1
|
Gutiérrez F, Fernández-González M, Ledesma C, Losada-Echeberría M, Barrajón-Catalán E, García-Abellán J, De Stefano D, López L, Bello-Perez M, Padilla S, Masiá M. Virological History Predicts Non-sustained Viral Suppression With Long-Acting Cabotegravir and Rilpivirine Therapy, Independent of Pharmacokinetic Parameters. Clin Infect Dis 2025; 80:842-853. [PMID: 39298641 DOI: 10.1093/cid/ciae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND This study aimed to investigate factors contributing to non-sustained viral suppression, including intermittent viremia and persistent low-level viremia, during cabotegravir (CAB) plus rilpivirine (RPV) long-acting (LA) injectable therapy, with a focus on pharmacokinetics (PK). METHODS A prospective cohort study was conducted on people with human immunodeficiency virus (HIV, PWH) transitioning from stable oral antiretroviral therapy (ART) to bimonthly CAB + RPV LA. Standardized follow-up included close monitoring through blood sampling for plasma human immunodeficiency virus type 1 (HIV-1) viral load (VL) and multiple plasma drug concentrations measurements to analyze the connection between PK parameters and virologic outcomes. RESULTS Among 173 patients with a median (interquartile range [IQR]) follow-up of 11.1(7.1-13.2) months and 789 pre-dose measurements, 38.7% experienced VL ≥ 20 copies/mL, and 16.2% had levels ≥50 copies/mL. Intermittent viremia occurred in 34.7% of patients, and persistent low-level viremia in 4%. Virological failure developed in 2 cases. Predictors of non-sustained viral suppression included VL at HIV diagnosis (adjusted hazard ratio [AHR]: 1.49 per log10 VL, 95% confidence interval [CI]: 1.04-2.12, P = .027), detectable viremia on oral ART (AHR: 2.45, 95% CI: 1.29-4.65, P = .006), and the level of viral suppression at transition (AHR: 0.38, 95% CI: .19-.75, P = .004). We found a significant association between low trough concentrations of CAB and RPV and episodes of detectable viremia exceeding 50 copies/mL. However, none of the assessed PK covariates predicted non-sustained viral suppression in multivariable models. CONCLUSIONS Non-sustained viral suppression in PWH transitioning from stable oral ART to CAB + RPV LA was linked to preexisting factors before transition. Higher VL pre-ART and incomplete suppression on oral therapy increased the risk, independent of PK parameters.
Collapse
Affiliation(s)
- Félix Gutiérrez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Fernández-González
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Ledesma
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
| | - María Losada-Echeberría
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Javier García-Abellán
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Daria De Stefano
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Leandro López
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Melissa Bello-Perez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Sergio Padilla
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Masiá
- Infectious Diseases Unit, Hospital General Universitario de Elche, Elche, Spain
- Department of Clinical Medicine, Universidad Miguel Hernández, Alicante, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Gurgo C, Fenizia C, McKinnon K, Hsia RC, Franchini G. Expression of HIV from a 1-LTR circular DNA in the absence of integration. Retrovirology 2025; 22:2. [PMID: 40098202 PMCID: PMC11912779 DOI: 10.1186/s12977-025-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Like all retroviruses, two kinds of viral DNA are present in the nucleus of HIV-infected cells: integrated DNA and a pool of unintegrated DNA containing linear and circular forms. For the most part, it has been difficult to examine the role of the unintegrated DNA forms in the viral life cycle in the presence of the integrated form, or to distinguish the respective contributions of the two circular DNA forms in the context of the unintegrated DNA. RESULTS In our approach, we constructed a 1-LTR circular form of HIV in order to study its expression in isolation from the other forms; we derived a linear genomic HIV DNA lacking the 5'-LTR (1-LTRHIV) from a molecular clone of HIV. This linear form is transcriptionally incompetent, but via circularization becomes a transcriptionally competent 1-LTR circle. When transfected into cells lacking CD4 where neither the spread of virus nor reinfection can occur, the linear or in vitro circularized form produces a fully infectious HIV. Virus expression is stable throughout cell division as measured on a per cell basis by flow cytometry. A progressive accumulation of copies of the circular form is observed in the presence of the cell growth inhibitor aphidicolin, suggestive of episomal amplification, for which we propose a model. CONCLUSION We demonstrate in this study that production of infectious virus is initiated and completed by the 1-LTR episomal form of HIV DNA in the absence of reinfection and integration. In addition, we show that the 1-LTR episomal form replicates in the absence of an origin of replication, and we propose a model for its amplification. In line with the work of others but following a different approach, we provide support for a potential role of episomal forms in HIV persistence. Our data highlight the biological complexity of HIV replication and the potential of the episomal form to contribute to the persistence of HIV.
Collapse
Affiliation(s)
- Corrado Gurgo
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Katherine McKinnon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ru-Ching Hsia
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Chéret A. Acute HIV-1 Infection: Paradigm and Singularity. Viruses 2025; 17:366. [PMID: 40143294 PMCID: PMC11945883 DOI: 10.3390/v17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Acute HIV-1 infection (AHI) is a transient period where the virus causes evident damage to the immune system, including an extensive apoptosis of CD4+ T cells associated with a high level of activation and a major cytokine storm to fight the invading virus. HIV infection establishes persistence by integrating the viral genome into host cell DNA in both replicating and non-replicating forms, effectively hiding from immune surveillance within infected lymphocytes as cellular reservoirs. The measurement of total HIV-1 DNA in peripheral blood mononuclear cells (PBMCs) is a reliable reflection of this reservoir. Initiating treatments during AHI with nucleoside reverse transcriptase inhibitors (NRTIs) and/or integrase strand transfer inhibitors (INSTIs) is essential to alter the dynamics of the global reservoir expansion, and to reduce the establishment of long-lived cellular and tissue reservoirs, while preserving and enhancing specific and non-specific immune responses. Furthermore, some of the patients treated at the AHI stage may become post-treatment controllers and should be informative regarding the mechanism of viral control, so patients treated during AHI are undoubtedly the best candidates to test innovative remission strategies toward a functional cure that could play a pivotal role in long-term HIV control. AHI is characterized by high levels of viral replication, with a significant increase in the risk of HIV transmission. Detecting AHI and initiating early treatment following diagnosis provides a window of opportunity to control the epidemic, particularly in high-risk populations.
Collapse
Affiliation(s)
- Antoine Chéret
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, 75014 Paris, France;
- Service Plateforme de Diagnostic et Thérapeutique Pluridisciplinaire, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
- INSERM-CIC-1424, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
| |
Collapse
|
4
|
Tincati C, Bono V, Cannizzo ES, Tosi D, Savi F, Falcinella C, Casabianca A, Orlandi C, Luigiano C, Augello M, Rusconi S, Muscatello A, Bandera A, Calcagno A, Gori A, Nozza S, Marchetti G. Primary HIV infection features colonic damage and neutrophil inflammation yet containment of microbial translocation. AIDS 2024; 38:623-632. [PMID: 38016163 PMCID: PMC10942218 DOI: 10.1097/qad.0000000000003799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Impairment of the gastrointestinal barrier leads to microbial translocation and peripheral immune activation, which are linked to disease progression. Data in the setting of primary HIV/SIV infection suggest that gut barrier damage is one of the first events of the pathogenic cascade, preceding mucosal immune dysfunction and microbial translocation. We assessed gut structure and immunity as well as microbial translocation in acutely and chronically-infected, combination antiretroviral therapy (cART)-naive individuals. METHODS Fifteen people with primary HIV infection (P-HIV) and 13 with chronic HIV infection (C-HIV) c-ART-naive participants were cross-sectionally studied. Gut biopsies were analysed in terms of gut reservoirs (total, integrated and unintegrated HIV DNA); tight junction proteins (E-cadherin, Zonula Occludens-1), CD4 + expression, neutrophil myeloperoxidase (histochemical staining); collagen deposition (Masson staining). Flow cytometry was used to assess γδ T-cell frequency (CD3 + panγδ+Vδ1+/Vδ2+). In plasma, we measured microbial translocation (LPS, sCD14, EndoCAb) and gut barrier function (I-FABP) markers (ELISA). RESULTS P-HIV displayed significantly higher tissue HIV DNA, yet neutrophil infiltration and collagen deposition in the gut were similar in the two groups. In contrast, microbial translocation markers were significantly lower in P-HIV compared with C-HIV. A trend to higher mucosal E-cadherin, and gut γδ T-cells was also observed in P-HIV. CONCLUSION Early HIV infection features higher HIV DNA in the gut, yet comparable mucosal alterations to those observed in chronic infection. In contrast, microbial translocation is contained in primary HIV infection, likely because of a partial preservation of E-cadherin and mucosal immune subsets, namely γδ T-cells.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | | | - Delfina Tosi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Federica Savi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Camilla Falcinella
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | | | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, Department of Biomedical and Clinical Biosciences, University of Milan
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Calcagno
- Unit of Infectious Diseases Unit, Department of Medical Sciences, University of Turin, Turin
| | - Andrea Gori
- Clinic of Infectious Diseases, Department of Pathophysiology and Transplantation, ASST Fatebenefratelli Sacco University of Milan
| | - Silvia Nozza
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| |
Collapse
|
5
|
Yuan L, Liu Z, Zhang X, Wei F, Guo S, Guo N, Liu L, Ma Z, Ji Y, Wang R, Lu X, Li Z, Xia W, Wu H, Zhang T, Su B. Development of a droplet digital polymerase chain reaction assay for the sensitive detection of total and integrated HIV-1 DNA. Chin Med J (Engl) 2024; 137:729-736. [PMID: 38433332 PMCID: PMC10950186 DOI: 10.1097/cm9.0000000000003081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Total human immunodeficiency virus (HIV) DNA and integrated HIV DNA are widely used markers of HIV persistence. Droplet digital polymerase chain reaction (ddPCR) can be used for absolute quantification without needing a standard curve. Here, we developed duplex ddPCR assays to detect and quantify total HIV DNA and integrated HIV DNA. METHODS The limit of detection, dynamic ranges, sensitivity, and reproducibility were evaluated by plasmid constructs containing both the HIV long terminal repeat (LTR) and human CD3 gene (for total HIV DNA) and ACH-2 cells (for integrated HIV DNA). Forty-two cases on stable suppressive antiretroviral therapy (ART) were assayed in total HIV DNA and integrated HIV DNA. Correlation coefficient analysis was performed on the data related to DNA copies and cluster of differentiation 4 positive (CD4 + ) T-cell counts, CD8 + T-cell counts and CD4/CD8 T-cell ratio, respectively. The assay linear dynamic range and lower limit of detection (LLOD) were also assessed. RESULTS The assay could detect the presence of HIV-1 copies 100% at concentrations of 6.3 copies/reaction, and the estimated LLOD of the ddPCR assay was 4.4 HIV DNA copies/reaction (95% confidence intervals [CI]: 3.6-6.5 copies/reaction) with linearity over a 5-log 10 -unit range in total HIV DNA assay. For the integrated HIV DNA assay, the LLOD was 8.0 copies/reaction (95% CI: 5.8-16.6 copies/reaction) with linearity over a 3-log 10 -unit range. Total HIV DNA in CD4 + T cells was positively associated with integrated HIV DNA ( r = 0.76, P <0.0001). Meanwhile, both total HIV DNA and integrated HIV DNA in CD4 + T cells were inversely correlated with the ratio of CD4/CD8 but positively correlated with the CD8 + T-cell counts. CONCLUSIONS This ddPCR assay can quantify total HIV DNA and integrated HIV DNA efficiently with robustness and sensitivity. It can be readily adapted for measuring HIV DNA with non-B clades, and it could be beneficial for testing in clinical trials.
