1
|
Liu Y, Li Y, Chen J, Xie P, Yin Z. Construction of fibrin-targeted nanoparticles for imaging diagnosis and treatment of arterial thrombosis. NANOSCALE 2025; 17:7351-7366. [PMID: 39992663 DOI: 10.1039/d4nr05377j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The clinical application of conventional thrombolytic drugs is limited due to the difficulty in precisely targeting the thrombus site and side effects such as severe bleeding. In order to specifically image thrombus for diagnosis and thrombolytic therapy, a CREKA-targeted and pH-responsive drug release nano-delivery system, called LK/PDB/IR820-CREKA NPs, was constructed. In vitro experiments showed that NPs had good pH responsiveness and biocompatibility. The in vitro thrombolytic rate was as high as 46% and the NPs had a strong thrombus-binding ability. In an FeCl3-induced carotid artery thrombosis mouse model, PDB/IR820-CREKA NPs could specifically target thrombus, which enabled accurate diagnosis of thrombus sites. Targeted nanoparticle-encapsulated lumbrokinase at a dose of 900 U per 10 g significantly reduced the total protein content at the thrombus site, while reducing the risk of non-specific bleeding. Based on the thrombus-specific imaging and therapeutic activity, this nano-delivery system has the potential to be used for the treatment of thrombotic vascular diseases.
Collapse
Affiliation(s)
- Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yu Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Junlong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Teh JH, Braga M, Allott L, Barnes C, Hernández-Gil J, Tang MX, Aboagye EO, Long NJ. A kit-based aluminium-[ 18F]fluoride approach to radiolabelled microbubbles. Chem Commun (Camb) 2021; 57:11677-11680. [PMID: 34672307 PMCID: PMC8567295 DOI: 10.1039/d1cc04790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
The production of 18F-labelled microbubbles (MBs) via the aluminium-[18F]fluoride ([18F]AlF) radiolabelling method and facile inverse-electron-demand Diels-Alder (IEDDA) 'click' chemistry is reported. An [18F]AlF-NODA-labelled tetrazine was synthesised in excellent radiochemical yield (>95% RCY) and efficiently conjugated to a trans-cyclooctene (TCO) functionalised phospholipid (40-50% RCY), which was incorporated into MBs (40-50% RCY). To demonstrate the potential of producing 18F-labelled MBs for clinical studies, we also describe a kit-based approach which is amenable for use in a hospital radiopharmacy setting.
Collapse
Affiliation(s)
- Jin Hui Teh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, UK.
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
| | - Marta Braga
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
| | - Louis Allott
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, UK
| | - Chris Barnes
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
| | - Javier Hernández-Gil
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, UK.
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK.
| | - Nicholas J Long
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, UK.
| |
Collapse
|
3
|
Sloand JN, Rokni E, Watson CT, Miller MA, Manning KB, Simon JC, Medina SH. Ultrasound-Responsive Nanopeptisomes Enable Synchronous Spatial Imaging and Inhibition of Clot Growth in Deep Vein Thrombosis. Adv Healthc Mater 2021; 10:e2100520. [PMID: 34137205 DOI: 10.1002/adhm.202100520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Indexed: 01/22/2023]
Abstract
Deep vein thrombosis (DVT) is a life-threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen-mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast-enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet-bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast-enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet-fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image-guided, non-invasive, interventions for DVT and other vascular diseases.
