1
|
Abolfathi F, Ranjbar R, Tabandeh MR, Habibi A. Cold water immersion regulates NLRP3 inflammasome pathway in the rat skeletal muscle after eccentric exercise by regulating the ubiquitin proteasome related proteins. Cytokine 2024; 184:156793. [PMID: 39467485 DOI: 10.1016/j.cyto.2024.156793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Eccentric exercise (ECC) can induce NLRP3-related inflammation in skeletal muscle tissue. Limited available data have shown that Cold water immersion (CWI) after ECC can suppress skeletal muscle inflammation. This study aims to investigate the effect of CWI after ECC on the NLRP3 inflammasome pathway, and the expression of ubiquitin-proteasome-related proteins (UPPs) in the skeletal muscle of rats. METHODS Twenty-five male Wistar rats were randomly divided into control, ECC, ECC + CWI, ECC + NWI (normal water immersion), and ECC + AR (active recovery) groups. The Eccentric exercise consisted of 90 min of downhill running on a treadmill with a speed of 16 m/min and -16° incline. Animals in the NWI and CWI groups were immersed in water at 25 °C and 10 °C after ECC. Eventually, The soleus muscle was isolated and the expression of NLRP3, caspase-1, FBXL2, TRIM31, and PARKIN was evaluated by western blot. Tissue levels of IL-1β and IL-18 were measured by ELISA assay. RESULTS ECC significantly increased the expression of NLRP3, caspase-1, and the tissue levels of IL-1β and IL-18 compared to the control group. After ECC, FBXL2, and PARKIN were downregulated, whereas TRIM31 was up-regulated (P < 0.05). CWI after ECC suppressed the NLRP3 inflammasome components and increased the protein levels of FBXL2 and TRIM31 at higher levels than other recovery methods (P < 0.05). CWI and AR had the same increase in PARKIN expression and the same decrease in CK level compared to the ECC group (P < 0.05). CONCLUSION Our results indicated that CWI increased the expression of NLRP3-related UPPs in concomitant with suppression of NLRP3 in the soleus muscle of rats after ECC. As a result the beneficial effects of CWI on the attenuation of skeletal muscle inflammation may contribute to an alteration of UPPs expression.
Collapse
Affiliation(s)
- Farzaneh Abolfathi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Rouhollah Ranjbar
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Abdolhamid Habibi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
2
|
Tabei SS, Kataria R, Hou S, Singh A, Hameedi HA, Hasan D, Hsieh M, Raheem OA. Testosterone replacement therapy in patients with cachexia: a contemporary review of the literature. Sex Med Rev 2024; 12:469-476. [PMID: 38757386 PMCID: PMC11687421 DOI: 10.1093/sxmrev/qeae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Patients with long-term chronic illnesses frequently present with hypogonadism, which is primarily managed through exogenous testosterone. These same patients also experience a high degree of cachexia, a loss of skeletal muscle and adipose tissue. OBJECTIVE To perform a contemporary review of the literature to assess the effectiveness of testosterone replacement therapy (TRT) for managing chronic disease-associated cachexia. METHODS We performed a PubMed literature search using MeSH terms to identify studies from 2000 to 2022 on TRT and the following cachexia-related chronic medical diseases: cancer, COPD, HIV/AIDS, and liver cirrhosis. RESULTS From the literature, 11 primary studies and 1 meta-analysis were selected. Among these studies, 3 evaluated TRT on cancer-associated cachexia, 3 on chronic obstructive pulmonary disease, 4 on HIV and AIDS, and 2 on liver cirrhosis. TRT showed mixed results favoring clinical improvement on each disease. CONCLUSIONS Cachexia is commonly observed in chronic disease states. Its occurrence with hypogonadism, alongside the shared symptoms of these 2 conditions, points toward the management of cachexia through the administration of exogenous testosterone. Robust data in the literature support the use of testosterone in increasing lean body mass, improving energy levels, and enhancing the quality of life for patients with chronic disease. However, the data are variable, and further studies are warranted on the long-term efficacy of TRT in patients with cachexia.
Collapse
Affiliation(s)
- Seyed Sajjad Tabei
- Division of Urology, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Rhea Kataria
- Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Sean Hou
- Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Armaan Singh
- Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Hasan Al Hameedi
- Section of Urology, Department of Surgery, Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Doaa Hasan
- Section of Urology, Department of Surgery, Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| | - Mike Hsieh
- Department of Urology, University of California San Diego, San Diego, CA 921212, United States
| | - Omer A Raheem
- Section of Urology, Department of Surgery, Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States
| |
Collapse
|
3
|
Olie CS, O'Brien DP, Jones HB, Liang Z, Damianou A, Sur-Erdem I, Pinto-Fernández A, Raz V, Kessler BM. Deubiquitinases in muscle physiology and disorders. Biochem Soc Trans 2024; 52:1085-1098. [PMID: 38716888 PMCID: PMC11346448 DOI: 10.1042/bst20230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.