Collapse
Affiliation(s)
- Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunxia Ji
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Mazzuti L, Turriziani O, Mezzaroma I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023; 11:biomedicines11010159. [PMID: 36672667 PMCID: PMC9856151 DOI: 10.3390/biomedicines11010159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Chronic immune activation has a significant role in HIV-1 disease pathogenesis and CD4+ T-cell depletion. The causes of chronic inflammation and immune activation are incompletely understood, but they are likely multifactorial in nature, involving both direct and indirect stimuli. Possible explanations include microbial translocation, coinfection, and continued presence of competent replicating virus. In fact, long-term viral suppression treatments are unable to normalize elevated markers of systemic immune activation. Furthermore, high levels of pro-inflammatory cytokines increase susceptibility to premature aging of the immune system. The phenomenon of "inflammaging" has begun to be evident in the last decades, as a consequence of increased life expectancy due to the introduction of cART. Quality of life and survival have improved substantially; however, PLWH are predisposed to chronic inflammatory conditions leading to age-associated diseases, such as inflammatory bowel disease, neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities, and non-HIV-associated cancers. Several approaches have been studied in numerous uncontrolled and/or randomized clinical trials with the aim of reducing immune activation/inflammatory status in PLWH, none of which have achieved consistent results.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Packard TA, Schwarzer R, Herzig E, Rao D, Luo X, Egedal JH, Hsiao F, Widera M, Hultquist JF, Grimmett ZW, Messer RJ, Krogan NJ, Deeks SG, Roan NR, Dittmer U, Hasenkrug KJ, Greene WC. CCL2: a Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022; 13:e0189122. [PMID: 36073812 PMCID: PMC9600577 DOI: 10.1128/mbio.01891-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.
Collapse
Affiliation(s)
| | - Roland Schwarzer
- J. David Gladstone Institutes, San Francisco, California, USA
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eytan Herzig
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Xiaoyu Luo
- J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Feng Hsiao
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nadia R. Roan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Ulf Dittmer
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Warner C. Greene
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Wang X, Vincent E, Siddiqui S, Turnbull K, Lu H, Blair R, Wu X, Watkins M, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Bohm RP, Veazey RS, Xu H. Early treatment regimens achieve sustained virologic remission in infant macaques infected with SIV at birth. Nat Commun 2022; 13:4823. [PMID: 35973985 PMCID: PMC9381774 DOI: 10.1038/s41467-022-32554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/04/2022] [Indexed: 01/28/2023] Open
Abstract
Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Eunice Vincent
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Katherine Turnbull
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Meagan Watkins
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
9
|
Ruggiero A, Pascucci GR, Cotugno N, Domínguez-Rodríguez S, Rinaldi S, Tagarro A, Rojo P, Foster C, Bamford A, De Rossi A, Nastouli E, Klein N, Morrocchi E, Fatou B, Smolen KK, Ozonoff A, Di Pastena M, Luzuriaga K, Steen H, Giaquinto C, Goulder P, Rossi P, Levy O, Pahwa S, Palma P. Determinants of B-Cell Compartment Hyperactivation in European Adolescents Living With Perinatally Acquired HIV-1 After Over 10 Years of Suppressive Therapy. Front Immunol 2022; 13:860418. [PMID: 35432380 PMCID: PMC9009387 DOI: 10.3389/fimmu.2022.860418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Background Despite a successful antiretroviral therapy (ART), adolescents living with perinatally acquired HIV (PHIV) experience signs of B-cell hyperactivation with expansion of 'namely' atypical B-cell phenotypes, including double negative (CD27-IgD-) and termed age associated (ABCs) B-cells (T-bet+CD11c+), which may result in reduced cell functionality, including loss of vaccine-induced immunological memory and higher risk of developing B-cells associated tumors. In this context, perinatally HIV infected children (PHIV) deserve particular attention, given their life-long exposure to chronic immune activation. Methods We studied 40 PHIV who started treatment by the 2nd year of life and maintained virological suppression for 13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma (Spike). We applied a multi-disciplinary approach including immunological B and T cell phenotype, plasma proteomics analysis, and serum level of anti-measles antibodies as functional correlates of vaccine-induced immunity. Results Phenotypic signs of B cell hyperactivation were elevated in subjects starting ART later (%DN T-bet+CD11c+ p=0.03; %AM T-bet+CD11c+ p=0.02) and were associated with detectable cell-associated HIV-1 RNA (%AM T-bet+CD11c+ p=0.0003) and transient elevation of the plasma viral load (spike). Furthermore, B-cell hyperactivation appeared to be present in individuals with higher frequency of exhausted T-cells, in particular: %CD4 TIGIT+ were associated with %DN (p=0.008), %DN T-bet+CD11c+ (p=0.0002) and %AM T-bet+CD11c+ (p=0.002) and %CD4 PD-1 were associated with %DN (p=0.048), %DN T-bet+CD11c+ (p=0.039) and %AM T-bet+CD11c+ (p=0.006). The proteomic analysis revealed that subjects with expansion of these atypical B-cells and exhausted T-cells had enrichment of proteins involved in immune inflammation and complement activation pathways. Furthermore, we observed that higher levels of ABCs were associated a reduced capacity to maintain vaccine-induced antibody immunity against measles (%B-cells CD19+CD10- T-bet+, p=0.035). Conclusion We identified that the levels of hyperactivated B cell subsets were strongly affected by time of ART start and associated with clinical, viral, cellular and plasma soluble markers. Furthermore, the expansion of ABCs also had a direct impact on the capacity to develop antibodies response following routine vaccination.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Rubens Pascucci
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Sara Domínguez-Rodríguez
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alfredo Tagarro
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
- Department of Pediatrics, Infanta Sofía University Hospital. Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), San Sebastián de los Reyes, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Pablo Rojo
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
| | - Caroline Foster
- Department of Pediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alasdair Bamford
- MRC Clinical Trials Unit at UCL, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anita De Rossi
- Department of Oncology, Surgery and Gastroenterology, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV)- IRCCS, Padova, Italy
| | - Eleni Nastouli
- Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Nigel Klein
- Infection, Immunity & Inflammation Department, UCL GOS Institute of Child Health, London, United Kingdom
| | - Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Benoit Fatou
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michela Di Pastena
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- UOSD Unit of Clinical Psychology – Dept. of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, Umass Chan Medical School, Worcester, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
| | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Ofer Levy
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| |
Collapse
|
10
|
Álvarez B, Navarrete-Muñoz MA, Briz V, Olmedillas-López S, Nistal S, Cabello A, Prieto L, Górgolas M, García-Arranz M, Benito JM, Rallón N. HIV-reservoir size is not affected either by HCV coinfection or by direct acting antivirals (DAAs) therapy. Sci Rep 2022; 12:5095. [PMID: 35332180 PMCID: PMC8948254 DOI: 10.1038/s41598-022-08871-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The role of HCV on the HIV reservoir is controversial since the reduction on HIV-DNA levels after HCV eradication with IFNα/RBV treatment seems to be the result of drugs instead of HCV clearance. We assessed whether HCV eradication can decrease HIV-DNA content in HIV/HCV-coinfected patients treated with direct-acting antivirals, DAAs (IFNα/RBV-free regimens). Cell-associated HIV-DNA was measured by ddPCR in 25 HIV-monoinfected and 25 HIV/HCV-coinfected patients. There were no differences in HIV-DNA levels between groups neither at baseline nor at 12 weeks after DAAs treatment completion. Our results indicate that HCV does not appear to influence the HIV reservoir size and suggest the lack of an anti-HIV action for DAAs.
