1
|
Pathak V, Nolte T, Rama E, Rix A, Dadfar SM, Paefgen V, Banala S, Buhl EM, Weiler M, Schulz V, Lammers T, Kiessling F. Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles. Biomaterials 2021; 275:120896. [PMID: 34090049 DOI: 10.1016/j.biomaterials.2021.120896] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Microbubbles (MB) are used as ultrasound (US) contrast agents and can be efficiently targeted against markers of angiogenesis and inflammation. Due to their gas core, MB locally alter susceptibilities in magnetic resonance imaging (MRI), but unfortunately, the resulting contrast is low and not sufficient to generate powerful molecular MRI probes. Therefore, we investigated whether a potent molecular MR agent can be generated by encapsulating superparamagnetic iron oxide nanoparticles (SPION) in the polymeric shell of poly (n-butylcyanoacrylate) (PBCA) MB and targeted them against αvβ3 integrins on the angiogenic vasculature of 4T1 murine breast carcinomas. SPION-MB consist of an air core and a multi-layered polymeric shell enabling efficient entrapment of SPION. The mean size of SPION-MB was 1.61 ± 0.32 μm. Biotin-streptavidin coupling was employed to functionalize the SPION-MB with cyclic RGDfK (Arg-Gly-Asp) and RADfK (Arg-Ala-Asp) peptides. Cells incubated with RGD-SPION-MB showed enhanced transverse relaxation rates compared with SPION-MB and blocking αvβ3 integrin receptors with excess free cRGDfK significantly reduced RGD-SPION-MB binding. Due to the fast binding of RGD-SPION-MB in vivo, dynamic susceptibility contrast MRI was employed to track their retention in tumors in real-time. Higher retention of RGD-SPION-MB was observed compared with SPION-MB and RAD-SPION-MB. To corroborate our MRI results, molecular US was performed the following day using the destruction-replenishment method. Both imaging modalities consistently indicated higher retention of RGD-SPION-MB in angiogenic vessels compared with SPION-MB and RAD-SPION-MB. Competitive blocking experiments in mice further confirmed that the binding of RGD-SPION-MB to αvβ3 integrin receptors is specific. Overall, this study demonstrates that RGD-SPION-MB can be employed as molecular MR/US contrast agents and are capable of assessing the αvβ3 integrin expression in the neovasculature of malignant tumors.
Collapse
Affiliation(s)
- Vertika Pathak
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Vera Paefgen
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Srinivas Banala
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscope Facility, University Hospital RWTH, RWTH Aachen University, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
3
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
Affiliation(s)
- E A Wallnöfer
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G C Thurner
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Talasz
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - M M Stollenwerk
- Faculty of Health and Society, Biomedical Laboratory Science, University Hospital MAS, Malmö University, 205 06, Malmö, Sweden
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - A Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - N Klammsteiner
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - K Albrecht-Schgoer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80-82/IV, 6020, Innsbruck, Austria
- Institute of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - H Dietrich
- Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, 6020, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - P Debbage
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
De Simone U, Spinillo A, Caloni F, Avanzini MA, Coccini T. In vitro evaluation of magnetite nanoparticles in human mesenchymal stem cells: comparison of different cytotoxicity assays. Toxicol Mech Methods 2019; 30:48-59. [PMID: 31364912 DOI: 10.1080/15376516.2019.1650151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work was aimed at defining the suitable test for evaluating Fe3O4 NPs cytotoxicity after short-term exposure in human mesenchymal stem cells (hMSCs) using different viability tests, namely NRU, MTT and TB assays, paralleled by cell morphology analyses for cross checking. MTT and NRU data (culture medium with/without hMSCs plus Fe3O4NPs) indicated artificial/false increments in cell viability after Fe3O4NPs. These observations did not fit with the morphological analyses showing reduced cell density, loss of monolayer features, and morphological alterations at Fe3O4NPs ≥50 μg/ml. Fe3O4NPs alone induced a substantial increased absorbance at the wavelength required for MTT and NRU. A significant death (25%) of hMSC at Fe3O4NPs ≥10 μg/ml, with a maximum