Collapse
Affiliation(s)
- Janna N. Sloand
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Eric Rokni
- Graduate Program in Acoustics The Pennsylvania State University University Park PA 16802 USA
| | - Connor T. Watson
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Michael A. Miller
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Keefe B. Manning
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Julianna C. Simon
- Graduate Program in Acoustics The Pennsylvania State University University Park PA 16802 USA
| | - Scott H. Medina
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
4
|
Wang Z, Huang H, Chen Y, Zheng Y. Current Strategies for Microbubble-Based Thrombus Targeting: Activation-Specific Epitopes and Small Molecular Ligands. Front Bioeng Biotechnol 2021; 9:699450. [PMID: 34336810 PMCID: PMC8322734 DOI: 10.3389/fbioe.2021.699450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Microbubbles with enhanced ultrasound represent a potentially potent evolution to the administration of a free drug in the treatment of thrombotic diseases. Conformational and expressional changes of several thrombotic biological components during active coagulation provide epitopes that allow site-specific delivery of microbubble-based agents to the thrombus for theranostic purpose. Through the interaction with these epitopes, emerging high-affinity small molecular ligands are able to selectively target the thrombi with tremendous advantages over traditional antibody-based strategy. In this mini-review, we summarize recent novel strategies for microbubble-based targeting of thrombus through epitopes located at activated platelets and fibrin. We also discuss the challenges of current targeting modalities and supramolecular carrier systems for their translational use in thrombotic pathologies.
Collapse
Affiliation(s)
- Zhaojian Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Huaigu Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
5
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
7
|
Diagnostic Ultrasound and Microbubbles Treatment Improves Outcomes of Coronary No-Reflow in Canine Models by Sonothrombolysis. Crit Care Med 2019; 46:e912-e920. [PMID: 29965834 PMCID: PMC6110622 DOI: 10.1097/ccm.0000000000003255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: Effective treatment for microvascular thrombosis-induced coronary no-reflow remains an unmet clinical need. This study sought to evaluate whether diagnostic ultrasound and microbubbles treatment could improve outcomes of coronary no-reflow by dissolving platelet- and erythrocyte-rich microthrombi. Design: Randomized controlled laboratory investigation. Setting: Research laboratory. Subjects: Mongrel dogs. Interventions: Coronary no-reflow models induced by platelet- or erythrocyte-rich microthrombi were established and randomly assigned to control, ultrasound, recombinant tissue-type plasminogen activator, ultrasound + microbubbles, or ultrasound + microbubbles + recombinant tissue-type plasminogen activator group. All treatments lasted for 30 minutes. Measurements and Main Results: Percentage of microemboli-obstructed coronary arterioles was lower in ultrasound + microbubbles group than that in control group for platelet- (> 50% obstruction: 10.20% ± 3.56% vs 31.80% ± 3.96%; < 50% obstruction: 14.80% ± 4.15% vs 28.20% ± 3.56%) and erythrocyte-rich microthrombi (> 50% obstruction: 8.20% ± 3.11% vs 30.60% ± 4.83%; < 50% obstruction: 12.80% ± 4.15% vs 25.80% ± 3.70%) (p < 0.001). Percentage change of myocardial blood flow in left anterior descending artery-dominated region, left ventricular ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles group than that in control group for both types of microthrombi (p < 0.001). Percentage change of myocardial blood flow, ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles and ultrasound + microbubbles + recombinant tissue-type plasminogen activator groups than that in recombinant tissue-type plasminogen activator group for platelet-rich microthrombi (p < 0.05). Conclusions: Ultrasound + microbubbles treatment could dissolve platelet- and erythrocyte-rich microthrombi, thereby improving outcomes of coronary no-reflow, making it a promising supplement to current reperfusion therapy for acute ST-segment elevation myocardial infarction.