Collapse
Affiliation(s)
- Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Veronica Briz
- National Center of Microbiology, Institute of Health Carlos III, Majadahonda, Spain
| | - Susana Olmedillas-López
- New Therapy Group, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sara Nistal
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Prieto
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Mariano García-Arranz
- New Therapy Group, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
11
|
Wonderlich ER, Reece MD, Kulpa DA. Ex Vivo Differentiation of Resting CD4+ T Lymphocytes Enhances Detection of Replication Competent HIV-1 in Viral Outgrowth Assays. Methods Mol Biol 2022; 2407:315-331. [PMID: 34985673 DOI: 10.1007/978-1-0716-1871-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying the number of cells harboring inducible and replication competent HIV-1 provirus is critical to evaluating HIV-1 cure interventions, but precise quantification of the latent reservoir has proven to be technically challenging. Existing protocols to quantify the frequency of replication-competent HIV-1 in resting CD4+ T cells from long-term ART treated individuals have helped to investigate the dynamics of reservoir stability, however these approaches have significant barriers to the induction of HIV-1 expression required to effectively evaluate the intact reservoir. Differentiation of CD4+ T cells to an effector memory phenotype is a successful strategy for promoting latency reversal in vitro, and significantly enhances the performance and sensitivity of viral outgrowth assays.
Collapse
Affiliation(s)
| | - Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
12
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
13
|
Malatinkova E, Thomas J, De Spiegelaere W, Rutsaert S, Geretti AM, Pollakis G, Paxton WA, Vandekerckhove L, Ruggiero A. Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life (Basel) 2021; 11:life11121410. [PMID: 34947941 PMCID: PMC8706387 DOI: 10.3390/life11121410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, B-9820 Ghent, Belgium;
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Anna Maria Geretti
- Fondazione PTV and Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
- Department Neurosciences, Biomedicine and Movement Sciences, School of Medicine-University of Verona, 37129 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7190
| |
Collapse
|
14
|
Systemic and Intestinal Viral Reservoirs in CD4+ T Cell Subsets in Primary SIV Infection. Viruses 2021; 13:v13122398. [PMID: 34960667 PMCID: PMC8704255 DOI: 10.3390/v13122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV reservoir size in target CD4+ T cells during primary infection remains unknown. Here, we sorted peripheral and intestinal CD4+ T cells and quantified the levels of cell-associated SIV RNA and DNA in rhesus macaques within days of SIVmac251 inoculation. As a major target cell of HIV/SIV, CD4+ T cells in both tissues contained a large amount of SIV RNA and DNA at day 8–13 post-SIV infection, in which productive SIV RNA highly correlated with the levels of cell-associated SIV DNA. Memory CD4+ T cells had much higher viral RNA and DNA than naïve subsets, yet memory CD4+ T cells co-expressing CCR5 had no significant reservoir size compared with those that were CCR5-negative in blood and intestine. Collectively, memory CD4+ T cells appear to be the major targets for primary infection, and viral reservoirs are equally distributed in systemic and lymphoid compartments in acutely SIV-infected macaques.
Collapse
|
15
|
Leyre L, Kroon E, Vandergeeten C, Sacdalan C, Colby DJ, Buranapraditkun S, Schuetz A, Chomchey N, de Souza M, Bakeman W, Fromentin R, Pinyakorn S, Akapirat S, Trichavaroj R, Chottanapund S, Manasnayakorn S, Rerknimitr R, Wattanaboonyoungcharoen P, Kim JH, Tovanabutra S, Schacker TW, O'Connell R, Valcour VG, Phanuphak P, Robb ML, Michael N, Trautmann L, Phanuphak N, Ananworanich J, Chomont N. Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Sci Transl Med 2021; 12:12/533/eaav3491. [PMID: 32132218 DOI: 10.1126/scitranslmed.aav3491] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The timing and location of the establishment of the viral reservoir during acute HIV infection remain unclear. Using longitudinal blood and tissue samples obtained from HIV-infected individuals at the earliest stage of infection, we demonstrate that frequencies of infected cells reach maximal values in gut-associated lymphoid tissue and lymph nodes as early as Fiebig stage II, before seroconversion. Both tissues displayed higher frequencies of infected cells than blood until Fiebig stage III, after which infected cells were equally distributed in all compartments examined. Initiation of antiretroviral therapy (ART) at Fiebig stages I to III led to a profound decrease in the frequency of infected cells to nearly undetectable level in all compartments. The rare infected cells that persisted were preferentially found in the lymphoid tissues. Initiation of ART at later stages (Fiebig stages IV/V and chronic infection) induced only a modest reduction in the frequency of infected cells. Quantification of HIV DNA in memory CD4+ T cell subsets confirmed the unstable nature of most of the infected cells at Fiebig stages I to III and the emergence of persistently infected cells during the transition to Fiebig stage IV. Our results indicate that although a large pool of cells is infected during acute HIV infection, most of these early targets are rapidly cleared upon ART initiation. Therefore, infected cells present after peak viremia have a greater ability to persist.
Collapse
Affiliation(s)
- Louise Leyre
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Eugène Kroon
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Carlo Sacdalan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Donn J Colby
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nitiya Chomchey
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Mark de Souza
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Wendy Bakeman
- Vaccine and Gene Therapy Institute of Florida, FL 34987, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Rapee Trichavaroj
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | | | | | | | - Jerome H Kim
- International Vaccine Institute, Seoul 08826, Korea
| | - Sodsai Tovanabutra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Timothy W Schacker
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Victor G Valcour
- University of California San Francisco, San Francisco, CA 94117, USA
| | - Praphan Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nelson Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Lydie Trautmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nittaya Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada.
| | | |
Collapse
|
16
|
Papasavvas E, Azzoni L, Pagliuzza A, Abdel-Mohsen M, Ross BN, Fair M, Howell BJ, Hazuda DJ, Chomont N, Li Q, Mounzer K, Kostman JR, Tebas P, Montaner LJ. Safety, Immune, and Antiviral Effects of Pegylated Interferon Alpha 2b Administration in Antiretroviral Therapy-Suppressed Individuals: Results of Pilot Clinical Trial. AIDS Res Hum Retroviruses 2021; 37:433-443. [PMID: 33323024 DOI: 10.1089/aid.2020.0243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the pilot NCT01935089 trial, we tested whether pegylated interferon alpha2b (Peg-IFN-α2b) with antiretroviral therapy (ART) was safe and could impact HIV and immune measures in blood and in gut-associated lymphoid tissue (GALT). Twenty HIV-1+ ART-suppressed individuals received 1 μg/kg/week Peg-IFN-α2b with ART for 20 weeks, with intermediate 4-week analytical ART interruption (ATI). Safety, immune activation, HIV viral load and integrated HIV DNA in blood, and HIV RNA and DNA in gut biopsies were measured. A total of 7/20 participants experienced grade 3-4 adverse events, while 17/20 participants completed the study. Of the 17 participants who completed the study, 8 remained suppressed during ATI, while all 17 were suppressed at end of treatment (EoT). As expected, treatment increased activation of T and natural killer (NK) cells and IFN-stimulated molecule expression on monocytes in periphery. While circulating CD4+ T cells showed a trend for a decrease in integrated HIV DNA, GALT showed a significant decrease in HIV-1 RNA+ cells as measured by in situ hybridization along with a reduction in total HIV DNA and cell-associated RNA by EoT. The observed decrease in HIV-1 RNA+ cells in GALT was positively associated with the decrease in activated NK cells and macrophages. This study documents for the first time that 20 weeks of immunotherapy with Peg-IFN-α2b+ART (inclusive of a 4-week ATI) is safe and results in an increase in blood and GALT immune activation and in a significant decrease in HIV-1 RNA+ cells in GALT in association with changes in innate cell activation.
Collapse
Affiliation(s)
| | - Livio Azzoni
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | | | - Brian N. Ross
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Jay R. Kostman
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- University of Pennsylvania, Department of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
17
|
Papasavvas E, Azzoni L, Ross BN, Fair M, Yuan Z, Gyampoh K, Mackiewicz A, Sciorillo AC, Pagliuzza A, Lada SM, Wu G, Goh SL, Bahnck-Teets C, Holder DJ, Zuck PD, Damra M, Lynn KM, Tebas P, Mounzer K, Kostman JR, Abdel-Mohsen M, Richman D, Chomont N, Howell BJ, Montaner LJ. Intact Human Immunodeficiency Virus (HIV) Reservoir Estimated by the Intact Proviral DNA Assay Correlates With Levels of Total and Integrated DNA in the Blood During Suppressive Antiretroviral Therapy. Clin Infect Dis 2021; 72:495-498. [PMID: 33527127 DOI: 10.1093/cid/ciaa809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.
Collapse
Affiliation(s)
| | - Livio Azzoni
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Brian N Ross
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhe Yuan
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Steven M Lada
- Veterans Affairs San Diego Healthcare System and the University of California, San Diego, California, USA
| | - Guoxin Wu
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | - Paul D Zuck
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Kenneth M Lynn
- Presbyterian Hospital, University of Pennsylvania hospital, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Jay R Kostman
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | - Douglas Richman
- Veterans Affairs San Diego Healthcare System and the University of California, San Diego, California, USA
| | | | | | | |
Collapse
|
18
|
Increased Proviral DNA in Circulating Cells Correlates with Plasma Viral Rebound in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Antiretroviral Therapy Interruption. J Virol 2021; 95:JVI.02064-20. [PMID: 33408173 PMCID: PMC8094949 DOI: 10.1128/jvi.02064-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies. IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.