Collapse
Affiliation(s)
- Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Darragh P. O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Hannah B.L. Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Andreas Damianou
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Ilknur Sur-Erdem
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, U.K
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| |
Collapse
|
4
|
Takayama H, Yoshimura T, Suzuki H, Hirano Y, Tezuka M, Ishida T, Ishihata K, Amitani M, Amitani H, Nakamura Y, Imamura Y, Inui A, Nakamura N. Comparison between single-muscle evaluation and cross-sectional area muscle evaluation for predicting the prognosis in patients with oral squamous cell carcinoma: a retrospective cohort study. Front Oncol 2024; 14:1336284. [PMID: 38751815 PMCID: PMC11094248 DOI: 10.3389/fonc.2024.1336284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The most effective method of assessing sarcopenia has yet to be determined, whether by single muscle or by whole muscle segmentation. The purpose of this study was to compare the prognostic value of these two methods using computed tomography (CT) images in patients with oral squamous cell carcinoma (OSCC). Materials and methods Sex- and age-adjusted Cox proportional hazards models were employed for each parameter of sarcopenia related to overall survival, disease-free survival, and disease-specific survival. Harrell's concordance index was calculated for each model to assess discriminatory power. Results In this study including 165 patients, a significant correlation was found between the CT-based assessment of individual muscles and their cross-sectional area. Single muscle assessments showed slightly higher discriminatory power in survival outcomes compared to whole muscle assessments, but the difference was not statistically significant, as indicated by overlapping confidence intervals for the C-index between assessments. To further validate our measurements, we classified patients into two groups based on intramuscular adipose tissue content (P-IMAC) of the spinous process muscle. Analysis showed that the higher the P-IMAC value, the poorer the survival outcome. Conclusion Our findings indicate a slight advantage of single-muscle over whole-muscle assessment in prognostic evaluation, but the difference between the two methods is not conclusive. Both assessment methods provide valuable prognostic information for patients with OSCC, and further studies involving larger, independent cohorts are needed to clarify the potential advantage of one method over the other in the prognostic assessment of sarcopenia in OSCC.
Collapse
Affiliation(s)
- Hirotaka Takayama
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuya Yoshimura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuka Hirano
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Tezuka
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takayuki Ishida
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Marie Amitani
- Department of Community-Based Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasunori Nakamura
- Department of Oral Surgery, Kagoshima Medical Center, National Hospital Organization, Kagoshima, Japan
| | - Yasushi Imamura
- Department of Internal Medicine, Kagoshima Kouseiren Hospital, Kagoshima, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Beaudry AG, Law ML, Gilley-Connor KR, Buley H, Dungan CM, Nascimento CMC, Vichaya EG, Wiggs MP. Diet-induced obesity does not exacerbate cachexia in male mice bearing Lewis-lung carcinoma tumors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R254-R265. [PMID: 38252513 DOI: 10.1152/ajpregu.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Cachexia is a muscle-wasting syndrome commonly observed in patients with cancer, which can significantly worsen clinical outcomes. Because of a global rise in obesity, the coexistence of cachexia in obese individuals poses unique challenges, with the impact of excessive adiposity on cachexia severity and underlying pathophysiology not well defined. Understanding the interplay between cachexia and obesity is crucial for improving diagnosis and treatment strategies for these patients; therefore, the present study examined differences in cachexia between lean and obese mice bearing Lewis lung carcinoma (LLC) tumors. Nine-week-old, male C57Bl6J mice were placed on either a chow or a high-fat diet (HFD) for 9 wk. After the diet intervention, mice were inoculated with LLC or vehicle. Markers of cachexia, such as body and muscle loss, were noted in both chow and HFD groups with tumors. Tumor weight of HFD animals was greater than that of chow. LLC tumors reduced gastrocnemius, plantaris, and soleus mass, regardless of diet. The tibialis anterior and plantaris mass and cross-sectional area of type IIb/x fibers in the gastrocnemius were not different between HFD-chow, HFD-tumor, and chow-tumor. Using RNA sequencing (RNA-seq) of the plantaris muscle from chow-tumor and HFD-tumor groups, we identified ∼400 differentially expressed genes. Bioinformatic analysis identified changes in lipid metabolism, mitochondria, bioenergetics, and proteasome degradation. Atrophy was not greater despite larger tumor burden in animals fed an HFD, and RNA-seq data suggests that partial protection is mediated through differences in mitochondrial function and protein degradation, which may serve as future mechanistic targets.NEW & NOTEWORTHY This study provides timely information on the interaction between obesity and cancer cachexia. Lean and obese animals show signs of cachexia with reduced body weight, adipose tissue, and gastrocnemius muscle mass. There was not significant wasting in the tibialis anterior, plantaris, or fast twitch fibers in the gastrocnemius muscle of obese animals with tumors. RNA-seq analysis reveals that obese tumor bearing animals had differential expression of mitochondria- and degradation-related genes, which may direct future studies in mechanistic research.