Collapse
|
8
|
Otani K, Kamiya A, Miyazaki T, Koga A, Inatomi A, Harada-Shiba M. Surface Modification with Lactadherin Augments the Attachment of Sonazoid Microbubbles to Glycoprotein IIb/IIIa. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1455-1465. [PMID: 30857759 DOI: 10.1016/j.ultrasmedbio.2019.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Arginine-glycine-aspartate (RGD)-carrying microbubbles (MBs) have been utilized as a specific contrast agent for glycoprotein IIb/IIIa (αIIbβ3 integrin)-expressing activated platelets in ultrasound molecular imaging. Recently, we found that surface modification with lactadherin provides the RGD motif on the surface of phosphatidylserine-containing clinically available MBs, Sonazoid. Here, we examined the potential of lactadherin-bearing Sonazoid MBs to be targeted MBs for glycoprotein IIb/IIIa using the custom-designed in vitro settings with recombinant αIIbβ3 integrin, activated platelets or erythrocyte-rich human clots. By modification of the surface with lactadherin, a large number of Sonazoid MBs were attached to the αIIbβ3 integrin-coated and platelet-immobilized plate. Additionally, the video intensity of clots after incubation with lactadherin-bearing Sonazoid MBs was significantly higher than that with unmodified Sonazoid MBs, implying the number of attached Sonazoid MBs was increased by the modification with lactadherin. Our results suggest that the lactadherin-bearing Sonazoid MBs have the potential to be thrombus-targeted MBs.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | - Atsunori Kamiya
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ayumi Koga
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ayako Inatomi
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
9
|
Lanza GM, Cui G, Schmieder AH, Zhang H, Allen JS, Scott MJ, Williams T, Yang X. An unmet clinical need: The history of thrombus imaging. J Nucl Cardiol 2019; 26:986-997. [PMID: 28608182 PMCID: PMC5741521 DOI: 10.1007/s12350-017-0942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Indexed: 11/24/2022]
Abstract
Robust thrombus imaging is an unresolved clinical unmet need dating back to the mid 1970s. While early molecular imaging approaches began with nuclear SPECT imaging, contrast agents for virtually all biomedical imaging modalities have been demonstrated in vivo with unique strengths and common weaknesses. Two primary molecular imaging targets have been pursued for thrombus imaging: platelets and fibrin. Some common issues noted over 40 years ago persist today. Acute thrombus is readily imaged with all probes and modalities, but aged thrombus remains a challenge. Similarly, anti-coagulation continues to interfere with and often negate thrombus imaging efficacy, but heparin is clinically required in patients suspected of pulmonary embolism, deep venous thrombosis or coronary ruptured plaque prior to confirmatory diagnostic studies have been executed and interpreted. These fundamental issues can be overcome, but an innovative departure from the prior approaches will be needed.
Collapse
Affiliation(s)
- Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA.
| | - Grace Cui
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Huiying Zhang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - John S Allen
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Michael J Scott
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Todd Williams
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| |
Collapse
|
10
|
Li B, Aid-Launais R, Labour MN, Zenych A, Juenet M, Choqueux C, Ollivier V, Couture O, Letourneur D, Chauvierre C. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 2019; 194:139-150. [DOI: 10.1016/j.biomaterials.2018.12.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
|
11
|
Otani K, Nishimura H, Kamiya A, Harada-Shiba M. Simplified Preparation of α vβ 3 Integrin-Targeted Microbubbles Based on a Clinically Available Ultrasound Contrast Agent: Validation in a Tumor-Bearing Mouse Model. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1063-1073. [PMID: 29501282 DOI: 10.1016/j.ultrasmedbio.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 05/11/2023]
Abstract
The usefulness of ultrasound molecular imaging with αvβ3 integrin-targeted microbubbles for detecting tumor angiogenesis has been demonstrated. Recently, we developed αvβ3 integrin-targeted microbubbles by modifying clinically available microbubbles (Sonazoid, Daiichi-Sankyo Pharmaceuticals, Tokyo, Japan) with a secreted glycoprotein (lactadherin). The aims of our present study were to simplify the preparation of lactadherin-bearing Sonazoid and to examine the diagnostic utility of lactadherin-bearing Sonazoid for αvβ3 integrin-expressing tumor vessels by using SK-OV-3-tumor-bearing mice. By incubating 1.2 × 107 Sonazoid microbubbles with 1.0 µg lactadherin, the complicated washing and centrifugation steps during the microbubble preparation could be omitted with no significant reduction in labeling ratio of lactadherin-bearing Sonazoid. In addition, the number of Sonazoid microbubbles accumulated in the SK-OV-3 tumor was significantly increased by modifying Sonazoid with lactadherin. Our data suggest that the lactadherin-bearing Sonazoid is an easily prepared and potentially clinically translatable targeted microbubble for αvβ3 integrin-expressing vessels.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | - Hirohito Nishimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