effect (45%) at 300 μg/ml after 24 h, exacerbated after 48 h, was observed when applying TB test. These results paralleled the effects on cell morphology. The optical properties and stability of Fe3O4NP suspension (tendency to agglomerate in a specific culture medium) represent factors that limit in vitro result interpretation. These findings suggest the non applicability of the spectrophotometric assays for hMSC culture conditions, while TB is an accurate method for determining cell viability after Fe3O4NP exposure in this model. In relation to NPs safety assessment: cell-based assays must be considered on case-by-case basis; selection of relevant cell models is also important for predictive toxicological studies; application of a testing strategy is fundamental for understanding the toxicity pathways driving cellular responses.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milano, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| |
Collapse
|
5
|
Chiarelli PA, Revia RA, Stephen ZR, Wang K, Jeon M, Nelson V, Kievit FM, Sham J, Ellenbogen RG, Kiem HP, Zhang M. Nanoparticle Biokinetics in Mice and Nonhuman Primates. ACS NANO 2017; 11:9514-9524. [PMID: 28885825 PMCID: PMC6002853 DOI: 10.1021/acsnano.7b05377] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the preponderance of iron oxide nanoparticles (NPs) designed for theranostic applications, widespread clinical translation of these NPs lags behind. A better understanding of how NP pharmacokinetics vary between small and large animal models is needed to rapidly customize NPs for optimal performance in humans. Here we use noninvasive magnetic resonance imaging (MRI) to track iron oxide NPs through a large number of organ systems in vivo to investigate NP biokinetics in both mice and nonhuman primates. We demonstrate that pharmacokinetics are similar between mice and macaques in the blood, liver, spleen, and muscle, but differ in the kidneys, brain, and bone marrow. Our study also demonstrates that full-body MRI is practical, rapid, and cost-effective for tracking NPs noninvasively with high spatiotemporal resolution. Our techniques using a nonhuman primate model may provide a platform for testing a range of NP formulations.
Collapse
Affiliation(s)
- Peter A. Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
| | - Richard A. Revia
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
| | - Zachary R. Stephen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Veronica Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Forrest M. Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Jonathan Sham
- Department of Surgery, University of Washington, Seattle, Washington 98195
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
- Department of Radiology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Wáng YXJ, Idée JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017; 7:88-122. [PMID: 28275562 DOI: 10.21037/qims.2017.02.09] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper aims to update the clinical researches using superparamagnetic iron oxide (SPIO) nanoparticles as magnetic resonance imaging (MRI) contrast agent published during the past five years. PubMed database was used for literature search, and the search terms were (SPIO OR superparamagnetic iron oxide OR Resovist OR Ferumoxytol OR Ferumoxtran-10) AND (MRI OR magnetic resonance imaging). The literature search results show clinical research on SPIO remains robust, particularly fuelled by the approval of ferumoxytol for intravenously administration. SPIOs have been tested on MR angiography, sentinel lymph node detection, lymph node metastasis evaluation; inflammation evaluation; blood volume measurement; as well as liver imaging. Two experimental SPIOs with unique potentials are also discussed in this review. A curcumin-conjugated SPIO can penetrate brain blood barrier (BBB) and bind to amyloid plaques in Alzheime's disease transgenic mice brain, and thereafter detectable by MRI. Another SPIO was fabricated with a core of Fe3O4 nanoparticle and a shell coating of concentrated hydrophilic polymer brushes and are almost not taken by peripheral macrophages as well as by mononuclear phagocytes and reticuloendothelial system (RES) due to the suppression of non-specific protein binding caused by their stealthy ''brush-afforded'' structure. This SPIO may offer potentials for the applications such as drug targeting and tissue or organ imaging other than liver and lymph nodes.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, New Territories, Hong Kong SAR, China
| | - Jean-Marc Idée
- Guerbet, Research and Innovation Division, Roissy-Charles de Gaulle, France
| |
Collapse
|
7
|