Collapse
Affiliation(s)
- Anna G Beaudry
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Michelle L Law
- Department of Human Sciences and Design, Baylor University, Waco, Texas, United States
| | - Kayla R Gilley-Connor
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Hailey Buley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | | | - Elisabeth G Vichaya
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Michael P Wiggs
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| |
Collapse
|
6
|
Song J, Chowdhury IH, Choudhuri S, Ayadi AEI, Rios LE, Wolf SE, Wenke JC, Garg NJ. Acute muscle mass loss was alleviated with HMGB1 neutralizing antibody treatment in severe burned rats. Sci Rep 2023; 13:10250. [PMID: 37355693 PMCID: PMC10290662 DOI: 10.1038/s41598-023-37476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Burn injury is associated with muscle wasting, though the involved signaling mechanisms are not well understood. In this study, we aimed to examine the role of high mobility group box 1 (HMGB1) in signaling hyper-inflammation and consequent skeletal muscle impairment after burn. Sprague Dawley rats were randomly assigned into three groups: (1) sham burn, (2) burn, (3) burn/treatment. Animals in group 2 and group 3 received scald burn on 30% of total body surface area (TBSA) and immediately treated with chicken IgY and anti-HMGB1 antibody, respectively. Muscle tissues and other samples were collected at 3-days after burn. Body mass and wet/dry weights of the hind limb muscles (total and individually) were substantially decreased in burn rats. Acute burn provoked the mitochondrial stress and cell death and enhanced the protein ubiquitination and LC3A/B levels that are involved in protein degradation in muscle tissues. Further, an increase in muscle inflammatory infiltrate associated with increased differentiation, maturation and proinflammatory activation of bone marrow myeloid cells and αβ CD4+ T and γδ T lymphocytes was noted in in circulation and spleen of burn rats. Treatment with one dose of HMGB1 neutralizing antibody reduced the burn wound size and preserved the wet/dry weights of the hind limb muscles associated with a control in the markers of cell death and autophagy pathways in burn rats. Further, anti-HMGB1 antibody inhibited the myeloid and T cells inflammatory activation and subsequent dysregulated inflammatory infiltrate in the muscle tissues of burn rats. We conclude that neutralization of HMGB1-dependent proteolytic and inflammatory responses has potential beneficial effects in preventing the muscle loss after severe burn injury.
Collapse
Affiliation(s)
- Juquan Song
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina E I Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette E Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph C Wenke
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Kim MJ, Sinam IS, Siddique Z, Jeon JH, Lee IK. The Link between Mitochondrial Dysfunction and Sarcopenia: An Update Focusing on the Role of Pyruvate Dehydrogenase Kinase 4. Diabetes Metab J 2023; 47:153-163. [PMID: 36635027 PMCID: PMC10040620 DOI: 10.4093/dmj.2022.0305] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 01/14/2023] Open
Abstract
Sarcopenia, defined as a progressive loss of muscle mass and function, is typified by mitochondrial dysfunction and loss of mitochondrial resilience. Sarcopenia is associated not only with aging, but also with various metabolic diseases characterized by mitochondrial dyshomeostasis. Pyruvate dehydrogenase kinases (PDKs) are mitochondrial enzymes that inhibit the pyruvate dehydrogenase complex, which controls pyruvate entry into the tricarboxylic acid cycle and the subsequent adenosine triphosphate production required for normal cellular activities. PDK4 is upregulated in mitochondrial dysfunction-related metabolic diseases, especially pathologic muscle conditions associated with enhanced muscle proteolysis and aberrant myogenesis. Increases in PDK4 are associated with perturbation of mitochondria-associated membranes and mitochondrial quality control, which are emerging as a central mechanism in the pathogenesis of metabolic disease-associated muscle atrophy. Here, we review how mitochondrial dysfunction affects sarcopenia, focusing on the role of PDK4 in mitochondrial homeostasis. We discuss the molecular mechanisms underlying the effects of PDK4 on mitochondrial dysfunction in sarcopenia and show that targeting mitochondria could be a therapeutic target for treating sarcopenia.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ibotombi Singh Sinam
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Zerwa Siddique
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Corresponding author: In-Kyu Lee https://orcid.org/0000-0002-2261-7269 Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Korea E-mail:
| |
Collapse
|
8
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Leucine-Rich Diet Improved Muscle Function in Cachectic Walker 256 Tumour-Bearing Wistar Rats. Cells 2021; 10:cells10123272. [PMID: 34943780 PMCID: PMC8699792 DOI: 10.3390/cells10123272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.
Collapse
|
10
|
Song J, Clark A, Wade CE, Wolf SE. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia. JPEN J Parenter Enteral Nutr 2021; 45:1627-1633. [PMID: 34296448 PMCID: PMC9293203 DOI: 10.1002/jpen.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle wasting is common and persistent in severely burned patients, worsened by immobilization during treatment. In this review, we posit two major phenotypes of muscle wasting after severe burn, cachexia and sarcopenia, each with distinguishing characteristics to result in muscle atrophy; these characteristics are also likely present in other critically ill populations. An online search was conducted from the PubMed database and other available online resources and we manually extracted published articles in a systematic mini review. We describe the current definitions and characteristics of cachexia and sarcopenia and relate these to muscle wasting after severe burn. We then discuss these putative mechanisms of muscle atrophy in this condition. Severe burn and immobilization have distinctive patterns in mediating muscle wasting and muscle atrophy. In considering these two pathological phenotypes (cachexia and sarcopenia), we propose two independent principal causes and mechanisms of muscle mass loss after burns: (1) inflammation-induced cachexia, leading to proteolysis and protein degradation, and (2) sarcopenia/immobility that signals inhibition of expected increases in protein synthesis in response to protein loss. Because both are present following severe burn, these should be considered independently in devising treatments. Discussing cachexia and sarcopenia as independent mechanisms of severe burn-initiated muscle wasting is explored. Recognition of these associated mechanisms will likely improve outcomes.