12
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
13
|
Molecular Ultrasound Imaging of αvβ3-Integrin Expression in Carotid Arteries of Pigs After Vessel Injury. Invest Radiol 2017; 51:767-775. [PMID: 27119438 DOI: 10.1097/rli.0000000000000282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Interventions such as balloon angioplasty can cause vascular injury leading to platelet activation, thrombus formation, and inflammatory response. This induces vascular smooth muscle cell activation and subsequent re-endothelialization with expression of αvβ3-integrin by endothelial cells and vascular smooth muscle cell. Thus, poly-N-butylcyanoacrylate microbubbles (MBs) targeted to αvβ3-integrin were evaluated for monitoring vascular healing after vessel injury in pigs using molecular ultrasound imaging. MATERIALS AND METHODS Approval for animal experiments was obtained. The binding specificity of αvβ3-integrin-targeted MB to human umbilical vein endothelial cells was tested with fluorescence microscopy. In vivo imaging was performed using a clinical ultrasound system and an 8-MHz probe. Six mini pigs were examined after vessel injury in the left carotid artery. The right carotid served as control. Uncoated MB, cDRG-coated MB, and αvβ3-integrin-specific cRGD-coated MB were injected sequentially. Bound MBs were assessed 8 minutes after injection using ultrasound replenishment analysis. Measurements were performed 2 hours, 1 and 5 weeks, and 3 and 6 months after injury. In vivo data were validated by immunohistochemistry. RESULTS Significantly stronger binding of cRGD-MB than MB and cDRG-MB to human umbilical vein endothelial cells was found (P < 0.01). As vessel injury leads to upregulation of αvβ3-integrin, cRGD-MBs bound significantly stronger (P < 0.05) in injured carotid arteries than at the counter side 1 week after vessel injury and significant differences could also be observed after 5 weeks. After 3 months, αvβ3-integrin expression decreased to baseline and binding of cRGD-MB was comparable in both vessels. Values remained at baseline also after 6 months. CONCLUSIONS Ultrasound imaging with RGD-MB is promising for monitoring vascular healing after vessel injury. This may open new perspectives to assess vascular damage after radiological interventions.
Collapse
|
14
|
Mukai K, Zhu W, Nakajima Y, Kobayashi M, Nakatani T. Non-invasive longitudinal monitoring of angiogenesis in a murine full-thickness cutaneous wound healing model using high-resolution three-dimensional ultrasound imaging. Skin Res Technol 2017; 23:581-587. [DOI: 10.1111/srt.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- K. Mukai
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - W. Zhu
- Department of Quantum Medical Technology; Graduate Course of Medical Science and Technology; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Y. Nakajima
- Department of Clinical Nursing; Graduate Course of Nursing Science; Division of Health Sciences; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - M. Kobayashi
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - T. Nakatani
- Faculty of Health Sciences; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| |
Collapse
|
15
|
Cui C, Yang Z, Hu X, Wu J, Shou K, Ma H, Jian C, Zhao Y, Qi B, Hu X, Yu A, Fan Q. Organic Semiconducting Nanoparticles as Efficient Photoacoustic Agents for Lightening Early Thrombus and Monitoring Thrombolysis in Living Mice. ACS NANO 2017; 11:3298-3310. [PMID: 28240881 DOI: 10.1021/acsnano.7b00594] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Acute venous thrombosis is prevalent and potentially fatal. Accurate diagnosis of early thrombus is needed for patients in timely clinical intervention to prevent life-threatening conditions. Photoacoustic imaging (PAI) with excellent spatial resolution and high optical contrast shows more promise for this purpose. However, its application is dramatically limited by its signal-off effect on thrombus because of the ischemia in thrombus which lacks the endogenous photoacoustic (PA) signal of hemoglobin. To address this dilemma, we herein report the feasibility of using organic semiconducting nanoparticles (NPs) for contrast-enhanced PAI of thrombus in living mice. An organic semiconducting NP, self-assembled by amphiphilic perylene-3,4,9,10-tetracarboxylic diimide (PDI) molecules, is chemically modified with cyclic Arg-Gly-Asp (cRGD) peptides as a PA contrast agent (cRGD-PDI NPs) for selectively lightening early thrombus. cRGD-PDI NPs presents high PA intensity, good stability in light and serum, and sufficient blood-circulating half-life. In living mice, PA intensity of early thrombus significantly increases after tail vein injection of cRGD-PDI NPs, which is 4-fold greater than that of the control, blocking, and old thrombus groups. Pathological and immunohistochemical findings show that glycoprotein IIb/IIIa abundant in early thrombus is a good biomarker targeted by cRGD-PDI NPs for distinguishing early thrombus from old thrombus by PAI. Such a lightening PAI effect by cRGD-PDI NPs successfully provides accurate information including the profile, size and conformation, and spatial distribution of early thrombus, which may timely monitor the obstructive degree of thrombus in blood vessels and the thrombolysis effect.