Jung CSL, Heine M, Freund B, Reimer R, Koziolek EJ, Kaul MG, Kording F, Schumacher U, Weller H, Nielsen P, Adam G, Heeren J, Ittrich H. Quantitative Activity Measurements of Brown Adipose Tissue at 7 T Magnetic Resonance Imaging After Application of Triglyceride-Rich Lipoprotein 59Fe-Superparamagnetic Iron Oxide Nanoparticle: Intravenous Versus Intraperitoneal Approach. Invest Radiol 2016; 51:194-202. [PMID: 26674208 DOI: 10.1097/rli.0000000000000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The aim of this study was to determine metabolic activity of brown adipose tissue (BAT) with in vivo magnetic resonance imaging (MRI) after intravenous (IV) and intraperitoneal (IP) injection of radioactively labeled superparamagnetic iron oxide nanoparticles (SPIOs) embedded into a lipoprotein layer. MATERIALS AND METHODS Fe-labeled SPIOs were either polymer-coated or embedded into the lipid core of triglyceride-rich lipoproteins (TRL-Fe-SPIOs). First biodistribution and blood half time analysis in thermoneutral mice after IP injection of either TRL-Fe-SPIOs or polymer-coated Fe-SPIOs (n = 3) were performed. In the next step, cold-exposed (24 hours), BAT-activated mice (n = 10), and control thermoneutral mice (n = 10) were starved for 4 hours before IP (n = 10) or IV (n = 10) injection of TRL-Fe-SPIOs. In vivo MRI was performed before and 24 hours after the application of the particles at a 7 T small animal MRI scanner using a T2*-weighted multiecho gradient echo sequence. R2* and ΔR2* were estimated in the liver, BAT, and muscle. The biodistribution of polymer-coated Fe-SPIOs and TRL-Fe-SPIOs was analyzed ex vivo using a sensitive, large-volume Hamburg whole-body radioactive counter. The amount of Fe-SPIOs in the liver, BAT, and muscle was correlated with the MRI measurements using the Pearson correlation coefficient. Tissue uptake of Fe-SPIOs was confirmed by histological and transmission electron microscopy analyses. RESULTS Triglyceride-rich lipoprotein Fe-SPIOs exhibited a higher blood concentration after IP injection (10.1% ± 0.91% after 24 hours) and a greater [INCREMENT]R2* in the liver (103 ± 5.0 s), while polymer-coated SPIOs did not increase substantially in the blood stream (0.19% ± 0.01% after 24 hours; P < 0.001) and the liver (57 ± 4.08 s; P < 0.001). In BAT activity studies, significantly higher uptake of TRL-Fe-SPIOs was detected in the BAT of cold-exposed mice, with [INCREMENT]R2* of 107 ± 5.5 s after IV application (control mice: [INCREMENT]R2* of 22 ± 5.8 s; P < 0.001) and 45 ± 5.5 s after IP application (control mice: [INCREMENT]R2* of 11 ± 2.9 s; P < 0.01). Fe radioactivity measurements and [INCREMENT]R2* values correlated strongly in BAT (r > 0.85; P < 0.001) and liver tissue (r > 0.85; P < 0.001). Histological and transmission electron microscopy analyses confirmed the uptake of TRL-Fe-SPIOs within the liver and BAT for both application approaches. CONCLUSIONS Triglyceride-rich lipoprotein-embedded SPIOs were able to escape the abdominal cavity barrier, whereas polymer-coated SPIOs did not increase substantially in the blood stream. Brown adipose tissue activity can be determined via MRI using TRL-Fe-SPIOs. The quantification of [INCREMENT]R2* using TRL-Fe-SPIOs is feasible and may serve as a noninvasive tool for the quantitative estimation of BAT activity.
Collapse
Affiliation(s)
- Caroline Sophie Laura Jung
- From the Departments of *Diagnostic and Interventional Radiology, and †Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf; ‡Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg; §Department of Nuclear Medicine, Virchow Campus Charite Berlin, Berlin; ∥Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf; and ¶Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Delivering therapeutics in peripheral artery disease: challenges and future perspectives. Ther Deliv 2016; 7:483-93. [PMID: 27403631 DOI: 10.4155/tde-2016-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeted and sustained delivery of biologicals to improve neovascularization has been focused on stimulation angiogenesis. The formation of collaterals however is hemodynamically much more efficient, but as a target of therapy has been under-utilized. Although there is good understanding of the molecular processes involving collateral formation and there are interesting drugable candidates, the need for targeting and sustained delivery is still an obstacle towards safe and effective treatment. Molecular targeting with nanoparticles of liposomes is promising and so are peri-vascularly delivered polymer-based protein reservoirs. These developments will lead to future arteriogenesis strategies that are adjunct to current revascularization.
