1
|
Neilio JM, Ginat DT. Emerging Head and Neck Tumor Targeting Contrast Agents for the Purpose of CT, MRI, and Multimodal Diagnostic Imaging: A Molecular Review. Diagnostics (Basel) 2024; 14:1666. [PMID: 39125542 PMCID: PMC11311342 DOI: 10.3390/diagnostics14151666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The diagnosis and treatment of head and neck tumors present significant challenges due to their infiltrative nature and diagnostic hindrances such as the blood-brain barrier. The intricate anatomy of the head and neck region also complicates the clear identification of tumor boundaries and assessment of tumor characteristics. AIM This review aims to explore the efficacy of molecular imaging techniques that employ targeted contrast agents in head and neck cancer imaging. Head and neck cancer imaging benefits significantly from the combined advantages of CT and MRI. CT excels in providing swift, high-contrast images, enabling the accurate localization of tumors, while MRI offers superior soft tissue resolution, contributing to the detailed evaluation of tumor morphology in this region of the body. Many of these novel contrast agents have integration of dual-modal, triple-modal, or even dual-tissue targeting imaging, which have expanded the horizons of molecular imaging. Emerging contrast agents for the purpose of MRI and CT also include the widely used standards in imaging such as gadolinium and iodine-based agents, respectively, but with peptide, polypeptide, or polymeric functionalizations. Relevance for patients. For patients, the development and use of these targeted contrast agents have potentially significant implications. They benefit from the enhanced accuracy of tumor detection and characterization, which are critical for effective treatment planning. Additionally, these agents offer improved imaging contrast with the added benefit of reduced toxicity and bioaccumulation. The summarization of preclinical nanoparticle research in this review serves as a valuable resource for scientists and students working towards advancing tumor diagnosis and treatment with targeted contrast agents.
Collapse
Affiliation(s)
- Jonathan M. Neilio
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Sun J, Sheng J, Zhang LJ. Gastrointestinal tract. TRANSPATHOLOGY 2024:281-296. [DOI: 10.1016/b978-0-323-95223-1.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Lv X, Song X, Long Y, Zeng D, Lan X, Gai Y. Preclinical evaluation of a dual-receptor targeted tracer [ 68Ga]Ga-HX01 in 10 different subcutaneous and orthotopic tumor models. Eur J Nucl Med Mol Imaging 2023; 51:54-67. [PMID: 37642706 DOI: 10.1007/s00259-023-06412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE The integrin αvβ3 and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αvβ3 and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αvβ3 and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with 68Ga, in 10 different subcutaneous and orthotopic tumor models. METHODS The specific activity and radiochemical purity of [68Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [68Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [18F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images. RESULTS [68Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7-1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [68Ga]Ga-HX01 were higher than that of [18F]FDG. CONCLUSIONS [68Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [18F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.
Collapse
Affiliation(s)
- Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1277, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
4
|
Cicone F, Viertl D, Denoël T, Stabin MG, Prior JO, Gnesin S. Comparison of absorbed dose extrapolation methods for mouse-to-human translation of radiolabelled macromolecules. EJNMMI Res 2022; 12:21. [PMID: 35403982 PMCID: PMC9001797 DOI: 10.1186/s13550-022-00893-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. RESULTS For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). CONCLUSIONS Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/MR Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy
- University of Lausanne, Lausanne, Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Thibaut Denoël
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/MR Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | | | - John O. Prior
- University of Lausanne, Lausanne, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Silvano Gnesin
- University of Lausanne, Lausanne, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
[ 68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice. Int J Mol Sci 2021; 22:ijms22147391. [PMID: 34299008 PMCID: PMC8306578 DOI: 10.3390/ijms22147391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.