Collapse
Affiliation(s)
- Juquan Song
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Audra Clark
- Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Charles E Wade
- Center for Translational Injury Research and Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
11
|
Kumar NB. Does COVID-19-related cachexia mimic cancer-related cachexia? Examining mechanisms, clinical biomarkers, and potential targets for clinical management. J Cachexia Sarcopenia Muscle 2021; 12:519-522. [PMID: 33554483 PMCID: PMC8013485 DOI: 10.1002/jcsm.12681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nagi B. Kumar
- Division of Population Sciences and Genitourinary and Breast Oncology DepartmentsH. Lee Moffitt Cancer Center & Research Institute, Inc12902 Magnolia Drive, MRC/CANCONTTampaFL33612USA
| |
Collapse
|
12
|
Cai M, Wang Q, Liu Z, Jia D, Feng R, Tian Z. Effects of different types of exercise on skeletal muscle atrophy, antioxidant capacity and growth factors expression following myocardial infarction. Life Sci 2018; 213:40-49. [PMID: 30312703 DOI: 10.1016/j.lfs.2018.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 11/27/2022]
Abstract
AIMS Myocardial infarction (MI) is accompanied with skeletal muscle abnormalities. The aims are to explore an optimal exercise mode to improve cardiac function and prevent skeletal muscle atrophy, and detect the possible mechanisms of exercise-induced inhibition of muscle atrophy. MAIN METHODS Rats were subjected to four weeks of different types of exercise after MI surgery (resistance training, RT; moderated-intensity continuous aerobic exercise, MCE and high-intensity intermittent aerobic exercise, HIA). Cardiac function, histological changes of heart and skeletal muscle, oxidative stress, antioxidant capacity and the expression of muscle atrophy-related factors were detected in skeletal muscle. KEY FINDINGS The three types of exercise improved heart function, reduced cardiac fibrosis and increased muscle weight and cross-section area (CSA) of muscle fibers in different degrees. The survival rates of MI rats intervened by RT and MCE were higher than HIA. Exercise down-regulated the mRNA levels of murf1 and atrogin-1, decreased reactive oxygen species level, increased antioxidant capacity, regulated the expression of insulin-like growth factor 1 (IGF1), mechano growth factor (MGF), Neuregulin1 (NRG1) and Myostatin (MSTN), and activated Akt and Erk1/2 signalings in soleus muscle. Furthermore, CSA of muscle fibers and the expression of IGF1, MGF, NRG1 in skeletal muscle had correlations with cardiac function. SIGNIFICANCE RT and MCE are the first two choices for the early exercise rehabilitation following MI. All types of exercise can effectively inhibit skeletal muscle atrophy through increasing the antioxidant capacity, reducing oxidative stress and protein degradation, and regulating the growth factors expression in skeletal muscle.
Collapse
Affiliation(s)
- Mengxin Cai
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Qing'an Wang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China; School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhiwei Liu
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Dandan Jia
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Rui Feng
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China.
| |
Collapse
|
13
|
Ceelen JJM, Schols AMWJ, Thielen NGM, Haegens A, Gray DA, Kelders MCJM, de Theije CC, Langen RCJ. Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation. Respir Res 2018; 19:80. [PMID: 29720191 PMCID: PMC5932886 DOI: 10.1186/s12931-018-0753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/18/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. METHODS Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. RESULTS Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. CONCLUSION Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.
Collapse
Affiliation(s)
- Judith J. M. Ceelen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Nathalie G. M. Thielen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Astrid Haegens
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology and Immunology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Marco C. J. M. Kelders
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Chiel C. de Theije
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
14
|
Segatto M, Fittipaldi R, Pin F, Sartori R, Dae Ko K, Zare H, Fenizia C, Zanchettin G, Pierobon ES, Hatakeyama S, Sperti C, Merigliano S, Sandri M, Filippakopoulos P, Costelli P, Sartorelli V, Caretti G. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun 2017; 8:1707. [PMID: 29167426 PMCID: PMC5700099 DOI: 10.1038/s41467-017-01645-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Claudio Fenizia
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Elisa Sefora Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Shinji Hatakeyama
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Paola Costelli
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Giuseppina Caretti
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
15
|
Cunha TF, Bechara LRG, Bacurau AVN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, Scavone C, Ferreira JCB, Brum PC. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol (1985) 2017; 122:817-827. [DOI: 10.1152/japplphysiol.00182.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.