Collapse
Affiliation(s)
- Cao Cui
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Jinjun Wu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Hengheng Ma
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Baiwen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Xiaoming Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| |
Collapse
|
16
|
Liu J, Xu J, Zhou J, Zhang Y, Guo D, Wang Z. Fe 3O 4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int J Nanomedicine 2017; 12:1113-1126. [PMID: 28223802 PMCID: PMC5310639 DOI: 10.2147/ijn.s123228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thrombotic disease is a great threat to human health, and early detection is particularly important. Magnetic resonance (MR) molecular imaging provides noninvasive imaging with the potential for early disease diagnosis. In this study, we developed Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) surface-modified with a cyclic Arg-Gly-Asp (cRGD) peptide as an MR contrast agent for the detection of thrombosis. The physical and chemical characteristics, biological toxicity, ability to target thrombi, and biodistribution of the NPs were studied. The Fe3O4-PLGA-cRGD NPs were constructed successfully, and hematologic and pathologic assays indicated no in vivo toxicity of the NPs. In a rat model of FeCl3-induced abdominal aorta thrombosis, the NPs readily and selectively accumulated on the surface of the thrombosis and under vascular endothelial cells ex vivo and in vivo. In the in vivo experiment, the biodistribution of the NPs suggested that the NPs might be internalized by the macrophages of the reticuloendothelial system in the liver and the spleen. The T2 signal decreased at the mural thrombus 10 min after injection and then gradually increased until 50 min. These results suggest that the NPs are suitable for in vivo molecular imaging of thrombosis under high shear stress conditions and represent a very promising MR contrast agent for sensitive and specific detection of thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, People's Republic of China
| |
Collapse
|
17
|
Sennoga CA, Kanbar E, Auboire L, Dujardin PA, Fouan D, Escoffre JM, Bouakaz A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 2016; 14:1031-1043. [DOI: 10.1080/17425247.2017.1266328] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Emma Kanbar
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | | | - Damien Fouan
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| |
Collapse
|
18
|
Hu Q, Wang XY, Kang LK, Wei HM, Xu CM, Wang T, Wen ZH. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo. PLoS One 2016; 11:e0149075. [PMID: 26862757 PMCID: PMC4749330 DOI: 10.1371/journal.pone.0149075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. METHODS RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. RESULTS The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). CONCLUSIONS RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.
