1
|
Chan P, Li X, Li F, Emu B, Price RW, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Front Immunol 2025; 16:1531828. [PMID: 40070827 PMCID: PMC11893981 DOI: 10.3389/fimmu.2025.1531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Trafficking of immune cells to the central nervous system is hypothesized to facilitate HIV entry and immune-induced neuronal injury and is mediated by surface proteins such as chemokine receptors and α4 integrin. We longitudinally assessed immune cell activation and surface marker expression in cerebrospinal fluid (CSF) and blood and their relationship with CSF HIV RNA beginning during primary HIV infection (PHI) before and after antiretroviral therapy (ART). Methods Longitudinal paired blood and CSF were obtained in ART-naïve PHI (<12 month since infection) participants; some independently initiated ART during follow up. Multiparameter flow cytometry of fresh samples determined activation (% CD38+HLADR+) and chemokine receptor expression (% CCR5+ and CXCR3+) on CD4+ and CD8+ T cells, and subtype and α4 integrin expression (% and mean fluorescence intensity (mfi) of CD49d+) on monocytes. HIV RNA was quantified by PCR. Analyses employed Spearman correlation, within-subject correlation, and linear mixed models. Results 51 participants enrolled at a median 3.2 months post HIV transmission with 168 total visits (113 pre-ART, 55 post-ART) and a median of 6.5 months of longitudinal follow up (range 0-40). In pre-ART PHI, frequencies of activated CD4+ and CD8+ T cells were much higher in CSF than in blood, with levels similar to ART-naïve people with chronic HIV infection. Both CSF CD4+ and CD8+ T cell activation increased longitudinally prior to initiation of ART. In multivariate analysis, CSF CD4+ but not CD8+ T cell activation independently predicted CSF HIV RNA. Neither CSF monocyte subtypes or α4 expression correlated with CSF HIV RNA. Blood monocyte α4 MFI correlated with CD4+ and CD8+ T cell activation (p<0.05). Following ART initiation, blood but not CSF T cell activation declined with days on treatment (slope=-0.06, p=0.001). During ART, blood and CSF monocyte α4 MFI correlated with T cell activation (p<0.05). Conclusions In untreated early infection after PHI, immune activation increases over time, and CSF CD4+ T cell activation but not monocyte activation correlates with CSF HIV RNA. Intrathecal T cell activation does not decline during early follow up on ART. Immunomodulating therapies may be needed to prevent neuronal injury and HIV neuroinvasion during early HIV.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| | - Xiang Li
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Honeycutt JB, Wahl A, Files JK, League AF, Yadav-Samudrala BJ, Garcia JV, Fitting S. In situ analysis of neuronal injury and neuroinflammation during HIV-1 infection. Retrovirology 2024; 21:11. [PMID: 38945996 PMCID: PMC11215835 DOI: 10.1186/s12977-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Jacob K Files
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA.
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
4
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Schluga Y, Justus JLP, da Rocha MT, Abramson I, Vaida F, Schrier R, Ellis RJ. Main lymphocyte subpopulations in cerebrospinal fluid and peripheral blood in HIV-1 subtypes C and B. J Neurovirol 2022; 28:291-304. [PMID: 35190973 DOI: 10.1007/s13365-022-01054-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
HIV-1 subtype C (HIV-1C) shows reduced Tat protein chemoattractant activity compared with HIV-1B. The impact of HIV-1C Tat on the chemotaxis of the main lymphocyte subpopulations in the cerebrospinal fluid (CSF) and the peripheral blood (PB) is unclear. We hypothesized that there would be a lower frequency of specific lymphocyte subpopulations CD3+ or CD19+ in CSF in HIV-1C than in HIV-1B. The objectives were to detect the differences in the proportions of main lymphocyte subpopulations in CSF and PB, between people with HIV (PWH) and HIV-1-uninfected volunteers (PWoH) and in HIV-1B and HIV-1C. Lymphocyte immunophenotyping was studied in CSF and paired PB samples of PWH (n = 22) and PWoH (n = 14). Lymphocytes were analyzed within the CD45+ gated region. The proportions of CSF CD3+CD4+, CD3+CD8+, and CD3-CD19+ lymphocytes in CSF were comparable in HIV-1B and C. There was an increase in the proportion of CD3+CD8+ cells and a decrease in CD3+CD4+ T cells (ps = 0.016) in the CSF samples of the PWH compared with the PWoH group. In the PWH group, both CD3+CD4+ and CD3+CD8+ lymphocytes were significantly higher in the CSF than in the PB (p = 0.047 and 0.005). The proportion of CD3+CD4+ was lower and that of CD3+CD8+ was higher in the CSF samples of the aviremic group than that of HIV-negative control (p = 0.0008 and < 0.0001, respectively). HIV-1C Tat substitution (C30S) did not interfere with the CNS migration of the main lymphocyte subpopulations. This is the first study to evaluate these lymphocytes in CSF and PB of HIV-1C compared with HIV-1B.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Laboratório de Virologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Miriam Perlingeiro Beltrame
- Laboratório de Citometria de Fluxo, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Bin Tang
- HNRC- HIV Neurobehavioral Research Center, UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Laboratório de Virologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yara Schluga
- Laboratório de Citometria de Fluxo, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Julie Lilian P Justus
- Laboratório de Citometria de Fluxo, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Tadeu da Rocha
- Laboratório de Citometria de Fluxo, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ian Abramson
- HNRC- HIV Neurobehavioral Research Center, UCSD, San Diego, CA, USA
| | - Florin Vaida
- HNRC- HIV Neurobehavioral Research Center, UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HNRC- HIV Neurobehavioral Research Center, UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HNRC- HIV Neurobehavioral Research Center, UCSD, San Diego, CA, USA
| |
Collapse
|
5
|
Mousel MR, White SN, Herndon MK, Herndon DR, Taylor JB, Becker GM, Murdoch BM. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS One 2021; 16:e0247209. [PMID: 34252097 PMCID: PMC8274911 DOI: 10.1371/journal.pone.0247209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.
Collapse
Affiliation(s)
- Michelle R. Mousel
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - David R. Herndon
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
| | - J. Bret Taylor
- U.S. Department of Agriculture, Range Sheep Production Efficiency Research, Agricultural Research Service, Dubois, ID, United States of America
| | - Gabrielle M. Becker
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
6
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Comparison of [11C]-PBR28 Binding Between Persons Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 85:244-251. [PMID: 32658129 DOI: 10.1097/qai.0000000000002435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Despite combined antiretroviral therapy, neuroinflammation may persist in persons living with HIV (PLWH) and contribute to cognitive impairment in this population. Positron emission tomography (PET) imaging targeting 18 kDa translocator protein (TSPO) has been used to localize neuroinflammation. We aimed to use TSPO-PET imaging to evaluate neuroinflammation in PLWH. DESIGN Twenty-four virologically suppressed PLWH on combined antiretroviral therapy and 13 HIV-negative (HIV-) controls completed TSPO-PET imaging using the radiotracer [C]PBR28. Because of tracer complexity and differing procedures used in previous studies, we employed an expansive methodological approach, using binding potential (BP) and standard uptake value ratio and multiple different reference regions to estimate [C]PBR28 binding. METHODS [C]PBR28 binding was measured in 30 cortical and subcortical regions and compared between PLWH and HIV- controls. Pearson correlation evaluated the association between [C]PBR28 binding and cognition and clinical measures of HIV. RESULTS Analyses conducted using multiple reference regions and measures of tracer uptake revealed no significant differences between [C]PBR28 binding in PLWH compared with HIV- controls. In addition, [C]PBR28 binding in PLWH was not significantly associated with clinical measures of HIV or plasma biomarkers of inflammation. [C]PBR28 binding was not significantly elevated in cognitively impaired PLWH compared with unimpaired PLWH, but there were inverse relationships between cognitive performance (executive and global function) and [C]PBR28 binding in PLWH. CONCLUSIONS Our results suggest that neuroinflammation may play a role in cognitive deficits, but overall neuroinflammatory levels as measured by TSPO-PET imaging in PLWH are not significantly different from those seen in HIV- controls.
