1
|
Jang J, Choi KS, Lee J, Lee H, Hwang I, Park JH, Chung JW, Choi SH, Kim H. Unsupervised Deep Learning for Blood-Brain Barrier Leakage Detection in Diffuse Glioma Using Dynamic Contrast-enhanced MRI. Radiol Artif Intell 2025; 7:e240507. [PMID: 40172325 DOI: 10.1148/ryai.240507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Purpose To develop an unsupervised deep learning framework for generalizable blood-brain barrier leakage detection using dynamic contrast-enhanced MRI, without requiring pharmacokinetic models and arterial input function estimation. Materials and Methods This retrospective study included data from patients who underwent dynamic contrast-enhanced MRI between April 2010 and December 2020. An autoencoder-based anomaly detection approach identified one-dimensional voxel-wise time-series abnormal signals through reconstruction residuals, separating them into residual leakage signals (RLSs) and residual vascular signals. The RLS maps were evaluated and compared with the volume transfer constant (Ktrans) using the structural similarity index and correlation coefficient. Generalizability was tested on subsampled data, and isocitrate dehydrogenase (IDH) status classification performance was assessed using area under the receiver operating characteristic curve (AUC). Results A total of 274 patients (mean age, 54.4 years ± 14.6 [SD]; 164 male) were included in the study. RLS showed high structural similarity (structural similarity index, 0.91 ± 0.02) and correlation (r = 0.56; P < .001) with Ktrans. On subsampled data, RLS maps showed better correlation with RLS values from the original data (0.89 vs 0.72; P < .001), higher peak signal-to-noise ratio (33.09 dB vs 28.94 dB; P < .001), and higher structural similarity index (0.92 vs 0.87; P < .001) compared with Ktrans maps. RLS maps also outperformed Ktrans maps in predicting IDH mutation status (AUC, 0.87 [95% CI: 0.83, 0.91] vs 0.81 [95% CI: 0.76, 0.85]; P = .02). Conclusion The unsupervised framework effectively detected blood-brain barrier leakage without pharmacokinetic models and arterial input function. Keywords: Dynamic Contrast-enhanced MRI, Unsupervised Learning, Feature Detection, Blood-Brain Barrier Leakage Detection Supplemental material is available for this article. © RSNA, 2025 See also commentary by Júdice de Mattos Farina and Kuriki in this issue.
Collapse
Affiliation(s)
- Joon Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongnogu, Seoul 03080, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhyeok Lee
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyochul Lee
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongnogu, Seoul 03080, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hyun Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongnogu, Seoul 03080, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Innovate Biomedical Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongnogu, Seoul 03080, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongnogu, Seoul 03080, Republic of Korea
- Department of Medical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Rust R, Sagare AP, Zhang M, Zlokovic BV, Kisler K. The blood-brain barrier as a treatment target for neurodegenerative disorders. Expert Opin Drug Deliv 2025; 22:673-692. [PMID: 40096820 DOI: 10.1080/17425247.2025.2480654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a vascular endothelial membrane which restricts entry of toxins, cells, and microorganisms into the brain. At the same time, the BBB supplies the brain with nutrients, key substrates for DNA and RNA synthesis, and regulatory molecules, and removes metabolic waste products from brain to blood. BBB breakdown and/or dysfunction have been shown in neurogenerative disorders including Alzheimer's disease (AD). Current data suggests that these BBB changes may initiate and/or contribute to neuronal, synaptic, and cognitive dysfunction, and possibly other aspects of neurodegenerative processes. AREAS COVERED We first briefly review recent studies uncovering molecular composition of brain microvasculature and examine the BBB as a possible therapeutic target in neurodegenerative disorders with a focus on AD. Current strategies aimed at protecting and/or restoring altered BBB functions are considered. The relevance of BBB-directed approaches to improve neuronal and synaptic function, and to slow progression of neurodegenerative processes are also discussed. Lastly, we review recent advancements in drug delivery across the BBB. EXPERT OPINION BBB breakdown and/or dysfunction can significantly affect neuronal and synaptic function and neurodegenerative processes. More attention should focus on therapeutics to preserve or restore BBB functions when considering treatments of neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Shao X, Shou Q, Felix K, Ojogho B, Jiang X, Gold BT, Herting MM, Goldwaser EL, Kochunov P, Hong E, Pappas I, Braskie M, Kim H, Cen S, Jann K, Wang DJJ. Age-related decline in blood-brain barrier function is more pronounced in males than females in parietal and temporal regions. eLife 2024; 13:RP96155. [PMID: 39495221 PMCID: PMC11534331 DOI: 10.7554/elife.96155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), and shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here, we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8-92 years old, using a non-invasive diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60 s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.
Collapse
Affiliation(s)
- Xingfeng Shao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Qinyang Shou
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Kimberly Felix
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brandon Ojogho
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Xuejuan Jiang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Ophthalmology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of KentuckyFrankfortUnited States
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of MedicineBaltimoreUnited States
- Interventional Psychiatry Program, Department of Psychiatry, Weill Cornell MedicineNew YorkUnited States
| | - Peter Kochunov
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Elliot Hong
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Meredith Braskie
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven Cen
- Department of Radiology and Neurology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Danny JJ Wang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Radiology and Neurology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
4
|
Khalil A, Asseyer S, Rust R, Schmitz‐Hübsch T, Fiebach JB, Paul F, Chien C. Non-invasive Assessment of Cerebral Hemodynamics Using Resting-State Functional Magnetic Resonance Imaging in Multiple Sclerosis and Age-Related White Matter Lesions. Hum Brain Mapp 2024; 45:e70076. [PMID: 39535849 PMCID: PMC11558553 DOI: 10.1002/hbm.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants. A total of 41 MS patients and 41 age- and sex-matched healthy participants received rs-fMRI, from which measures of cerebral hemodynamics and oxygenation were extracted and compared across brain regions and study groups using within- and between-group nonparametric tests, linear mixed models, and robust multiple linear regression. We found longer blood arrival times and lower blood volumes in lesions than in normal-appearing WM. Higher blood volumes were found in MS patients' deep WM lesions compared to healthy participants, and blood arrival time was more delayed in MS patients' deep WM lesions than in healthy participants. Delayed blood arrival time in the cortical grey matter was associated with greater cognitive impairment in MS patients. Perfusion imaging using rs-fMRI is useful for WM lesion characterization. rs-fMRI-based blood arrival times and volumes are associated with cognitive function.
Collapse
Affiliation(s)
- Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Institute of Medical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jochen B. Fiebach
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
5
|
Shao X, Shou Q, Felix K, Ojogho B, Jiang X, Gold BT, Herting MM, Goldwaser EL, Kochunov P, Hong LE, Pappas I, Braskie M, Kim H, Cen S, Jann K, Wang DJJ. Age-Related Decline in Blood-Brain Barrier Function is More Pronounced in Males than Females in Parietal and Temporal Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575463. [PMID: 38293052 PMCID: PMC10827081 DOI: 10.1101/2024.01.12.575463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8 to 92 years old, using a non-invasive diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.
Collapse
Affiliation(s)
- Xingfeng Shao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Kimberly Felix
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Brandon Ojogho
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Xuejuan Jiang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Ophthalmology, Keck School of Medicine, University of Southern California
| | - Brian T. Gold
- Department of Neuroscience, College of Medicine, University of Kentucky
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine
- Interventional Psychiatry Program, Department of Psychiatry, Weill Cornell Medicine
| | - Peter Kochunov
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston
| | - L. Elliot Hong
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Meredith Braskie
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Steven Cen
- Department of Radiology and Neurology, Keck School of Medicine, University of Southern California
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
- Department of Radiology and Neurology, Keck School of Medicine, University of Southern California
| |
Collapse
|
6
|
Lee K, Yoo RE, Cho WS, Choi SH, Lee SH, Kim KM, Kang HS, Kim JE. Blood-brain barrier disruption imaging in postoperative cerebral hyperperfusion syndrome using DCE-MRI. J Cereb Blood Flow Metab 2024; 44:345-354. [PMID: 37910856 PMCID: PMC10870963 DOI: 10.1177/0271678x231212173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Little has been reported about the association between cerebral hyperperfusion syndrome (CHS) and blood-brain barrier (BBB) disruption in human. We aimed to investigate the changes in permeability after bypass surgery in cerebrovascular steno-occlusive diseases using dynamic contrast-enhanced MRI (DCE-MRI) and to demonstrate the association between CHS and BBB disruption. This retrospective study included 36 patients (21 hemispheres in 18 CHS patients and 20 hemispheres in 18 controls) who underwent combined bypass surgery for moyamoya and atherosclerotic steno-occlusive diseases. DCE-MRI and arterial spin labeling perfusion-weighted imaging (ASL-PWI) were obtained at the baseline, postoperative state, and discharge. Perfusion and permeability parameters were calculated at the MCA territory (CBF(territorial), Ktrans(territorial), Vp(territorial)) and focal perianastomotic area (CBF(focal), Ktrans(focal), Vp(focal)) of operated hemispheres. As compared with the baseline, both CBF(territorial) and CBF(focal) increased in the postoperative period and decreased at discharge, corresponding well to symptoms in the CHS group. Vp(focal) was lower in the postoperative period and at discharge, as compared with the baseline. In the control group, no parameters significantly differed among the three points. In conclusion, Vp at the focal perianastomotic area significantly decreased in patients with CHS during the postoperative period. BBB disruption may be implicated in the development of CHS after bypass surgery.