Collapse
|
9
|
Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:157-168. [PMID: 27524934 PMCID: PMC4981486 DOI: 10.1016/j.mattod.2015.08.022] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of nanoparticles (NPs) for use in all facets of oncological disease detection and therapy has shown great progress over the past two decades. NPs have been tailored for use as contrast enhancement agents for imaging, drug delivery vehicles, and most recently as a therapeutic component in initiating tumor cell death in magnetic and photonic ablation therapies. Of the many possible core constituents of NPs, such as gold, silver, carbon nanotubes, fullerenes, manganese oxide, lipids, micelles, etc., iron oxide (or magnetite) based NPs have been extensively investigated due to their excellent superparamagnetic, biocompatible, and biodegradable properties. This review addresses recent applications of magnetite NPs in diagnosis, treatment, and treatment monitoring of cancer. Finally, some views will be discussed concerning the toxicity and clinical translation of iron oxide NPs and the future outlook of NP development to facilitate multiple therapies in a single formulation for cancer theranostics.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J. Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 2015; 10:3097-114. [PMID: 25960650 PMCID: PMC4411024 DOI: 10.2147/ijn.s70488] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance.
Collapse
Affiliation(s)
- Nikolaos Panagiotopoulos
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Robert L Duschka
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Mandy Ahlborg
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Gael Bringout
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | | | - Matthias Graeser
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | | | | | - Hanne Medimagh
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Jan Stelzner
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Thorsten M Buzug
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Jörg Barkhausen
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Florian M Vogt
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Julian Haegele
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| |
Collapse
|
11
|
Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C, Meinke MC, Vogt A, Hadam S, Lademann J, Rühl E, Alexiev U, Gruber AD. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:263-80. [PMID: 25671170 PMCID: PMC4311646 DOI: 10.3762/bjnano.6.25] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties.
Collapse
Affiliation(s)
- Anja Ostrowski
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Daniel Nordmeyer
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Alexander Boreham
- Department of Physics, Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cornelia Holzhausen
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Christina Graf
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Annika Vogt
- Department of Dermatology, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabrina Hadam
- Department of Dermatology, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| |
Collapse
|
12
|
Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD, Wylezinska-Arridge M, Aboagye EO, Long NJ. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew Chem Int Ed Engl 2014; 53:9550-4. [PMID: 25045009 PMCID: PMC4321346 DOI: 10.1002/anie.201405442] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 11/11/2022]
Abstract
MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these 'smart' self-assembling nanomaterials.
Collapse
Affiliation(s)
- Juan Gallo
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | - Nazila Kamaly
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | - Ioannis Lavdas
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | - Elizabeth Stevens
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | - Quang-De Nguyen
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | - Marzena Wylezinska-Arridge
- J. Gallo, N. Kamaly, I. Lavdas, E. Stevens, Q.-D. Nguyen,
E. O. Aboagye, N. J. Long, Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer,
Hammersmith Campus, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
- J. Gallo, N. Kamaly, N. J. Long, Department of Chemistry, Imperial College LondonSouth Kensington, London, SW7 2AZ (UK)
- M. Wylezinska-Arridge, Biological Imaging Centre, Medical Research Council (MRC) Clinical
Science Centre, Imperial College LondonDu Cane Road, London, W12 0NN (UK)
| | | | | |
Collapse
|
13
|
Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD, Wylezinska-Arridge M, Aboagye EO, Long NJ. CXCR4-Targeted and MMP-Responsive Iron Oxide Nanoparticles for Enhanced Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Winter M, Gibson R, Ruszkiewicz A, Thompson SK, Thierry B. Beyond conventional pathology: Towards preoperative and intraoperative lymph node staging. Int J Cancer 2014; 136:743-51. [DOI: 10.1002/ijc.28742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/23/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Marnie Winter
