-cell turnover, immune activation, and progressor status were closely associated. Conclusions. HIV-2 non-progressors have low rates of T-cell turnover (both CD4+ and CD8+) and minimal immune activation; high viral load HIV-2 progressors had high values, similar to or exceeding those in HIV-1 infection.
Collapse
Affiliation(s)
- Andrea Hegedus
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| | | | - Yan Zhang
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| | - Sheila Govind
- Translational Medicine Group, Cranfield Health, Cranfield University
| | - Richard Aspinall
- Translational Medicine Group, Cranfield Health, Cranfield University
| | - Alla Mashanova
- School of Biological Sciences, Royal Holloway University of London, United Kingdom
| | - Vincent A A Jansen
- School of Biological Sciences, Royal Holloway University of London, United Kingdom
| | | | - Assan Jaye
- Medical Research Council (UK), The Gambia, West Africa
| | | | - Derek C Macallan
- Infection and Immunity Research Institute, St George's, University of London, United Kingdom
| |
Collapse
|
44
|
Enhanced antiretroviral therapy in rhesus macaques improves RT-SHIV viral decay kinetics. Antimicrob Agents Chemother 2014; 58:3927-33. [PMID: 24777106 DOI: 10.1128/aac.02522-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using an established nonhuman primate model, rhesus macaques were infected intravenously with a chimeric simian immunodeficiency virus (SIV) consisting of SIVmac239 with the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase from clone HXBc2 (RT-SHIV). The impacts of two enhanced (four- and five-drug) highly active antiretroviral therapies (HAART) on early viral decay and rebound were determined. The four-drug combination consisted of an integrase inhibitor, L-870-812 (L-812), together with a three-drug regimen comprising emtricitabine [(-)-FTC], tenofovir (TFV), and efavirenz (EFV). The five-drug combination consisted of one analog for each of the four DNA precursors {using TFV, (-)-FTC, (-)-β-D-(2R,4R)-1,3-dioxolane-2,6-diaminopurine (amdoxovir [DAPD]), and zidovudine (AZT)}, together with EFV. A cohort treated with a three-drug combination of (-)-FTC, TFV, and EFV served as treated controls. Daily administration of a three-, four-, or five-drug combination of antiretroviral agents was initiated at week 6 or 8 after inoculation and continued up to week 50, followed by a rebound period. Plasma samples were collected routinely, and drug levels were monitored using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Viral loads were monitored with a standard TaqMan quantitative reverse transcriptase PCR (qRT-PCR) assay. Comprehensive analyses of replication dynamics were performed. RT-SHIV infection in rhesus macaques produced typical viral infection kinetics, with untreated controls establishing persistent viral loads of >10(4) copies of RNA/ml. RT-SHIV loads at the start of treatment (V0) were similar in all treated cohorts (P > 0.5). All antiretroviral drug levels were measureable in plasma. The four-drug and five-drug combination regimens (enhanced HAART) improved suppression of the viral load (within 1 week; P < 0.01) and had overall greater potency (P < 0.02) than the three-drug regimen (HAART). Moreover, rebound viremia occurred rapidly following cessation of any treatment. The enhanced HAART (four- or five-drug combination) showed significant improvement in viral suppression compared to the three-drug combination, but no combination was sufficient to eliminate viral reservoirs.
Collapse
|
45
|
Kibirige CN, Menendez FA, Zhang H, Nilles TL, Langan S, Margolick JB. Late-emerging strains of HIV induce T-cell homeostasis failure by promoting bystander cell death and immune exhaustion in naïve CD4 and all CD8 T-cells. Med Hypotheses 2014; 83:69-73. [PMID: 24774718 DOI: 10.1016/j.mehy.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 04/01/2014] [Indexed: 12/13/2022]
Abstract
The mechanisms involved in the decline of CD4 and CD8 T-cells that lead to HIV-induced immune dysregulation are not clearly understood. We hypothesize that late-emerging strains of HIV, such as CXCR4-tropic (X4) virions, induce T-cell homeostasis failure by promoting significantly more bystander cell death, and immune exhaustion in naïve CD4 and all CD8 T-cells, when compared to strain of HIV, such as CCR5-tropic (R5) virions, found early during the course of infection. In the reported study, inactivated X4 virions induced greater bystander cell death in sort-purified naïve CD4 T-cells compared to R5 virions, which was significant (p=0.013), and in memory CD8 T-cells, though the latter was not significant. A clearer understanding of the mechanisms involved in HIV-induced depletion of T-cell numbers and function could lead to therapies that prevent T-cell death and restore immune function. These therapies could improve current anti-retroviral and cure-related treatments by boosting the immune system's own ability to combat the virus.
