1
|
Freibaum JS, Leathem RP, Braaton W, Krummey SM. Unraveling CD8 + T Cell Alloimmunity: Insights into the Direct Pathway of Antigen Recognition from Modern Experimental Tools. Am J Transplant 2025:S1600-6135(25)00263-1. [PMID: 40373878 DOI: 10.1016/j.ajt.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Early experimental investigations of alloimmunity demonstrated that the T cell response against allogeneic antigens is robust and results from a high precursor frequency of responding clones. Seminal studies using cell culture-based methods led to an overall model in which CD8+ T cells are able to recognize self-peptide complexed to allogeneic peptide MHC, termed the direct allogeneic antigen recognition pathway. Recently, three groups used modern experimental approaches, including MHC class I tetramers, to further investigate the nature of direct allogeneic antigen recognition by CD8+ T cells in mice and humans. In a model of liver-induced transplant tolerance, Son et al showed that the MHC class I alloimmune CD8+ T cell response is peptide dependent. Cohen et al elucidated the H-Ld QL9 allogeneic epitope and showed that reactive CD8+ T cells were peptide discriminating. Zhang et al engineered artificial antigen presenting cells to show that human alloreactive CD8+ T cells against HLA-A antigens were MHC restricted, and demonstrated a public HLA-A2 CD8+ T cell response in four donors. Through new experimental tools, these studies offer granular evidence of the mechanisms by which CD8+ T cells recognize allogeneic antigen, and provide a framework for future approaches to selectively target them.
Collapse
Affiliation(s)
- Joel S Freibaum
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Riley P Leathem
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Braaton
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Scott M Krummey
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Meier RPH, Ben Nasr M, Fife BT, Finger EB, Fiorina P, Luo X, Bromberg JS. Best practices in islet transplantation in mice. Am J Transplant 2025:S1600-6135(25)00137-6. [PMID: 40089068 DOI: 10.1016/j.ajt.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Islet transplantation in mice serves as a crucial preclinical model for understanding alloimmune and autoimmune mechanisms, optimizing immunosuppressive strategies, and developing novel therapies for diabetes. This review provides a comprehensive overview of best practices in murine islet transplantation, including diabetes induction models, technical aspects of islet transplantation, and criteria for transplant graft and rejection. We discuss the immunological challenges posed by major histocompatibility complex disparities, the impact of various transplantation sites, and the limitations of murine models in translating findings to clinical settings. Special emphasis is placed on emerging strategies such as stem cell-derived insulin-producing cells, immune tolerance induction, and alternative transplantation sites. Although mouse models have significantly advanced our understanding of diabetes and β-cell replacement, their inherent differences from human physiology necessitate careful interpretation of findings. The review also highlights novel imaging modalities, immunosuppressive protocols, and biomarkers for graft monitoring, underscoring the need for further refinement of these models to bridge the gap between experimental research and clinical application. By standardizing methodologies and addressing translational limitations, murine islet transplantation studies remain a key model in transplantation and can continue to shape the future of β-cell replacement therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian T Fife
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Theil F, Kuckhahn A, Hörning A, Völkl S, Knab K, Fritz N, Gräbner C, Ramsperger-Gleixner M, Weyand M, Heim C. Repeated CXCR4 Blockade by Plerixafor Attenuates Transplant Vasculopathy in Murine Aortic Allografts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1542-1552. [PMID: 39382301 DOI: 10.4049/jimmunol.2300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Plerixafor, a hematopoietic stem cell mobilization agent, increases the peripheral blood content of effector and regulatory T cells and may have beneficial effects on cardiac allograft vasculopathy. The aim of the current study was to evaluate its effects in a murine aortic allograft model using different application procedures. Allogeneic donor aorta grafts (n = 8/group) from C57BL/6 mice(H2b) were abdominally transplanted into CBA mice (H2k). Plerixafor application was performed either continuously for 14 d using abdominally implanted osmotic pumps (1 mg/kg/d) or i.p. with a single dose (1 and 5 mg/kg) on day 0 or pulsed injections of 1 mg/kg on days 0, 7, 14, and 21. Cell distribution was monitored by FACS. Aortic grafts were evaluated for neointima development by Elastica-van-Gieson on day 30. Immunofluorescence and intragraft gene expression analysis were performed. On day 14, significantly fewer hematopoietic stem cells were found in the bone marrow of all plerixafor-treated mice. In the pulsed application group, significantly more hematopoietic stem cells were found in the peripheral blood on day 14 (0.045 ± 0.002%; p < 0.01 [pulsed]; versus 0.0068 ± 0.002% [control]) and also more regulatory T cells. PCR revealed lower inflammatory cytokines. The luminal occlusion was significantly reduced in the pulsed treated group (33.65 ± 8.84 versus 53.13 ± 12.41) going along with decreased neointimal CD4+ T cell and plasmacytoid dendritic cell infiltration, as well as less smooth muscle cell proliferation. The application of plerixafor attenuates chronic rejection in aortic allografts via immunomodulatory effects. Injection of repeated low-dose plerixafor is the most effective application form in the aortic transplant model.