- Ian Wark Research Institute; University of South Australia; Adelaide SA Australia
| | - Rachel Gibson
- Discipline of Anatomy and Pathology School of Medical Sciences; University of Adelaide; Adelaide SA Australia
| | | | - Sarah K. Thompson
- Department of Surgery Royal Adelaide Hospital and School of Health Sciences; University of South Australia; Adelaide SA Australia
| | - Benjamin Thierry
- Ian Wark Research Institute; University of South Australia; Adelaide SA Australia
| |
Collapse
|
15
|
MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model. Invest Radiol 2014; 48:492-9. [PMID: 23249649 DOI: 10.1097/rli.0b013e31827994e5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The objective of this study was to test the hypotheses that intra-arterial infusion allows for targeted natural killer (NK) lymphocyte delivery to hepatocellular carcinoma (HCC) and that iron oxide labeling allows for quantitative visualization of intra-arterial NK delivery with magnetic resonance imaging (MRI). MATERIALS AND METHODS Experiments received approval from the institutional animal care and use committee. NK-92MI cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Cell viability, labeling efficacy, and cell phantom imaging studies were performed. Eighteen rats were each implanted with HCC tumors. Catheter was placed in proper hepatic artery for either NK lymphocyte (12 rats) or saline (6 rats) infusion. For the 6 rats, MRI T2* measurements for tumor and normal liver were compared before and after the NK infusion and correlated with histologic measurements. Prussian blue staining was used for labeled NK identification. The remaining rats survived for 8 days after the infusion to compare tumor size changes in the rats that received NK cell (6 rats) or saline (6 rats) infusions. Spearman correlation coefficients and t tests were calculated for statistical analyses. RESULTS Increasing SPIO incubation concentration decreased cell viability. Labeling efficacy mean (SD) was 88.0% (3.1%) across samples. The spatial extent of T2*-weighted contrast and R2* relaxivity values increased for cell phantom samples incubated with increasing SPIO concentrations. T2* measurements decreased in the tumor and normal liver tissues after the NK infusion (P < 0.001); ΔT2* was greater in the tumors than in the normal liver tissue (P < 0.001). Histologic measurements demonstrated increased NK delivery to the tumor compared with the normal liver (P < 0.001). ΔT2* was well correlated with histologic NK measurements (ρ = 0.70). Changes in tumor diameter 8 days after the infusion were significantly different between those rats that received NK cell infusions (-2.49 [0.86] mm) and those that received sham saline infusion (5.23 [0.66] mm). CONCLUSIONS Intra-arterial infusion permitted selective delivery of NK cells to HCC. Transcatheter delivery of SPIO-labeled NK cells can be quantitatively visualized with MRI. Transcatheter NK cell delivery limited tumor size progression compared with controls.
Collapse
|
16
|
Cousins A, Thompson SK, Wedding AB, Thierry B. Clinical relevance of novel imaging technologies for sentinel lymph node identification and staging. Biotechnol Adv 2013; 32:269-79. [PMID: 24189095 DOI: 10.1016/j.biotechadv.2013.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/12/2013] [Accepted: 10/27/2013] [Indexed: 01/07/2023]
Abstract
The sentinel lymph node (SLN) concept has become a standard of care for patients with breast cancer and melanoma, yet its clinical application to other cancer types has been somewhat limited. This is mainly due to the reduced accuracy of conventional SLN mapping techniques (using blue dye and/or radiocolloids as lymphatic tracers) in cancer types where lymphatic drainage is more complex, and SLNs are within close proximity to other nodes or the tumour site. In recent years, many novel techniques for SLN mapping have been developed including fluorescence, x-ray, and magnetic resonant detection. Whilst each technique has its own advantages/disadvantages, the role of targeted contrast agents (for enhanced retention in the SLN, or for immunostaging) is increasing, and may represent the new standard for mapping the SLN in many solid organ tumours. This review article discusses current limitations of conventional techniques, limiting factors of nanoparticulate based contrast agents, and efforts to circumvent these limitations with modern tracer architecture.
Collapse
Affiliation(s)
- Aidan Cousins
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Sarah K Thompson
- Discipline of Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - A Bruce Wedding
- School of Engineering, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Benjamin Thierry
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
17
|
Beheshti A, Pinzer BR, McDonald JT, Stampanoni M, Hlatky L. Early tumor development captured through nondestructive, high resolution differential phase contrast X-ray imaging. Radiat Res 2013; 180:448-54. [PMID: 24125488 DOI: 10.1667/rr13327.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities.