Collapse
Affiliation(s)
- Telma F. Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline V. N. Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Paulo R. Jannig
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paulo M. Dourado
- Heart Institute, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | | | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016. Int J Cardiol 2017; 238:5-11. [PMID: 28427849 DOI: 10.1016/j.ijcard.2017.03.155] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia.
Collapse
Affiliation(s)
- Masakazu Saitoh
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Junichi Ishida
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | - Stephan von Haehling
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus S Anker
- Charité - Campus Benjamin Franklin (CBF), Department of Cardiology, Berlin, Germany Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | | | - Stefan D Anker
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle 2016; 7:246-60. [PMID: 27386168 PMCID: PMC4929818 DOI: 10.1002/jcsm.12118] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
Affiliation(s)
- Goran Loncar
- Department of Cardiology Clinical Hospital Zvezdara Belgrade Serbia; School of Medicine University of Belgrade Belgrade Serbia
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Center Göttingen (UMG) Göttingen Germany
| | - Markus Anker
- Department of Cardiology Charité - Universitätsmedizin Berlin Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Germany
| | - Mitja Lainscak
- Department of Cardiology and Department of Research and Education General Hospital Celje Celje Slovenia; Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
19
|
Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans? BMC Cancer 2016; 16:75. [PMID: 26856534 PMCID: PMC4746781 DOI: 10.1186/s12885-016-2121-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future.
Collapse
Affiliation(s)
- Tara C Mueller
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.
| | - Jeannine Bachmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| |
Collapse
|
20
|
Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol 2016; 36:95-104. [PMID: 26804424 PMCID: PMC4761518 DOI: 10.1016/j.semcancer.2016.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA; iTRI Hamad Medical Corporation, Doha, Qatar
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
21
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
22
|
YU YONGHUI, CHU WANLI, CHAI JIAKE, LI XIAO, LIU LINGYING, MA LI. Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 2015; 13:1470-4. [DOI: 10.3892/mmr.2015.4748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
|
23
|
Cardiac cachexia: hic et nunc: "hic et nunc" - here and now. Int J Cardiol 2015; 201:e1-12. [PMID: 26545926 DOI: 10.1016/j.ijcard.2015.10.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. Better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick-up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
|
24
|
Hirai DM, Musch TI, Poole DC. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 2015; 309:H1419-39. [PMID: 26320036 DOI: 10.1152/ajpheart.00469.2015] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/13/2023]
Abstract
Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2 , respectively). The Q̇mO2 /V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2 ), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2 ). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2 /V̇mO2 matching (and enhanced PmvO2 ) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; and
| | - Timothy I Musch
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
25
|
Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflugers Arch 2015; 467:2555-69. [PMID: 26228926 DOI: 10.1007/s00424-015-1721-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.
Collapse
|
26
|
Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci 2015; 125:9-14. [DOI: 10.1016/j.lfs.2014.11.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/12/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
|
27
|
Gueugneau M, Coudy-Gandilhon C, Gourbeyre O, Chambon C, Combaret L, Polge C, Taillandier D, Attaix D, Friguet B, Maier AB, Butler-Browne G, Béchet D. Proteomics of muscle chronological ageing in post-menopausal women. BMC Genomics 2014; 15:1165. [PMID: 25532418 PMCID: PMC4523020 DOI: 10.1186/1471-2164-15-1165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Background Muscle ageing contributes to both loss of functional autonomy and increased morbidity. Muscle atrophy accelerates after 50 years of age, but the mechanisms involved are complex and likely result from the alteration of a variety of interrelated functions. In order to better understand the molecular mechanisms underlying muscle chronological ageing in human, we have undertaken a top-down differential proteomic approach to identify novel biomarkers after the fifth decade of age. Results Muscle samples were compared between adult (56 years) and old (78 years) post-menopausal women. In addition to total muscle extracts, low-ionic strength extracts were investigated to remove high abundance myofibrillar proteins and improve the detection of low abundance proteins. Two-dimensional gel electrophoreses with overlapping IPGs were used to improve the separation of muscle proteins. Overall, 1919 protein spots were matched between all individuals, 95 were differentially expressed and identified by mass spectrometry, and they corresponded to 67 different proteins. Our results suggested important modifications in cytosolic, mitochondrial and lipid energy metabolism, which may relate to dysfunctions in old muscle force generation. A fraction of the differentially expressed proteins were linked to the sarcomere and cytoskeleton (myosin light-chains, troponin T, ankyrin repeat domain-containing protein-2, vinculin, four and a half LIM domain protein-3), which may account for alterations in contractile properties. In line with muscle contraction, we also identified proteins related to calcium signal transduction (calsequestrin-1, sarcalumenin, myozenin-1, annexins). Muscle ageing was further characterized by the differential regulation of several proteins implicated in cytoprotection (catalase, peroxiredoxins), ion homeostasis (carbonic anhydrases, selenium-binding protein 1) and detoxification (aldo-keto reductases, aldehyde dehydrogenases). Notably, many of the differentially expressed proteins were central for proteostasis, including heat shock proteins and proteins involved in proteolysis (valosin-containing protein, proteasome subunit beta type-4, mitochondrial elongation factor-Tu). Conclusions This study describes the most extensive proteomic analysis of muscle ageing in humans, and identified 34 new potential biomarkers. None of them were previously recognized as differentially expressed in old muscles, and each may represent a novel starting point to elucidate the mechanisms of muscle chronological ageing in humans.