Collapse
|
8
|
McArthur JC, Johnson TP. Chronic inflammation mediates brain injury in HIV infection: relevance for cure strategies. Curr Opin Neurol 2021; 33:397-404. [PMID: 32209807 DOI: 10.1097/wco.0000000000000807] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Chronic inflammation is a major component of HIV infection, the effects of which can be devastating in the central nervous system (CNS). Protecting the brain is, therefore, critical as efforts proceed to cure HIV infection by reactivating latent viral reservoirs and driving immune responses. We review the clinical presentation and pathology findings of inflammatory processes in the CNS in patients managed with ART and the drivers of these processes. RECENT FINDINGS Chronic inflammation is associated with increased mortality and morbidity and HIV infection increases the risk for chronic diseases, especially cognitive impairment. Latent viral reservoirs, including microglia and tissue macrophages, contribute to inflammation in the CNS. Inflammation is generated and maintained through residual viral replication, dysregulation of infected cells, continuously produced viral proteins and positive feedback loops of chronic inflammation. Novel therapeutics and lifestyle changes may help to protect the CNS from immune-mediated damage. SUMMARY As therapies are developed to cure HIV, it is important to protect the CNS from additional immune-mediated damage. Adjunctive therapies to restore glial function, reduce neuroinflammation and systemic inflammation, and inhibit expression of viral proteins are needed.
Collapse
Affiliation(s)
- Justin C McArthur
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
9
|
Hagberg L, Price RW, Zetterberg H, Fuchs D, Gisslén M. Herpes zoster in HIV-1 infection: The role of CSF pleocytosis in secondary CSF escape and discordance. PLoS One 2020; 15:e0236162. [PMID: 32697807 PMCID: PMC7375594 DOI: 10.1371/journal.pone.0236162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
HIV cerebrospinal fluid (CSF) escape is defined by a concentration of HIV-1 RNA in CSF above the lower limit of quantification of the employed assay and equal to or greater than the plasma HIV-1 RNA level in the presence of treatment-related plasma viral suppression, while CSF discordance is similarly defined by equal or higher CSF than plasma HIV-1 RNA in untreated individuals. During secondary CSF escape or discordance, disproportionate CSF HIV-1 RNA develops in relation to another infection in addition to HIV-1. We performed a retrospective review of people living with HIV receiving clinical care at Sahlgrenska Infectious Diseases Clinic in Gothenburg, Sweden who developed uncomplicated herpes zoster (HZ) and underwent a research lumbar puncture (LP) within the ensuing 150 days. Based on treatment status and the relationship between CSF and plasma HIV-1 RNA concentrations, they were divided into 4 groups: i) antiretroviral treated with CSF escape (N = 4), ii) treated without CSF escape (N = 5), iii) untreated with CSF discordance (N = 8), and iv) untreated without CSF discordance (N = 8). We augmented these with two additional cases of secondary CSF escape related to neuroborreliosis and HSV-2 encephalitis and analyzed these two non-HZ cases for factors contributing to CSF HIV-1 RNA concentrations. HIV-1 CSF escape and discordance were associated with higher CSF white blood cell (WBC) counts than their non-escape (P = 0.0087) and non-discordant (P = 0.0017) counterparts, and the CSF WBC counts correlated with the CSF HIV-1 RNA levels in both the treated (P = 0.0047) and untreated (P = 0.002) group pairs. Moreover, the CSF WBC counts correlated with the CSF:plasma HIV-1 RNA ratios of the entire group of 27 subjects (P = <0.0001) indicating a strong effect of the CSF WBC count on the relation of the CSF to plasma HIV-1 RNA concentrations across the entire sample set. The inflammatory response to HZ and its augmenting effect on CSF HIV-1 RNA was found up to 5 months after the HZ outbreak in the cross-sectional sample and, was present for one year after HZ in one individual followed longitudinally. We suggest that HZ provides a ‘model’ of secondary CSF escape and discordance. Likely, the inflammatory response to HZ pathology provoked local HIV-1 production by enhanced trafficking or activation of HIV-1-infected CD4+ T lymphocytes. Whereas treatment and other systemic factors determined the plasma HIV-1 RNA concentrations, in this setting the CSF WBC counts established the relation of the CSF HIV-1 RNA levels to this plasma set-point.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Gisslén M, Hunt PW. Antiretroviral Treatment of Acute HIV Infection Normalizes Levels of Cerebrospinal Fluid Markers of Central Nervous System (CNS) Inflammation: A Consequence of a Reduced CNS Reservoir? J Infect Dis 2019; 220:1867-1869. [PMID: 30668742 PMCID: PMC6833976 DOI: 10.1093/infdis/jiz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Magnus Gisslén
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
11
|
Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H, Macatangay BJ, Lalama CM, Rinaldo C, Collier AC, Godfrey C, Eron JJ, McMahon D, Jacobs JL, Koontz D, Hogg E, Vecchio A, Mellors JW. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest 2019; 129:3339-3346. [PMID: 31305262 PMCID: PMC6668666 DOI: 10.1172/jci127413] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDPersistence of HIV in sanctuary sites despite antiretroviral therapy (ART) presents a barrier to HIV remission and may affect neurocognitive function. We assessed HIV persistence in cerebrospinal fluid (CSF) and associations with inflammation and neurocognitive performance during long-term ART.METHODSParticipants enrolled in the AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321) underwent concurrent lumbar puncture, phlebotomy, and neurocognitive assessment. Cell-associated HIV DNA and HIV RNA (CA-DNA, CA-RNA) were measured by quantitative PCR (qPCR). in peripheral blood mononuclear cells (PBMCs) and in cell pellets from CSF. In CSF supernatant and blood plasma, cell-free HIV RNA was quantified by qPCR with single copy sensitivity, and inflammatory biomarkers were measured by enzyme immunoassay.RESULTSSixty-nine participants (97% male, median age 50 years, CD4 696 cells/mm3, plasma HIV RNA <100 copies/mL) were assessed after a median 8.6 years of ART. In CSF, cell-free RNA was detected in 4%, CA-RNA in 9%, and CA-DNA in 48% of participants (median level 2.1 copies/103 cells). Detection of cell-free CSF HIV RNA was associated with higher plasma HIV RNA (P = 0.007). CSF inflammatory biomarkers did not correlate with HIV persistence measures. Detection of CSF CA-DNA HIV was associated with worse neurocognitive outcomes including global deficit score (P = 0.005), even after adjusting for age and nadir CD4 count.CONCLUSIONHIV-infected cells persist in CSF in almost half of individuals on long-term ART, and their detection is associated with poorer neurocognitive performance.FUNDINGThis observational study, AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321), was supported by the National Institutes of Health (NIAID and NIMH).