Collapse
Affiliation(s)
- A Beheshti
- a Center of Cancer Systems Biology, GRI, Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
18
|
Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model. Invest Radiol 2013; 49:87-92. [PMID: 24089022 DOI: 10.1097/rli.0b013e3182a7e1b7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES After inducing McA tumors in Sprague-Dawley rats (McA-SD), the following hypotheses were tested: first, that hypervascular McA tumors grown in Sprague-Dawley rats provide a suitable platform to investigate drug delivery; and second, that high-field MRI can be used to measure intratumoral uptake of DOX-SPIOs. MATERIALS AND METHODS McA cells were implanted into the livers of 18 Sprague-Dawley rats. In successfully inoculated animals, 220-μL DOX-SPIOs were delivered to tumors via the intravenous or intra-arterial route. Pretreatment and posttreatment T2*-weighted images were obtained using 7-T MRI, and change in R2* value (ΔR2*) was obtained from mean signal intensities of tumors in these images. Tumor iron concentration ([Fe]), an indicator of DOX-SPIO uptake, was measured using mass spectroscopy. The primary outcome variable was the Pearson correlation between ΔR2* and [Fe]. RESULTS Tumors grew successfully in 13 of the 18 animals (72%). Mean (SD) maximum tumor diameter was 0.83 (0.25) cm. The results of phantom studies revealed a strong positive correlation between ΔR2* and [Fe], with r = 0.98 (P < 0.01). The results of in vivo drug uptake studies demonstrated a positive correlation between ΔR2* and [Fe], with r = 0.72 (P = 0.0004). CONCLUSIONS The McA tumors grown in the Sprague-Dawley rats demonstrated uptake of nanoparticle-based therapeutic agents. Magnetic resonance imaging quantification of intratumoral uptake strongly correlated with iron concentrations in pathological specimens, suggesting that MRI may be used to quantify uptake of iron-oxide nanotherapeutics.
Collapse
|
19
|
A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 2013; 47:725-41. [PMID: 23070095 DOI: 10.1097/rli.0b013e318272d29f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.
Collapse
|
20
|
Paauwe M, ten Dijke P, Hawinkels LJAC. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets 2013; 17:421-35. [PMID: 23327677 DOI: 10.1517/14728222.2013.758716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although cancer treatment has evolved substantially in the past decades, cancer-related mortality rates are still increasing. Therapies targeting tumor angiogenesis, crucial for the growth of solid tumors, mainly target vascular endothelial growth factor (VEGF) and have been clinically applied during the last decade. However, these therapies have not met high expectations, which were based on therapeutic efficacy in animal models. This can partly be explained by the upregulation of alternative angiogenic pathways. Therefore, additional therapies targeting other pro-angiogenic pathways are needed. AREAS COVERED The transforming growth factor (TGF)-β signaling pathway plays an important role in (tumor) angiogenesis. Therefore, components of this pathway are interesting candidates for anti-angiogenic therapy. Endoglin, a co-receptor for various TGF-β family members, is specifically overexpressed in tumor vessels and endoglin expression is associated with metastasis and patient survival. Therefore, endoglin might be a good candidate for anti-angiogenic therapy. In this review, we discuss the potential of using endoglin to target the tumor vasculature for imaging and therapeutic purposes. EXPERT OPINION Considering the promising results from various in vitro studies, in vivo animal models and the first clinical trial targeting endoglin, we are convinced that endoglin is a valuable tool for the diagnosis, visualization and ultimately treatment of solid cancers.
Collapse
Affiliation(s)
- Madelon Paauwe
- Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology, Leiden University Medical Center, Building-2, S1-P, PO-box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 2013; 42:7816-33. [DOI: 10.1039/c3cs60149h] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Hosseini F, Panahifar A, Adeli M, Amiri H, Lascialfari A, Orsini F, Doschak MR, Mahmoudi M. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids Surf B Biointerfaces 2012. [PMID: 23199519 DOI: 10.1016/j.colsurfb.2012.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized and coated with pseudopolyrotaxanes (PPRs) and proposed as a novel hybrid nanostructure for medical imaging and drug delivery. PPRs were prepared by addition of α-cyclodextrin rings to functionalized polyethylene glycol (PEG) chain with hydrophobic triazine end-groups. Non-covalent interactions between SPIONs and PPRs led to the assembly of SPIONs@PRs hybrid nanomaterials. Measurements of the (1)H Nuclear Magnetic Resonance (NMR) relaxation times T(1) and T(2) allowed us to determine the NMR dispersion profiles. Comparison between our SPIONs@PRs hybrid nano-compound and the commercial SPION compound, Endorem, showed a higher transverse relaxivity for SPIONs@PRs. In vitro MRI experiments showed that our SPIONs@PRs produces better negative contrast compared to Endorem and can be considered as a novel MRI contrast agent.
Collapse
Affiliation(s)
- Forouzan Hosseini
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|