Collapse
Affiliation(s)
- Marine Gueugneau
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France. .,Pôle Endocrinologie, Diabétologie et Nutrition, Institut de Recherches Expérimentales et Cliniques, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Cécile Coudy-Gandilhon
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Ophélie Gourbeyre
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéique, F-63122, Saint Genès Champanelle, France.
| | - Lydie Combaret
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Daniel Taillandier
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Didier Attaix
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Bertrand Friguet
- UPMC Université Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, CNRS-UMR 8256, INSERM U1164, Sorbonne Universités, F-75005, Paris, France.
| | - Andrea B Maier
- Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gillian Butler-Browne
- Institut de Myologie, Centre de Recherches en Myologie UMR 974 76, INSERM U974, CNRS FRE 3617, Sorbonne Universités, UPMC Université Paris 06, F-75013, Paris, France.
| | - Daniel Béchet
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
28
|
Jannig PR, Moreira JBN, Bechara LRG, Bozi LHM, Bacurau AV, Monteiro AWA, Dourado PM, Wisløff U, Brum PC. Autophagy signaling in skeletal muscle of infarcted rats. PLoS One 2014; 9:e85820. [PMID: 24427319 PMCID: PMC3888434 DOI: 10.1371/journal.pone.0085820] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/02/2013] [Indexed: 01/17/2023] Open
Abstract
Background Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. Methods/Principal Findings Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. Conclusions Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.
Collapse
Affiliation(s)
- Paulo R. Jannig
- Experimental Physiopathology - Medical School, University of Sao Paulo, Sao Paulo, Brazil
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose B. N. Moreira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- K. G. Jensen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz H. M. Bozi
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline V. Bacurau
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Alex W. A. Monteiro
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo M. Dourado
- Heart Institute - Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ulrik Wisløff
- K. G. Jensen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patricia C. Brum
- Experimental Physiopathology - Medical School, University of Sao Paulo, Sao Paulo, Brazil
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
29
|
Brum PC, Bacurau AV, Cunha TF, Bechara LRG, Moreira JBN. Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol 2013; 99:616-20. [PMID: 24273305 DOI: 10.1113/expphysiol.2013.076844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reduced aerobic capacity, as measured by maximal oxygen uptake, is a hallmark in cardiovascular diseases and strongly predicts poor prognosis and higher mortality rates in heart failure patients. While exercise capacity is poorly correlated with cardiac function in this population, skeletal muscle abnormalities present a striking association with maximal oxygen uptake. This fact draws substantial attention to the clinical relevance of targeting skeletal myopathy in heart failure. Considering that skeletal muscle is highly responsive to aerobic exercise training, we addressed the benefits of aerobic exercise training to combat skeletal myopathy in heart failure, focusing on the mechanisms by which aerobic exercise training counteracts skeletal muscle atrophy.
Collapse
Affiliation(s)
- P C Brum
- * Escola de Educacão Física e Esporte, Universidade de São Paulo, Av. Professor Mello Moraes, 65 - São Paulo, SP 05508-900, Brazil.
| | | | | | | | | |
Collapse
|
30
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
31
|
Yang Q, Wan L, Zhou Z, Li Y, Yu Q, Liu L, Li B, Guo C. Parthenolide from Parthenium integrifolium reduces tumor burden and alleviate cachexia symptoms in the murine CT-26 model of colorectal carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:992-998. [PMID: 23746953 DOI: 10.1016/j.phymed.2013.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/08/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Excessive elaboration of proinflammatory cytokines are involved in cachexia-related hypercatabolism. Parthenolide, as a potential anti-inflammatory active agent, could effectively inhibit nuclear factor-kappa B, and has the potential for the treatment of cancer cachexia. In this study, the cancer cachexia model was established by subcutaneous transplantation CT26 tumor fragment. Parthenolide or placebo was intraperitoneally given daily from the next day. Parthenolide treatment could effectively preserve the body weight, improve the mass of gastrocnemius and tibialis anterior muscles, and alleviate tumor burden. Sizes of muscle fibers and myosin heavy chain were also increasing. The serum proinflammatory cytokine TNF-α level was lower than placebo treatment mice measure by ELISA. To investigate the possible mechanism, MuRF1 and Fbx32 was subjected to Western blot analysis and expression of MURF1 was inhibited in gastrocnemius muscle. Collectively, parthenolide treatment could effectively alleviate tumor burden of cachexia, preserve the body weight and improve skeletal muscle characteristics.