Collapse
Affiliation(s)
| | - Kevin R. Robertson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J. Bosch
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hanna Mar
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | - Joseph J. Eron
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Dianna Koontz
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evelyn Hogg
- Social & Scientific Systems, Silver Spring, Maryland, USA
| | - Alyssa Vecchio
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
12
|
Persistent central nervous system immune activation following more than 10 years of effective HIV antiretroviral treatment. AIDS 2018; 32:2171-2178. [PMID: 30005007 DOI: 10.1097/qad.0000000000001950] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Low-grade immune activation is common in people living with HIV (PLHIV), despite long-term viral suppression by antiretroviral therapy (ART). The clinical significance of this activation remains unclear. The aim of this study was to examine residual intrathecal immune activation in relation to signs of neuronal injury and neurocognitive impairment in PLHIV who had been virally suppressed on ART for more than 10 years. DESIGN/METHODS Twenty neuroasymptomatic PLHIV on suppressive ART for a median of 13.2 years were retrospectively identified from the longitudinal prospective Gothenburg HIV cerebrospinal fluid (CSF) study. HIV-RNA, neopterin, and neurofilament light protein (NFL) levels were measured in paired plasma and CSF samples. Pretreatment samples were available for 14 patients. Cognitive function was assessed by CogState at follow-up. RESULTS CSF neopterin decreased from a median (IQR) of 17.8 (10.6-29.7) to 6.1 (4.6-8.0) nmol/l during treatment (P < 0.001). In 11 out of 20 participants (55%), CSF neopterin levels were above the upper normal reference limit (5.8 nmol/l) at follow-up. Age-adjusted CSF NFL decreased to within-normal levels from a median of (IQR) 1179 (557-2707) to 415 (292-610) ng/l (P < 0.001). No significant correlations were found between CSF neopterin and CSF NFL or neurocognitive performance. CONCLUSION Although CSF neopterin decreased significantly, more than 50% of the patients had CSF concentrations above the upper normal reference value despite more than 10 years of suppressive ART. We found no correlation between CSF neopterin, CSF NFL or neurocognitive performance at follow-up, indicating that low-grade immune activation during suppressive ART may be clinically benign.
Collapse
|
13
|
Peripheral and cerebrospinal fluid immune activation and inflammation in chronically HIV-infected patients before and after virally suppressive combination antiretroviral therapy (cART). J Neurovirol 2018; 24:679-694. [PMID: 29987585 DOI: 10.1007/s13365-018-0661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Cerebrospinal fluid (CSF)/plasma HIV-RNA ratio has been associated with residual neurocognitive impairment on cART, leading us to hypothesize a specific peripheral and/or CSF immune feature in patients with high CSF/plasma ratio (≥ 1). In patients with diverse pre-cART CSF/plasma ratio (61/70 with CSF/plasma ratio < 1, L-CSF, 9/70 with CSF/plasma ratio ≥ 1, H-CSF), we investigated the effects of 12 months of effective cART on peripheral and CSF inflammatory markers, on T cell activation/maturation and HIV/CMV-specific intracellular cytokine pattern. We also studied the possible clinical association between peripheral/CSF pro-inflammatory milieu and neurocognitive screening tests (MMSE, FAB, IHDS). Prior to cART, the two groups were comparable for peripheral and CSF inflammation, T cell activation/proliferation and maturation, and HIV/CMV-specific response. Upon cART initiation, both H-CSF and L-CSF featured a significant reduction in plasma TNF-α and circulating CD8 activation, with a redistribution of memory/naïve T cell subsets in L-CSF alone. In the CSF compartment, cART seemed able to reduce pro-inflammatory cytokine/chemokine levels in both H-CSF and L-CSF patients. Interestingly, despite a reduction in the pro-inflammatory milieu, no changes were shown in neurocognitive screening tests in both patients' groups. We hereby show that 12-month cART is able to reduce intratechal and peripheral pro-inflammatory burden; a longer cART exposure and a more comprehensive neuropsychological evaluation might be necessary to gain a broader insight into the possible effects on neurocognitive performance.
Collapse
|
14
|
Yilmaz A, Blennow K, Hagberg L, Nilsson S, Price RW, Schouten J, Spudich S, Underwood J, Zetterberg H, Gisslén M. Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev Mol Diagn 2017; 17:761-770. [PMID: 28598205 DOI: 10.1080/14737159.2017.1341313] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Several CSF biomarkers of neuronal injury have been studied in people living with HIV. At this time, the most useful is the light subunit of the neurofilament protein (NFL). This major structural component of myelinated axons is essential to maintain axonal caliber and to facilitate effective nerve conduction. CSF concentrations of NFL provide a sensitive marker of CNS injury in a number of neurological diseases, including HIV-related neuronal injury. Areas Covered: In this review, the authors describe CSF NFL concentrations across the spectrum of HIV-infection, from its early acute phase to severe immunosuppression, with and without neurological conditions, and with and without antiretroviral treatment (n = 516). Furthermore, in order to provide more precise estimates of age-related upper limits of CSF NFL concentrations, the authors present data from a large number (n = 359) of HIV-negative controls. Expert Commentary: Recently a new ultrasensitive diagnostic assay for quantification of NFL in plasma has been developed, providing a convenient way to assess neuronal damage without having to perform a lumbar puncture. This review also considers our current knowledge of plasma NFL in HIV CNS infection.
Collapse
Affiliation(s)
- Aylin Yilmaz
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| | - Kaj Blennow
- b Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , University of Gothenburg , Gothenburg , Sweden.,c Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Molndal , Sweden
| | - Lars Hagberg
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| | - Staffan Nilsson
- d Mathematical Sciences , Chalmers University of Technology , Gothenburg , Sweden
| | - Richard W Price
- e Department of Neurology , University of California San Francisco , San Francisco , California , USA
| | - Judith Schouten
- f Department of Neurology, Academic Medical Center and Department of Global Health , Academic Medical Center, and Amsterdam Institute for Global Health and Development , Amsterdam , The Netherlands
| | - Serena Spudich
- g Department of Neurology , Yale University , New Haven , Connecticut , USA
| | - Jonathan Underwood
- h Division of Infectious Diseases , Imperial College London , London , UK
| | - Henrik Zetterberg
- b Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , University of Gothenburg , Gothenburg , Sweden.,c Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Molndal , Sweden.,i Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Magnus Gisslén
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
15
|
Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 2016; 11:226-33. [PMID: 26760827 DOI: 10.1097/coh.0000000000000243] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. RECENT FINDINGS In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. SUMMARY More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose is to review recent insights into the impact of HIV-associated immune activation on AIDS and non-AIDS morbidity and mortality. RECENT FINDINGS Immune activation has long been recognized as an important consequence of untreated HIV infection and predictor of AIDS progression, which declines but fails to normalize during suppressive antiretroviral therapy, and continues to predict disease in this setting. Thus, a major research agenda is to develop novel therapies to reduce persistent immune activation in treated HIV infection. Yet, the optimal targets for interventions remain unclear. Both the specific root causes of immune activation and the many interconnected pathways of immune activation that are most likely to drive disease risk in HIV-infected individuals remain incompletely characterized, but recent studies have shed new light on these topics. SUMMARY In the context of this review, we will summarize recent evidence helping to elucidate the immunologic pathways that appear most strongly predictive of infectious and noninfectious morbidity. We will also highlight the likelihood that not all root drivers of immune activation - and the discrete immunologic pathways to which they give rise - are likely to produce the same disease manifestations and/or be equally attenuated by early antiretroviral therapy initiation.