Collapse
Affiliation(s)
- Frank Theil
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Kuckhahn
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Hörning
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Pediatric and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Internal Medicine 5 - Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katharina Knab
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niklas Fritz
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cindy Gräbner
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department for Cardiac and Vascular Surgery, Medizincampus Oberfranken, Bayreuth, Germany
| |
Collapse
|
4
|
Liu D, Yao H, Ferrer IR, Ford ML. Differential induction of donor-reactive Foxp3 + regulatory T cell via blockade of CD154 vs CD40. Am J Transplant 2024; 24:1369-1381. [PMID: 38552961 PMCID: PMC11305915 DOI: 10.1016/j.ajt.2024.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/30/2024]
Abstract
Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40-/- recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1β from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1β synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1β-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
| | - Hongmin Yao
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
| | - Ivana R Ferrer
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
| | - Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Turan A, Zhang L, Tarique M, Ulker V, Arguc FN, Badal D, Yolcu ES, Shirwan H. Engineering pancreatic islets with a novel form of thrombomodulin protein to overcome early graft loss triggered by instant blood-mediated inflammatory reaction. Am J Transplant 2023; 23:619-628. [PMID: 36863480 PMCID: PMC10318623 DOI: 10.1016/j.ajt.2023.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Lei Zhang
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Mohammad Tarique
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Vahap Ulker
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Feyza Nur Arguc
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Darshan Badal
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Esma S Yolcu
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| | - Haval Shirwan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| |
Collapse
|
6
|
Li F, Li F, Urie R, Bealer E, Ruiz RO, Saito E, Turan A, Yolcu E, Shirwan H, Shea LD. Membrane-coated nanoparticles for direct recognition by T cells. Biotechnol Bioeng 2023; 120:767-777. [PMID: 36515455 DOI: 10.1002/bit.28304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The direct modulation of T cell responses is an emerging therapeutic strategy with the potential to modulate undesired immune responses including, autoimmune disease, and allogeneic cells transplantation. We have previously demonstrated that poly(lactide-co-glycolide) particles were able to modulate T cell responses indirectly through antigen-presenting cells (APCs). In this report, we investigated the design of nanoparticles that can directly interact and modulate T cells by coating the membranes from APCs onto nanoparticles to form membrane-coated nanoparticles (MCNPs). Proteins within the membranes of the APCs, such as Major Histocompatibility Complex class II and co-stimulatory factors, were effectively transferred to the MCNP. Using alloreactive T cell models, MCNP derived from allogeneic dendritic cells were able to stimulate proliferation, which was not observed with membranes from syngeneic dendritic cells and influenced cytokine secretion. Furthermore, we investigated the engineering of the membranes either on the dendritic cells or postfabrication of MCNP. Engineered membranes could be to promote antigen-specific responses, to differentially activate T cells, or to directly induce apoptosis. Collectively, MCNPs represent a tunable platform that can directly interact with and modulate T cell responses.
Collapse
Affiliation(s)
- Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Fanghua Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Russell Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ramon Ocadiz Ruiz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali Turan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Esma Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Dangi A, Husain I, Jordan CZ, Yu S, Natesh N, Shen X, Kwun J, Luo X. Blocking CCL8-CCR8-Mediated Early Allograft Inflammation Improves Kidney Transplant Function. J Am Soc Nephrol 2022; 33:1876-1890. [PMID: 35973731 PMCID: PMC9528333 DOI: 10.1681/asn.2022020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In kidney transplantation, early allograft inflammation impairs long-term allograft function. However, precise mediators of early kidney allograft inflammation are unclear, making it challenging to design therapeutic interventions. METHODS We used an allogeneic murine kidney transplant model in which CD45.2 BALB/c kidneys were transplanted to CD45.1 C57BL/6 recipients. RESULTS Donor kidney resident macrophages within the allograft expanded rapidly in the first 3 days. During this period, they were also induced to express a high level of Ccl8, which, in turn, promoted recipient monocyte graft infiltration, their differentiation to resident macrophages, and subsequent expression of Ccl8. Enhanced graft infiltration of recipient CCR8+ T cells followed, including CD4, CD8, and γδ T cells. Consequently, blocking CCL8-CCR8 or depleting donor kidney resident macrophages significantly inhibits early allograft immune cell infiltration and promotes superior short-term allograft function. CONCLUSIONS Targeting the CCL8-CCR8 axis is a promising measure to reduce early kidney allograft inflammation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Shuangjin Yu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naveen Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
- Terasaki Institute, Los Angeles, California
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
8
|
Schneiderman J, Qiu L, Yeap XY, Kang X, Zheng F, Ye J, Xie Y, Wang JJ, Sambandam Y, Mathew J, Li L, Leventhal J, Edelson RL, Zhang ZJ. Pre-transplant infusion of donor leukocytes treated with extracorporeal photochemotherapy induces immune hypo-responsiveness and long-term allograft survival in murine models. Sci Rep 2022; 12:7298. [PMID: 35508582 PMCID: PMC9068706 DOI: 10.1038/s41598-022-11290-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Recipients of solid organ transplantation (SOT) rely on life-long immunosuppression (IS), which is associated with significant side effects. Extracorporeal photochemotherapy (ECP) is a safe, existing cellular therapy used to treat transplant rejection by modulating the recipient’s own blood cells. We sought to induce donor-specific hypo-responsiveness of SOT recipients by infusing ECP-treated donor leukocytes prior to transplant. To this end, we utilized major histocompatibility complex mismatched rodent models of allogeneic cardiac, liver, and kidney transplantation to test this novel strategy. Leukocytes isolated from donor-matched spleens for ECP treatment (ECP-DL) were infused into transplant recipients seven days prior to SOT. Pre-transplant infusion of ECP-DL without additional IS was associated with prolonged graft survival in all models. This innovative approach promoted the production of tolerogenic dendritic cells and regulatory T-cells with subsequent inhibition of T-cell priming and differentiation, along with a significant reduction of donor-specific T-cells in the spleen and grafts of treated animals. This new application of donor-type ECP-treated leukocytes provides insight into the mechanisms behind ECP-induced immunoregulation and holds significant promise in the prevention of graft rejection and reduction in need of global immune suppressive therapy in patients following SOT.
Collapse
Affiliation(s)
- Jennifer Schneiderman
- Department of Pediatrics, Hematology/Oncology/Neuro-Oncology/Stem Cell Transplantation and Cellular Therapy Program, Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA.