Collapse
Affiliation(s)
- Kanghwi Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Min Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Li KL, Lewis D, Zhu X, Coope DJ, Djoukhadar I, King AT, Cootes T, Jackson A. A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis. Pharmaceuticals (Basel) 2023; 16:1282. [PMID: 37765090 PMCID: PMC10534691 DOI: 10.3390/ph16091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to achieve. Twelve patients with neurofibromatosis type II-related vestibular schwannoma (20 tumours) undergoing bevacizumab therapy were imaged at 1.5 T both before and at 90 days following treatment. Using the new technique, whole-brain, high spatial resolution images of the contrast transfer coefficient (Ktrans), vascular fraction (vp), extravascular extracellular fraction (ve), capillary plasma flow (Fp), and the capillary permeability-surface area product (PS) could be obtained, and their predictive value was examined. Of the five microvascular parameters derived using the new method, baseline PS exhibited the strongest correlation with the baseline tumour volume (p = 0.03). Baseline ve showed the strongest correlation with the change in tumour volume, particularly the percentage tumour volume change at 90 days after treatment (p < 0.001), and PS demonstrated a larger reduction at 90 days after treatment (p = 0.0001) when compared to Ktrans or Fp alone. Both the capillary permeability-surface area product (PS) and the extravascular extracellular fraction (ve) significantly differentiated the 'responder' and 'non-responder' tumour groups at 90 days (p < 0.05 and p < 0.001, respectively). These results highlight that this novel DCE-MRI analysis approach can be used to evaluate tumour microvascular changes during treatment and the need for future larger clinical studies investigating its role in predicting antiangiogenic therapy response.
Collapse
Affiliation(s)
- Ka-Loh Li
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
| | - Daniel Lewis
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xiaoping Zhu
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester M20 3LJ, UK
| | - David J. Coope
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK;
| | - Andrew T. King
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Timothy Cootes
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
| |
Collapse
|
8
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
9
|
Walek KW, Stefan S, Lee JH, Puttigampala P, Kim AH, Park SW, Marchand PJ, Lesage F, Liu T, Huang YWA, Boas DA, Moore C, Lee J. Near-lifespan longitudinal tracking of brain microvascular morphology, topology, and flow in male mice. Nat Commun 2023; 14:2982. [PMID: 37221202 PMCID: PMC10205707 DOI: 10.1038/s41467-023-38609-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
In age-related neurodegenerative diseases, pathology often develops slowly across the lifespan. As one example, in diseases such as Alzheimer's, vascular decline is believed to onset decades ahead of symptomology. However, challenges inherent in current microscopic methods make longitudinal tracking of such vascular decline difficult. Here, we describe a suite of methods for measuring brain vascular dynamics and anatomy in mice for over seven months in the same field of view. This approach is enabled by advances in optical coherence tomography (OCT) and image processing algorithms including deep learning. These integrated methods enabled us to simultaneously monitor distinct vascular properties spanning morphology, topology, and function of the microvasculature across all scales: large pial vessels, penetrating cortical vessels, and capillaries. We have demonstrated this technical capability in wild-type and 3xTg male mice. The capability will allow comprehensive and longitudinal study of a broad range of progressive vascular diseases, and normal aging, in key model systems.
Collapse
Affiliation(s)
- Konrad W Walek
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Jang-Hoon Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | | | - Anna H Kim
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Seong Wook Park
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Paul J Marchand
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Yu-Wen Alvin Huang
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Shao X, Zhao C, Shou Q, St Lawrence KS, Wang DJJ. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling. Magn Reson Med 2023; 89:1990-2004. [PMID: 36622951 PMCID: PMC10079266 DOI: 10.1002/mrm.29581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability. METHODS Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T. A comprehensive set of perfusion and permeability parameters including cerebral blood flow (CBF), capillary transit time (τc ), and water exchange rate (kw ) were quantified, and permeability surface area product (PSw ), total extraction fraction (Ew ), and capillary volume (Vc ) were derived simultaneously by a three-compartment single-pass approximation (SPA) model on group-averaged data. With information (i.e., Vc and τc ) obtained from three-compartment SPA modeling, a simplified linear regression of logarithm (LRL) approach was proposed for individual kw quantification, and Ew and PSw can be estimated from long PLD (2490/2790 ms) signals. MCDW-pCASL was compared with a previously developed diffusion-prepared (DP) pCASL sequence, which calculates kw by a two-compartment SPA model from PLD = 1800 ms signals, to evaluate the improvements. RESULTS Using three-compartment SPA modeling, group-averaged CBF = 51.5/36.8 ml/100 g/min, kw = 126.3/106.7 min-1 , PSw = 151.6/93.8 ml/100 g/min, Ew = 94.7/92.2%, τc = 1409.2/1431.8 ms, and Vc = 1.2/0.9 ml/100 g in gray/white matter, respectively. Temporal SNR of MCDW-pCASL perfusion signals increased 3-fold, and individual kw maps calculated by the LRL method achieved higher spatial resolution (3.5 mm3 isotropic) as compared with DP pCASL (3.5 × 3.5 × 8 mm3 ). CONCLUSION MCDW-pCASL allows visualization of intravascular/extravascular ASL signals across multiple PLDs. The three-compartment SPA model provides a comprehensive measurement of blood-brain barrier water dynamics from group-averaged data, and a simplified LRL method was proposed for individual kw quantification.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cramer SP, Larsson HBW, Knudsen MH, Simonsen HJ, Vestergaard MB, Lindberg U. Reproducibility and Optimal Arterial Input Function Selection in Dynamic Contrast-Enhanced Perfusion MRI in the Healthy Brain. J Magn Reson Imaging 2023; 57:1229-1240. [PMID: 35993510 DOI: 10.1002/jmri.28380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced MRI (DCE-MRI) has seen increasing use for quantification of low level of blood-brain barrier (BBB) leakage in various pathological disease states and correlations with clinical outcomes. However, currently there exists limited studies on reproducibility in healthy controls, which is important for the establishment of a normality threshold for future research. PURPOSE To investigate the reproducibility of DCE-MRI and to evaluate the effect of arterial input function (AIF) selection and manual region of interests (ROI) delineation vs. automated global segmentation. STUDY TYPE Prospective. POPULATION A total of 16 healthy controls; 11 females; mean age 28.7 years (SD 10.1). FIELD STRENGTH/SEQUENCE A 3T; GE DCE; 3D TFE T1WI. 2D TSE T2. ASSESSMENT The influx constant Ki , a measure of BBB permeability, and Vp , the blood plasma volume, was calculated using the Patlak model. Cerebral blood flow (CBF) was calculated using Tikhonov model free deconvolution. Manual tissue ROIs, drawn by H.J.S. (30+ years of experience), were compared to automatic tissue segmentation. STATISTICAL TESTS Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) was used to assess reproducibility. Bland-Altman plots were used to evaluate agreement between measurements day 1 vs. day 2, and manual vs. segmentation method. RESULTS Ki showed excellent reproducibility in both white and gray matter with an ICC between 0.79 and 0.82 and excellent agreement between manual ROI and automatic segmentation, with an ICC of 0.89 for Ki in WM. Furthermore, Ki values in gray and white matter conforms with histological tissue characteristics, where gray matter generally has a 2-fold higher vessel density. The highest reproducibility measures of Ki (ICC = 0.83), CBF (ICC = 0.77) and Vd (ICC = 0.83) was obtained with the AIF sampled in the internal carotid artery (ICA). DATA CONCLUSION DCE-MRI shows excellent reproducibility of pharmacokinetic variables derived from healthy controls. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Science, Copenhagen University, Denmark
| | - Maria H Knudsen
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle J Simonsen