Collapse
|
19
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
20
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Leal L, Fehér C, Richart V, Torres B, García F. Antiretroviral Therapy Interruption (ATI) in HIV-1 Infected Patients Participating in Therapeutic Vaccine Trials: Surrogate Markers of Virological Response. Vaccines (Basel) 2020; 8:vaccines8030442. [PMID: 32764508 PMCID: PMC7564579 DOI: 10.3390/vaccines8030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional Human immunodeficiency Virus (HIV) cure has been proposed as an alternative to antiretroviral treatment for life, and therapeutic vaccines represent one of the most promising approaches. The goal of therapeutic vaccination is to augment virus-specific immune responses that have an impact on HIV viral load dynamics. To date, the agreed feature to evaluate the effects of these therapeutic interventions is analytical antiretroviral treatment interruption (ATI), at least until we find a reliable biomarker that can predict viral control. Different host, immunologic, and virologic markers have been proposed as predictors of viral control during ATI after therapeutic interventions. This review describes the relevance of ATI and the different surrogate markers of virological control assessed in HIV therapeutic vaccine clinical trials.
Collapse
Affiliation(s)
- Lorna Leal
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275586; Fax: +34-93-4514-438
| | - Csaba Fehér
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Valèria Richart
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Berta Torres
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Felipe García
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
22
|
Orlandi C, Canovari B, Bozzano F, Marras F, Pasquini Z, Barchiesi F, De Maria A, Magnani M, Casabianca A. A comparative analysis of unintegrated HIV-1 DNA measurement as a potential biomarker of the cellular reservoir in the blood of patients controlling and non-controlling viral replication. J Transl Med 2020; 18:204. [PMID: 32429953 PMCID: PMC7236182 DOI: 10.1186/s12967-020-02368-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The persistence of HIV-1 in reservoir cells is one of the major obstacles to eradicating the virus in infected individuals receiving combination antiretroviral therapy (ART). HIV-1 persists in infected cells as a stable integrated genome and more labile unintegrated DNA (uDNA), which includes linear, 1-LTR and 2-LTR circular DNA. 2-LTR circle DNA, although less abundant, is considered a surrogate marker of recent infection events and is currently used instead of the other unintegrated species as a diagnostic tool. This pilot study aimed to investigate how to best achieve the measurement of uDNA. METHODS A comparative analysis of two qPCR-based methods (U-assay and 2-LTR assay) was performed on the blood of 12 ART-naïve, 14 viremic and 29 aviremic On-ART patients and 20 untreated spontaneous controllers (HIC), sampled at a single time point. RESULTS The U-assay, which quantified all unintegrated DNA species, showed greater sensitivity than the 2-LTR assay (up to 75%, p < 0.0001), especially in viremic subjects, in whom other forms, in addition to 2-LTR circles, may also accumulate due to active viral replication. Indeed, in aviremic On-ART samples, the U-assay unexpectedly measured uDNA in a higher proportion of samples (76%, 22/29) than the 2-LTR assay (41%, 12/29), (p = 0.0164). A trend towards lower uDNA levels was observed in aviremic vs viremic On-ART patients, reaching significance when we combined aviremic On-ART and HIC (controllers) vs Off-ART and viremic On-ART subjects (non-controllers) (p = 0.0003), whereas 2-LTR circle levels remained constant (p ≥ 0.2174). These data were supported by the high correlation found between uDNA and total DNA (r = 0.69, p < 0.001). CONCLUSIONS The great advantage of the U-assay is that, unlike the 2-LTR assay, it allows the accurate evaluation of the totality of uDNA that can still be measured even during successful ART when plasma viremia is below the cut-off of common clinical tests (< 50 copies/mL) and 2-LTR circles are more likely to be under the quantification limit. UDNA measurement in blood cells may be used as a biomarker to reveal a so far hidden or underestimated viral reservoir. The potential clinical relevance of uDNA quantification may lead to improvements in diagnostic methods to support clinical strategies.
Collapse
Affiliation(s)
- Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Benedetta Canovari
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | | | - Francesco Marras
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
| | - Zeno Pasquini
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Barchiesi
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea De Maria
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
- Department of Health Sciences, DISSAL, University of Genova, Genoa, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
23
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
24
|
Fidler S, Stöhr W, Pace M, Dorrell L, Lever A, Pett S, Kinloch-de Loes S, Fox J, Clarke A, Nelson M, Thornhill J, Khan M, Fun A, Bandara M, Kelly D, Kopycinski J, Hanke T, Yang H, Bennett R, Johnson M, Howell B, Barnard R, Wu G, Kaye S, Wills M, Babiker A, Frater J. Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet 2020; 395:888-898. [PMID: 32085823 DOI: 10.1016/s0140-6736(19)32990-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antiretroviral therapy (ART) cannot cure HIV infection because of a persistent reservoir of latently infected cells. Approaches that force HIV transcription from these cells, making them susceptible to killing-termed kick and kill regimens-have been explored as a strategy towards an HIV cure. RIVER is the first randomised trial to determine the effect of ART-only versus ART plus kick and kill on markers of the HIV reservoir. METHODS This phase 2, open-label, multicentre, randomised, controlled trial was undertaken at six clinical sites in the UK. Patients aged 18-60 years who were confirmed as HIV-positive within a maximum of the past 6 months and started ART within 1 month from confirmed diagnosis were randomly assigned by a computer generated randomisation list to receive ART-only (control) or ART plus the histone deacetylase inhibitor vorinostat (the kick) and replication-deficient viral vector T-cell inducing vaccines encoding conserved HIV sequences ChAdV63. HIVconsv-prime and MVA.HIVconsv-boost (the kill; ART + V + V; intervention). The primary endpoint was total HIV DNA isolated from peripheral blood CD4+ T-cells at weeks 16 and 18 after randomisation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT02336074. FINDINGS Between June 14, 2015 and Jul 11, 2017, 60 men with HIV were randomly assigned to receive either an ART-only (n=30) or an ART + V + V (n=30) regimen; all 60 participants completed the study, with no loss-to-follow-up. Mean total HIV DNA at weeks 16 and 18 after randomisation was 3·02 log10 copies HIV DNA per 106 CD4+ T-cells in the ART-only group versus 3·06 log10 copies HIV DNA per 106 CD4+ T-cells in ART + V + V group, with no statistically significant difference between the two groups (mean difference of 0·04 log10 copies HIV DNA per 106 CD4+ T-cells [95% CI -0·03 to 0·11; p=0·26]). There were no intervention-related serious adverse events. INTERPRETATION This kick and kill approach conferred no significant benefit compared with ART alone on measures of the HIV reservoir. Although this does not disprove the efficacy kick and kill strategy, for future trials enhancement of both kick and kill agents will be required. FUNDING Medical Research Council (MR/L00528X/1).
Collapse
Affiliation(s)
- Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, UK; NIHR Imperial Biomedical Research Centre, London, UK.
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Matt Pace
- Nuffield Department of Medicine, Oxford University, UK; Nuffield Department of Medicine Oxford Martin School, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, Oxford University, UK; Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah Pett
- Medical Research Council Clinical Trials Unit, University College London, London, UK; Institute for Global Health, University College London, London, UK; Mortimer Market Centre, London, UK
| | - Sabine Kinloch-de Loes
- Department of Infection and Immunity, Royal Free Hospital, London, UK; University College London, London, UK
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, UK; Department of Genitourinary Medicine and Infectious Disease, NIHR Biomedical Research Centre, Kings College London, London, UK
| | - Amanda Clarke
- Elton John Centre, Brighton, UK; Department of HIV and Sexual Health, Sussex University Hospital, Brighton, UK; Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Mark Nelson
- Chelsea and Westminster Hospital, Department of HIV Medicine, Imperial College London London, UK
| | - John Thornhill
- Department of Infectious Disease, Imperial College London, London, UK; NIHR Imperial Biomedical Research Centre, London, UK
| | - Maryam Khan
- Department of Infectious Disease, Imperial College London, London, UK; NIHR Imperial Biomedical Research Centre, London, UK
| | - Axel Fun
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Jakub Kopycinski
- Nuffield Department of Medicine, Oxford University, UK; Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Tomáš Hanke
- Nuffield Department of Medicine, Oxford University, UK; International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hongbing Yang
- Nuffield Department of Medicine, Oxford University, UK; Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Rachel Bennett
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | | | - Bonnie Howell
- Department of Infectious Disease and Vaccines, Merck and Co, West Point, PA, USA
| | - Richard Barnard
- Global Regulatory Affairs and Clinical Safety, Merck and Co, North Wales, PA, USA
| | - Guoxin Wu
- Department of Infectious Disease and Vaccines, Merck and Co, West Point, PA, USA
| | - Steve Kaye
- Department of Infectious Disease, Imperial College London, London, UK
| | - Mark Wills
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abdel Babiker
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - John Frater
- Nuffield Department of Medicine, Oxford University, UK; Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
25
|
Van der Sluis RM, Zerbato JM, Rhodes JW, Pascoe RD, Solomon A, Kumar NA, Dantanarayana AI, Tennakoon S, Dufloo J, McMahon J, Chang JJ, Evans VA, Hertzog PJ, Jakobsen MR, Harman AN, Lewin SR, Cameron PU. Diverse effects of interferon alpha on the establishment and reversal of HIV latency. PLoS Pathog 2020; 16:e1008151. [PMID: 32109259 PMCID: PMC7065813 DOI: 10.1371/journal.ppat.1008151] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/11/2020] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNβ and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established. Antiretroviral therapy (ART) cannot cure HIV or eliminate infection from long-lived and proliferating latently infected CD4+ T cells. Plasmacytoid dendritic cells (pDC) are major producers of interferons (IFNs), which have multiple effects on viral replication and immunity including suppression of viral expression that could favor HIV latency. Van Der Sluis et al. show that type I IFNs inhibit the establishment of HIV latency, however, once established, latency can be reversed by IFNα but not by other type I or type III IFNs. These observations demonstrate that pDC through type I IFNs are important in HIV latency and can potentially be manipulated to eliminate latent infection.