| | - Longhui Qiu
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Xin Yi Yeap
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Xin Kang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Feibo Zheng
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Junsheng Ye
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Yan Xie
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - James Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, CA, USA
| | - Joseph Leventhal
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA.,Department of Surgery, Organ Transplantation, Feinberg School of Medicine, Kidney and Pancreas Transplant Programs, Northwestern University, Chicago, IL, USA
| | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Microsurgery Core, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Huang Y, Zou Y, Jiao Y, Shi P, Nie X, Huang W, Xiong C, Choi M, Huang C, Macintyre AN, Nichols A, Li F, Li CY, MacIver NJ, Cardona D, Brennan TV, Li Z, Chao NJ, Rathmell J, Chen BJ. Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft- Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Front Immunol 2022; 13:751296. [PMID: 35296079 PMCID: PMC8920494 DOI: 10.3389/fimmu.2022.751296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023] Open
Abstract
Alloreactive donor T cells undergo extensive metabolic reprogramming to become activated and induce graft-versus-host disease (GVHD) upon alloantigen encounter. It is generally thought that glycolysis, which promotes T cell growth and clonal expansion, is employed in this process. However, conflicting data have been reported regarding the requirement of glycolysis to induce T cell-mediated GVHD due to the lack of T cell-specific treatments using glycolysis inhibitors. Importantly, previous studies have not evaluated whether graft-versus-leukemia (GVL) activity is preserved in donor T cells deficient for glycolysis. As a critical component affecting the clinical outcome, it is necessary to assess the anti-tumor activity following treatment with metabolic modulators in preclinical models. In the present study, we utilized T cells selectively deficient for glucose transporter 1 (Glut1T-KO), to examine the role of glycolysis exclusively in alloreactive T cells without off-targeting effects from antigen presenting cells and other cell types that are dependent on glycolysis. We demonstrated that transfer of Glut1T-KO T cells significantly improved acute GVHD outcomes through increased apoptotic rates, impaired expansion, and decreased proinflammatory cytokine production. In addition to impaired GVHD development, donor Glut1T-KO T cells mediated sufficient GVL activity to protect recipients from tumor development. A clinically relevant approach using donor T cells treated with a small molecule inhibitor of glycolysis, 2-Deoxy-D-glucose ex vivo, further demonstrated protection from tumor development. These findings indicate that treatment with glycolysis inhibitors prior to transplantation selectively eliminates alloreactive T cells, but spares non-alloreactive T cells including those that protect against tumor growth. The present study has established a definitive role for glycolysis in acute GVHD and demonstrated that acute GVHD can be selectively prevented through targeting glycolysis.
Collapse
Affiliation(s)
- Ying Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Peijie Shi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Xiaoli Nie
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Chuanfeng Xiong
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael Choi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Andrew N. Macintyre
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Amanda Nichols
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Chuan-Yuan Li
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Dermatology, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nancie J. MacIver
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Pediatrics, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Todd V. Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Departments of Pathology, Microbiology, and Immunology, Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benny J. Chen
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,*Correspondence: Benny J. Chen,
| |
Collapse
|
10
|
Koyama M, Hill GR. Mouse Models of Antigen Presentation in Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:715893. [PMID: 34594330 PMCID: PMC8476754 DOI: 10.3389/fimmu.2021.715893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off target immune pathology, known as graft-versus-host disease (GVHD) remains a major complication of alloSCT that limits the broad application of this therapy. The presentation of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen presentation is pivotal to attempts to separate beneficial GVL effects from detrimental GVHD. In this review, we discuss mouse models and the tools therein, that permit the quantification of alloantigen presentation after alloSCT.
Collapse
Affiliation(s)
- Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
12
|
Zeng F, Chen Z, Chen R, Shufesky WJ, Bandyopadhyay M, Camirand G, Oberbarnscheidt MH, Sullivan MLG, Baty CJ, Yang MQ, Calderon M, Stolz DB, Erdos G, Pelanda R, Brennan TV, Catz SD, Watkins SC, Larregina AT, Morelli AE. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation. Sci Transl Med 2021; 13:eabb0122. [PMID: 33731430 PMCID: PMC8939235 DOI: 10.1126/scitranslmed.abb0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022]
Abstract
Despite the role of donor-specific antibodies (DSAs) in recognizing major histocompatibility complex (MHC) antigens and mediating transplant rejection, how and where recipient B cells in lymphoid tissues encounter donor MHC antigens remains unclear. Contrary to the dogma, we demonstrated here that migration of donor leukocytes out of skin or heart allografts is not necessary for B or T cell allosensitization in mice. We found that mouse skin and cardiac allografts and human skin grafts release cell-free donor MHC antigens via extracellular vesicles (EVs) that are captured by subcapsular sinus (SCS) macrophages in lymph nodes or analog macrophages in the spleen. Donor EVs were transported across the SCS macrophages, and donor MHC molecules on the EVs were recognized by alloreactive B cells. This triggered B cell activation and DSA production, which were both prevented by SCS macrophage depletion. These results reveal an unexpected role for graft-derived EVs and open venues to interfere with EV biogenesis, trafficking, or function to restrain priming or reactivation of alloreactive B cells.
Collapse
Affiliation(s)
- Furong Zeng
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Dermatology and Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Zhizhao Chen
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Rao Chen
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - William J Shufesky
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geoffrey Camirand
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Martin H Oberbarnscheidt
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mara L G Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Catherine J Baty
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mu-Qing Yang
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michel Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Todd V Brennan
- Cedars-Sinai Comprehensive Transplant Center, Los Angeles, CA 90048, USA
| | - Sergio D Catz
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adriana T Larregina
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Adrian E Morelli
- T.E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Yu S, Dangi A, Burnette M, Abecassis MM, Thorp EB, Luo X. Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. Am J Transplant 2021; 21:515-524. [PMID: 32659030 PMCID: PMC7855505 DOI: 10.1111/ajt.16197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
We have previously shown that acute cytomegalovirus (CMV) infection disrupts the induction of transplantation tolerance. However, what impact acute CMV infection would have on the maintenance of established tolerance and on subsequent recipient allo-sensitization is a clinically important unanswered question. Here we used an allogeneic murine islet transplantation tolerance model to examine the impact of acute CMV infection on: (a) disruption of established transplantation tolerance during tolerance maintenance; and (b) the possibility of recipient allo-sensitization by CMV-mediated disruption of stable tolerance. We demonstrated that acute CMV infection abrogated transplantation tolerance during the maintenance stage in 50%-60% recipients. We further demonstrated that acute CMV infection-mediated tolerance disruption led to recipient allo-sensitization by reverting the tolerant state of allo-specific T cells and promoting their differentiation to allo-specific memory cells. Consequently, a second same-donor islet allograft was rejected in an accelerated fashion by these recipients. Our study therefore supports close monitoring for allo-sensitization in previously tolerant transplant recipients in whom tolerance maintenance is disrupted by an episode of acute CMV infection.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
14
|
Batra L, Shrestha P, Zhao H, Woodward KB, Togay A, Tan M, Grimany-Nuno O, Malik MT, Coronel MM, García AJ, Shirwan H, Yolcu ES. Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2840-2851. [PMID: 32253240 DOI: 10.4049/jimmunol.2000055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1-engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in >90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft transcripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-β, IL-10, and decreased levels of proinflammatory T-bet, IL-1β, TNF-α, and IFN-γ as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance. Immunohistochemical analyses showed intense peri-islet infiltration of T regulatory cells in long-term grafts and systemic depletion of this cell population resulted in prompt rejection. The transient display of SA-PDL1 protein on the surface of islets serves as a practical means of localized immunomodulation that accomplishes sustained graft survival in the absence of chronic immunosuppression with potential clinical implications.