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias. Front Aging Neurosci 2023; 15:1111448. [PMID: 36861122 PMCID: PMC9969807 DOI: 10.3389/fnagi.2023.1111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The blood-brain barrier (BBB) plays important roles in the maintenance of brain homeostasis. Its main role includes three kinds of functions: (1) to protect the central nervous system from blood-borne toxins and pathogens; (2) to regulate the exchange of substances between the brain parenchyma and capillaries; and (3) to clear metabolic waste and other neurotoxic compounds from the central nervous system into meningeal lymphatics and systemic circulation. Physiologically, the BBB belongs to the glymphatic system and the intramural periarterial drainage pathway, both of which are involved in clearing interstitial solutes such as β-amyloid proteins. Thus, the BBB is believed to contribute to preventing the onset and progression for Alzheimer's disease. Measurements of BBB function are essential toward a better understanding of Alzheimer's pathophysiology to establish novel imaging biomarkers and open new avenues of interventions for Alzheimer's disease and related dementias. The visualization techniques for capillary, cerebrospinal, and interstitial fluid dynamics around the neurovascular unit in living human brains have been enthusiastically developed. The purpose of this review is to summarize recent BBB imaging developments using advanced magnetic resonance imaging technologies in relation to Alzheimer's disease and related dementias. First, we give an overview of the relationship between Alzheimer's pathophysiology and BBB dysfunction. Second, we provide a brief description about the principles of non-contrast agent-based and contrast agent-based BBB imaging methodologies. Third, we summarize previous studies that have reported the findings of each BBB imaging method in individuals with the Alzheimer's disease continuum. Fourth, we introduce a wide range of Alzheimer's pathophysiology in relation to BBB imaging technologies to advance our understanding of the fluid dynamics around the BBB in both clinical and preclinical settings. Finally, we discuss the challenges of BBB imaging techniques and suggest future directions toward clinically useful imaging biomarkers for Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Aichi, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| |
Collapse
|
13
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Assessing the reproducibility of high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging in patients with gliomas. Sci Rep 2021; 11:23217. [PMID: 34853347 PMCID: PMC8636480 DOI: 10.1038/s41598-021-02450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022] Open
Abstract
Temporal and spatial resolution of dynamic contrast-enhanced MR imaging (DCE-MRI) is critical to reproducibility, and the reproducibility of high-resolution (HR) DCE-MRI was evaluated. Thirty consecutive patients suspected to have brain tumors were prospectively enrolled with written informed consent. All patients underwent both HR-DCE (voxel size, 1.1 × 1.1 × 1.1 mm3; scan interval, 1.6 s) and conventional DCE (C-DCE; voxel size, 1.25 × 1.25 × 3.0 mm3; scan interval, 4.0 s) MRI. Regions of interests (ROIs) for enhancing lesions were segmented twice in each patient with glioblastoma (n = 7) to calculate DCE parameters (Ktrans, Vp, and Ve). Intraclass correlation coefficients (ICCs) of DCE parameters were obtained. In patients with gliomas (n = 25), arterial input functions (AIFs) and DCE parameters derived from T2 hyperintense lesions were obtained, and DCE parameters were compared according to WHO grades. ICCs of HR-DCE parameters were good to excellent (0.84–0.95), and ICCs of C-DCE parameters were moderate to excellent (0.66–0.96). Maximal signal intensity and wash-in slope of AIFs from HR-DCE MRI were significantly greater than those from C-DCE MRI (31.85 vs. 7.09 and 2.14 vs. 0.63; p < 0.001). Both 95th percentile Ktrans and Ve from HR-DCE and C-DCE MRI could differentiate grade 4 from grade 2 and 3 gliomas (p < 0.05). In conclusion, HR-DCE parameters generally showed better reproducibility than C-DCE parameters, and HR-DCE MRI provided better quality of AIFs.
Collapse
|
15
|
Li KL, Lewis D, Coope DJ, Roncaroli F, Agushi E, Pathmanaban ON, King AT, Zhao S, Jackson A, Cootes T, Zhu X. The LEGATOS technique: A new tissue-validated dynamic contrast-enhanced MRI method for whole-brain, high-spatial resolution parametric mapping. Magn Reson Med 2021; 86:2122-2136. [PMID: 33991126 DOI: 10.1002/mrm.28842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE A DCE-MRI technique that can provide both high spatiotemporal resolution and whole-brain coverage for quantitative microvascular analysis is highly desirable but currently challenging to achieve. In this study, we sought to develop and validate a novel dual-temporal resolution (DTR) DCE-MRI-based methodology for deriving accurate, whole-brain high-spatial resolution microvascular parameters. METHODS Dual injection DTR DCE-MRI was performed and composite high-temporal and high-spatial resolution tissue gadolinium-based-contrast agent (GBCA) concentration curves were constructed. The high-temporal but low-spatial resolution first-pass GBCA concentration curves were then reconstructed pixel-by-pixel to higher spatial resolution using a process we call LEGATOS. The accuracy of kinetic parameters (Ktrans , vp , and ve ) derived using LEGATOS was evaluated through simulations and in vivo studies in 17 patients with vestibular schwannoma (VS) and 13 patients with glioblastoma (GBM). Tissue from 15 tumors (VS) was examined with markers for microvessels (CD31) and cell density (hematoxylin and eosin [H&E]). RESULTS LEGATOS derived parameter maps offered superior spatial resolution and improved parameter accuracy compared to the use of high-temporal resolution data alone, provided superior discrimination of plasma volume and vascular leakage effects compared to other high-spatial resolution approaches, and correlated with tissue markers of vascularity (P ≤ 0.003) and cell density (P ≤ 0.006). CONCLUSION The LEGATOS method can be used to generate accurate, high-spatial resolution microvascular parameter estimates from DCE-MRI.
Collapse
Affiliation(s)
- Ka-Loh Li
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom.,Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom
| | - David J Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Omar N Pathmanaban
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom.,Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew T King
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sha Zhao
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Timothy Cootes
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Xiaoping Zhu
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Mokhber N, Shariatzadeh A, Avan A, Saber H, Babaei GS, Chaimowitz G, Azarpazhooh MR. Cerebral blood flow changes during aging process and in cognitive disorders: A review. Neuroradiol J 2021; 34:300-307. [PMID: 33749402 PMCID: PMC8447819 DOI: 10.1177/19714009211002778] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to summarize the available evidence on cerebral blood flow (CBF) changes
in normal aging and common cognitive disorders. We searched PubMed for studies
on CBF changes in normal aging and cognitive disorders up to 1 January 2019. We
summarized the milestones in the history of CBF assessment and reviewed the
current evidence on the association between CBF and cognitive changes in normal
aging, vascular cognitive impairment (VCI) and Alzheimer’s disease (AD). There
is promising evidence regarding the utility of CBF studies in cognition
research. Age-related CBF changes could be related to a progressive neuronal
loss or diminished activity and synaptic density of neurons in the brain. While
a similar cause or outcome theory applies to VCI and AD, it is possible that CBF
reduction might precede cognitive decline. Despite the diversity of CBF research
findings, its measurement could help early detection of cognitive disorders and
also understanding their underlying etiology.
Collapse
Affiliation(s)
- Naghmeh Mokhber
- Department of Psychiatry, Western University, Canada.,Department of Psychiatry and Neuropsychiatry, Mashhad University of Medical Sciences, Iran
| | - Aidin Shariatzadeh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada
| | - Abolfazl Avan
- Department of Public Health, Mashhad University of Medical Sciences, Iran
| | - Hamidreza Saber
- Department of Neurology, Wayne State University School of Medicine, USA
| | | | - Gary Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M Reza Azarpazhooh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada.,Department of Clinical Neurological Sciences, Western University, Canada
| |
Collapse
|
17
|
Kontopodis E, Marias K, Manikis GC, Nikiforaki K, Venianaki M, Maris TG, Mastorodemos V, Papadakis GZ, Papadaki E. Extended perfusion protocol for MS lesion quantification. Open Med (Wars) 2020; 15:520-530. [PMID: 33336007 PMCID: PMC7711864 DOI: 10.1515/med-2020-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 11/15/2022] Open
Abstract
This study aims to examine a time-extended dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) protocol and report a comparative study with three different pharmacokinetic (PK) models, for accurate determination of subtle blood-brain barrier (BBB) disruption in patients with multiple sclerosis (MS). This time-extended DCE-MRI perfusion protocol, called Snaps, was applied on 24 active demyelinating lesions of 12 MS patients. Statistical analysis was performed for both protocols through three different PK models. The Snaps protocol achieved triple the window time of perfusion observation by extending the magnetic resonance acquisition time by less than 2 min on average for all patients. In addition, the statistical analysis in terms of adj-R 2 goodness of fit demonstrated that the Snaps protocol outperformed the conventional DCE-MRI protocol by detecting 49% more pixels on average. The exclusive pixels identified from the Snaps protocol lie in the low k trans range, potentially reflecting areas with subtle BBB disruption. Finally, the extended Tofts model was found to have the highest fitting accuracy for both analyzed protocols. The previously proposed time-extended DCE protocol, called Snaps, provides additional temporal perfusion information at the expense of a minimal extension of the conventional DCE acquisition time.