Collapse
Affiliation(s)
- Qiao Hu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- * E-mail:
| | - Xiao-Yan Wang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li-Ke Kang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hai-Ming Wei
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chun-Mei Xu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Wang
- Department of Otolaryngology-Head & Neck Surgery, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zong-Hua Wen
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
19
|
Yan F, Xu X, Chen Y, Deng Z, Liu H, Xu J, Zhou J, Tan G, Wu J, Zheng H. A Lipopeptide-Based αvβ₃ Integrin-Targeted Ultrasound Contrast Agent for Molecular Imaging of Tumor Angiogenesis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2765-2773. [PMID: 26166460 DOI: 10.1016/j.ultrasmedbio.2015.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
The design and fabrication of targeted ultrasound contrast agents are key factors in the success of ultrasound molecular imaging applications. Here, we introduce a transformable αvβ3 integrin-targeted microbubble (MB) by incorporation of iRGD-lipopeptides into the MB membrane for non-invasive ultrasound imaging of tumor angiogenesis. First, the iRGD-lipopeptides were synthesized by conjugating iRGD peptides to distearoylphosphatidylethanolamine-polyethylene glycol 2000-maleimide. The resulting iRGD-lipopeptides were used for fabrication of the iRGD-carrying αvβ3 integrin-targeted MBs (iRGD-MBs). The binding specificity of iRGD-MBs for endothelial cells was found to be significantly stronger than that of control MBs (p < 0.01) under in vitro static and dynamic conditions. The binding of iRGD-MBs on the endothelial cells was competed off by pre-incubation with the anti-αv or anti-β3 antibody (p < 0.01). Ultrasound images taken of mice bearing 4T1 breast tumors after intravenous injections of iRGD-MBs or control MBs revealed strong contrast enhancement within the tumors from iRGD-MBs but not from the control MBs; the mean acoustic signal intensity was 10.71 ± 2.75 intensity units for iRGD-MBs versus 1.13 ± 0.18 intensity units for the control MBs (p < 0.01). The presence of αvβ3 integrin was confirmed by immunofluorescence staining. These data indicate that iRGD-MBs can be used as an ultrasound imaging probe for the non-invasive molecular imaging of tumor angiogenesis, and may have further implications for ultrasound image-guided tumor targeting drug delivery.
Collapse
Affiliation(s)
- Fei Yan
- Department of Ultrasonography, Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiuxia Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Yihan Chen
- Department of Ultrasonography, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongmei Liu
- Department of Ultrasonography, Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Jianrong Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Jie Zhou
- Department of Echocardiography, Clinical Center of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guanghong Tan
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Junru Wu
- Department of Physics, University of Vermont, Burlington, Vermont, USA
| | - Hairong Zheng
- Department of Ultrasonography, Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS One 2015; 10:e0129681. [PMID: 26161541 PMCID: PMC4498921 DOI: 10.1371/journal.pone.0129681] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Charles A. Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- William Harvey Research Institute, Queen Mary, University of London, London, United Kingdom
| | - John M. Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Dorian O. Haskard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci 2015; 16:9749-69. [PMID: 25938969 PMCID: PMC4463615 DOI: 10.3390/ijms16059749] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/28/2023] Open
Abstract
Atherosclerosis and its consequences like acute myocardial infarction or stroke are highly prevalent in western countries, and the incidence of atherosclerosis is rapidly rising in developing countries. Atherosclerosis is a disease that progresses silently over several decades before it results in the aforementioned clinical consequences. Therefore, there is a clinical need for imaging methods to detect the early stages of atherosclerosis and to better risk stratify patients. In this review, we will discuss how ultrasound imaging can contribute to the detection and risk stratification of atherosclerosis by (a) detecting advanced and early plaques; (b) evaluating the biomechanical consequences of atherosclerosis in the vessel wall;
Collapse
Affiliation(s)
- David C Steinl
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel 4031, Switzerland.
| | - Beat A Kaufmann
- Division of Cardiology, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland.