Collapse
Affiliation(s)
- Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic degradation contributes to muscle wasting in cancer cachexia. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1367-78. [PMID: 23395093 DOI: 10.1016/j.ajpath.2012.12.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/11/2012] [Accepted: 12/31/2012] [Indexed: 11/26/2022]
Abstract
Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Julienne CM, Dumas JF, Goupille C, Pinault M, Berri C, Collin A, Tesseraud S, Couet C, Servais S. Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. J Cachexia Sarcopenia Muscle 2012; 3:265-75. [PMID: 22648737 PMCID: PMC3505576 DOI: 10.1007/s13539-012-0071-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is a complex syndrome related to a negative energy balance resulting in muscle wasting. Implication of muscle mitochondrial bioenergetics alterations during cancer cachexia was suggested. Therefore, the aim of this study was to explore the efficiency of oxidative phosphorylation in skeletal muscle mitochondria in a preclinical model of cancer cachexia. METHODS Berlin-Druckrey IX rats with peritoneal carcinosis (PC) were used as a model of cancer cachexia with healthy pair-fed rats (PF) as control. Hindlimb muscle morphology and fibre type composition were analysed in parallel with ubiquitin ligases and UCP gene expression. Oxidative phosphorylation was investigated in isolated muscle mitochondria by measuring oxygen consumption and ATP synthesis rate. RESULTS PC rats underwent significant muscle wasting affecting fast glycolytic muscles due to a reduction in fibre cross-sectional area. MuRF1 and MAFbx gene expression were significantly increased (9- and 3.5-fold, respectively) in the muscle of PC compared to PF rats. Oxygen consumption in non-phosphorylating state and the ATP/O were similar in both groups. Muscle UCP2 gene was overexpressed in PC rats. State III and the uncoupled state were significantly lower in muscle mitochondria from PC rats with a parallel reduction in complex IV activity (-30 %). CONCLUSION This study demonstrated that there was neither alteration in ATP synthesis efficiency nor mitochondrial uncoupling in skeletal muscle of cachectic rats despite UCP2 gene overexpression. Muscle mitochondrial oxidative capacities were reduced due to a decrease in complex IV activity. This mitochondrial bioenergetics alteration could participate to insulin resistance, lipid droplet accumulation and lactate production.
Collapse
Affiliation(s)
- Cloé M Julienne
- INSERM U921, Nutrition, Croissance et Cancer, 37032, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One 2012; 7:e41701. [PMID: 22870245 PMCID: PMC3411696 DOI: 10.1371/journal.pone.0041701] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 01/13/2023] Open
Abstract
Background Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects’ levels. Conclusions Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Collapse
|
35
|
Busquets S, Toledo M, Orpí M, Massa D, Porta M, Capdevila E, Padilla N, Frailis V, López-Soriano FJ, Han HQ, Argilés JM. Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J Cachexia Sarcopenia Muscle 2012; 3:37-43. [PMID: 22450815 PMCID: PMC3302990 DOI: 10.1007/s13539-011-0049-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cachexia is a multiorganic syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting and inflammation. METHODS The aim of this investigation was to examine the effect of the soluble receptor antagonist of myostatin (sActRIIB) in cachectic tumor-bearing animals analyzing changes in muscle proteolysis and in quality of life. RESULTS Administration of sActRIIB resulted in an improvement in body and muscle weights. Administration of the soluble receptor antagonist of myostatin also resulted in an improvement in the muscle force. CONCLUSIONS These results suggest that blocking myostatin pathway could be a promising therapeutic strategy for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia Universitat de Barcelona Diagonal 645 08028 Barcelona
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Marcel Orpí
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - David Massa
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Maria Porta
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Eva Capdevila
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Núria Padilla
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Valentina Frailis
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
| | - H. Q. Han
- Departments of Metabolic Disorders and Protein Science Amgen Research 91320 Thousand Oaks CA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
| |
Collapse
|
36
|
Gonnella P, Alamdari N, Tizio S, Aversa Z, Petkova V, Hasselgren PO. C/EBPβ regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1. J Cell Biochem 2011; 112:1737-48. [PMID: 21381078 PMCID: PMC3111873 DOI: 10.1002/jcb.23093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Muscle wasting in catabolic patients is in part mediated by glucocorticoids and is associated with increased expression and activity of the transcription factor C/EBPβ. It is not known, however, if C/EBPβ is causally linked to glucocorticoid-induced muscle atrophy. We used dexamethasone-treated L6 myoblasts and myotubes to test the role of C/EBPβ in glucocorticoid-induced expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1, protein degradation, and muscle atrophy by transfecting cells with C/EBPβ siRNA. In myoblasts, silencing C/EBPβ expression with siRNA inhibited dexamethasone-induced increase in protein degradation, atrogin-1 and MuRF1 expression, and muscle cell atrophy. Similar effects of C/EBPβ siRNA were seen in myotubes except that the dexamethasone-induced increase in MuRF1 expression was not affected by C/EBPβ siRNA in myotubes. In additional experiments, overexpressing C/EBPβ did not influence atrogin-1 or MuRF1 expression in myoblasts or myotubes. Taken together, our observations suggest that glucocorticoid-induced muscle wasting is at least in part regulated by C/EBPβ. Increased C/EBPβ expression alone, however, is not sufficient to upregulate atrogin-1 and MuRF1 expression.