Collapse
Affiliation(s)
- Eleftherios Kontopodis
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Kostas Marias
- Technological Educational Institute of Crete, Department of Informatics Engineering, Heraklion , Crete, Estavromenos, TK 71410, Greece
| | - Georgios C Manikis
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Katerina Nikiforaki
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Maria Venianaki
- Science and Technology Park of Crete, Gnosis Data Analysis, N. Plastira 100, Vassilika Vouton, GR-700 13, Heraklion, Greece
| | - Thomas G Maris
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Vasileios Mastorodemos
- Department of Neurology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Foundation for Research and Technology - Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece.,Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Gu H, Territo PR, Persohn SA, Bedwell AA, Eldridge K, Speedy R, Chen Z, Zheng W, Du Y. Evaluation of chronic lead effects in the blood brain barrier system by DCE-CT. J Trace Elem Med Biol 2020; 62:126648. [PMID: 32980769 PMCID: PMC7655551 DOI: 10.1016/j.jtemb.2020.126648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lead (Pb) is an environmental factor has been suspected of contributing to the dementia including Alzheimer's disease (AD). Our previous studies have shown that Pb exposure at the subtoxic dose increased brain levels of beta-amyloid (Aβ) and amyloid plaques, a pathological hallmark for AD, in amyloid precursor protein (APP) transgenic mice, and is hypothesized to inhibit Aβ clearance in the blood- cerebrospinal fluid (CSF) barrier. However, it remains unclear how different levels of Pb affect Aβ clearance in the whole blood-brain barrier system. This study was designed to investigate whether chronic exposure of Pb affected the permeability of the blood-brain barrier system by using the Dynamic Contrast-Enhanced Computerized Tomography (DCE-CT) method. METHODS DEC-CT was used to investigate whether chronic exposure of toxic Pb affected the permeability of the real-time blood brain barrier system. RESULTS Data showed that Pb exposure increased permeability surface area product, and also significantly induced brain perfusion. However, Pb exposure did not alter extracellular volumes or fractional blood volumes of mouse brain. CONCLUSION Our data suggest that Pb exposure at subtoxic and toxic levels directly targets the brain vasculature and damages the blood brain barrier system.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Amanda A Bedwell
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kierra Eldridge
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Rachael Speedy
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Zhe Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
19
|
Fatemidokht A, Harirchian MH, Faghihzadeh E, Tafakhori A, Oghabian MA. Assessment of the Characteristics of Different Kinds of MS Lesions Using Multi-Parametric MRI. ARCHIVES OF NEUROSCIENCE 2020; 7. [DOI: 10.5812/ans.102911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 08/30/2023]
Abstract
Background: Studying different pathological aspects of lesions in multiple sclerosis (MS) patients could be useful to modify the diagnosis and treatment of this neurological disorder. Magnetic resonance imaging (MRI) modalities have the potential to investigate variations in brain tissue because of inflammatory and neurodegenerative processes in various types of MS-related lesions. Objectives: This study was done to investigate the quantitative changes in MRI-based parameters, like perfusion and magnetization transfer ratio (MTR) of different types of brain lesions, to demonstrate the ability of MRI to detect structural and pathological differences in MS lesions. Methods: Quantitative MRI modalities were performed on 18 patients with five different kinds of lesions (T1 holes, acute and chronic white matter (WM), and acute and chronic gray matter (GM) lesions) using a 3 T MRI scanner. The following protocols were used to characterize the pathology of lesions: (I) fluid-attenuated inversion recovery (FLAIR); (II) pre- and post-contrast T1-weighted; (III) dynamic contrast-enhanced (DCE); and (IV) MTR imaging. Quantitative comparison of Ktrans, cerebral blood volume (CBV), cerebral blood flow (CBF), and MTR was done to find the best parameter to distinguish different lesions. Finally, a multivariate classifier was applied to introduce the best parameter to indicate differences in lesions. Results: Five lesions were characterized by perfusion and MTR parameters. The pathological changes were measured, including: (I) the highest value of parameters in both acute WM and GM lesions; (II) the lowest value of four parameters in both chronic WM and GM lesions; (III) MTR had the highest rank among parameters using the classifier. Conclusions: The degree of pathological alterations due to inflammatory and neurodegenerative processes in MS-related lesions was indicated through the used parameters in different kinds of lesions. Inflammation was the dominant process in acute lesions, while neurodegeneration and tissue loss were observed mostly in chronic lesions. Both inflammation and neurodegeneration were detected in T1 holes. Perfusion parameters and MTR were reasonable parameters to describe differences in brain lesions. Thus, it could be confirmed that magnetization transfer imaging (MTI) and DCE-MRI are high-sensitivity methods to detect microstructural changes in the brain and subtle changes in the blood-brain-barrier. Classification of the parameters indicated that MTR was the best biomarker than others to show variations in lesions pathology.
Collapse
|
20
|
Abstract
The blood-brain barrier (BBB) is the interface between the blood and brain tissue, which regulates the maintenance of homeostasis within the brain. Impaired BBB integrity is increasingly associated with various neurological diseases. To gain a better understanding of the underlying processes involved in BBB breakdown, magnetic resonance imaging (MRI) techniques are highly suitable for noninvasive BBB assessment. Commonly used MRI techniques to assess BBB integrity are dynamic contrast-enhanced and dynamic susceptibility contrast MRI, both relying on leakage of gadolinium-based contrast agents. A number of conceptually different methods exist that target other aspects of the BBB. These alternative techniques make use of endogenous markers, such as water and glucose, as contrast media. A comprehensive overview of currently available MRI techniques to assess the BBB condition is provided from a scientific point of view, including potential applications in disease. Improvements that are required to make these techniques clinically more easily applicable will also be discussed.
Collapse
|
21
|
Spirina NN, Spirin NN, Dubchenco EA, Boyko AN. [Effect of different groups of first line DMT on endothelial damage in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:83-88. [PMID: 32844636 DOI: 10.17116/jnevro202012007283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Vascular changes, including destabilization of the blood-brain barrier, are common pathological signs in multiple sclerosis (MS). There are prerequisites, which indicate the direct effects of disease modifying therapy (DMT) on the state of the vascular wall and reduce the damage to the endothelium in MS. AIM OF THIS STUDY Was to identify and evaluate the relationship of endothelial dysfunction in patients with multiple sclerosis with used DMT. MATERIALS AND METHODS The study included 85 patients with a reliable diagnosis of MS according to the McDonald criteria of 2010 (56 women, 29 men) aged from 17 to 62 years (average age 36.3±1.2 years). All patients underwent a comprehensive clinical and neurological examination, laboratory tests (blood serum analysis for the content of adhesion molecules sICAM-1, sPECAM-1, sE-selectin, sP-selectin, for the content of homocysteine and matrix metalloproteinase 9 (MMR-9) by ELISA; blood plasma analysis for Von Willebrand factor antigen (vWf) by ELISA). The results of the study indicate a decrease of endothelial damage in MS during interferon therapy. Its also allow the use of indicators such as von Willebrand factor antigen, sPECAM-1, sE-selectin levels as potential markers of the effectiveness of DMT.
Collapse
Affiliation(s)
- N N Spirina
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - N N Spirin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - E A Dubchenco
- Federal Center of Brain and Neurotechnologies, Mocsow, Russia
| | - A N Boyko
- Federal Center of Brain and Neurotechnologies, Mocsow, Russia.,Pirogov Russian National Research University, Moscow, Russia
| |
Collapse
|
22
|
Koch T, Flemisch B, Helmig R, Wiest R, Obrist D. A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3298. [PMID: 31883316 DOI: 10.1002/cnm.3298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
We propose a new mathematical model to learn capillary leakage coefficients from dynamic susceptibility contrast MRI data. To this end, we derive an embedded mixed-dimension flow and transport model for brain tissue perfusion on a subvoxel scale. This model is used to obtain the contrast agent concentration distribution in a single MRI voxel during a perfusion MRI sequence. We further present a magnetic resonance signal model for the considered sequence including a model for local susceptibility effects. This allows modeling MR signal-time curves that can be compared with clinical MRI data. The proposed model can be used as a forward model in the inverse modeling problem of inferring model parameters such as the diffusive capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach in the integrity of the blood-brain barrier. Applying the model to perfusion MR data of a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall conductivity is a good indicator for characterizing activity of lesions, even if other patient-specific model parameters are not well-known.