| |
Collapse
|
22
|
Jiang L, Tu Y, Kimura RH, Habte F, Chen H, Cheng K, Shi H, Gambhir SS, Cheng Z. 64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques. J Nucl Med 2015; 56:939-44. [PMID: 25908832 DOI: 10.2967/jnumed.115.155176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin miniprotein was evaluated in a mouse model for carotid atherosclerotic plaques. METHODS Atherosclerotic plaques in BALB/C mice, maintained on a high-fat diet, were induced with streptozotocin injection and carotid artery ligation and verified by MR imaging. Knottin 3-4A was synthesized by solid-phase peptide synthesis chemistry and coupled to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) before radiolabeling with (64)Cu. PET probe stability in mouse serum was evaluated. Mice with carotid atherosclerotic plaques were injected via the tail vein with (64)Cu-NOTA-3-4A or (18)F-FDG, followed by small-animal PET/CT imaging at different time points. Receptor targeting specificity of the probe was verified by coinjection of c(RGDyK) administered in molar excess. Subsequently, carotid artery dissection and immunofluorescence staining were performed to evaluate target expression. RESULTS (64)Cu-NOTA-3-4A was synthesized in high radiochemical purity and yield and demonstrated molecular stability in both phosphate-buffered saline and mouse serum at 4 h. Small-animal PET/CT showed that (64)Cu-NOTA-3-4A accumulated at significantly higher levels in the neovasculature of carotid atherosclerotic plaques (7.41 ± 1.44 vs. 0.67 ± 0.23 percentage injected dose/gram, P < 0.05) than healthy or normal vessels at 1 h after injection. (18)F-FDG also accumulated in atherosclerotic lesions at 0.5 and 1 h after injection but at lower plaque-to-normal tissue ratios than (64)Cu-NOTA-3-4A. For example, plaque-to-normal carotid artery ratios for (18)F-FDG and (64)Cu-NOTA-3-4A at 1 h after injection were 3.75 and 14.71 (P < 0.05), respectively. Furthermore, uptake of (64)Cu-NOTA-3-4A in atherosclerotic plaques was effectively blocked (∼90% at 1 h after injection) by coinjection of c(RGDyK). Immunostaining confirmed integrin αvβ3 expression in both the infiltrating macrophages and the neovasculature of atherosclerotic plaques. CONCLUSION (64)Cu-NOTA-3-4A demonstrates specific accumulation in carotid atherosclerotic plaques in which macrophage infiltration and angiogenesis are responsible for elevated integrin αvβ3 levels. Therefore, (64)Cu-NOTA-3-4A may demonstrate clinical utility as a PET probe for atherosclerosis imaging or for the evaluation of therapies used to treat atherosclerosis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; and Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Yingfeng Tu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Richard H Kimura
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Frezghi Habte
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Kai Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| |
Collapse
|
23
|
Guo S, Shen S, Wang J, Wang H, Li M, Liu Y, Hou F, Liao Y, Bin J. Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets. Am J Cancer Res 2015; 5:418-30. [PMID: 25699100 PMCID: PMC4329504 DOI: 10.7150/thno.10020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/28/2014] [Indexed: 12/23/2022] Open
Abstract
Objective: Ultrasound molecular imaging (UMI) of glycoprotein (GP) IIb/IIIa receptor on activated platelets offers a unique means of identifying high-risk atherosclerosis. We hypothesized that contrast-enhanced ultrasound with microbubbles (MBs) targeted to GP IIb/IIIa could be used to detect and quantify activated platelets on the surface of advanced plaques. Methods and Results: A mouse model of advanced atherosclerosis was generated by maintaining apolipoprotein E-deficient (ApoE-/-) mice on a hypercholesterolemic diet (HCD). The three other experimental groups consisted of ApoE-/- and wild-type (C57BL/6) mice fed a normal chow diet and C57BL/6 mice on an HCD diet. Plaque formation was confirmed by histological and immunohistochemical methods using light, fluorescence, and electron microscopy. Mice were injected with a lipid MB-conjugated cyclic Arg-Gly-Asp peptide or nonspecific control peptide, and the abdominal aorta was examined by UMI. The accumulation of GP IIb/IIIa and activated platelets on the surface of atherosclerotic plaques was highest in the ApoE-/-+HCD group, followed by ApoE-/-+chow, C57BL/6+HCD, and C57BL/6+chow groups (P<0.05). Notably, GP IIb/IIIa expression was associated with the vulnerability index and necrotic center/fiber cap ratio (P<0.05), and contrast video intensity from adhered cyclic Arg-Gly-Asp-modified MBs (MB-cRGDs) was correlated with GP IIb/IIIa expression on the plaque surface (P<0.05). Conclusion: GP IIb/IIIa of activated platelets on the atherosclerotic endothelium is a biomarker for high-risk plaques that can be quantified by UMI using MB-cRGDs, providing a noninvasive means for detecting high-risk plaques and preventing acute cardiovascular events.