Collapse
Affiliation(s)
- Patricia Gonnella
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Steven Tizio
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Victoria Petkova
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB. Role of nuclear factor κB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med (Maywood) 2011; 236:658-71. [PMID: 21565893 PMCID: PMC3141285 DOI: 10.1258/ebm.2011.011028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)-κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick M Dougherty
- The Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010; 143:35-45. [PMID: 20887891 DOI: 10.1016/j.cell.2010.09.004] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/01/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
Abstract
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.
Collapse
|
39
|
Tian M, Kliewer KL, Asp ML, Stout MB, Belury MA. c9t11-Conjugated linoleic acid-rich oil fails to attenuate wasting in colon-26 tumor-induced late-stage cancer cachexia in male CD2F1 mice. Mol Nutr Food Res 2010; 55:268-77. [PMID: 20827675 DOI: 10.1002/mnfr.201000176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/18/2010] [Accepted: 07/09/2010] [Indexed: 12/18/2022]
Abstract
SCOPE Cancer cachexia is characterized by muscle and adipose tissue wasting caused partly by chronic, systemic inflammation. Conjugated linoleic acids (CLAs) are a group of fatty acids with various properties including anti-inflammatory cis9, trans11 (c9t11)-CLA and lipid-mobilizing trans10, cis12 (t10c12)-CLA. The purpose of this study was to test whether dietary supplementation of a c9t11-CLA-rich oil (6:1 c9t11:t10c12) could attenuate wasting of muscle and adipose tissue in colon-26 adenocarcinoma-induced cachexia in mice. METHODS AND RESULTS Loss of body weight, muscle and adipose tissue mass caused by tumors were not rescued by supplementation with the c9t11-CLA-rich oil. In quadriceps muscle, c9t11-CLA-rich oil exacerbated tumor-induced gene expression of inflammatory markers tumor necrosis factor-α, IL-6 receptor and the E3 ligase MuRF-1 involved in muscle proteolysis. In epididymal adipose tissue, tumor-driven delipidation and atrophy was aggravated by the c9,t11-CLA-rich oil, demonstrated by further reduced adipocyte size and lower adiponectin expression. However, expression of inflammatory cytokines and macrophage markers were not altered by tumors, or CLA supplementation. CONCLUSION These data suggest that addition of c9t11-CLA-rich oil (0.6% c9t11, 0.1% t10c12) in diet did not ameliorate wasting in mice with cancer cachexia. Instead, it increased expression of inflammatory markers in the muscle and increased adipose delipidation.
Collapse
Affiliation(s)
- Min Tian
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
40
|
Tang K, Wagner PD, Breen EC. TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure. J Cell Physiol 2010; 222:320-7. [PMID: 19859910 PMCID: PMC5831677 DOI: 10.1002/jcp.21955] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle dysfunction contributes to exercise limitation in COPD. In this study cigarette smoke exposure was hypothesized to increase expression of the inflammatory cytokine, TNF-alpha, thereby suppressing PGC-1alpha, and hence affecting down stream molecules that regulate oxygen transport and muscle function. Furthermore, we hypothesized that highly vascularized oxidative skeletal muscle would be more susceptible to cigarette smoke than less well-vascularized glycolytic muscle. To test these hypotheses, mice were exposed to cigarette smoke daily for 8 or 16 weeks, resulting in 157% (8 weeks) and 174% (16 weeks) increases in serum TNF-alpha. Separately, TNF-alpha administered to C2C12 myoblasts was found to dose-dependently reduce PGC-1alpha mRNA. In the smoke-exposed mice, PGC-1alpha mRNA was decreased, by 48% in soleus and 23% in EDL. The vascular PGC-1alpha target molecule, VEGF, was also down-regulated, but only in the soleus, which exhibited capillary regression and an oxidative to glycolytic fiber type transition. The apoptosis PGC-1alpha target genes, atrogin-1 and MuRF1, were up-regulated, and to a greater extent in the soleus than EDL. Citrate synthase (soleus-19%, EDL-17%) and beta-hydroxyacyl CoA dehydrogenase (beta-HAD) (soleus-22%, EDL-19%) decreased similarly in both muscle types. There was loss of body and gastrocnemius complex mass, with rapid soleus but not EDL fatigue and diminished exercise endurance. These data suggest that in response to smoke exposure, TNF-alpha-mediated down-regulation of PGC-1alpha may be a key step leading to vascular and myocyte dysfunction, effects that are more evident in oxidative than glycolytic skeletal muscles.
Collapse
MESH Headings
- Animals
- Capillaries/drug effects
- Cell Line
- Down-Regulation
- Exercise Tolerance
- Glycolysis
- Hindlimb
- Inhalation Exposure
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Contraction
- Muscle Fatigue
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Proteins/genetics
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/physiopathology
- Oxidation-Reduction
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- RNA, Messenger/metabolism
- SKP Cullin F-Box Protein Ligases/genetics
- Smoking/adverse effects
- Time Factors
- Tobacco Smoke Pollution/adverse effects
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/metabolism
- Ubiquitin-Protein Ligases/genetics
- Up-Regulation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kechun Tang
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA.
| | | | | |
Collapse
|
41
|
|