Collapse
Affiliation(s)
- Timo Koch
- Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Stuttgart, Germany
| | - Bernd Flemisch
- Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Stuttgart, Germany
| | - Rainer Helmig
- Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Stuttgart, Germany
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-Based High-Definition Dynamic Contrast Enhanced MRI for Concurrent Estimation of Perfusion and Microvascular Permeability. Med Image Anal 2019; 59:101566. [PMID: 31639623 DOI: 10.1016/j.media.2019.101566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 01/18/2023]
Abstract
This work introduces a model-based, high-definition dynamic contrast enhanced (DCE) MRI for concurrent estimation of perfusion and microvascular permeability over the whole brain. A time series of reference-subtracted signals is decomposed into one component that reflects main contrast dynamics and the other one that includes residual contrast agents (CA) and background signals. The former is described by linear superposition of a finite number of basic vectors trained from an augmented set of data that consists of tracer-kinetic model driven signal vectors and patient-specific measured ones. Contrast dynamics is estimated by solving a constrained optimization problem that incorporates the linearized signal decomposition into the measurement model of DCE MRI and then combining the main component with the background-suppressed, residual CA signals. To the best of our knowledge, this is the first work that prospectively enables rapid temporal sampling with 1.5 s (3 ∼ 4 times higher than clinical routines) while simultaneously achieving high isotropic spatial resolution with 1.0 mm3 (4 ∼ 6 times higher than routines), enhancing estimation of both patient-specific inputs and outputs for quantification of microvascular functions. Simulations and experiments are performed to demonstrate the effectiveness of the proposed method in patients with brain cancer.
Collapse
Affiliation(s)
- Joon Sik Park
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea
| | - Eunji Lim
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joonyeol Lee
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jaeseok Park
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, Calkin C. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin 2019; 26:102049. [PMID: 31718955 PMCID: PMC7229352 DOI: 10.1016/j.nicl.2019.102049] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
Abstract
Bipolar disorder affects approximately 2% of the population and is typically characterized by recurrent episodes of mania and depression. While some patients achieve remission using mood-stabilizing treatments, a significant proportion of patients show progressive changes in symptomatology over time. Bipolar progression is diverse in nature and may include a treatment-resistant increase in the frequency and severity of episodes, worse psychiatric and functional outcomes, and a greater risk of suicide. The mechanisms underlying bipolar disorder progression remain poorly understood and there are currently no biomarkers for identifying patients at risk. The objective of this study was to explore the potential of blood-brain barrier (BBB) imaging as such a biomarker, by acquiring the first imaging data of BBB leakage in bipolar patients, and evaluating the potential association between BBB dysfunction and bipolar symptoms. To this end, a cohort of 36 bipolar patients was recruited through the Mood Disorders Clinic (Nova Scotia Health Authority, Canada). All patients, along with 14 control subjects (matched for sex, age and metabolic status), underwent contrast-enhanced dynamic MRI scanning for quantitative assessment of BBB leakage as well as clinical and psychiatric evaluations. Outlier analysis has identified a group of 10 subjects with significantly higher percentages of brain volume with BBB leakage (labeled the "extensive BBB leakage" group). This group consisted exclusively of bipolar patients, while the "normal BBB leakage" group included the entire control cohort and the remaining 26 bipolar subjects. Among the bipolar cohort, patients with extensive BBB leakage were found to have more severe depression and anxiety, and a more chronic course of illness. Furthermore, all bipolar patients within this group were also found to have co-morbid insulin resistance, suggesting that insulin resistance may increase the risk of BBB dysfunction in bipolar patients. Our findings demonstrate a clear link between BBB leakage and greater psychiatric morbidity in bipolar patients and highlight the potential of BBB imaging as a mechanism-based biomarker for bipolar disorder progression.
Collapse
Affiliation(s)
- Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Kathleen A Cairns
- Nova Scotia Health Authority, Mood Disorders Clinic, 5909 Veterans Memorial Lane, Halifax, NS, B3H 2E2, Canada
| | - Ronel Veksler
- Department of Physiology and Cell Biology, Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chris Bowen
- Biomedical Translational Imaging Centre (BIOTIC), QEII Health Sciences Centre, and Department of Diagnostic Radiology, Dalhousie University, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Steven D Beyea
- Biomedical Translational Imaging Centre (BIOTIC), QEII Health Sciences Centre, and Department of Diagnostic Radiology, Dalhousie University, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Physiology and Cell Biology, Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Cynthia Calkin
- Departments of Psychiatry and Medical Neuroscience, Dalhousie University, Mood Disorders Clinic, 5909 Veterans Memorial Lane, Halifax, NS, B3H 2E2, Canada
| |
Collapse
|
25
|
Hobson N, Polster SP, Cao Y, Flemming K, Shu Y, Huston J, Gerrard CY, Selwyn R, Mabray M, Zafar A, Girard R, Carrión-Penagos J, Chen YF, Parrish T, Zhou XJ, Koenig JI, Shenkar R, Stadnik A, Koskimäki J, Dimov A, Turley D, Carroll T, Awad IA. Phantom validation of quantitative susceptibility and dynamic contrast-enhanced permeability MR sequences across instruments and sites. J Magn Reson Imaging 2019; 51:1192-1199. [PMID: 31515878 DOI: 10.1002/jmri.26927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/27/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) and dynamic contrast-enhanced quantitative permeability (DCEQP) on magnetic resonance (MR) have been shown to correlate with neurovascular disease progression as markers of vascular leakage and hemosiderin deposition. Applying these techniques as monitoring biomarkers in clinical trials will be necessary; however, their validation across multiple MR platforms and institutions has not been rigorously verified. PURPOSE To validate quantitative measurement of MR biomarkers on multiple instruments at different institutions. STUDY TYPE Phantom validation between platforms and institutions. PHANTOM MODEL T1 /susceptibility phantom, two-compartment dynamic flow phantom. FIELD STRENGTH/SEQUENCE 3T/QSM, T1 mapping, dynamic 2D SPGR. ASSESSMENT Philips Ingenia, Siemens Prisma, and Siemens Skyra at three different institutions were assessed. A QSM phantom with concentrations of gadolinium, corresponding to magnetic susceptibilities of 0, 0.1, 0.2, 0.4, and 0.8 ppm was assayed. DCEQP was assessed by measuring a MultiHance bolus as the consistency of the width ratio of the curves at the input and outputs over a range of flow ratios between outputs. STATISTICAL TESTS Each biomarker was assessed by measures of accuracy (Pearson correlation), precision (paired t-test between repeated measurements), and reproducibility (analysis of covariance [ANCOVA] between instruments). RESULTS QSM accuracy of r2 > 0.997 on all three platforms was measured. Precision (P = 0.66 Achieva, P = 0.76 Prisma, P = 0.69 Skyra) and reproducibility (P = 0.89) were good. T1 mapping of accuracy was r2 > 0.98. No significant difference between width ratio regression slopes at site 2 (P = 0.669) or site 3 (P = 0.305), and no significant difference between width ratio regression slopes between sites was detected by ANCOVA (P = 0.48). DATA CONCLUSION The phantom performed as expected and determined that MR measures of QSM and DCEQP are accurate and consistent across repeated measurements and between platforms. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1192-1199.