Collapse
|
17
|
Abstract
OBJECTIVE Little is known about the extent of cortical and subcortical volumetric alterations that may occur within the first year of HIV infection [primary HIV infection (PHI)]. DESIGN We used structural MRI in this prospective cross-sectional neuroimaging study to determine the extent of volumetric changes in early HIV infection. METHODS Cerebrospinal fluid, blood, neuropsychological testing, and structural T1 MRI scans were acquired from 18 HIV and 47 PHI age-matched antiretroviral-naïve male participants. Using FreeSurfer 5.1, volumetric measurements were obtained from the caudate, amygdala, corpus callosum, ventricles, putamen, thalamus, cortical white matter, and total gray matter. Regional volumes were compared groupwise and related to biomarkers in cerebrospinal fluid (viral load, neopterin, and neurofilament light chain), blood (viral load, CD4, and CD8 T-cell count), and neuropsychometric tests (digit-symbol, grooved pegboard, finger-tapping, and timed gait). RESULTS A trend-level moderate reduction of putamen volume (P = 0.076, adjusted Cohen's d = 0.5 after controlling for age) was observed for PHI compared with HIV-uninfected individuals. Within the PHI group, putamen volume associated with CD4 cell count (P = 0.03), CD4/CD8 ratio (P = 0.045), infection duration (P = 0.009), and worsening psychomotor performance on the digit-symbol (P = 0.028), finger-tapping (P = 0.039), and timed gait (P = 0.009) tests. CONCLUSION Our volumetric results suggest that the putamen is preferentially susceptible to early HIV-associated processes. Examining the natural course of early HIV infection longitudinally will allow for mapping of the trajectory of HIV-associated central nervous system changes, enabling creation of improved interventional strategies to potentially stabilize or reverse these observed structural changes.
Collapse
|
18
|
Dentone C, Fenoglio D, Schenone E, Cenderello G, Prinapori R, Signori A, Parodi A, Kalli F, Battaglia F, Feasi M, Bruzzone B, Viscoli C, Filaci G, Di Biagio A. Increased CD38 expression on T lymphocytes as a marker of HIV dissemination into the central nervous system. HIV CLINICAL TRIALS 2015; 16:190-6. [PMID: 26365593 DOI: 10.1179/1945577115y.0000000005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cross-sectional analysis on 20 HIV-1 patients with neurological symptoms admitted to two infectious disease units. Cut-off of HIV-RNA (VL) was 20 copies/ml for plasma and cerebral spinal fluid (CSF). Flow cytometry was used to analyze the phenotype of circulating and CSF T lymphocytes. CD38 mean fluorescence intensity (MFI) was higher on circulating CD4+T lymphocytes from patients with VL>20 copies/ml in plasma (P=0.001) or CSF (P=0.001). The frequency of circulating CD8+CD38+T cells and CD38 MFI on these cells were higher in patients with VL>20 copies/ml than in those with undetectable plasma VL (P=0.030 and P=0.023). The frequency of CSF CD4+CD38+T, as well as their CD38 and CD95 MFI, were increased in patients with detectable than non-detectable plasma VL (P=0.01, P=0.03, and P=0.05). The % CD38+CD8+T in CSF correlated with time of virological suppression (ρ=-0.462, P=0.040) and the CNS penetration-effectiveness (CPE) score (ρ=-0.467, P=0.038). In conclusion, (a) the expression of CD38+ on both CD4+, CD8+T lymphocytes from peripheral blood and CSF discriminated between viremic and non-viremic patients and (b) T cell activation/apoptosis markers inversely correlated with CPE to remark the importance for therapy to restore immunological functions.
Collapse
|
19
|
New insights into immune reconstitution inflammatory syndrome of the central nervous system. Curr Opin HIV AIDS 2015; 9:572-8. [PMID: 25275706 DOI: 10.1097/coh.0000000000000107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To highlight the importance of immune reconstitution inflammatory syndrome affecting the brain in HIV-infected individuals in the absence of opportunistic infections. To describe the varied clinical manifestations, unifying pathophysiological features and discuss the principles of management of this syndrome. RECENT FINDINGS Immune reconstitution inflammatory syndrome within the brain is commonly seen in patients with HIV infection upon initiation of antiretroviral drugs. The fulminant forms occur in the face of opportunistic infections or uncontrolled viral replication within the brain. In this case, the enhanced immune response is targeted against the microbial agent, and the brain suffers bystander damage. Treatment requires the combination of the antimicrobial agent, continued antiretrovirals and in some cases corticosteroids. It is increasingly being recognized that despite adequate control of viral replication in the brain, some patients develop a chronic form of T cell encephalitis which appears to be driven by continued production of HIV-Tat protein. In others, the immune response may be targeted against the host antigens in the brain. SUMMARY In patients with central nervous system-immune reconstitution inflammatory syndrome, the use of corticosteroids and strategies that prevent T cell migration into the brain may be needed. Extreme caution is necessary if viral eradication strategies are to be employed that involve activation of viral reservoirs, as these patients may be at risk for developing central nervous system-immune reconstitution inflammatory syndrome.
Collapse
|
20
|
Peripheral neuropathy in primary HIV infection associates with systemic and central nervous system immune activation. J Acquir Immune Defic Syndr 2014; 66:303-10. [PMID: 24732871 DOI: 10.1097/qai.0000000000000167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Peripheral neuropathy (PN) is a frequent complication of chronic HIV infection. We prospectively studied individuals with primary HIV infection (<1 year after transmission) to assess the presence of and laboratory associations with PN in this early stage. METHODS Standardized examination and analysis of blood and cerebrospinal fluid (CSF) was performed in participants with laboratory-confirmed primary HIV infection. PN was defined as ≥1 of the following unilateral or bilateral signs: decreased distal limb position, vibration, or temperature sense or hyporeflexia; symptomatic PN (SPN) was defined as the presence of these signs with symptoms. Analysis used nonparametric statistics. RESULTS Overall, 20 (35%) of 58 antiretroviral-naive male subjects without diabetes evaluated at a median of 107 days post HIV transmission met criteria for PN. Thirteen (65%) of 20 PN subjects met criteria for SPN; 6 (30%) of 20 had bilateral findings. PN subjects and no PN subjects (NPN) did not differ in median age, days post HIV transmission, blood CD4 or CD8 counts, CSF or plasma HIV RNA levels, CSF white blood cell counts, or CSF to blood albumin ratio. PN and SPN subjects had elevated CSF neopterin (P = 0.003 and P = 0.0005), CSF monocyte chemoattractant protein-1 (P = 0.006 and P = 0.01), and blood neopterin (P = 0.006 and P = 0.009) compared with NPN subjects. PN subjects had a higher percentage of activated phenotype CSF CD8 T lymphocytes than NPN subjects (P = 0.009). CONCLUSIONS Signs of PN were detected by detailed neurologic examination in 35% of men enrolled in a neurological study at a median of 3.5 months after HIV transmission. PN during this early period may be mediated by systemic and nervous system immune responses to HIV.
Collapse
|
21
|
Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection. J Neuroinflammation 2014; 11:199. [PMID: 25465205 PMCID: PMC4263211 DOI: 10.1186/s12974-014-0199-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Central nervous system (CNS) inflammation is a mediator of brain injury in HIV infection. To study the natural course of CNS inflammation in the early phase of infection, we analyzed longitudinal levels of soluble and cellular markers of inflammation in cerebrospinal fluid (CSF) and blood, beginning with primary HIV-1 infection (PHI). Methods Antiretroviral-naïve subjects identified as having PHI (less than one year since HIV transmission) participated in phlebotomy and lumbar puncture at baseline and at variable intervals thereafter. Mixed-effects models were used to analyze longitudinal levels of CSF neopterin and percentages of activated cluster of differentiation (CD)4+ and CD8+ T-cells (co-expressing CD38 and human leukocyte antigen-D-related (HLA-DR)) in blood and CSF. Results A total of 81 subjects were enrolled at an average of 100 days after HIV transmission and had an average follow-up period of 321 days, with the number of visits ranging from one to 13. At baseline, the majority of subjects had CSF neopterin concentrations above the upper limit of normal. The baseline concentration was associated with the longitudinal trajectory of CSF neopterin. In subjects with baseline levels of less than 21 nmol/L, a cutoff value obtained from a mixed-effects model, CSF neopterin increased by 2.9% per 10 weeks (n = 33; P <0.001), whereas it decreased by 6.7% in subjects with baseline levels of more than 21 nmol/L (n = 11; P = 0.001). In a subset with available flow cytometry data (n = 42), the percentages of activated CD4+ and CD8+ T-cells in CSF increased by 0.8 (P <0.001) and 0.73 (P = 0.02) per 10 weeks, respectively. Conclusions Neopterin levels and the percentages of activated CD4+ and CD8+ T-cells in CSF progressively increase in most subjects without treatment during early HIV-1 infection, suggesting an accrual of intrathecal inflammation, a major contributor to neuropathology in HIV infection.