Collapse
|
7
|
Florea A, Mottaghy FM, Bauwens M. Molecular Imaging of Angiogenesis in Oncology: Current Preclinical and Clinical Status. Int J Mol Sci 2021; 22:5544. [PMID: 34073992 PMCID: PMC8197399 DOI: 10.3390/ijms22115544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
8
|
Durante S, Dunet V, Gorostidi F, Mitsakis P, Schaefer N, Delage J, Prior JO. Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: a pilot study. EJNMMI Res 2020; 10:47. [PMID: 32382869 PMCID: PMC7205972 DOI: 10.1186/s13550-020-00638-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Angiogenesis plays an important role in head and neck squamous cell carcinoma (HNSCC) progression. This pilot study was designed to compare the distribution of 68Ga-NODAGA-RGD PET/CT for imaging αvβ3 integrins involved in tumor angiogenesis to 18F-FDG PET/CT in patients with HNSCC. Material and methods Ten patients (aged 58.4 ± 8.3 years [range, 44–73 years], 6 males, 4 females) with a total of 11 HNSCC were prospectively enrolled. Activity mapping and standard uptake values (SUV) from both 68Ga-NODAGA-RGD and 18F-FDG PET/CT scans were recorded for primary tumor and compared with the Wilcoxon signed-rank test. The relation between the SUV of both tracers was assessed using the Spearman correlation. Results All HNSCC tumors were visible with both tracers. Quantitative analysis showed higher 18F-FDG SUVmax in comparison to 68Ga-NODAGA-RGD (14.0 ± 6.1 versus 3.9 ± 1.1 g/mL, p = 0.0017) and SUVmean (8.2 ± 3.1 versus 2.0 ± 0.8 g/mL, p = 0.0017). Both 18F-FDG and 68Ga-NODAGA-RGD uptakes were neither correlated with grade, HPV status nor p16 protein expression (p ≥ 0.17). Conclusion All HNSCC tumors were detected with both tracers with higher uptake with 18F-FDG, however. 68Ga-NODAGA-RGD has a different spatial distribution than 18F-FDG bringing different tumor information. Trial registration NCT, NCT02666547. Registered 12.8.2012.
Collapse
Affiliation(s)
- Steve Durante
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon, 46, Lausanne, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon, 46, Lausanne, Switzerland.
| | - François Gorostidi
- Department of Otolaryngology, Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Periklis Mitsakis
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon, 46, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon, 46, Lausanne, Switzerland
| | - Judith Delage
- Department Pharmacy, Unit of Radiopharmacy, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Zhu J, Cao D, Guo C, Liu M, Tao Y, Zhou J, Wang F, Zhao Y, Wei J, Zhang Y, Fang W, Li Y. Berberine Facilitates Angiogenesis Against Ischemic Stroke Through Modulating Microglial Polarization via AMPK Signaling. Cell Mol Neurobiol 2019; 39:751-768. [PMID: 31020571 PMCID: PMC11462843 DOI: 10.1007/s10571-019-00675-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Evidence suggests that microglia/macrophages can change their phenotype to M1 or M2 and participate in tissue damage or repair. Berberine (BBR) has shown promise in experimental stroke models, but its effects on microglial polarization and long-term recovery after stroke are elusive. Here, we investigated the effects of BBR on angiogenesis and microglial polarization through AMPK signaling after stroke. In the present study, C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO), intragastrically administrated with BBR at 50 mg/kg/day. Neo-angiogenesis was observed by 68Ga-NODAGA-RGD micro-PET/CT and immunohistochemistry. Immunofluorescent staining further exhibited an increase of M2 microglia and a reduction of M1 microglia at 14 days after stroke. In vitro studies, the lipopolysaccharide (LPS)-induced BV2 microglial cells were used to confirm the AMPK activation effect of BBR. RT-PCR, Flow cytometry, and ELISA all demonstrated that BBR could inhibit M1 polarization and promote M2 polarization. Furthermore, treatment of human umbilical vein endothelial cells (HUVEC) with conditioned media collected from BBR-treated BV2 cells promoted angiogenesis. All effects stated above were reversed by AMPK inhibitor (Compound C) and AMPK siRNA. In conclusion, BBR treatment improves functional recovery and promotes angiogenesis following tMCAO via AMPK-dependent microglial M2 polarization.