Collapse
Affiliation(s)
- Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Kelly Flemming
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chandra Y Gerrard
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Reed Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Marc Mabray
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Yu Fen Chen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Todd Parrish
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaohong Joe Zhou
- Center for MR Research and Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Alexey Dimov
- Department of Diagnostic Radiology, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Dallas Turley
- Department of Diagnostic Radiology, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Timothy Carroll
- Department of Diagnostic Radiology, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
26
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
27
|
Jakimovski D, Topolski M, Genovese AV, Weinstock-Guttman B, Zivadinov R. Vascular aspects of multiple sclerosis: emphasis on perfusion and cardiovascular comorbidities. Expert Rev Neurother 2019; 19:445-458. [PMID: 31003583 DOI: 10.1080/14737175.2019.1610394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. Over the last two decades, more favorable MS long-term outcomes have contributed toward increase in prevalence of the aged MS population. Emergence of age-associated pathology, such as cardiovascular diseases, may interact with the MS pathophysiology and further contribute to disease progression. Areas covered: This review summarizes the cardiovascular involvement in MS pathology, its disease activity, and progression. The cardiovascular health, the presence of various cardiovascular diseases, and their effect on MS cognitive performance are further explored. In similar fashion, the emerging evidence of a higher incidence of extracranial arterial pathology and its association with brain MS pathology are discussed. Finally, the authors outline the methodologies behind specific perfusion magnetic resonance imaging (MRI) and ultrasound Doppler techniques, which allow measurement of disease-specific and age-specific vascular changes in the aging population and MS patients. Expert opinion: Cardiovascular pathology significantly contributes to worse clinical and MRI-derived disease outcomes in MS. Global and regional cerebral hypoperfusion may be associated with poorer physical and cognitive performance. Prevention, improved detection, and treatment of the cardiovascular-based pathology may improve the overall long-term health of MS patients.
Collapse
Affiliation(s)
- Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Matthew Topolski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Antonia Valentina Genovese
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences , University of Pavia , Pavia , Italy
| | - Bianca Weinstock-Guttman
- b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA.,d Center for Biomedical Imaging at Clinical Translational Science Institute , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
28
|
Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, Fazekas F, Ropele S, Frayne R, van Oostenbrugge RJ, Smith EE, Wardlaw JM. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimers Dement 2019; 15:840-858. [PMID: 31031101 PMCID: PMC6565805 DOI: 10.1016/j.jalz.2019.01.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Cerebral small vessel disease (cSVD) comprises pathological processes of the small vessels in the brain that may manifest clinically as stroke, cognitive impairment, dementia, or gait disturbance. It is generally accepted that endothelial dysfunction, including blood-brain barrier (BBB) failure, is pivotal in the pathophysiology. Recent years have seen increasing use of imaging, primarily dynamic contrast-enhanced magnetic resonance imaging, to assess BBB leakage, but there is considerable variability in the approaches and findings reported in the literature. Although dynamic contrast-enhanced magnetic resonance imaging is well established, challenges emerge in cSVD because of the subtle nature of BBB impairment. The purpose of this work, authored by members of the HARNESS Initiative, is to provide an in-depth review and position statement on magnetic resonance imaging measurement of subtle BBB leakage in clinical research studies, with aspects requiring further research identified. We further aim to provide information and consensus recommendations for new investigators wishing to study BBB failure in cSVD and dementia.
Collapse
Affiliation(s)
- Michael J Thrippleton
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK; Dementia Research Institute, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steven Sourbron
- Leeds Imaging Biomarkers group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Matthias J P van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University München & Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Richard Frayne
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Robert J van Oostenbrugge
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eric E Smith
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joanna M Wardlaw
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK; Dementia Research Institute, University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Xiong H, Yin P, Li X, Yang C, Zhang D, Huang X, Tang Z. The features of cerebral permeability and perfusion detected by dynamic contrast-enhanced magnetic resonance imaging with Patlak model in relapsing-remitting multiple sclerosis. Ther Clin Risk Manag 2019; 15:233-240. [PMID: 30787618 PMCID: PMC6366346 DOI: 10.2147/tcrm.s189598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the features of cerebral permeability and perfusion detected by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with Patlak model in relapsing–remitting multiple sclerosis (RRMS) and their correlations with Expanded Disability Status Scale (EDSS) scores and disease duration. Patients and methods Twenty-seven RRMS patients underwent conventional MRI and DCE-MRI with 3.0 T magnetic resonance scanner were enrolled in the study. A Patlak model was used to quantitatively measure MRI biomarkers, including volume transfer constant (Ktrans), fractional plasma volume (Vp), cerebral blood flow (CBF), and cerebral blood volume (CBV). The correlations of MRI biomarkers with EDSS scores and disease duration were analyzed. Results The MRI biomarkers Ktrans, Vp, CBF, and CBV of contrast-enhancing (CE) lesions were significantly higher (P<0.05) than those of non-enhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness and kurtosis of Ktrans values in CE lesions were significantly higher (P<0.05) than that of NE lesions. No significant correlation was found among the biomarkers with EDSS scores and disease duration (P>0.05). Conclusion Our study demonstrated the abnormalities of permeability and perfusion characteristics in multiple sclerosis (MS) lesions and NAWM regions by DCE-MRI with Patlak model. The Ktrans, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions, but these MRI biomarkers did not associate with the severity and duration of the disease. The skewness and kurtosis of Ktrans value in CE lesions were significantly higher than that in NE lesions, indicating that these parameters of Ktrans histogram can be used to distinguish the pathology of MS lesions.
Collapse
Affiliation(s)
- Hua Xiong
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| | - Ping Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiao Li
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| | - Dan Zhang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| | - Xianlong Huang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| | - Zhuoyue Tang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China, .,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China,
| |
Collapse
|
30
|
Debus C, Floca R, Ingrisch M, Kompan I, Maier-Hein K, Abdollahi A, Nolden M. MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging - design, implementation and application on the example of DCE-MRI. BMC Bioinformatics 2019; 20:31. [PMID: 30651067 PMCID: PMC6335810 DOI: 10.1186/s12859-018-2588-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023] Open
Abstract
Background Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. Results We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. Conclusions Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.
Collapse
Affiliation(s)
- Charlotte Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany. .,Department of Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Ralf Floca
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany. .,Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Michael Ingrisch
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ina Kompan
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Klaus Maier-Hein
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany.,Section Pattern Recognition, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Marco Nolden
- Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany
| |
Collapse
|
31
|
Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med 2019; 81:140-152. [PMID: 30058079 PMCID: PMC6258350 DOI: 10.1002/mrm.27357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Li Feng
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Ricardo Otazo
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
32
|
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21:1318-1331. [PMID: 30250261 PMCID: PMC6198802 DOI: 10.1038/s41593-018-0234-x] [Citation(s) in RCA: 663] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Adequate supply of blood and structural and functional integrity of blood vessels are key to normal brain functioning. On the other hand, cerebral blood flow shortfalls and blood-brain barrier dysfunction are early findings in neurodegenerative disorders in humans and animal models. Here we first examine molecular definition of cerebral blood vessels, as well as pathways regulating cerebral blood flow and blood-brain barrier integrity. Then we examine the role of cerebral blood flow and blood-brain barrier in the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We focus on Alzheimer's disease as a platform of our analysis because more is known about neurovascular dysfunction in this disease than in other neurodegenerative disorders. Finally, we propose a hypothetical model of Alzheimer's disease biomarkers to include brain vasculature as a factor contributing to the disease onset and progression, and we suggest a common pathway linking brain vascular contributions to neurodegeneration in multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Tietze A, Nielsen A, Klærke Mikkelsen I, Bo Hansen M, Obel A, Østergaard L, Mouridsen K. Bayesian modeling of Dynamic Contrast Enhanced MRI data in cerebral glioma patients improves the diagnostic quality of hemodynamic parameter maps. PLoS One 2018; 13:e0202906. [PMID: 30256797 PMCID: PMC6157834 DOI: 10.1371/journal.pone.0202906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The purpose of this work is to investigate if the curve-fitting algorithm in Dynamic Contrast Enhanced (DCE) MRI experiments influences the diagnostic quality of calculated parameter maps. MATERIAL AND METHODS We compared the Levenberg-Marquardt (LM) and a Bayesian method (BM) in DCE data of 42 glioma patients, using two compartmental models (extended Toft's and 2-compartment-exchange model). Logistic regression and an ordinal linear mixed model were used to investigate if the image quality differed between the curve-fitting algorithms and to quantify if image quality was affected for different parameters and algorithms. The diagnostic performance to discriminate between high-grade and low-grade gliomas was compared by applying a Wilcoxon signed-rank test (statistical significance p>0.05). Two neuroradiologists assessed different qualitative imaging features. RESULTS Parameter maps based on BM, particularly those describing the blood-brain barrier, were superior those based on LM. The image quality was found to be significantly improved (p<0.001) for BM when assessed through independent clinical scores. In addition, given a set of clinical scores, the generating algorithm could be predicted with high accuracy (area under the receiver operating characteristic curve between 0.91 and 1). Using linear mixed models, image quality was found to be improved when applying the 2-compartment-exchange model compared to the extended Toft's model, regardless of the underlying fitting algorithm. Tumor grades were only differentiated reliably on plasma volume maps when applying BM. The curve-fitting algorithm had, however, no influence on grading when using parameter maps describing the blood-brain barrier. CONCLUSION The Bayesian method has the potential to increase the diagnostic reliability of Dynamic Contrast Enhanced parameter maps in brain tumors. In our data, images based on the 2-compartment-exchange model were superior to those based on the extended Toft's model.