Collapse
|
22
|
Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 2014; 28:2251-8. [PMID: 25022595 DOI: 10.1097/qad.0000000000000400] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE AND DESIGN Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. METHODS CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. RESULTS CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. CONCLUSION Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.
Collapse
|
23
|
Letendre SL, Mills AM, Tashima KT, Thomas DA, Min SS, Chen S, Song IH, Piscitelli SC. ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects. Clin Infect Dis 2014; 59:1032-7. [PMID: 24944232 PMCID: PMC4166983 DOI: 10.1093/cid/ciu477] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Median dolutegravir concentrations in cerebrospinal fluid were similar to unbound concentrations in plasma and all subjects exceeded the in vitro 50% inhibitory concentration for wild-type viruses (0.2 ng/mL) by ≥66-fold, suggesting therapeutic concentrations are achieved in cerebrospinal fluid.. Background. Dolutegravir (DTG), a once-daily, human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, was evaluated for distribution and antiviral activity in cerebrospinal fluid (CSF). Methods. ING116070 is an ongoing, single-arm, open-label, multicenter study in antiretroviral therapy–naive, HIV-1–infected adults. Subjects received DTG (50 mg) plus abacavir/lamivudine (600/300 mg) once daily. The CSF and plasma (total and unbound) DTG concentrations were measured at weeks 2 and 16. The HIV-1 RNA levels were measured in CSF at baseline and weeks 2 and 16 and in plasma at baseline and weeks 2, 4, 8, 12, and 16. Results. Thirteen white men enrolled in the study; 2 withdrew prematurely, 1 because of a non–drug-related serious adverse event (pharyngitis) and 1 because of lack of treatment efficacy. The median DTG concentrations in CSF were 18 ng/mL (range, 4–23 ng/mL) at week 2 and 13 ng/mL (4–18 ng/mL) at week 16. Ratios of DTG CSF to total plasma concentration were similar to the unbound fraction of DTG in plasma. Median changes from baseline in CSF (n = 11) and plasma (n = 12) HIV-1 RNA were −3.42 and −3.04 log10 copies/mL, respectively. Nine of 11 subjects (82%) had plasma and CSF HIV-1 RNA levels <50 copies/mL and 10 of 11 (91%) had CSF HIV-1 RNA levels <2 copies/mL at week 16. Conclusions. The DTG concentrations in CSF were similar to unbound plasma concentrations and exceeded the in vitro 50% inhibitory concentration for wild-type HIV (0.2 ng/mL), suggesting that DTG achieves therapeutic concentrations in the central nervous system. The HIV-1 RNA reductions were similar in CSF and plasma. Clinical Trials Registration. NCT01499199.
Collapse
|
24
|
Abstract
The spectrum of HIV-associated neurocognitive disorder (HAND) has been dramatically altered in the setting of widely available effective antiretroviral therapy (ART). Once culminating in dementia in many individuals infected with HIV, HAND now typically manifests as more subtle, though still morbid, forms of cognitive impairment in persons surviving long-term with treated HIV infection. Despite the substantial improvement in severity of this disorder, the fact that neurologic injury persists despite ART remains a challenge to the community of patients, providers and investigators aiming to optimize quality of life for those living with HIV. Cognitive dysfunction in treated HIV may reflect early irreversible CNS injury accrued before ART is typically initiated, ongoing low-level CNS infection and progressive injury in the setting of ART, or comborbidities including effects of treatment which may confound the beneficial reduction in viral replication and immune activation effected by ART.
Collapse
|
25
|
Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 2013; 110:13588-93. [PMID: 23898208 DOI: 10.1073/pnas.1308673110] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic immune activation is a major complication of antiretroviral therapy (ART) for HIV infection and can cause a devastating immune reconstitution inflammatory syndrome (IRIS) in the brain. The mechanism of T-cell activation in this population is not well understood. We found HIV-Tat protein and IL-17-expressing mononuclear cells in the brain of an individual with IRIS. Tat was also present in the CSF of individuals virologically controlled on ART. Hence we examined if Tat protein could directly activate T cells. Tat transcriptionally dysregulated 94 genes and induced secretion of 11 cytokines particularly activation of IL-17 signaling pathways supporting the development of a proinflammatory state. Tat increased IL-17 transcription and secretion in T cells. Tat entered the T cells rapidly by clathrin-mediated endocytosis and localized to both the cytoplasm and the nucleus. Tat activated T cells through a nonclassical pathway dependent upon vascular endothelial growth factor receptor-2 and downstream secondary signaling pathways but independent of the T-cell receptor. However, Tat stimulation of T cells did not induce T-cell proliferation but increased viral infectivity. This study demonstrates Tat's role as a virulence factor, by driving T-cell activation and contributing to IRIS pathophysiology. This supports the necessity of an anti-Tat therapy in conjunction with ART and identifies multiple targetable pathways to prevent Tat-mediated T-cell activation.
Collapse
|
26
|
Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E. Cellular Composition of Cerebrospinal Fluid in HIV-1 Infected and Uninfected Subjects. PLoS One 2013; 8:e66188. [PMID: 23822975 PMCID: PMC3688831 DOI: 10.1371/journal.pone.0066188] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
In order to characterize the cellular composition of cerebrospinal fluid (CSF) in a healthy state and in the setting of chronic pleocytosis associated with HIV-1 (HIV) infection, multi-parameter flow cytometry was used to identify and quantitate cellular phenotypes in CSF derived from HIV-uninfected healthy controls and HIV-infected subjects across a spectrum of disease and treatment. CD4+ T cells were the most frequent CSF population and the CD4:CD8 ratio was significantly increased in the CSF compared to blood (p = 0.0232), suggesting preferential trafficking of CD4+ over CD8+ T cells to this compartment. In contrast, in HIV-infection, CD8+ T cells were the major cellular component of the CSF and were markedly increased compared to HIV-uninfected subjects (p<0.001). As with peripheral blood, the CSF CD4:CD8 ratio was reversed in HIV-infected subjects compared to HIV-uninfected subjects. Monocytes, B cells and NK cells were rare in the CSF in both groups, although absolute counts of CSF NK cells and B cells were significantly increased in HIV-infected subjects (p<0.05). Our studies show that T cells are the major cellular component of the CSF in HIV-infected and uninfected subjects. The CSF pleocytosis characteristic of HIV infection involves all lymphocyte subsets we measured, except for CD4+ T cells, but is comprised primarily of CD8+ T cells. The reduced proportion of CD4+ T cells in the CSF may reflect both HIV-related peripheral loss and changes in trafficking patterns in response to HIV infection in the central nervous system.