Collapse
Affiliation(s)
- Lalit Batra
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Alper Togay
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Min Tan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Orlando Grimany-Nuno
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Haval Shirwan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| |
Collapse
|
15
|
Perkey E, Maurice De Sousa D, Carrington L, Chung J, Dils A, Granadier D, Koch U, Radtke F, Ludewig B, Blazar BR, Siebel CW, Brennan TV, Nolz J, Labrecque N, Maillard I. GCNT1-Mediated O-Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1674-1688. [PMID: 32060138 DOI: 10.4049/jimmunol.1901194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.
Collapse
Affiliation(s)
- Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dave Maurice De Sousa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Léolène Carrington
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Dils
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David Granadier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | - Jeffrey Nolz
- Oregon Health and Sciences University, Portland, OR 97239; and
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
16
|
Lin L, Xu H, Bishawi M, Feng F, Samy K, Truskey G, Barbas AS, Kirk AD, Brennan TV. Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant 2019; 19:1917-1929. [PMID: 30761731 PMCID: PMC6591073 DOI: 10.1111/ajt.15309] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023]
Abstract
The innate immune system is a critical regulator of the adaptive immune responses that lead to allograft rejection. It is increasingly recognized that endogenous molecules released from tissue injury and cell death are potent activators of innate immunity. Mitochondria, ancestrally related to bacteria, possess an array of endogenous innate immune-activating molecules. We have recently demonstrated that extracellular mitochondria are abundant in the circulation of deceased organ donors and that their presence correlates with early allograft dysfunction. Here we demonstrate the ability of mitochondria to activate endothelial cells (ECs), the initial barrier between a solid organ allograft and its host. We find that mitochondria exposure leads to the upregulation of EC adhesion molecules and their production of inflammatory cytokines and chemokines. Additionally, mitochondrial exposure causes dendritic cells to upregulate costimulatory molecules. Infusion of isolated mitochondria into heart donors leads to significant increase in allograft rejection in a murine heterotopic heart transplantation model. Finally, co-incubation of human peripheral blood mononuclear cells with mitochondria-treated ECs results in increased numbers of effector (IFN-γ+ , TNF-α+ ) CD8+ T cells. These data indicate that circulating extracellular mitochondria in deceased organ donors may directly activate allograft ECs and promote graft rejection in transplant recipients.
Collapse
Affiliation(s)
- Liwen Lin
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - He Xu
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Muath Bishawi
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - FeiFei Feng
- Department of Toxicology, Zhengzhou University, Zhengzhou, China
| | - Kannan Samy
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George Truskey
- Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - Andrew S Barbas
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Allan D Kirk
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Immunology, Duke University Medical Center, Durham, North Carolina
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
17
|
Chung J, Radojcic V, Perkey E, Parnell TJ, Niknafs Y, Jin X, Friedman A, Labrecque N, Blazar BR, Brennan TV, Siebel CW, Maillard I. Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4 + T Cells in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:557-568. [PMID: 31182480 DOI: 10.4049/jimmunol.1900192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 h after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit the expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv versus Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection as GVHD severity was similar in the recipients of wild-type Tconv combined with Notch-deprived versus wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and Th cell polarization. In contrast, Notch inhibition dampened IFN-γ and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with the pathogenic effects of Notch in T cells at the earliest stages of GVHD.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Vedran Radojcic
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Timothy J Parnell
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, University of Utah, Salt Lake City, UT 84112
| | - Yashar Niknafs
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xi Jin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nathalie Labrecque
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T IJ4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T IJ4, Canada
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Todd V Brennan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; .,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
18
|
Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest 2019; 129:2357-2373. [PMID: 30913039 DOI: 10.1172/jci124218] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Post-transplantation cyclophosphamide (PTCy) recently has had a marked impact on human allogeneic hematopoietic cell transplantation (HCT). Yet, our understanding of how PTCy prevents graft-versus-host disease (GVHD) largely has been extrapolated from major histocompatibility complex (MHC)-matched murine skin allografting models that were highly contextual in their efficacy. Herein, we developed a T-cell-replete, MHC-haploidentical, murine HCT model (B6C3F1→B6D2F1) to test the putative underlying mechanisms: alloreactive T-cell elimination, alloreactive T-cell intrathymic clonal deletion, and suppressor T-cell induction. In this model and confirmed in four others, PTCy did not eliminate alloreactive T cells identified using either specific Vβs or the 2C or 4C T-cell receptors. Furthermore, the thymus was not necessary for PTCy's efficacy. Rather, PTCy induced alloreactive T-cell functional impairment which was supported by highly active suppressive mechanisms established within one day after PTCy that were sufficient to prevent new donor T cells from causing GVHD. These suppressive mechanisms included the rapid, preferential recovery of CD4+CD25+Foxp3+ regulatory T cells, including those that were alloantigen-specific, which served an increasingly critical function over time. Our results prompt a paradigm-shift in our mechanistic understanding of PTCy. These results have direct clinical implications for understanding tolerance induction and for rationally developing novel strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Lucas P Wachsmuth
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | - Michael T Patterson
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | | | - David J Venzon
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| |
Collapse
|
19
|
Evolving Approaches in the Identification of Allograft-Reactive T and B Cells in Mice and Humans. Transplantation 2017; 101:2671-2681. [PMID: 28604446 DOI: 10.1097/tp.0000000000001847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whether a transplanted allograft is stably accepted, rejected, or achieves immunological tolerance is dependent on the frequency and function of alloreactive lymphocytes, making the identification and analysis of alloreactive T and B cells in transplant recipients critical for understanding mechanisms, and the prediction of allograft outcome. In animal models, tracking the fate of graft-reactive T and B cells allows investigators to uncover their biology and develop new therapeutic strategies to protect the graft. In the clinic, identification and quantification of graft-reactive T and B cells allows for the early diagnosis of immune reactivity and therapeutic intervention to prevent graft loss. In addition to rejection, probing of T and B cell fate in vivo provides insights into the underlying mechanisms of alloimmunity or tolerance that may lead to biomarkers predicting graft fate. In this review, we discuss existing and developing approaches to track and analyze alloreactive T and B cells in mice and humans and provide examples of discoveries made utilizing these techniques. These approaches include mixed lymphocyte reactions, trans-vivo delayed-type hypersensitivity, enzyme-linked immunospot assays, the use of antigen receptor transgenic lymphocytes, and utilization of peptide-major histocompatibility multimers, along with imaging techniques for static multiparameter analysis or dynamic in vivo tracking. Such approaches have already refined our understanding of the alloimmune response and are pointing to new ways to improve allograft outcomes in the clinic.