Collapse
Affiliation(s)
- Renée M. Van der Sluis
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jennifer M. Zerbato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jake W. Rhodes
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Rachel D. Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ajantha Solomon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nitasha A. Kumar
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ashanti I. Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Surekha Tennakoon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jérémy Dufloo
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Judy J. Chang
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Vanessa A. Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Dept Molecular & Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - Andrew N. Harman
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
- * E-mail: (SRL); (PUC)
| | - Paul U. Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
- * E-mail: (SRL); (PUC)
| |
Collapse
|
26
|
Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J Virol 2019; 94:JVI.01174-19. [PMID: 31597764 DOI: 10.1128/jvi.01174-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Whereas human immunodeficiency virus (HIV) persists in tissue macrophages during antiretroviral therapy (ART), the role of circulating monocytes as HIV reservoirs remains controversial. Three magnetic bead selection methods and flow cytometry cell sorting were compared for their capacity to yield pure CD14+ monocyte populations. Cell sorting by flow cytometry provided the purest population of monocytes (median CD4+ T-cell contamination, 0.06%), and the levels of CD4+ T-cell contamination were positively correlated with the levels of integrated HIV DNA in the monocyte populations. Using cell sorting by flow cytometry, we assessed longitudinally the infection of monocytes and other cell subsets in a cohort of 29 Thai HIV-infected individuals. Low levels of HIV DNA were detected in a minority of monocyte fractions obtained before and after 1 year of ART (27% and 33%, respectively), whereas HIV DNA was readily detected in CD4+ T cells from all samples. Additional samples (2 to 5 years of ART) were obtained from 5 individuals in whom monocyte infection was previously detected. Whereas CD4+ T cells were infected at high levels at all time points, monocyte infection was inconsistent and absent in at least one longitudinal sample from 4/5 individuals. Our results indicate that infection of monocytes is infrequent and highlight the importance of using flow cytometry cell sorting to minimize contamination by CD4+ T cells.IMPORTANCE The role of circulating monocytes as persistent HIV reservoirs during ART is still controversial. Several studies have reported persistent infection of monocytes in virally suppressed individuals; however, others failed to detect HIV in this subset. These discrepancies are likely explained by the diversity of the methods used to isolate monocytes and to detect HIV infection. In this study, we show that only flow cytometry cell sorting yields a highly pure population of monocytes largely devoid of CD4 contaminants. Using this approach in a longitudinal cohort of HIV-infected individuals before and during ART, we demonstrate that HIV is rarely found in monocytes from untreated and treated HIV-infected individuals. This study highlights the importance of using methods that yield highly pure populations of cells as flow cytometry cell sorting to minimize and control for CD4+ T-cell contamination.
Collapse
|
27
|
Jacobs JL, Halvas EK, Tosiano MA, Mellors JW. Persistent HIV-1 Viremia on Antiretroviral Therapy: Measurement and Mechanisms. Front Microbiol 2019; 10:2383. [PMID: 31681237 PMCID: PMC6804636 DOI: 10.3389/fmicb.2019.02383] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1 viremia persists at low-levels despite clinically effective antiretroviral therapy (ART). Here we review new methods to quantify and characterize persistent viremia at the single genome level, and discuss the mechanisms of persistence including clonal expansion of infected cells and tissue origins of viremia. A deeper understanding of how viremia persists on ART is critically important to the design of therapies to eliminate viremia and achieve a functional cure for HIV-1.
Collapse
Affiliation(s)
- Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elias K Halvas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Melissa A Tosiano
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Wonderlich ER, Subramanian K, Cox B, Wiegand A, Lackman-Smith C, Bale MJ, Stone M, Hoh R, Kearney MF, Maldarelli F, Deeks SG, Busch MP, Ptak RG, Kulpa DA. Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals. PLoS Pathog 2019; 15:e1008074. [PMID: 31609991 PMCID: PMC6812841 DOI: 10.1371/journal.ppat.1008074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Bryan Cox
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Ann Wiegand
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | | | - Michael J Bale
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Rebecca Hoh
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Mary F Kearney
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Frank Maldarelli
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Steven G Deeks
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Roger G Ptak
- Southern Research, Frederick, Maryland, United States of America
| | - Deanna A Kulpa
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
29
|
Coffin JM, Wells DW, Zerbato JM, Kuruc JD, Guo S, Luke BT, Eron JJ, Bale M, Spindler J, Simonetti FR, Hill S, Kearney MF, Maldarelli F, Wu X, Mellors JW, Hughes SH. Clones of infected cells arise early in HIV-infected individuals. JCI Insight 2019; 4:128432. [PMID: 31217357 PMCID: PMC6629130 DOI: 10.1172/jci.insight.128432] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 01/30/2023] Open
Abstract
In HIV-infected individuals on long-term antiretroviral therapy (ART), more than 40% of the infected cells are in clones. Although most HIV proviruses present in individuals on long-term ART are defective, including those in clonally expanded cells, there is increasing evidence that clones carrying replication-competent proviruses are common in patients on long-term ART and form part of the HIV reservoir that makes it impossible to cure HIV infection with current ART alone. Given the importance of clonal expansion in HIV persistence, we determined how soon after HIV acquisition infected clones can grow large enough to be detected (clones larger than ca. 1 × 105 cells). We studied 12 individuals sampled in early HIV infection (Fiebig stage III-V/VI) and 5 who were chronically infected. The recently infected individuals were started on ART at or near the time of diagnosis. We isolated more than 6,500 independent integration sites from peripheral blood mononuclear cells before ART was initiated and after 0.5-18 years of suppressive ART. Some infected clones could be detected approximately 4 weeks after HIV infection and some of these clones persisted for years. The results help to explain how the reservoir is established early and persists for years.
Collapse
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | | | - Jennifer M. Zerbato
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joann D. Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Brian T. Luke
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick Maryland, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Bale
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | | | - Shawn Hill
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| | | | - John W. Mellors
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, Maryland, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. RECENT FINDINGS Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Niessl
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Amy E Baxter
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada.
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.
| |
Collapse
|
31
|
Routy JP, Isnard S, Mehraj V, Ostrowski M, Chomont N, Ancuta P, Ponte R, Planas D, Dupuy FP, Angel JB. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. BMJ Open 2019; 9:e028444. [PMID: 31005944 PMCID: PMC6500211 DOI: 10.1136/bmjopen-2018-028444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION People living with HIV (PLWH) on antiretroviral therapy (ART) do not progress to AIDS. However, they still suffer from an increased risk of inflammation-associated complications. HIV persists in long-lived CD4+ T cells, which form the major viral reservoir. The persistence of this reservoir despite long-term ART is the major hurdle to curing HIV. Importantly, the size of the HIV reservoir is larger in individuals who start ART late in the course of infection and have a low CD4+/CD8+ ratio. HIV reservoir size is also linked to the levels of persistent inflammation on ART. Thus, novel strategies to reduce immune inflammation and improve the host response to control the HIV reservoir would be a valuable addition to current ART. Among the different strategies under investigation is metformin, a widely used antidiabetic drug that was recently shown to modulate T-cell activation and inflammation. Treatment of non-diabetic individuals with metformin controls inflammation by improving glucose metabolism and by regulating intracellular immunometabolic checkpoints such as the adenosin 5 monophosphate activated protein kinase and mammalian target of rapamycin, in association with microbiota modification. METHODS AND ANALYSIS 22 PLWH on ART for more than 3 years, at high risk of inflammation or the development of non-AIDS events (low CD4+/CD8+ ratio) will be recruited in a clinical single-arm pilot study. We will test whether supplementing ART with metformin in non-diabetic HIV-infected individuals can reduce the size of the HIV reservoir as determined by various virological assays. The expected outcome of this study is a reduction in both the size of the HIV reservoir and inflammation following the addition of metformin to ART, thus paving the way towards HIV eradication. ETHICS AND DISSEMINATION Ethical approval: McGill university Health Centre committee number MP-37-2016-2456. Canadian Canadian Institutes of Health Research/Canadian HIV Trials Network (CTN) protocol CTNPT027. Results will be made available through publication in peer-reviewed journals and through the CTN website. TRIAL REGISTRATION NUMBER NCT02659306.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Vikram Mehraj
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Mario Ostrowski
- Immunology, University of Toronto, Toronto, Ontario, Canada
- St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Petronela Ancuta
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Rosalie Ponte
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Delphine Planas
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jonathan B Angel
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Bon I, Calza L, Musumeci G, Longo S, Bertoldi A, D'Urbano V, Gibellini D, Magistrelli E, Viale PL, Re MC. Impact of Different Antiretroviral Strategies on Total HIV-DNA Level in Virologically Suppressed HIV-1 Infected Patients. Curr HIV Res 2019; 15:448-455. [PMID: 29210661 PMCID: PMC5876918 DOI: 10.2174/1570162x16666171206121026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023]
Abstract
Background: Total HIV-DNA load in peripheral blood cell (PBMCs) reflects the global viral reservoir that seems not to be affected by antiretroviral treatment. However, some studies report-ed a different permeability of different drugs in cellular compartments. Objective: To investigate the relation between the amount of total HIV-1 DNA and different treatment strategies. Methods: Total HIV-1 DNA was quantified by real time PCR in PBMCs collected from 161 patients with long-term undetectable HIV-RNA receiving different therapy schedules (3-drug regimens or 2-drug regimen containing Raltegravir as integrase inhibitor). Results: Overall, HIV patients who started therapy with a median pre-ART CD4+ cell count >400 cells/mm3 and HIV viral load of 3 log10 copies/ml, achieved a lower amount of HIV total DNA. No significant correlation was found in DNA size when patients were stratified on the basis of different therapeutic protocols. However, HIV DNA load analysis, when only performed in HIV patients with a median pre-ART CD4+ cell count >200 cells/mm3 and HIV viral load < 3 log10 copies/ml, showed a significative DNA decrease in Raltegravir treated group with respect to the NNRTIs-treated group. Conclusion: The data emphasize that HIV-DNA level represents a predictive factor in long-term sup-pressive therapy patients. In addition, the diminished reservoir, only observed in patients treated with the NRTI-sparing regimen RAL plus PI/r before immunological and virological derangement, sug-gests that latest generation drugs, such as integrase inhibitors, might represent an optimal chance in the management of HIV infection.