Collapse
Affiliation(s)
- Emily L. Ho
- Department of Neurology, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Rollie Ronquillo
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serena S. Spudich
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth Sinclair
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Raltegravir resistance in the cerebrospinal fluid. Infection 2013; 41:731-4. [DOI: 10.1007/s15010-013-0409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
28
|
Tandon R, Giret MTM, Sengupta D, York VA, Wiznia AA, Rosenberg MG, Kallas EG, Ndhlovu LC, Nixon DF. Age-related expansion of Tim-3 expressing T cells in vertically HIV-1 infected children. PLoS One 2012; 7:e45733. [PMID: 23029209 PMCID: PMC3454343 DOI: 10.1371/journal.pone.0045733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion", with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Collapse
Affiliation(s)
- Ravi Tandon
- Hawaii Center for AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr 2012; 60:234-43. [PMID: 22569268 DOI: 10.1097/qai.0b013e318256f3bc] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Activated monocytes/macrophages play a role in severe forms of HIV-associated neurocognitive disorders (HAND), but little is known about the mechanisms driving milder forms that are prevalent despite combination antiretroviral therapy (cART). To examine relationships of monocyte activation markers to HAND of varying severity, we compared plasma and cerebrospinal fluid (CSF) biomarker levels with neurocognitive test scores in HIV+ subjects. METHODS Plasma and CSF soluble CD14 (sCD14), CCL2, and interleukin (IL) 6 were measured by enzyme-linked immunosorbent assay in 67 HIV+ subjects with nadir CD4 <300, and CSF inflammatory biomarkers were measured by multiplex assay in 14 subjects on suppressive cART. RESULTS Eighty-two percent were on cART, with 31% having undetectable plasma viral load (VL). CSF sCD14 was increased in subjects with impaired neurocognitive testing (P = 0.02), correlated inversely with global T scores in subjects with detectable but not undetectable plasma VL (P = 0.02), and yielded higher area under the receiver operating characteristic curve values for predicting impaired T scores (0.659) than plasma or CSF VL and current or nadir CD4 counts in single-marker and multivariate models. CSF sCD14, IL-6, IL-8, CCL2, CCL3, CXCL10, and interferon (IFN) gamma were increased in subjects on suppressive cART regardless of cognitive status and predicted patient class in unsupervised analyses, with IL-8, CCL2, and IFNγ explaining most of the variance. CONCLUSIONS CSF sCD14 is associated with impaired neurocognitive testing in patients with HIV on nonsuppressive cART, suggesting potential utility as a biomarker to monitor HAND progression. CSF sCD14, IL-6, IL-8, CCL2, CCL3, CXCL10, and IFNγ remain elevated in patients on suppressive cART regardless of cognitive status, implying ongoing intrathecal inflammation even in the absence of clinical manifestations.
Collapse
|
30
|
Spudich S, González-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2012; 2:a007120. [PMID: 22675662 PMCID: PMC3367536 DOI: 10.1101/cshperspect.a007120] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-associated central nervous system (CNS) injury continues to be clinically significant in the modern era of HIV infection and therapy. A substantial proportion of patients with suppressed HIV infection on optimal antiretroviral therapy have impaired performance on neuropsychological testing, suggesting persistence of neurological abnormalities despite treatment and projected long-term survival. In the underresourced setting, limited accessibility to antiretroviral medications means that CNS complications of later-stage HIV infection continue to be a major concern. This article reviews key recent advances in our understanding of the neuropathogenesis of HIV, focusing on basic and clinical studies that reveal viral and host features associated with viral neuroinvasion, persistence, and immunopathogenesis in the CNS, as well as issues related to monitoring and treatment of HIV-associated CNS injury in the current era.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
31
|
Abstract
OBJECTIVE To evaluate baseline T-cell activation and neurodevelopmental outcomes over time in a cohort of perinatally HIV-infected (PHIV-infected) children with severe disease. DESIGN Pediatric AIDS Clinical Trials Group protocol 366 (PACTG 366) was a partially randomized, open-label, multicenter 96-week antiretroviral treatment-algorithm study. Neurodevelopmental status, measured by age-dependent evaluations (Bayley scales of infant development-II; Wechsler preschool and primary scale of intelligence-revised; Wechsler intelligence scale for children-III), was a secondary outcome. METHODS Linear mixed models were used to assess the baseline and follow-up neurodevelopmental outcomes in relation to immune activation, measured by CD38 and human leukocyte antigen (HLA) DR expression on peripheral CD4(+) and CD8(+) T cells at study baseline. Models were adjusted for age, sex, race/ethnicity, baseline viral load, baseline CD4%, cytomegalovirus (CMV) infection status at entry, study treatment arms, central nervous system penetrance score of antiretroviral regimen at entry, and viral load response 16 weeks postentry. RESULTS Among 126 PACTG 366 enrollees who were at least 1 year old and had both immune activation and age-appropriate neurodevelopmental assessments at baseline, 80 (63%) were black non-Hispanic, 71 (56%) males, 122 (97%) were on antiretrovirals, and 45 (36%) were in Centers for Disease Control and Prevention (CDC) disease category C at entry. CD4(+)CD38(+)HLADR(+)%, CD4(+)CD38(-)HLADR(+)%, and CD8(+)CD38(+)HLADR(+)% were positively associated with full-scale Intelligence Quotient scores (FSIQ) (slope = 0.18, 0.70, and 0.15, respectively; P = 0.02, 0.03, and 0.04, respectively). CD4(+)CD38(+)HLADR(-)% was negatively associated with FSIQ (slope = -0.16, P = 0.01). CONCLUSION Contrary to HIV-infected adults, in PHIV-infected children higher CD4(+)CD38(+)HLADR(+)% may be associated with a neuroprotective effect and higher percentage of CD4(+)CD38(+) but HLADR(-) T cells may be deleterious.
Collapse
|
32
|
Angel TE, Jacobs JM, Spudich SS, Gritsenko MA, Fuchs D, Liegler T, Zetterberg H, Camp DG, Price RW, Smith RD. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics 2012; 9:3. [PMID: 22433316 PMCID: PMC3353874 DOI: 10.1186/1559-0275-9-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/20/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment. RESULTS After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node. CONCLUSIONS Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yilmaz A, Price RW, Gisslen M. Antiretroviral drug treatment of CNS HIV-1 infection. J Antimicrob Chemother 2011; 67:299-311. [DOI: 10.1093/jac/dkr492] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system? J Med Life 2011; 4:432-439. [PMID: 22514580 PMCID: PMC3227164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/17/2011] [Indexed: 10/27/2022] Open
Abstract
The central nervous system can act as a compartment in which HIV can replicate independently from plasma, and also as a sanctuary in which, under suboptimal drug pressure, HIV antiretroviral genetic variants can occur. Continuous replication of HIV in brain can contribute to neurocognitive impairment. Therefore, reaching adequate concentrations of antiretrovirals in the central nervous system might be essential in providing neuroprotection and improving neurocognition. Antiretrovirals have a restricted entry into the brain, due to several factors: the unique structure of the blood-brain barrier, and the existence of efficient efflux mechanisms. However, there is a high variability of antiretrovirals in reaching therapeutic drug concentrations in cerebrospinal fluid, that depend on the characteristics of the antiretrovirals (molecular weight, lipophilicity, protein binding) and on their capacity to be substrate for efflux transporters. The review aims to discuss the main mechanisms that interfere with antiretroviral penetration into central nervous system, and to summarize the current data concerning the penetrability of different antiretrovirals into the cerebrospinal fluid.