Collapse
|
20
|
Assessment of Immune Isolation of Allogeneic Mouse Pancreatic Progenitor Cells by a Macroencapsulation Device. Transplantation 2017; 100:1211-8. [PMID: 26982952 DOI: 10.1097/tp.0000000000001146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Embryonic stem cell (ESC)-derived β cells hold the promise of providing a renewable source of tissue for the treatment of insulin-dependent diabetes. Encapsulation may allow ESC-derived β cells to be transplanted without immunosuppression, thus enabling wider application of this therapy. METHODS In this study, we investigated the immunogenicity of mouse pancreatic progenitor cells and efficacy of a new macroencapsulation device in protecting these cells against alloimmune and autoimmune responses in mouse models. RESULTS Mouse pancreatic progenitor cells activated the indirect but not the direct pathway of alloimmune response and were promptly rejected in immune competent hosts. The new macroencapsulation device abolished T cell activation induced by allogeneic splenocytes and protected allogeneic MIN6 β cells and pancreatic progenitors from rejection even in presensitized recipients. In addition, the device was effective in protecting MIN6 cells in spontaneously diabetic nonobese diabetic recipients against both alloimmune and recurring autoimmune responses. CONCLUSIONS Our results demonstrate that macroencapsulation can effectively prevent immune sensing and rejection of allogeneic pancreatic progenitor cells in fully sensitized and autoimmune hosts.
Collapse
|
21
|
Chung J, Ebens CL, Perkey E, Radojcic V, Koch U, Scarpellino L, Tong A, Allen F, Wood S, Feng J, Friedman A, Granadier D, Tran IT, Chai Q, Onder L, Yan M, Reddy P, Blazar BR, Huang AY, Brennan TV, Bishop DK, Ludewig B, Siebel CW, Radtke F, Luther SA, Maillard I. Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. J Clin Invest 2017; 127:1574-1588. [PMID: 28319044 PMCID: PMC5373885 DOI: 10.1172/jci89535] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Christen L. Ebens
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Vedran Radojcic
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Alexander Tong
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Frederick Allen
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sherri Wood
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiane Feng
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Qian Chai
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Minhong Yan
- Genentech, South San Francisco, California, USA
| | - Pavan Reddy
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex Y. Huang
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Todd V. Brennan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - D. Keith Bishop
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ivan Maillard
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Bishop NH, Nelsen MK, Beard KS, Coulombe M, Gill RG. Differential Impact of Chronic Hyperglycemia on Humoral Versus Cellular Primary Alloimmunity. Diabetes 2017; 66:981-986. [PMID: 28069641 PMCID: PMC5360296 DOI: 10.2337/db16-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Diabetes is prevalent among solid organ transplant recipients and is universal among islet transplant recipients. Whereas diabetes is often considered to result in an immune-compromised state, the impact of chronic hyperglycemia on host alloimmunity is not clear. Potential immune-modifying effects of obesity, autoimmunity, or diabetogenic agents like streptozotocin may confound understanding alloimmunity in experimental models of diabetes. Therefore, we sought to determine the role of chronic hyperglycemia due to insulinopenia on alloimmunity using the nonautoimmune, spontaneously diabetic H-2b-expressing C57BL/6 Ins2Akita mice (Akita). Akita mice harbor a mutated Ins2 allele that dominantly suppresses insulin secretion, resulting in lifelong diabetes. We used BALB/c donors (H-2d) to assess alloimmunization and islet transplantation outcomes in Akita recipients. Surprisingly, chronic hyperglycemia had little effect on primary T-cell reactivity after alloimmunization. Moreover, Akita mice readily rejected islet allografts, and chronic hyperglycemia had no impact on the magnitude or quality of intragraft T-cell responses. In contrast, allospecific IgM and IgG were significantly decreased in Akita mice after alloimmunization. Thus, whereas diabetes influences host immune defense, hyperglycemia itself does not cause generalized alloimmune impairment. Our data suggest that immune compromise in diabetes due to hyperglycemia may not apply to cellular rejection of transplants.
Collapse
Affiliation(s)
- Nicholas H Bishop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michelle K Nelsen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - K Scott Beard
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marilyne Coulombe
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ronald G Gill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
23
|
Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A 2017; 114:1099-1104. [PMID: 28096390 DOI: 10.1073/pnas.1618364114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal microchimerism (MMc) has been associated with development of allospecific transplant tolerance, antitumor immunity, and cross-generational reproductive fitness, but its mode of action is unknown. We found in a murine model that MMc caused exposure to the noninherited maternal antigens in all offspring, but in some, MMc magnitude was enough to cause membrane alloantigen acquisition (mAAQ; "cross-dressing") of host dendritic cells (DCs). Extracellular vesicle (EV)-enriched serum fractions from mAAQ+, but not from non-mAAQ, mice reproduced the DC cross-dressing phenomenon in vitro. In vivo, mAAQ was associated with increased expression of immune modulators PD-L1 (programmed death-ligand 1) and CD86 by myeloid DCs (mDCs) and decreased presentation of allopeptide+self-MHC complexes, along with increased PD-L1, on plasmacytoid DCs (pDCs). Remarkably, both serum EV-enriched fractions and membrane microdomains containing the acquired MHC alloantigens included CD86, but completely excluded PD-L1. In contrast, EV-enriched fractions and microdomains containing allopeptide+self-MHC did not exclude PD-L1. Adoptive transfer of allospecific transgenic CD4 T cells revealed a "split tolerance" status in mAAQ+ mice: T cells recognizing intact acquired MHC alloantigens proliferated, whereas those responding to allopeptide+self-MHC did not. Using isolated pDCs and mDCs for in vitro culture with allopeptide+self-MHC-specific CD4 T cells, we could replicate their normal activation in non-mAAQ mice, and PD-L1-dependent anergy in mAAQ+ hosts. We propose that EVs provide a physiologic link between microchimerism and split tolerance, with implications for tumor immunity, transplantation, autoimmunity, and reproductive success.