Collapse
Affiliation(s)
- Isabella Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Leonardo Calza
- Unit of Infectious Diseases, Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Giuseppina Musumeci
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Serena Longo
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Alessia Bertoldi
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Vanessa D'Urbano
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Davide Gibellini
- Unit of Microbiology Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Eleonora Magistrelli
- Unit of Infectious Diseases, Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Pier Luigi Viale
- Unit of Infectious Diseases, Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy
| | - Maria Carla Re
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Massarenti, 9, Bologna, Italy.,Interuniversity Consortium, National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
33
|
Trémeaux P, Lenfant T, Boufassa F, Essat A, Mélard A, Gousset M, Delelis O, Viard JP, Bary M, Goujard C, Rouzioux C, Meyer L, Avettand-Fenoel V. Increasing contribution of integrated forms to total HIV DNA in blood during HIV disease progression from primary infection. EBioMedicine 2019; 41:455-464. [PMID: 30803934 PMCID: PMC6442355 DOI: 10.1016/j.ebiom.2019.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In the current context of research on HIV reservoirs, offering new insights into the persistence of HIV DNA in infected cells, which prevents viral eradication, may aid in identifying cure strategies. This study aimed to describe the establishment of stable integrated forms among total HIV DNA during primary infection (PHI) and their dynamics during the natural history of infection. METHODS Total and integrated HIV DNA were quantified in blood from 74 PHI patients and 97 recent seroconverters (<12 months following infection, "progression cohort"). The evolution of both markers over six years was modelled (mixed-effect linear models). Their predictive values for disease progression were studied (Cox models). FINDINGS For most patients during PHI, stable integrated forms were a minority among total HIV DNA (median: 12%) and became predominant thereafter (median at AIDS stage: 100%). Both total and integrated HIV DNA increased over a six-year period. Patients from the progression cohort who reached clinical AIDS during follow-up (n = 34) exhibited higher total and integrated HIV DNA levels at seroconversion and a higher percentage of integrated forms than did slower progressors (n = 63) (median: 100% vs 44%). The integrated HIV DNA load was strongly associated with the risk of developing AIDS (aRR = 2.63, p = 0.002). INTERPRETATION The profile of "rapid" or "slower" progression in the natural history of HIV infection appears to be determined early in the course of HIV infection. The strong predominance of unstable unintegrated forms in PHI may explain the great benefit of this early treatment, which induces a sharp decrease in total HIV DNA. FUND: French National Agency for Research on AIDS and Viral Hepatitis.
Collapse
Affiliation(s)
- Pauline Trémeaux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; AP-HP, Laboratoire de Virologie, Hôpital Cochin, Paris, France
| | - Tiphaine Lenfant
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Faroudy Boufassa
- Université Paris Sud, Université Paris Saclay, INSERM CESP U1018, le Kremlin-Bicêtre, France
| | - Asma Essat
- Université Paris Sud, Université Paris Saclay, INSERM CESP U1018, le Kremlin-Bicêtre, France; AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Adeline Mélard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France
| | - Marine Gousset
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, Cachan, France
| | - Jean-Paul Viard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; AP-HP, Centre de diagnostic et thérapeutique, Hôtel-Dieu, Paris, France
| | - Marc Bary
- AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Cécile Goujard
- Université Paris Sud, Université Paris Saclay, INSERM CESP U1018, le Kremlin-Bicêtre, France; AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Laurence Meyer
- Université Paris Sud, Université Paris Saclay, INSERM CESP U1018, le Kremlin-Bicêtre, France; AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fenoel
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; AP-HP, Laboratoire de Microbiologie clinique, CHU Necker-Enfants Malades, Paris, France.
| |
Collapse
|
34
|
Quantitation of Integrated HIV Provirus by Pulsed-Field Gel Electrophoresis and Droplet Digital PCR. J Clin Microbiol 2018; 56:JCM.01158-18. [PMID: 30232127 DOI: 10.1128/jcm.01158-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
We utilized pulsed-field gel electrophoresis (PFGE) to purify high-molecular-weight DNA from HIV-infected cells. This purification, in combination with our previously described droplet digital PCR (ddPCR) assay, was used to develop a method to quantify proviral integrated HIV DNA free of lower-molecular-weight species of HIV DNA. Episomal 2-long-terminal-repeat (2-LTR) circles were completely cleared from HIV DNA samples. Technical replicates of the complete assay, starting with the same specimens, resulted in no statistical differences in quantification of integrated HIV gag sequences in cellular DNA from cells from HIV-infected subjects after prolonged treatment with antiretroviral therapy (ART). The PFGE ddPCR assay was compared to the Alu-gag quantitative PCR (qPCR) assay, the most widely used assay to measure proviral integrated HIV DNA. Spearman's rho nonparametric correlation determined PFGE ddPCR results to be positively correlated with Alu-gag qPCR results (r = 0.7052; P = 0.0273). In summary, PFGE ddPCR is a sensitive, reproducible, and robust method to measure proviral integrated HIV DNA and is theoretically more accurate than previously described assays, because it is a direct measure of integrated HIV DNA.
Collapse
|
35
|
Hong F, Jacobs JL, Aga E, Cillo AR, Fyne E, Koontz DL, Zheng L, Mellors JW. Associations between HIV-1 DNA copy number, proviral transcriptional activity, and plasma viremia in individuals off or on suppressive antiretroviral therapy. Virology 2018; 521:51-57. [PMID: 29879542 PMCID: PMC6279608 DOI: 10.1016/j.virol.2018.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
The relationships between HIV-1 DNA copy number, proviral transcriptional activity, and residual plasma viremia in individuals off and on ART are not well defined. To address this, we performed a cross-sectional study of 12 viremic donors and 23 ART-treated virologically suppressed (plasma HIV-1 RNA<20 copies/ml) donors. We report a strong association between HIV-1 DNA copy number and HIV-1 transcriptional activity in blood that persists on suppressive ART, but not between transcriptional activity and the levels of persistent viremia on ART. The latter finding contrasts with that in viremic donors and suggests that most HIV transcription in donors on suppressive ART does not result in virion production. This uncoupling of proviral transcription and viremia warrants closer investigation.
Collapse
Affiliation(s)
- Feiyu Hong
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States
| | - Jana L Jacobs
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States
| | - Evgenia Aga
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Anthony R Cillo
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States
| | - Elizabeth Fyne
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States
| | - Dianna L Koontz
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States
| | - Lu Zheng
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John W Mellors
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, 3550 Terrace Street, Scaife Hall, Suite 818, Pittsburgh, PA 15261, United States.
| |
Collapse
|
36
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
37
|
Baxter AE, O'Doherty U, Kaufmann DE. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology 2018; 15:18. [PMID: 29394935 PMCID: PMC5797386 DOI: 10.1186/s12977-018-0392-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.
Collapse
Affiliation(s)
- Amy E Baxter
- CR-CHUM, Université de Montréal, Montréal, QC, Canada.,Scripps CHAVI-ID, La Jolla, CA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine and Therapeutic Pathology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel E Kaufmann
- CR-CHUM, Université de Montréal, Montréal, QC, Canada. .,Scripps CHAVI-ID, La Jolla, CA, USA.
| |
Collapse
|
38
|
Zhang M, Robinson TO, Duverger A, Kutsch O, Heath SL, Cron RQ. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins. Virology 2018; 516:21-29. [PMID: 29324358 DOI: 10.1016/j.virol.2017.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023]
Abstract
During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins.