Collapse
Affiliation(s)
- L Ene
- Dr. Victor Babes Hospital for Infectious and Tropical Diseases, 281 Mihai Bravu Ave., District 3, 030303, Bucharest, Romania.
| | | | | |
Collapse
|
35
|
Dahl V, Lee E, Peterson J, Spudich SS, Leppla I, Sinclair E, Fuchs D, Palmer S, Price RW. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J Infect Dis 2011; 204:1936-45. [PMID: 22021620 DOI: 10.1093/infdis/jir667] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. METHODS This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4(+) and CD8(+) T-cell surface antigen expression. RESULTS Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4(+) and CD8(+) T-cell activation. CONCLUSIONS Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932.
Collapse
Affiliation(s)
- Viktor Dahl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, Fuchs D, Tambussi G, Cinque P, Hecht FM, Price RW. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 2011; 204:753-60. [PMID: 21844301 DOI: 10.1093/infdis/jir387] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. METHODS This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. RESULTS The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. CONCLUSIONS Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, University of California San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Although antiretroviral therapy for HIV infection prevents AIDS-related complications and prolongs life, it does not fully restore health. Long-term treated patients remain at higher than expected risk for a number of complications typically associated with aging, including cardiovascular disease, cancer, osteoporosis, and other end-organ diseases. The potential effect of HIV on health is perhaps most clearly exhibited by a number of immunologic abnormalities that persist despite effective suppression of HIV replication. These changes are consistent with some of the changes to the adaptive immune system that are seen in the very old ("immunosenescence") and that are likely related in part to persistent inflammation. HIV-associated inflammation and immunosenescence have been implicated as causally related to the premature onset of other end-organ diseases. Novel therapeutic strategies aimed at preventing or reversing these immunologic defects may be necessary if HIV-infected patients are to achieve normal life span.
Collapse
Affiliation(s)
- Steven G Deeks
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, CA, USA.
| |
Collapse
|
38
|
Ho EL, Spudich SS, Lee E, Fuchs D, Sinclair E, Price RW. Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: results of a pilot study. AIDS Res Ther 2011; 8:17. [PMID: 21569420 PMCID: PMC3117676 DOI: 10.1186/1742-6405-8-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/12/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Minocycline is a tetracycline antibiotic that has been shown to attenuate central nervous system (CNS) lentivirus infection, immune activation, and brain injury in model systems. To initiate assessment of minocycline as an adjuvant therapy in human CNS HIV infection, we conducted an open-labelled pilot study of its effects on cerebrospinal fluid (CSF) and blood biomarkers of infection and immune responses in 7 viremic subjects not taking antiretroviral therapy. RESULTS There were no discernable effects of minocycline on CSF or blood HIV-1 RNA, or biomarkers of immune activation and inflammation including: CSF and blood neopterin, CSF CCL2, CSF white blood cell count, and expression of cell-surface activation markers on CSF and blood T lymphocytes and monocytes. CONCLUSIONS This pilot study of biological responses to minocycline suggests little potential for its use as adjunctive antiviral or immunomodulating therapy in chronic untreated HIV infection.
Collapse
|
39
|
Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, Price RW, Gisslén M. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 2010; 202:1819-25. [PMID: 21050119 DOI: 10.1086/657342] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. METHODS Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. RESULTS Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. CONCLUSIONS Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.
Collapse
Affiliation(s)
- Arvid Edén
- Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cerebrospinal fluid in HIV-1 systemic viral controllers: absence of HIV-1 RNA and intrathecal inflammation. AIDS 2010; 24:1001-5. [PMID: 20299968 DOI: 10.1097/qad.0b013e328331e15b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND A subset of HIV-infected patients, termed 'elite' viral controllers, maintain undetectable plasma HIV RNA levels in the absence of therapy. In this group, host-mediated viral control may be accompanied by chronic systemic inflammation. It is unknown whether either infection or chronic inflammation is present within the central nervous system of these individuals. METHODS Cross-sectional analysis compared cerebrospinal fluid (CSF) HIV RNA and biomarkers of intrathecal inflammation in eight controllers (plasma HIV RNA levels <50 copies/ml) with 26 HIV-uninfected individuals, 25 untreated individuals HIV-infected, viremic individuals, and 23 HIV-infected individuals with treatment-mediated viral suppression (plasma HIV RNA levels <50 copies/ml). RESULTS All controllers had CSF HIV RNA levels below 2.5 copies/ml. CSF white blood cell (WBC) counts and CSF: plasma albumin ratios in the controllers were similar to those in both HIV-uninfected individuals and antiretroviral therapy-suppressed HIV-infected individuals. CSF neopterin, MCP-1, and IP-10 concentrations were also not different in the controllers from either HIV-uninfected or treated HIV-infected individuals. CONCLUSION The character of CSF HIV infection and degree of immunoactivation in controllers is comparable to that of HIV-uninfected and antiretroviral therapy-suppressed HIV-infected individuals, but distinct from that of untreated, viremic HIV-infected individuals.
Collapse
|
41
|
Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 2010; 7:30. [PMID: 20374632 PMCID: PMC2864195 DOI: 10.1186/1742-4690-7-30] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/07/2010] [Indexed: 12/12/2022] Open
Abstract
HIV associated neurocognitive disorders and their histopathological correlates largely depend on the continuous seeding of the central nervous system with immune activated leukocytes, mainly monocytes/macrophages from the periphery. The blood-brain-barrier plays a critical role in this never stopping neuroinvasion, although it appears unaltered until the late stage of HIV encephalitis. HIV flux that moves toward the brain thus relies on hijacking and exacerbating the physiological mechanisms that govern blood brain barrier crossing rather than barrier disruption. This review will summarize the recent data describing neuroinvasion by HIV with a focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Gabriel Gras
- Institute of Emerging Diseases and Innovative Therapies, Division of Immuno-Virology, CEA, 18 Route du Panorama, F92265 Fontenay-aux Roses, France.
| | | |
Collapse
|
42
|
Gisslén M, Krut J, Andreasson U, Blennow K, Cinque P, Brew BJ, Spudich S, Hagberg L, Rosengren L, Price RW, Zetterberg H. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol 2009; 9:63. [PMID: 20028512 PMCID: PMC2807422 DOI: 10.1186/1471-2377-9-63] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/22/2009] [Indexed: 12/04/2022] Open
Abstract
Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ), amyloid beta fragment 1-42 (Aβ1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.
Collapse
Affiliation(s)
- Magnus Gisslén
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, SE-416 85 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cinque P, Koralnik IJ, Gerevini S, Miro JM, Price RW. Progressive multifocal leukoencephalopathy in HIV-1 infection. THE LANCET. INFECTIOUS DISEASES 2009; 9:625-36. [PMID: 19778765 DOI: 10.1016/s1473-3099(09)70226-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Progressive multifocal leukoencephalopathy is caused by the JC polyomavirus (JCV) and is one of the most feared complications of HIV-1 infection. Unlike other opportunistic infections, this disease can present when CD4 counts are higher than those associated with AIDS and when patients are receiving combined antiretroviral therapy, either shortly after starting or, more rarely, during long term successful treatment. Clinical suspicion of the disease is typically when MRI shows focal neurological deficits and associated demyelinating lesions; however, the identification of JCV in cerebrospinal fluid or brain tissue is needed for a definitive diagnosis. Although no specific treatment exists, the reversal of immunosuppression by combined antiretroviral therapy leads to clinical and MRI stabilisation in 50-60% of patients with the disease, and JCV clearance from cerebrospinal fluid. A substantial proportion of patients treated with combined antiretroviral therapy develop inflammatory lesions, which can be associated with either a favourable outcome or clinical worsening. The reasons for variability in the natural history of progressive multifocal leukoencephalopathy and treatment responses are largely undefined, and more specific and rational approaches to management are needed.