Collapse
|
24
|
Brennan TV, Lin L, Brandstadter JD, Rendell VR, Dredge K, Huang X, Yang Y. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J Clin Invest 2015; 126:207-19. [PMID: 26649979 DOI: 10.1172/jci76566] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies.
Collapse
|
25
|
Wegorzewska M, Nijagal A, Wong CM, Le T, Lescano N, Tang Q, MacKenzie TC. Fetal intervention increases maternal T cell awareness of the foreign conceptus and can lead to immune-mediated fetal demise. THE JOURNAL OF IMMUNOLOGY 2014; 192:1938-45. [PMID: 24415782 DOI: 10.4049/jimmunol.1302403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal interventions to diagnose and treat congenital anomalies are growing in popularity but often lead to preterm labor. The possible contribution of the maternal adaptive immune system to postsurgical pregnancy complications has not been explored. We recently showed that fetal intervention in mice increases maternal T cell trafficking into the fetus and hypothesized that this process also may lead to increased maternal T cell recognition of the foreign conceptus and subsequent breakdown in maternal-fetal tolerance. In this study, we show that fetal intervention in mice results in accumulation of maternal T cells in the uterus and that these activated cells can produce effector cytokines. In adoptive transfer experiments, maternal T cells specific for a fetal alloantigen proliferate after fetal intervention, escape apoptosis, and become enriched compared with endogenous T cells in the uterus and uterine-draining lymph nodes. Finally, we demonstrate that such activation and accumulation can have a functional consequence: in utero transplantation of hematopoietic cells carrying the fetal alloantigen leads to enhanced demise of semiallogeneic fetuses within a litter. We further show that maternal T cells are necessary for this phenomenon. These results suggest that fetal intervention enhances maternal T cell recognition of the fetus and that T cell activation may be a culprit in postsurgical pregnancy complications. Our results have clinical implications for understanding and preventing complications associated with fetal surgery such as preterm labor.
Collapse
Affiliation(s)
- Marta Wegorzewska
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee K, Nguyen V, Lee KM, Kang SM, Tang Q. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant 2014; 14:27-38. [PMID: 24354870 PMCID: PMC5262439 DOI: 10.1111/ajt.12509] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/01/2013] [Accepted: 08/01/2013] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are essential for the establishment and maintenance of immune tolerance, suggesting a potential therapeutic role for Tregs in transplantation. However, Treg administration alone is insufficient in inducing long-term allograft survival in normal hosts, likely due to the high frequency of alloreactive T cells. We hypothesized that a targeted reduction of alloreactive T effector cells would allow a therapeutic window for Treg efficacy. Here we show that preconditioning recipient mice with donor-specific transfusion followed by cyclophosphamide treatment deleted 70-80% donor-reactive T cells, but failed to prolong islet allograft survival. However, infusion of either 5 × 10(6) Tregs with direct donor reactivity or 25 × 10(6) polyclonal Tregs led to indefinite survival of BALB/c islets in more than 70% of preconditioned C57BL/6 recipients. Notably, protection of C3H islets in autoimmune nonobese diabetic mice required islet autoantigen-specific Tregs together with polyclonal Tregs. Treg therapy led to significant reduction of CD8(+) T cells and concomitant increase in endogenous Tregs among graft-infiltrating cells early after transplantation. Together, these results demonstrate that reduction of the donor-reactive T cells will be an important component of Treg-based therapies in transplantation.
Collapse
Affiliation(s)
- K. Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Department of Biochemistry and Molecular Biology, Korea University, Seoul, Republic of Korea
| | - V. Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - K.-M. Lee
- Department of Biochemistry and Molecular Biology, Korea University, Seoul, Republic of Korea
| | - S.-M. Kang
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Corresponding authors: Qizhi Tang, and Sang-Mo Kang,
| | - Q. Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA,Corresponding authors: Qizhi Tang, and Sang-Mo Kang,
| |
Collapse
|
27
|
Abstract
With the advent of cellular therapies, it has become clear that the success of future therapies in prolonging allograft survival will require an intimate understanding of the allorecognition pathways and effector mechanisms that are responsible for chronic rejection and late graft loss.Here, we consider current understanding of T-cell allorecognition pathways and discuss the most likely mechanisms by which these pathways collaborate with other effector mechanisms to cause allograft rejection. We also consider how this knowledge may inform development of future strategies to prevent allograft rejection.Although both direct and indirect pathway CD4 T cells appear active immediately after transplantation, it has emerged that indirect pathway CD4 T cells are likely to be the dominant alloreactive T-cell population late after transplantation. Their ability to provide help for generating long-lived alloantibody is likely one of the main mechanisms responsible for the progression of allograft vasculopathy and chronic rejection.Recent work has suggested that regulatory T cells may be an effective cellular therapy in transplantation. Given the above, adoptive therapy with CD4 regulatory T cells with indirect allospecificity is a rational first choice in attempting to attenuate the development and progression of chronic rejection; those with additional properties that enable inhibition of germinal center alloantibody responses hold particular appeal.
Collapse
|
28
|
Angaswamy N, Tiriveedhi V, Sarma NJ, Subramanian V, Klein C, Wellen J, Shenoy S, Chapman WC, Mohanakumar T. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection. Hum Immunol 2013; 74:1478-85. [PMID: 23876679 DOI: 10.1016/j.humimm.2013.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
Abstract
Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction.
Collapse
Affiliation(s)
- Nataraju Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Direct and indirect antigen presentation lead to deletion of donor-specific T cells after in utero hematopoietic cell transplantation in mice. Blood 2013; 121:4595-602. [PMID: 23610372 DOI: 10.1182/blood-2012-10-463174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In utero hematopoietic cell transplantation (IUHCTx) is a promising method to induce donor-specific tolerance but the mechanisms of antigen presentation that educate host T cells and the relative importance of deletion vs regulation in this setting are unknown. We studied the roles of direct and indirect antigen presentation (mediated by donor- and host-derived antigen-presenting cells [APCs], respectively) in a mouse model of IUHCTx. We found that IUHCTx leads to precocious maturation of neonatal host dendritic cells (DCs) and that there is early differentiation of donor-derived DCs, even after transplantation of a stem cell source without mature APCs. We next performed allogeneic IUHCTx into donor-specific T-cell receptor transgenic mice and confirmed that both direct and indirect antigen presentation lead to clonal deletion of effector T cells in chimeras. Deletion did not persist when chimerism was lost. Importantly, although the percentage of regulatory T cells (Tregs) after IUHCTx increased, there was no expansion in Treg numbers. In wild-type mice, there was a similar deletion of effector cells without expansion of donor-specific Tregs. Thus, tolerance induction after IUHCTx depends on both direct and indirect antigen presentation and is secondary to thymic deletion, without de novo Treg induction.