Collapse
Affiliation(s)
- Catherine N Kibirige
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| | - Frederick A Menendez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Tricia L Nilles
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Susan Langan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| |
Collapse
|
46
|
De Spiegelaere W, Malatinkova E, Lynch L, Van Nieuwerburgh F, Messiaen P, O'Doherty U, Vandekerckhove L. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics. Clin Chem 2014; 60:886-95. [PMID: 24664400 DOI: 10.1373/clinchem.2013.219378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. METHODS A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. RESULTS Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. CONCLUSIONS Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates.
Collapse
Affiliation(s)
| | - Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Lindsay Lynch
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Peter Messiaen
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
47
|
|
48
|
Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 2014; 9:e85999. [PMID: 24465831 PMCID: PMC3897572 DOI: 10.1371/journal.pone.0085999] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022] Open
Abstract
Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been recently described as an alternative PCR-based technique for absolute quantification with higher accuracy compared to qPCR. Here, a comparison was made between the droplet digital PCR (ddPCR) and the seminested qPCR for quantification of unspliced (us) and multiply spliced (ms) CA HIV-1 RNA. Synthetic RNA standards and CA HIV-1 RNA from infected patients on and off ART (N = 34) were quantified with both methods. Correlations were observed between the methods both for serially diluted synthetic standards (usRNA: R2 = 0.97, msRNA: R2 = 0.92) and patient-derived samples (usRNA: R2 = 0.51, msRNA: R2 = 0.87). Seminested qPCR showed better quantitative linearity, accuracy and sensitivity in the quantification of synthetic standards than ddPCR, especially in the lower quantification ranges. Both methods demonstrated equally high detection rate of usRNA in patient samples on and off ART (91%), whereas ddPCR detected msRNA in larger proportion of samples from ART-treated patients (p = 0.13). We observed an average agreement between the methods for usRNA quantification in patient samples, albeit with a large standard deviation (bias = 0.05±0.75 log10). However, a bias of 0.94±0.36 log10 was observed for msRNA. No-template controls were consistently negative in the seminested qPCR, but yielded a positive ddPCR signal for some wells. Therefore, the false positive signals may have affected the detection power of ddPCR in this study. Digital PCR is promising for HIV nucleic acid quantification, but the false positive signals need further attention. Quantitative assays for CA HIV RNA have the potential to improve monitoring of patients on ART and to be used in clinical studies aimed at HIV eradication, but should be cross-validated by multiple laboratories prior to wider use.
Collapse
Affiliation(s)
- Maja Kiselinova
- HIV Translational Research Unit (HTRU), Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alexander O. Pasternak
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ward De Spiegelaere
- HIV Translational Research Unit (HTRU), Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Dirk Vogelaers
- HIV Translational Research Unit (HTRU), Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Linos Vandekerckhove
- HIV Translational Research Unit (HTRU), Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
49
|
|
50
|
Rouzioux C, Mélard A, Avéttand-Fénoël V. Quantification of total HIV1-DNA in peripheral blood mononuclear cells. Methods Mol Biol 2014; 1087:261-270. [PMID: 24158829 DOI: 10.1007/978-1-62703-670-2_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
HIV reservoir measurement in patients is one of the challenges at the time of testing new treatment approaches aiming at eradicating HIV infection. HIV reservoirs are complex and disseminated in a large number of organs and lymphoid tissues. We chose to quantify total cell-associated HIV-DNA in PBMC as a marker of HIV reservoirs and described the method we developed. The marker was used in large cohort studies at different stages of HIV disease and in therapeutical trials. Our results show how informative is this marker, as well as that plasma HIV-RNA and CD4 T cell count are representative of each patient when measured in blood. Such a series of results might help to adapt simplification or structured interruption strategies, design new clinical trials targeting HIV reservoirs, and select populations that could benefit of such new treatments.
Collapse
|