Collapse
Affiliation(s)
- Anna Tietze
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Anne Nielsen
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Irene Klærke Mikkelsen
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Mikkel Bo Hansen
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Annette Obel
- Dept. of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
- Dept. of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience, Clinical Institute, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Magnetic resonance imaging of arterial stroke mimics: a pictorial review. Insights Imaging 2018; 9:815-831. [PMID: 29934921 PMCID: PMC6206386 DOI: 10.1007/s13244-018-0637-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Acute ischaemic stroke represents the most common cause of new sudden neurological deficit, but other diseases mimicking stroke happen in about one-third of the cases. Magnetic resonance imaging (MRI) is the best technique to identify those 'stroke mimics'. In this article, we propose a diagnostic approach of those stroke mimics on MRI according to an algorithm based on diffusion-weighted imaging (DWI), which can be abnormal or normal, followed by the results of other common additional MRI sequences, such as T2 with gradient recalled echo weighted imaging (T2-GRE) and fluid-attenuated inversion recovery (FLAIR). Analysis of the signal intensity of the parenchyma, the intracranial arteries and, overall, of the veins, is crucial on T2-GRE, while anatomic distribution of the parenchymal lesions is essential on FLAIR. Among stroke mimics with abnormal DWI, T2-GRE demonstrates obvious abnormalities in case of intracerebral haemorrhage or cerebral amyloid angiopathy, but this sequence also allows to propose alternative diagnoses when DWI is negative, such as in migraine aura or headaches with associated neurological deficits and lymphocytosis (HaNDL), in which cortical venous prominence is observed at the acute phase on T2-GRE. FLAIR is also of major interest when DWI is positive by better showing evocative distribution of cerebral lesions in case of seizure (involving the hippocampus, pulvinar and cortex), hypoglycaemia (bilateral lesions in the posterior limb of the internal capsules, corona radiata, striata or splenium of the corpus callosum) or in posterior reversible encephalopathy syndrome (PRES). Other real stroke mimics such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS), Susac's syndrome, brain tumour, demyelinating diseases and herpes simplex encephalitis are also included in our detailed and practical algorithm. KEY POINTS: • About 30% of sudden neurological deficits are due to non-ischaemic causes. • MRI is the best technique to identify stroke mimics. • Our practical illustrated algorithm based on DWI helps to recognise stroke mimics.
Collapse
|
35
|
Abstract
This review by O'Brown et al. discusses the cellular nature of the blood–brain barrier (BBB) and the conservation and variation of BBB function across taxa. It compares the BBB across organisms in order to provide insight into the human BBB both under normal physiological conditions and in neurological diseases. The blood–brain barrier (BBB) restricts free access of molecules between the blood and the brain and is essential for regulating the neural microenvironment. Here, we describe how the BBB was initially characterized and how the current field evaluates barrier properties. We next detail the cellular nature of the BBB and discuss both the conservation and variation of BBB function across taxa. Finally, we examine our current understanding of mouse and zebrafish model systems, as we expect that comparison of the BBB across organisms will provide insight into the human BBB under normal physiological conditions and in neurological diseases.
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah J Pfau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Kisler K, Lazic D, Sweeney MD, Plunkett S, Khatib ME, Vinogradov SA, Boas DA, Sakadžić S, Zlokovic BV. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 2018; 13:1377-1402. [PMID: 29844521 PMCID: PMC6402338 DOI: 10.1038/nprot.2018.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - David A. Boas
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sava Sakadžić
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
37
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
38
|
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14:133-150. [PMID: 29377008 PMCID: PMC5829048 DOI: 10.1038/nrneurol.2017.188] [Citation(s) in RCA: 1917] [Impact Index Per Article: 273.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
39
|
Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol 2018; 39:994-1000. [PMID: 29301779 DOI: 10.3174/ajnr.a5504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using MR imaging, perfusion can be assessed either by dynamic susceptibility contrast MR imaging or arterial spin-labeling. Alterations of cerebral perfusion have repeatedly been described in multiple sclerosis compared with healthy controls. Acute lesions exhibit relative hyperperfusion in comparison with normal-appearing white matter, a finding mostly attributed to inflammation in this stage of lesion development. In contrast, normal-appearing white and gray matter of patients with MS has been mostly found to be hypoperfused compared with controls, and correlations with cognitive impairment as well as fatigue in multiple sclerosis have been described. Mitochondrial failure, axonal degeneration, and vascular dysfunction have been hypothesized to underlie the perfusion MR imaging findings. Clinically, perfusion MR imaging could allow earlier detection of the acute focal inflammatory changes underlying relapses and new lesions, and could constitute a marker for cognitive dysfunction in MS. Nevertheless, the clinical relevance and pathogenesis of the brain perfusion changes in MS remain to be clarified.
Collapse
Affiliation(s)
- E Lapointe
- From the Division of Neurology (E.L., A.L.T.) .,Department of Medicine (E.L., A.L.T.)
| | - D K B Li
- Radiology (D.K.B.L.), University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| | - A L Traboulsee
- From the Division of Neurology (E.L., A.L.T.).,Department of Medicine (E.L., A.L.T.)
| | - A Rauscher
- MRI Research Center (A.R.).,Departments of Pediatrics (A.R.)
| |
Collapse
|
40
|
Abuhaiba SI, Cordeiro M, Amorim A, Cruz Â, Quendera B, Ferreira C, Ribeiro L, Bernardes R, Castelo-Branco M. Occipital blood-brain barrier permeability is an independent predictor of visual outcome in type 2 diabetes, irrespective of the retinal barrier: A longitudinal study. J Neuroendocrinol 2018; 30. [PMID: 29247551 DOI: 10.1111/jne.12566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023]
Abstract
Blood-brain barrier (BBB) permeability in type 2 diabetic patients has been previously shown to be altered in certain brain regions such as the basal ganglia and the hippocampus. Because of the histological and functional similarities between the BBB) and the blood-retinal barrier (BRB), we aimed to investigate how the permeability of both barriers predicts visual outcome. We included 2 control groups (acute unilateral stroke patients, n = 9; type 2 diabetics without BRB leakage n = 10) and a case study group of type 2 diabetics with established BRB leakage (n = 17). We evaluated sex, age, disease duration, metabolic impairment, retinopathy grade and BBB permeability as predictors of visual acuity at baseline, 12 and 24 months in the type 2 diabetics without BRB leakage group and the case study group. We have also explored differences in BBB permeability in the occipital lobe and frontal lobe in the 3 different groups. Ktrans (volume transfer coefficient) and Vp (fractional plasma volume) were estimated. The BBB permeability parameter Vp was higher in the case study group compared to the unaffected hemisphere of the stroke patient control group, suggesting vascular dynamics were changed in the occipital lobe of type 2 diabetics with established BRB leakage. These patients showed a significant correlation between glycated hemoglobin (HbA1C) levels and occipital and frontal Ktrans . We report for the first time that occipital BBB permeability is an independent predictor of visual acuity at baseline, as well as at 12 and 24 months, in type 2 diabetics with established BRB leakage. Our results suggest that occipital BBB permeability might be an independent biomarker for visual impairment in patients with established BRB leakage.