Collapse
Affiliation(s)
- Mingce Zhang
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Tanya O Robinson
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alexandra Duverger
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olaf Kutsch
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Randy Q Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
39
|
Ruhanya V, Jacobs GB, Glashoff RH, Engelbrecht S. Clinical Relevance of Total HIV DNA in Peripheral Blood Mononuclear Cell Compartments as a Biomarker of HIV-Associated Neurocognitive Disorders (HAND). Viruses 2017; 9:E324. [PMID: 29088095 PMCID: PMC5707531 DOI: 10.3390/v9110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of HIV-associated neurocognitive disorders is complex and multifactorial. It is hypothesized that the critical events initiating this condition occur outside the brain, particularly in the peripheral blood. Diagnoses of HIV-induced neurocognitive disorders largely rely on neuropsychometric assessments, which are not precise. Total HIV DNA in the peripheral blood mononuclear cells (PBMCs), quantified by PCR, correlate with disease progression, which is a promising biomarker to predict HAND. Numerous PCR assays for HIV DNA in cell compartments are prone to variation due to the lack of standardization and, therefore, their utility in predicting HAND produced different outcomes. This review evaluates the clinical relevance of total HIV DNA in circulating mononuclear cells using different published quantitative PCR (qPCR) protocols. The rationale is to shed light on the most appropriate assays and sample types used to accurately quantify HIV DNA load, which predicts severity of neurocognitive impairment. The role of monocytes as a vehicle for trafficking HIV into the CNS makes it the most suitable sample for determining a HAND associated reservoir. Studies have also shown significant associations between monocyte HIV DNA levels with markers of neurodamage. However, qPCR assays using PBMCs are cheaper and available commercially, thus could be beneficial in clinical settings. There is need, however, to standardise DNA extraction, normalisation and limit of detection.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P.O. Box A178, Avondale Harare 00263, Zimbabwe.
| | - Graeme B Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
| | - Richard H Glashoff
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Division of Medical Microbiology and Immunology, National Health Laboratory Service (NHLS), Tygerberg Business Unit, P.O. Box 241, Cape Town 8000, South Africa.
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Division of Medical Virology, National Health Laboratory Service (NHLS), Tygerberg Business Unit, P.O. Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
40
|
Rozera G, Fabbri G, Lorenzini P, Mastrorosa I, Timelli L, Zaccarelli M, Amendola A, Vergori A, Plazzi MM, Cicalini S, Antinori A, Capobianchi MR, Abbate I, Ammassari A. Peripheral blood HIV-1 DNA dynamics in antiretroviral-treated HIV/HCV co-infected patients receiving directly-acting antivirals. PLoS One 2017; 12:e0187095. [PMID: 29077766 PMCID: PMC5659787 DOI: 10.1371/journal.pone.0187095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aim was to determine the dynamics of peripheral blood mononuclear cells (PBMC)- associated total HIV-1 DNA in successfully ART-treated HIV/HCV co-infected patients receiving DAA treatment and to explore possible virological hypotheses underlying the phenomenon. METHODS Longitudinal, single-centre study measuring total HIV-1 DNA before the start of DAA, at the end of treatment (EOT), and 3 months after treatment. Univariable and multivariable analyses were used to assess factors associated with HIV-1 DNA increase ≥0.5 Log copies/million PBMC. Episomal 2-LTR forms, residual HIV-1 viremia and proviral DNA quasispecies evolution were also investigated. RESULTS 119 successfully ART-treated HIV/HCV co-infected patients were included. Median baseline HIV-1 DNA was 3.84 Log copies/million PBMC (95%CI 3.49-4.05), and no significant variation with respect to baseline was found at EOT and after 3 months of DAA termination. In 17% of cases an increase ≥0.5 Log copies/million PBMC was observed at EOT compared to baseline. HIV-1 DNA increase was independently associated with lower baseline HIV-1 DNA, longer HIV suppression, raltegravir-based ART and previous exposure to interferon/ribavirin for HCV treatment. In none of the patients with HIV-1 DNA increase, 2-LTR forms were detected at baseline, while in 2 cases 2-LTR forms were found at EOT, without association with residual HIV-1 RNA viremia. No evidence of viral evolution was observed. CONCLUSIONS In successfully ART-treated HIV/HCV co-infected patients receiving DAA, PBMC-associated total HIV-1 DNA was quite stable over time, but some patients showed a considerable increase at EOT when compared to baseline. A significantly higher risk of HIV DNA increase was found, in presence of lower cellular HIV reservoir at baseline. Activation of replicative-competent virus generating new rounds of viral replication seems unlikely, while mobilization of cell-associated HIV from tissue reservoirs could be hypothesized.
Collapse
Affiliation(s)
- Gabriella Rozera
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Gabriele Fabbri
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Patrizia Lorenzini
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Laura Timelli
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Mauro Zaccarelli
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Alessandra Vergori
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Maria Maddalena Plazzi
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Stefania Cicalini
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Isabella Abbate
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Adriana Ammassari
- Clinical Department, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
41
|
Evaluation of the immunogenicity and impact on the latent HIV-1 reservoir of a conserved region vaccine, MVA.HIVconsv, in antiretroviral therapy-treated subjects. J Int AIDS Soc 2017; 20:21171. [PMID: 28537062 PMCID: PMC5515041 DOI: 10.7448/ias.20.1.21171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction: Vaccines may be key components of a curative strategy for HIV-1. We investigated whether a novel immunogen, HIVconsv, designed to re-direct T cell responses to conserved viral epitopes, could impact the HIV-1 reservoir in chronic antiretroviral therapy (ART)-treated subjects when delivered by modified vaccinia virus Ankara (MVA). Methods: Nineteen virologically suppressed individuals were randomized to receive vaccinations with MVA.HIVconsv (5.5 × 107 plaque-forming units, pfu, n = 8; 2.2 × 108 pfu, n = 7) or placebo (n = 4) at 0, 4 and 12 weeks. Magnitude, breadth and antiviral function of vaccine-induced T cells, cell-associated HIV-1 DNA in circulating CD4+ T cells and residual viremia in plasma were measured before and after vaccination. Results: 90% of subjects completed the vaccine regimen; there were no serious vaccine-related adverse events. The magnitude of HIVconsv-specific IFN-γ-secreting T cells was not significantly boosted in vaccinees when compared with placebos in ex vivo Elispot assays, due to greater than expected variation in HIV-specific T cell responses in the latter during the observation period. Ex vivo CD8+ T cell viral inhibitory capacity was modest but significantly increased post-vaccination with MVA.HIVconsv at the higher dose (p = 0.004) and was positively correlated with the frequency of HIVconsv-specific CD8+ CD107+ IFN-α± T cells (r = 0.57, p = 0.01). Total HIV-1 DNA and residual viral load did not change significantly from baseline in any group. Conclusions: Homologous prime-boost vaccination with MVA.HIVconsv was safe in HIV-positive ART-treated subjects but showed modest immunogenicity and did not significantly change the size of the viral reservoir. MVA.HIVconsv may be more effective when used in a heterologous prime-boost vaccination regimen and when combined with a latency-reversing agent. Clinical Trials Registration NCT01024842
Collapse
|
42
|
Falasca F, Di Carlo D, De Vito C, Bon I, d'Ettorre G, Fantauzzi A, Mezzaroma I, Fimiani C, Re MC, Vullo V, Antonelli G, Turriziani O. Evaluation of HIV-DNA and inflammatory markers in HIV-infected individuals with different viral load patterns. BMC Infect Dis 2017; 17:581. [PMID: 28830393 PMCID: PMC5568129 DOI: 10.1186/s12879-017-2676-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Persistent residual viremia (RV) and low grade inflammation and immune activation have been associated with non-AIDS defining events. The impact of persistent RV and HIV-DNA load on immune activation/inflammation remains unclear. The purpose of this study was to gain new insights into the relation between viremia, markers of inflammation and HIV-DNA levels. METHODS Three hundred and twenty-one HIV-infected patients were studied. A retrospective analysis of viremia values, prospectively collected for 48 months, was performed. Patients were separated into three groups: 113 TND (Target Not Detected, patients with sustained undetectable viremia); 113 RV (Residual Viremia, patients who had at least three detectable viral load (VL) values <37 copies/ml); 95 LLV (Low Level Viremia, patients with at least two VL values >37 but <200 copies/ml). HIV-DNA, TNF-α, IL-6 and sCD14 were analyzed. RESULTS HIV-DNA, sCD14 and TNF-α were significantly lower in the TND group than in the RV and LLV groups. In addition, RV patients showed lower levels of HIV-DNA and sCD14 than LLV individuals. HIV-DNA load was not related to markers of inflammation. The ordinal logistic analysis showed that two independent variables were significantly associated with VL pattern: sCD14, HIV-DNA. In addition NRTIs plus NNRTIs and NRTIs plus PIs were negatively associated to VL pattern compared to INI-containing regimen. CONCLUSIONS Persistent undetectable viremia was associated with lower levels of inflammatory markers and HIV-DNA. However, the lack of normalization of these biomarkers in the TND group and the fact that HIV-DNA load was not associated with inflammation strongly suggest that other mechanisms play a major role in maintaining inflammation over time.
Collapse
Affiliation(s)
- Francesca Falasca
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale dell'Università 31, 00185, Rome, Italy
| | - Daniele Di Carlo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale dell'Università 31, 00185, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Isabella Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | | | - Ivano Mezzaroma
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Maria Carla Re
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale dell'Università 31, 00185, Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale dell'Università 31, 00185, Rome, Italy.
| |
Collapse
|
43
|
Rossetti B, Meini G, Bianco C, Lamonica S, Mondi A, Belmonti S, Fanti I, Ciccarelli N, Di Giambenedetto S, Zazzi M, De Luca A. Total cellular HIV-1 DNA decreases after switching to raltegravir-based regimens in patients with suppressed HIV-1 RNA. J Clin Virol 2017; 91:18-24. [PMID: 28395180 DOI: 10.1016/j.jcv.2017.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The integrase inhibitor raltegravir has been used to intensify antiretroviral therapy in patients with undetectable plasma HIV-1RNA, resulting in variable perturbation of HIV-1 nucleic acids levels in peripheral blood. OBJECTIVES We aimed at monitoring residual plasma HIV-1RNA and total cellular HIV-1DNA in virologically suppressed patients switching to raltegravir-based regimens. STUDY DESIGN Fifty-eight subjects on protease inhibitor (PI) or nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens, with plasma HIV-1RNA levels <40 copies/ml for ≥6 months and CD4 counts >200cells/μl for ≥12 months were enrolled. Thirty-four patients were from the treatment simplification RASTA randomized study switching standard therapy to a raltegravir-based regimen (RASTA group), while 24 continued a PI or NNRTI based-regimen (controls). Residual plasma HIV-1RNA (5-40copies/mL) and HIV-1DNA were assessed at 0, 24 and 48 weeks. RESULTS At week 0 (W0), HIV-1DNA was detected in all patients while at W48 it was detectable in 82.4% of the RASTA group vs 100% of controls (p=0.03). There was a significant decline of HIV-1DNA at W48 in the RASTA group (mean change from baseline -0.21 [95% CI -0.41; -0.01] log10 copies/106 CD4; p=0.03) but not in controls. Ultrasensitive HIV-1RNA was detectable at baseline in 50% of RASTA group vs 67% of controls and at W48 in 32.4% vs 42%, respectively. No differences were found between HIV-1RNA levels at baseline and W48 within and between groups. CONCLUSIONS Switching successful therapy to raltegravir-based regimens may be associated with a decrease of the HIV-1 reservoir, as measured by peripheral blood cellular HIV-1DNA levels.