Collapse
|
30
|
Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood 2012; 120:2899-908. [PMID: 22760779 DOI: 10.1182/blood-2011-07-368720] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains the most common cause of nonrelapse-related morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although T-cell depletion and intensive immunosuppression are effective in the control of GVHD, they are often associated with higher rates of infection and tumor recurrence. In this study, we showed that heparan sulfate (HS), an extracellular matrix component, can activate Toll-like receptor 4 on dendritic cells in vitro, leading to the enhancement of dendritic cell maturation and alloreactive T-cell responses. We further demonstrated in vivo that serum HS levels were acutely elevated at the onset of clinical GVHD in mice after allo-HSCT. Treatment with the serine protease inhibitor α1-antitrypsin decreased serum levels of HS, leading to a reduction in alloreactive T-cell responses and GVHD severity. Conversely, an HS mimetic that increased serum HS levels accelerated GVHD. In addition, in patients undergoing allo-HSCT for hematologic malignancies, serum HS levels were elevated and correlated with the severity of GVHD. These results identify a critical role for HS in promoting acute GVHD after allo-HSCT, and they suggest that modulation of HS release may have therapeutic potential for the control of clinical GVHD.
Collapse
|
31
|
Kheradmand T, Wang S, Bryant J, Tasch JJ, Lerret N, Pothoven KL, Houlihan JL, Miller SD, Zhang ZJ, Luo X. Ethylenecarbodiimide-fixed donor splenocyte infusions differentially target direct and indirect pathways of allorecognition for induction of transplant tolerance. THE JOURNAL OF IMMUNOLOGY 2012; 189:804-12. [PMID: 22696445 DOI: 10.4049/jimmunol.1103705] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strategic exposure to donor Ags prior to transplantation can be an effective way for inducting donor-specific tolerance in allogeneic recipients. We have recently shown that pretransplant infusion of donor splenocytes treated with the chemical cross-linker ethylenecarbodiimide (ECDI-SPs) induces indefinite islet allograft survival in a full MHC-mismatched model without the need for any immunosuppression. Mechanisms of allograft protection by this strategy remain elusive. In this study, we show that the infused donor ECDI-SPs differentially target T cells with indirect versus direct allospecificities. To target indirect allospecific T cells, ECDI-SPs induce upregulation of negative, but not positive, costimulatory molecules on recipient splenic CD11c(+) dendritic cells phagocytosing the injected ECDI-SPs. Indirect allospecific T cells activated by such CD11c(+) dendritic cells undergo robust initial proliferation followed by rapid clonal depletion. The remaining T cells are sequestered in the spleen without homing to the graft site or the graft draining lymph node. In contrast, direct allospecific T cells interacting with intact donor ECDI-SPs not yet phagocytosed undergo limited proliferation and are subsequently anergized. Furthermore, CD4(+)CD25(+)Foxp3(+) T cells are induced in lymphoid organs and at the graft site by ECDI-SPs. We conclude that donor ECDI-SP infusions target host allogeneic responses via a multitude of mechanisms, including clonal depletion, anergy, and immunoregulation, which act in a synergistic fashion to induce robust transplant tolerance. This simple form of negative vaccination has significant potential for clinical translation in human transplantation.
Collapse
Affiliation(s)
- Taba Kheradmand
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brennan TV, Tang Q, Liu FC, Hoang V, Bi M, Bluestone JA, Kang SM. Requirements for prolongation of allograft survival with regulatory T cell infusion in lymphosufficient hosts. J Surg Res 2011; 169:e69-75. [PMID: 21571317 DOI: 10.1016/j.jss.2011.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/11/2011] [Accepted: 03/04/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND For the clinical applicability of regulatory T cells (Tregs) in transplantation, it is critical to determine if donor antigen specificity is required for their immunosuppressive function. We developed an allospecific CD4(+) T cell receptor transgenic (TCR-tg) mouse as a source for large numbers of Tregs with defined allospecificity and tested whether they are more effective than polyclonal Tregs at suppressing allograft rejection. MATERIALS AND METHODS CD4(+)CD25(+)CD62L(hi) T cells were sorted from the spleen and peripheral lymph nodes of wild-type (WT-Tregs) and TCR-tg (Allo-Tregs) mice, and expanded using IL-2 and anti-CD3/anti-CD28 conjugated magnetic beads. Tregs were tested for their ability to suppress the proliferation and cytokine production of alloreactive CD4(+)CD25(-) T cells in mixed leukocyte assays. Syngeneic WT hosts were adoptively transferred 5 × 10(6) Tregs and transplanted with allogeneic hearts. RESULTS Using anti-CD3/anti-CD28 conjugated beads, Tregs were expanded in vitro 100-fold and maintained their suppressor phenotype and function. Allo-Tregs were 6-8 times more potent on a cell-for-cell basis than WT-Tregs in suppressing allospecific proliferation in vitro. Allo-Tregs were unable to suppress in the absence of allo-antigen. Adoptive transfer of expanded Allo-Tregs into WT recipients prolonged the graft survival in a F1 heart transplant model compared with WT-Treg or no treatment [20.0 ± 4.4 d (n = 6) versus 10.4 ± 1.2 (n = 8) and 9.7 ± 1.6 d (n = 6)]. CONCLUSIONS Unlike polyclonal Tregs, allospecific Tregs are able to prolong allograft survival. However, large numbers of Allo-Tregs were unable to induce tolerance, suggesting that Treg therapy in immunocompetent recipients will require conditioning and/or additional immunomodulation for the induction of tolerance.