Collapse
Affiliation(s)
- S I Abuhaiba
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - M Cordeiro
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
- Coimbra University and Hospital Centre (CHUC), Coimbra, Portugal
| | - A Amorim
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthcare, Amadora, Portugal
- Faculty of Medicine, Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Â Cruz
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - B Quendera
- Faculty of Medicine, Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - C Ferreira
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - L Ribeiro
- Coimbra Coordinating Centre for Clinical Research, AIBILI-Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - R Bernardes
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - M Castelo-Branco
- CIBIT, Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Dhaya I, Griton M, Raffard G, Amri M, Hiba B, Konsman JP. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown? J Neuroimmunol 2018; 314:67-80. [DOI: 10.1016/j.jneuroim.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
42
|
Debus C, Floca R, Nörenberg D, Abdollahi A, Ingrisch M. Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI. ACTA ACUST UNITED AC 2017; 62:9322-9340. [DOI: 10.1088/1361-6560/aa8989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Zhang J, Winters K, Reynaud O, Kim SG. Simultaneous measurement of T 1 /B 1 and pharmacokinetic model parameters using active contrast encoding (ACE)-MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3737. [PMID: 28544159 PMCID: PMC5557664 DOI: 10.1002/nbm.3737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/06/2023]
Abstract
The aim of this study was to assess the feasibility of combining dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) with the measurement of the radiofrequency (RF) transmit field B1 and pre-contrast longitudinal relaxation time T10 . A novel approach has been proposed to simultaneously estimate B1 and T10 from a modified DCE-MRI scan that actively encodes the washout phase of the curve with different amounts of T1 and B1 weighting using multiple flip angles and repetition times, hence referred to as active contrast encoding (ACE)-MRI. ACE-MRI aims to simultaneously measure B1 and T10 , together with contrast kinetic parameters, such as the transfer constant Ktrans , interstitial space volume fraction ve and vascular space volume fraction vp . The proposed method was tested using numerical simulations and in vivo studies with mouse models of breast cancer implanted in the flank and mammary fat pad, and glioma in the brain. In the numerical simulation study with a signal-to-noise ratio of 10, both B1 and T10 were estimated accurately with errors of 5.1 ± 3.5% and 12.3 ± 8.8% and coefficients of variation (CV) of 14.9 ± 8.6% and 15.0 ± 5.0%, respectively. Using the same ACE-MRI data, the kinetic parameters Ktrans , ve and vp were also estimated with errors of 14.2 ± 8.3% (CV = 13.5 ± 4.6%), 14.7 ± 9.9% (CV = 13.3 ± 4.5%) and 14.0 ± 9.3% (CV = 14.0 ± 4.5%), respectively. For the in vivo tumor data from 11 mice, voxel-wise comparisons between ACE-MRI and DCE-MRI methods showed that the mean differences for the five parameters were as follows: ΔKtrans = 0.006 (/min), Δve = 0.016, Δvp = 0.000, ΔB1 = -0.014 and ΔT1 = -0.085 (s), which suggests a good agreement between the two methods. When compared with separately measured B1 and T10 , and DCE-MRI estimated kinetic parameters as a reference, the mean relative errors of ACE-MRI estimation were B1 = -0.3%, T10 = -8.5%, Ktrans = 11.4%, ve = 14.5% and vp = 4.5%. This proof-of-concept study demonstrates that the proposed ACE-MRI method can be used to estimate B1 and T10 , together with contrast kinetic model parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kerryanne Winters
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Olivier Reynaud
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| |
Collapse
|
44
|
Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents. Sci Rep 2017; 7:8431. [PMID: 28814732 PMCID: PMC5559598 DOI: 10.1038/s41598-017-08762-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 01/21/2023] Open
Abstract
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
Collapse
|
45
|
Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW, Ashina M. Intact blood−brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol 2017; 24:1116-1124. [DOI: 10.1111/ene.13341] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/15/2017] [Indexed: 01/03/2023]
Affiliation(s)
- F. M. Amin
- Department of Neurology; Faculty of Health and Medical Sciences; Danish Headache Center; Rigshospitalet Glostrup; University of Copenhagen; Copenhagen Denmark
| | - A. Hougaard
- Department of Neurology; Faculty of Health and Medical Sciences; Danish Headache Center; Rigshospitalet Glostrup; University of Copenhagen; Copenhagen Denmark
| | - S. P. Cramer
- Functional Imaging Unit; Department of Clinical Physiology, Nuclear Medicine and PET; Faculty of Health and Medical Sciences; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - C. E. Christensen
- Department of Neurology; Faculty of Health and Medical Sciences; Danish Headache Center; Rigshospitalet Glostrup; University of Copenhagen; Copenhagen Denmark
| | - F. Wolfram
- Department of Radiology; Faculty of Health and Medical Sciences; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - H. B. W. Larsson
- Functional Imaging Unit; Department of Clinical Physiology, Nuclear Medicine and PET; Faculty of Health and Medical Sciences; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Faculty of Health and Medical Science; Institute of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| | - M. Ashina
- Department of Neurology; Faculty of Health and Medical Sciences; Danish Headache Center; Rigshospitalet Glostrup; University of Copenhagen; Copenhagen Denmark
- Faculty of Health and Medical Science; Institute of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
46
|
Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, Larsson HBW, Ashina M. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain 2017; 140:1633-1642. [PMID: 28430860 DOI: 10.1093/brain/awx089] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/24/2017] [Indexed: 01/03/2023] Open
Abstract
See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier disruption as a possible mechanism linking aura and headache.awx089media15422686892001.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal M Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Frauke Wolfram
- Department of Radiology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
47
|
Dynamic Contrast-Enhanced Magnetic Resonance Imaging Suggests Normal Perfusion in Normal-Appearing White Matter in Multiple Sclerosis. Invest Radiol 2017; 52:135-141. [DOI: 10.1097/rli.0000000000000320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Guo P, Liu Z, Yan F, Wang J, Wei L, Lv H, Wang Z, Xian J. Prediction of the response of ocular adnexal lymphoma to chemotherapy using combined pretreatment dynamic contrast-enhanced and diffusion-weighted MRI. Acta Radiol 2016; 57:1490-1496. [PMID: 27012277 DOI: 10.1177/0284185116631181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background There are no established biomarkers predictive of the efficacy of treatment for ocular adnexal lymphoma (OAL). Purpose To evaluate the effectiveness of pretreatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) in predicting the response of OAL to chemotherapy. Material and Methods Twenty-one patients, who were pathologically diagnosed with OAL, were retrospectively analyzed. According to the National Comprehensive Cancer Network (NCCN) response evaluation criteria for non-Hodgkin's lymphoma, patients were divided into responders (n = 14) and non-responders (n = 7). The volume transfer constant (Ktrans), rate constant (Kep), extracellular extravascular volume fraction (Ve), and apparent diffusion coefficient (ADC) were computed. Two independent-sample tests were applied for statistical analysis. For significantly different parameters, receiver-operator characteristics curve analysis was performed. Results The Ktrans value (min-1), Kep value (min-1), and ADC value (10-3 mm2/s) were 0.76 ± 0.36 vs. 0.47 ± 0.18 (mean ± SD), 4.43 ± 1.29 vs. 3.14 ± 1.37, and 0.51 ± 0.12 vs. 0.66 ± 0.15, respectively, in the responders and non-responders groups. Significant differences were found between the two groups regarding these parameters ( P < 0.05). However, no significant difference was observed in Ve (min-1) between the groups ( P > 0.05). Ktrans, Kep, and ADC had a moderately predictive sensitivity or specificity. When Ktrans and ADC or the three parameters were combined, a considerably higher sensitivity (85.7%) and specificity (85.7%) with a significant discriminative accuracy (area under the curve = 0.929; P = 0.002) was found. Conclusion Ktrans, Kep, and ADC could potentially predict OAL response to chemotherapy. A combination of these DWI and DCE-MRI quantitative parameters might increase sensitivity and specificity.
Collapse
Affiliation(s)
- Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Zhaohui Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Fei Yan
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Liqiang Wei
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Han Lv
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
49
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
50
|
Assessment of the myelin water fraction in rodent spinal cord using T2-prepared ultrashort echo time MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:875-884. [PMID: 27394911 DOI: 10.1007/s10334-016-0579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Multi-component T2 relaxation allows for assessing the myelin water fraction in nervous tissue, providing a surrogate marker for demyelination. The assessment of the number and distribution of different T2 components for devising exact models of tissue relaxation has been limited by T2 sampling with conventional MR methods. MATERIALS AND METHODS A T2-prepared UTE sequence was used to assess multicomponent T2 relaxation at 9.4 T of fixed mouse and rat spinal cord samples and of mouse spinal cord in vivo. For in vivo scans, a cryogenically cooled probe allowed for 78-µm resolution in 1-mm slices. Voxel-wise non-negative least square analysis was used to assess the number of myelin water-associated T2 components. RESULTS More than one myelin water-associated T2 component was detected in only 12 % of analyzed voxels in rat spinal cords and 6 % in mouse spinal cords, both in vivo and in vitro. However, myelin water-associated T2 values of individual voxels varied between 0.1 and 20 ms. While in fixed samples almost no components below 1 ms were identified, in vivo, these contributed 14 % of the T2 spectrum. No significant differences in MWF were observed in mouse spinal cord in vivo versus ex vivo measurements. CONCLUSION Voxel-wise analysis methods using relaxation models with one myelin water-associated T2 component are appropriate for assessing myelin content of nervous tissue.
Collapse
|