Collapse
Affiliation(s)
- Barbara Rossetti
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy.
| | - Genny Meini
- Medical Biotechnology Department, University of Siena, Siena, Italy
| | - Claudia Bianco
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Silvia Lamonica
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - Annalisa Mondi
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - Simone Belmonti
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - Iuri Fanti
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | | | | | - Maurizio Zazzi
- Medical Biotechnology Department, University of Siena, Siena, Italy
| | - Andrea De Luca
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy; Medical Biotechnology Department, University of Siena, Siena, Italy
| |
Collapse
|
44
|
Ruggiero A, Malatinkova E, Rutsaert S, Paxton WA, Vandekerckhove L, De Spiegelaere W. Utility of integrated HIV-1 DNA quantification in cure studies. Future Virol 2017. [DOI: 10.2217/fvl-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous HIV-1 curative strategies have been proposed to eradicate the virus reservoir pool that remains integrated within target cells, despite successful antiretroviral therapy. To test the impact of such interventions on this reservoir, a universal marker of persistence is needed. Quantifying integrated HIV-1 DNA load has been proposed as a strong virological marker. In this paper, we provide a detailed description of the most commonly used assays to quantify integrated HIV-1 DNA and applications in relevant clinical studies produced over the last 20 years with a major focus on the recent literature. We discuss the potential for using this marker of virological persistence and the technical limitations that need to be addressed.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - William A Paxton
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Belgium
| |
Collapse
|
45
|
Abstract
OBJECTIVE To review the recent literatures related to the factors associated with the size of the HIV reservoir and their clinical significance. DATA SOURCES Literatures related to the size of HIV DNA was collected from PubMed published from 1999 to June 2016. STUDY SELECTION All relevant articles on the HIV DNA and reservoir were collected and reviewed, with no limitation of study design. RESULTS The composition and development of the HIV-1 DNA reservoir in either treated or untreated patients is determined by integrated mechanism comprising viral characteristics, immune system, and treatment strategies. The HIV DNA reservoir is a combination of latency and activity. The residual viremia from the stochastic activation of the reservoir acts as the fuse, continuing to stimulate the immune system to maintain the activated microenvironment for the rebound of competent virus once treatment with antiretroviral therapy is discontinued. CONCLUSION The size of the HIV-1 DNA pool and its composition has great significance in clinical treatment and disease progression.
Collapse
Affiliation(s)
- Ni-Dan Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tai-Sheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
46
|
Peripheral blood lymphocyte HIV DNA levels correlate with HIV associated neurocognitive disorders in Nigeria. J Neurovirol 2017; 23:474-482. [PMID: 28243867 DOI: 10.1007/s13365-017-0520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Mononuclear cells play key roles in the pathogenic mechanisms leading to HIV-associated neurocognitive disorders (HANDs). We examined the association between HIV DNA within peripheral blood mononuclear cell (PBMC) subsets and HAND in Nigeria. PBMCs were collected at baseline from 36 antiretroviral naive participants. CD14+ cells and T&B lymphocyte fractions were isolated by, respectively, positive and negative magnetic bead separation. Total HIV DNA within CD14+ and T&B cells were separately quantified using real-time PCR assay targeting HIV LTR-gag and cell input numbers determined by CCR5 copies/sample. Utilizing demographically adjusted T scores obtained from a 7-domain neuropsychological test battery, cognitive status was determined by the global deficit score (GDS) approach, with a GDS of ≥0.5 indicating cognitive impairment. In a linear regression adjusting for plasma HIV RNA, CD4 and lymphocyte count, Beck's depression score, and years of education, there was 0.04 lower log10 HIV DNA copies within T&B lymphocytes per unit increase in global T score (p = 0.02). Adjusting for the same variables in a logistic regression, the odds of cognitive impairment were 6.2 times greater per log10 increase in HIV DNA within T&B lymphocytes (p = 0.048). The association between cognitive impairment and HIV DNA within CD14+ monocytes did not reach statistical significance. In this pretreatment cohort with mild cognitive dysfunction, we found a strong association between levels of HIV DNA within the lymphocyte subset and HAND independent of plasma HIV RNA. These findings likely reflect the neurologic impact of a larger HIV reservoir and active viral replication.
Collapse
|
47
|
Scagnolari C, Turriziani O, Monteleone K, Pierangeli A, Antonelli G. Consolidation of molecular testing in clinical virology. Expert Rev Anti Infect Ther 2016; 15:387-400. [PMID: 28002969 DOI: 10.1080/14787210.2017.1271711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.
Collapse
Affiliation(s)
- Carolina Scagnolari
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Ombretta Turriziani
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Katia Monteleone
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Alessandra Pierangeli
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Guido Antonelli
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| |
Collapse
|
48
|
Hodel F, Patxot M, Snäkä T, Ciuffi A. HIV-1 latent reservoir: size matters. Future Virol 2016; 11:785-794. [PMID: 28757894 PMCID: PMC5480782 DOI: 10.2217/fvl-2016-0093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
More than 35 million people remain infected with HIV-1. Upon antiretroviral therapy cessation, HIV-1-positive individuals systematically fail to achieve sustained virological remission, revealing the presence of a reservoir. This reservoir takes into account anatomical sanctuaries where HIV-1 continues to replicate, and latently infected cells also known as the latent reservoir (LR). A better understanding of the nature and features of the LR and its quantification are crucial to evaluate the efficiency of therapeutic strategies aiming at purging HIV-1. Culture- and PCR-based assays have already been implemented to measure the LR, and new assays are continuously being developed. In this review, we will discuss these methods highlighting the difficulties to accurately measure the LR, one main obstacle in curing HIV-1.
Collapse
Affiliation(s)
- Flavia Hodel
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Marion Patxot
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Tiia Snäkä
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Sarmati L, D'Ettorre G, Parisi SG, Andreoni M. HIV Replication at Low Copy Number and its Correlation with the HIV Reservoir: A Clinical Perspective. Curr HIV Res 2016; 13:250-7. [PMID: 25845389 PMCID: PMC4460281 DOI: 10.2174/1570162x13666150407142539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/27/2015] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Abstract
The efficacy of combination therapy (antiretroviral therapy - ARV) is demonstrated by the high rates of viral suppression achieved in most treated HIV patients. Whereas contemporary
treatments may continuously suppress HIV replication, they do not eliminate the latent reservoir, which can reactivate HIV infection if ARV is discontinued. The persistence of HIV proviral DNA and
infectious viruses in CD4+ T cells and others cells has long been considered a major obstacle in eradicating the HIV virus in treated patients. Moreover, recent studies have demonstrated the
persistence of HIV replication at low copies in most patients on suppressive ARV. The source of this ‘residual viraemia’ and whether it declines over years of therapy remain unknown. Similarly, little is known regarding the biological
relationships between the HIV reservoir and viral replication at low copies. The question of whether this ‘residual viraemia’ represents active replication or the release of non-productive virus from the reservoir has not been adequately
resolved. From a clinical perspective, both the quantification of the HIV reservoir and the detection of low levels of replication in full-responder patients on prolonged ARV may provide important information regarding the effectiveness of treatment
and the eradication of HIV. To date, the monitoring of these two parameters has been conducted only for research purposes; the routine use of standardised tests procedure is lacking.
This review aims to assess the current data regarding the correlation between HIV replication at low copies and the HIV reservoir and to provide useful information for clinicians.
Collapse
Affiliation(s)
- Loredana Sarmati
- Clinical Infectious Diseases, Tor Vergata University, V. Montpellier 1, 00133, Roma, Italy.
| | | | | | | |
Collapse
|
50
|
Abstract
Current efforts toward achieving a cure for HIV are focused on developing strategies to eliminate latently infected CD4+ T cells, which represent the major barrier to virus eradication. Sensitive, precise, and practical assays that can reliably characterize and measure this HIV reservoir and can reliably measure the impact of a candidate treatment strategy are essential. PCR-based procedures for detecting integrated HIV DNA will overestimate the size of the reservoir by detecting replication-incompetent proviruses; however, viral outgrowth assays underestimate the size of the reservoir. Here, we describe the attributes and limitations of current procedures for measuring the HIV reservoir. Characterizing their relative merits will require rigorous evaluation of their performance characteristics (sensitivity, specificity, reproducibility, etc.) and their relationship to the results of clinical studies.
Collapse
Affiliation(s)
| | - Douglas D. Richman
- UCSD, La Jolla, California, USA
- VA San Diego Healthcare System, La Jolla, California, USA
| |
Collapse
|