Collapse
Affiliation(s)
- Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dingwen Cao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, People's Republic of China
| | - Manman Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yifu Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yanli Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jing Wei
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yingdong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China.
| | - Weirong Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yunman Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
10
|
Novy Z, Stepankova J, Hola M, Flasarova D, Popper M, Petrik M. Preclinical Evaluation of Radiolabeled Peptides for PET Imaging of Glioblastoma Multiforme. Molecules 2019; 24:molecules24132496. [PMID: 31288488 PMCID: PMC6651196 DOI: 10.3390/molecules24132496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023] Open
Abstract
In this study, we have compared four 68Ga-labeled peptides (three Arg-Gly-Asp (RGD) peptides and substance-P) with two 18F-tracers clinically approved for tumor imaging. We have studied in vitro and in vivo characteristics of selected radiolabeled tracers in a glioblastoma multiforme tumor model. The in vitro part of the study was mainly focused on the evaluation of radiotracers stability under various conditions. We have also determined in vivo stability of studied 68Ga-radiotracers by analysis of murine urine collected at various time points after injection. The in vivo behavior of tested 68Ga-peptides was evaluated through ex vivo biodistribution studies and PET/CT imaging. The obtained data were compared with clinically used 18F-tracers. 68Ga-RGD peptides showed better imaging properties compared to 18F-tracers, i.e., higher tumor/background ratios and no accumulation in non-target organs except for excretory organs.
Collapse
Affiliation(s)
- Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic.
| | - Jana Stepankova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Michaela Hola
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Dominika Flasarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Grönman M, Tarkia M, Kiviniemi T, Halonen P, Kuivanen A, Savunen T, Tolvanen T, Teuho J, Käkelä M, Metsälä O, Pietilä M, Saukko P, Ylä-Herttuala S, Knuuti J, Roivainen A, Saraste A. Imaging of α vβ 3 integrin expression in experimental myocardial ischemia with [ 68Ga]NODAGA-RGD positron emission tomography. J Transl Med 2017. [PMID: 28629432 PMCID: PMC5477135 DOI: 10.1186/s12967-017-1245-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Radiolabeled RGD peptides detect αvβ3 integrin expression associated with angiogenesis and extracellular matrix remodeling after myocardial infarction. We studied whether cardiac positron emission tomography (PET) with [68Ga]NODAGA-RGD detects increased αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs, and whether αvβ3 integrin is expressed in viable ischemic or injured myocardium. Methods We studied 8 Finnish landrace pigs 13 ± 4 days after percutaneous implantation of a bottleneck stent in the proximal left anterior descending coronary artery. Antithrombotic therapy was used to prevent stent occlusion. Myocardial uptake of [68Ga]NODAGA-RGD (290 ± 31 MBq) was evaluated by a 62 min dynamic PET scan. The ischemic area was defined as the regional perfusion abnormality during adenosine-induced stress by [15O]water PET. Guided by triphenyltetrazolium chloride staining, tissue samples from viable and injured myocardial areas were obtained for autoradiography and histology. Results Stent implantation resulted in a partly reversible myocardial perfusion abnormality. Compared with remote myocardium, [68Ga]NODAGA-RGD PET showed increased tracer uptake in the ischemic area (ischemic-to-remote ratio 1.3 ± 0.20, p = 0.0034). Tissue samples from the injured areas, but not from the viable ischemic areas, showed higher [68Ga]NODAGA-RGD uptake than the remote non-ischemic myocardium. Uptake of [68Ga]NODAGA-RGD correlated with immunohistochemical detection of αvβ3 integrin that was expressed in the injured myocardial areas. Conclusions Cardiac [68Ga]NODAGA-RGD PET demonstrates increased myocardial αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs. Localization of [68Ga]NODAGA-RGD uptake indicates that it reflects αvβ3 integrin expression associated with repair of recent myocardial injury.
Collapse
Affiliation(s)
- Maria Grönman
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Miikka Tarkia
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | | | - Paavo Halonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Joensuu, Finland
| | - Antti Kuivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Joensuu, Finland
| | - Timo Savunen
- Heart Center, Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tuula Tolvanen
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, 20521, Turku, Finland
| | - Mikko Pietilä
- Heart Center, Turku University Hospital, Turku, Finland
| | - Pekka Saukko
- Department of Forensic Medicine, University of Turku, Turku, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Joensuu, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, 20521, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, 20521, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, 20521, Turku, Finland. .,Heart Center, Turku University Hospital, Turku, Finland. .,Turku PET Centre, Turku University Hospital, Turku, Finland. .,Institute of Clinical Medicine, University of Turku, Turku, Finland.
| |
Collapse
|