Collapse
|
24
|
Leguerney I, Scoazec JY, Gadot N, Robin N, Pénault-Llorca F, Victorin S, Lassau N. Molecular ultrasound imaging using contrast agents targeting endoglin, vascular endothelial growth factor receptor 2 and integrin. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:197-207. [PMID: 25308938 DOI: 10.1016/j.ultrasmedbio.2014.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Expression levels of endoglin, αv integrin and vascular endothelial growth factor receptor 2 (VEGFR2) were investigated using targeted, contrast-enhanced ultrasonography in murine melanoma tumor models. Microvasculature and expression levels of biomarkers were investigated using specific contrast agents conjugated with biotinylated monoclonal antibodies. Ultrasound signal intensity from bound contrast agents was evaluated in two groups of mice: control mice and mice treated with sorafenib. Expression levels were analyzed by immunohistochemistry. Endoglin biomarkers were more highly expressed than αv integrin and VEGFR2. Endoglin decreased in the sorafenib group, whereas it tended to increase with time in the control group. Targeted ultrasound contrast agents may be used for non-invasive longitudinal evaluation of tumor angiogenesis during tumor growth or therapeutic treatment in preclinical studies. Endoglin protein, which plays an important role in angiogenesis, seems to be a target of interest for detection of cancer and for prediction of therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Nicolas Gadot
- Anipath, Faculté Laennec, Université Lyon 1, Lyon, France
| | - Nina Robin
- Département d'anatomie et de cytologie pathologiques, Centre Jean Perrin, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
25
|
Alonso A, Artemis D, Hennerici MG. Molecular imaging of carotid plaque vulnerability. Cerebrovasc Dis 2014; 39:5-12. [PMID: 25547782 DOI: 10.1159/000369123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carotid endarterectomy (CEA) has been shown to be beneficial in patients with high-grade symptomatic carotid artery stenosis. Patients with high-grade asymptomatic stenosis may only exceptionally benefit from CEA during periods of increased plaque vulnerability. Imaging modalities to characterize unstable, vulnerable plaques are strongly needed for better risk stratification in these patients. SUMMARY Contrast-enhanced ultrasound (CEUS) is a novel and noninvasive technique capable to identify several surrogate markers of vulnerable carotid plaques. The use of specific ultrasound microbubbles allows a reliable detection of microulcerations due to an optimized visualization of the plaque-lumen border. As microbubbles are strictly intravascular tracers, the detection of individual microbubbles within the plaque corresponds to intraplaque neovessels. The accuracy of CEUS in the visualization of newly formed microvessels has been confirmed in histological studies on carotid endarterectomy specimens. Together with the formation of adventitial vasa vasorum, intraplaque neovascularization is a strong predictor for symptomatic disease. The phenomenon of late phase contrast enhancement is based on the adherence of microbubble-containing monocytes on inflamed endothelium. Recent studies suggest that late phase contrast enhancement may reflect endothelial inflammation or activation within carotid plaques. The development of conjugated microbubbles that bind to specific ligands such as thrombotic material or neovessels has led to the term 'molecular imaging'. CEUS with microbubbles targeted to P-selectin and VCAM-1, key molecules in leukocyte trafficking, was used to detect an inflammatory plaque phenotype, whereas microbubbles coupled to the VEGF-receptor may allow for a detection of neovascularization. Even though imaging with targeted microbubbles is yet in an experimental stage, this technique can visualize active plaque reorganization with increased vulnerability leading to generation of arterio-arterial embolism. Key Messages: The use of contrast-enhanced ultrasound can be recommended to assess atherosclerotic carotid lesions at risk for rupture. Prospective clinical studies are needed to validate the use of CEUS in patients with high risks of recurrent large artery strokes. In particular, this applies to the detection of intraplaque neovascularization, a well-established marker in preclinical and observational studies, while the clinical significance of late phase contrast enhancement still needs to be determined..
Collapse
Affiliation(s)
- Angelika Alonso
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Hans J de Haas
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.)
| | - Jagat Narula
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.)
| | - Valentin Fuster
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.).
| |
Collapse
|
27
|
Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014; 72:15-27. [PMID: 24316070 DOI: 10.1016/j.addr.2013.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MBs can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy.
Collapse
|