Collapse
Affiliation(s)
- Paola Cinque
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
44
|
Raltegravir cerebrospinal fluid concentrations in HIV-1 infection. PLoS One 2009; 4:e6877. [PMID: 19721718 PMCID: PMC2731205 DOI: 10.1371/journal.pone.0006877] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 08/05/2009] [Indexed: 01/11/2023] Open
Abstract
Introduction Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Methods Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Results Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0–126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37–5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Conclusions Approximately 50% of the CSF specimens exceeded the IC95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.
Collapse
|
45
|
Kovacs A. Early immune activation predicts central nervous system disease in HIV-infected infants: implications for early treatment. Clin Infect Dis 2009; 48:347-9. [PMID: 19115973 DOI: 10.1086/595886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
46
|
Probasco JC, Spudich SS, Critchfield J, Lee E, Lollo N, Deeks SG, Price RW. Failure of atorvastatin to modulate CSF HIV-1 infection: results of a pilot study. Neurology 2008; 71:521-4. [PMID: 18695163 DOI: 10.1212/01.wnl.0000325006.84658.e7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND HIV-1 infection of the CSF space is nearly universal in untreated systemic infection, and correlates strongly with intrathecal and systemic immunoactivation and CSF pleocytosis. Based on the potential immunomodulatory and antiviral properties of HMG-CoA reductase inhibitors (statins), we examined the effect of atorvastatin on CSF HIV-1 infection and associated CSF abnormalities in a small pilot study. METHODS Seven male HIV-1-infected, antiretroviral-naïve subjects with a mean blood CD4+ T cell count of 473 cells/muL were studied in an open-label, single-arm pilot study to assess the effects of 80 mg atorvastatin daily for 8 weeks. The primary endpoint was the change in CSF HIV-1 RNA levels, both absolutely and relative to plasma HIV-1 RNA, at 4 and 8 weeks of treatment. Other outcome measures included CSF white blood cell counts and neopterin concentrations as indices of intrathecal immunoactivation, and blood HIV-1 RNA levels, neopterin concentrations, and T lymphocyte counts. Effects on blood lipids were used to monitor the established biologic effects of atorvastatin and treatment adherence. RESULTS No significant changes in CSF virologic and inflammatory indices or in systemic HIV-1 infection were observed during atorvastatin treatment despite potent reduction of blood lipids. CONCLUSION Atorvastatin showed no appreciable effect on CSF HIV-1 infection or intrathecal immunoactivation in this small uncontrolled study and thus appears to have little promise as an immunomodulatory adjuvant therapy for CNS HIV-1 infection, at least in neuroasymptomatic subjects with preserved CD4+ T cell counts.
Collapse
Affiliation(s)
- J C Probasco
- Department of Neurology, University of California San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Price RW, Spudich S. Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 2008; 197 Suppl 3:S294-306. [PMID: 18447615 DOI: 10.1086/533419] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Central nervous system (CNS) human immunodeficiency virus type 1 (HIV-1) infection begins during primary viremia and continues throughout the course of untreated systemic infection. Although frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection usually is not clinically apparent. In a minority of patients, CNS HIV-1 infection evolves into encephalitis during the late stages of systemic infection, which compromises brain function and presents clinically as acquired immunodeficiency syndrome dementia complex (ADC). Combination antiretroviral therapy (ART) has had a major impact on all aspects of CNS HIV-1 infection and disease. In those with asymptomatic infection, ART usually effectively suppresses HIV-1 in CSF and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, ART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Similarly, treatment has reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California-San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94117, USA.
| | | |
Collapse
|
48
|
Price RW, Parham R, Kroll JL, Wring SA, Baker B, Sailstad J, Hoh R, Liegler T, Spudich S, Kuritzkes DR, Deeks SG. Enfuvirtide Cerebrospinal Fluid (CSF) Pharmacokinetics and Potential use in Defining CSF HIV-1 Origin. Antivir Ther 2008. [DOI: 10.1177/135965350801300312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Enfuvirtide is a potent inhibitor of systemic HIV-1 replication, but its penetration into the human central nervous system (CNS) has not been analysed. Here, we define cerebrospinal fluid (CSF) enfuvirtide pharmacokinetics and present a case illustrating the use of enfuvirtide as a probe to trace the origins of CSF HIV-1 quasispecies. Methods Enfuvirtide CSF pharmacokinetics were assessed in 18 CSF and plasma sample pairs from four HIV-1-infected individuals. Enfuvirtide levels were measured by liquid chromatography tandem mass spectrometry using known standards and controls that included spiked CSF samples from untreated, HIV-negative individuals. A segment of the gp41 coding region encompassing the heptad repeat HR-1 and HR-2 domains was amplified from selected CSF and plasma samples and independent clones sequenced to assess resistance-associated mutations. Results CSF and plasma samples obtained between 2 and 20 h after enfuvirtide injection showed plasma concentrations similar to previous reports (mean 3.687 SD ±1.828 mg/ml) with prolonged decay. By contrast, enfuvirtide in all CSF samples was below the assay detection limit of 0.025 mg/ml. In one individual, who developed a transient increase in CSF HIV-1 RNA, seven of seven CSF and plasma clones had identical enfuvirtide resistance-associated V38A mutations, suggesting that the CSF quasispecies derived from that of blood. Conclusions Enfuvirtide penetration into CSF is negligible; thus, in clinical settings, where direct CNS drug exposure is crucial, this drug Is not likely to directly contribute to the local therapeutic effect. Enfuvirtide can be used as a tool to dissect the origin of the CNS virus.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Jing Lu Kroll
- Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | | | | | | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Serena Spudich
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Price RW, Parham R, Kroll JL, Wring SA, Baker B, Sailstad J, Hoh R, Liegler T, Spudich S, Kuritzkes DR, Deeks SG. Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther 2008; 13:369-374. [PMID: 18572749 PMCID: PMC2699482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Enfuvirtide is a potent inhibitor of systemic HIV-1 replication, but its penetration into the human central nervous system (CNS) has not been analysed. Here, we define cerebrospinal fluid (CSF) enfuvirtide pharmacokinetics and present a case illustrating the use of enfuvirtide as a probe to trace the origins of CSF HIV-1 quasispecies. METHODS Enfuvirtide CSF pharmacokinetics were assessed in 18 CSF and plasma sample pairs from four HIV-1-infected individuals. Enfuvirtide levels were measured by liquid chromatography tandem mass spectrometry using known standards and controls that included spiked CSF samples from untreated, HIV-negative individuals. A segment of the gp41 coding region encompassing the heptad repeat HR-1 and HR-2 domains was amplified from selected CSF and plasma samples and independent clones sequenced to assess resistance-associated mutations. RESULTS CSF and plasma samples obtained between 2 and 20 h after enfuvirtide injection showed plasma concentrations similar to previous reports (mean 3.687 SD +/- 1.828 mg/ml) with prolonged decay. By contrast, enfuvirtide in all CSF samples was below the assay detection limit of 0.025 mg/ml. In one individual, who developed a transient increase in CSF HIV-1 RNA, seven of seven CSF and plasma clones had identical enfuvirtide resistance-associated V38A mutations, suggesting that the CSF quasispecies derived from that of blood. CONCLUSIONS Enfuvirtide penetration into CSF is negligible; thus, in clinical settings, where direct CNS drug exposure is crucial, this drug Is not likely to directly contribute to the local therapeutic effect. Enfuvirtide can be used as a tool to dissect the origin of the CNS virus.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|