Collapse
Affiliation(s)
- Todd V Brennan
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation 2010; 90:935-44. [PMID: 20703180 DOI: 10.1097/tp.0b013e3181efcfbc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in immunosuppression have reduced the incidence of acute graft loss after transplantation, but long-term allograft survival is still hindered by the development of chronic allograft injury, a multifactorial process that involves both immunologic and nonimmunologic components. Because these components become defined in the clinical setting, development of animal models enables exploration into underlying mechanisms leading to long-term graft dysfunction. This review presents animal models that have enabled investigation into chronic allograft injury and discusses pivotal models currently being used. The mechanisms uncovered by these models will ultimately lead to development of new therapeutic options to prevent long-term graft dysfunction.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate an increasing role for alloimmune responses in the disruption of self-tolerance leading to immune responses to self-antigens that play a role in the immunopathogenesis of chronic rejection following solid organ transplantation. This review summarizes recent studies and implications for the alloimmune-response-induced de-novo development of autoimmune responses following solid organ transplantations. RECENT FINDINGS Immediately following organ transplantation, several factors lead to enduring an inflammatory milieu. Studies from our laboratory and others have demonstrated that development of antihuman leukocyte antigen antibodies precedes the development of chronic rejection. Using an in-vivo murine model, we have demonstrated that administration of anti-major histocompatibility complex (MHC) class I directly into the native lungs leads to chronic rejection pathology. Further, the in-vitro ligation of epithelial cell surface MHC class I molecules by specific anti-MHC can lead to cell activation and production of fibrinogenic growth factors. SUMMARY On the basis of these findings, we hypothesized that alloimmune responses can lead to autoimmunity, thus playing an important role in chronic rejection. Characterization of both the temporal occurrence and functional significance of antibodies to self-antigens may provide insight into the pathogenesis of chronic rejection and these antibodies can serve as clinically useful biomarkers.
Collapse
|
35
|
Antihuman leukocyte antigen antibody-induced autoimmunity: role in chronic rejection. Curr Opin Organ Transplant 2010; 15:16-20. [PMID: 19898237 DOI: 10.1097/mot.0b013e3283342780] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW We provide evidence for the role of de-novo development of immune responses to self-antigens in the posttransplant period and its possible induction by alloimmunity in the pathogenesis of chronic rejection following lung, heart and kidney transplantation. The present review details recent findings for the two distinct yet interdependent immune processes in the immunopathogenesis of chronic rejection. RECENT FINDINGS The contribution of both humoral and cell-mediated alloimmune responses against mismatched donor histocompatibility antigens (HLA) in the pathogenesis of chronic rejection is well established. Recent studies have focused on development of immune responses to self-antigens during the posttransplant period and its correlation with chronic rejection. These self-antigens include myosin and vimentin in cardiac, K-alpha-1-tubulin and collagen-V in lung and angiotensin II type 1 receptor, collagen-IV and VI in kidney transplants. During the posttransplant period, the development of immune responses to self-antigens is facilitated by induction of a distinct subset of autoreactive T-helper cells referred to as Th17 cells. SUMMARY Following organ transplantation, tissue injury and remodeling inflicted by antibodies (Abs) to HLA antigens is conducive to develop autoimmunity. Abs to HLA and self-antigens are detectable in the serum of transplant recipients who develop chronic rejection. Anti-HLA Abs are often present transiently but precede the development of Abs to self-antigens.
Collapse
|
36
|
Garrod KR, Liu FC, Forrest LE, Parker I, Kang SM, Cahalan MD. NK cell patrolling and elimination of donor-derived dendritic cells favor indirect alloreactivity. THE JOURNAL OF IMMUNOLOGY 2010; 184:2329-36. [PMID: 20139277 DOI: 10.4049/jimmunol.0902748] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct presentation of foreign MHC molecules expressed by donor-derived dendritic cells (DCs) has generally been considered the dominant pathway of allorecognition in acute transplant rejection. However, recent studies implicate preferential activation of the indirect pathway by host DCs. The respective importance of each pathway and the mechanisms that determine their relative contributions remain to be clearly established. In this study, using two-photon microscopy, we visualized host NK cell interactions with syngeneic and allogeneic DCs within intact lymph nodes of mice. Upon contact with allogeneic DCs, NK cells formed prolonged interactions that led directly to target cell lysis. This rapid elimination limited the ability of allogeneic DCs to stimulate primary and recall T cell responses. To discriminate whether donor or host DCs are principally involved in presenting Ag derived from allografts, we used CD11c-diphtheria toxoid receptor mice to conditionally ablate CD11c(+) DCs and to show that direct presentation by donor DCs is alone insufficient to elicit acute allograft rejection. We thus propose that rapid elimination of allogeneic DCs limits direct Ag presentation and thereby favors the indirect pathway of alloreactivity.
Collapse
Affiliation(s)
- Kym R Garrod
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
37
|
Brennan T, Jaigirdar A, Hoang V, Hayden T, Liu FC, Zaid H, Chang C, Bucy R, Tang Q, Kang SM. Preferential priming of alloreactive T cells with indirect reactivity. Am J Transplant 2009; 9:709-18. [PMID: 19344462 PMCID: PMC5990255 DOI: 10.1111/j.1600-6143.2009.02578.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relative contributions of the direct and indirect pathways in alloimmune responses have not been fully elucidated. We report a novel murine TCR transgenic system that can simultaneously track the CD4-direct (CD4-d), CD4-indirect (CD4-i) and CD8-direct (CD8-d) pathways after transplantation. Using this system, we have observed a profoundly greater proliferation of CD4-i T cells relative to CD4-d and CD8-d T cells after transplantation. Furthermore, a much larger proportion of CD4-i T cells attain an effector phenotype. We also analyzed endogenous, wild-type T cells using enzyme-linked immunospot analysis. In naïve mice, T cells with indirect reactivity were undetectable, but T cells with direct reactivity were abundant. However, 10 days after skin or heterotopic heart transplantation, CD4-i T cells comprised approximately 10% of the CD4+ response. Consistent with increased priming of the CD4-i pathway, we observed that the CD4-i T cells were further enriched in the effector cells migrating to the allograft and in memory-like T cells persisting after rejection. Thus, priming of the CD4-i pathway is favored after transplantation, allowing a rare population to rapidly become a major component of the CD4+ T-cell response in acute allograft rejection. The generalizability of this observation to other models remains to be determined.
Collapse
Affiliation(s)
- T.V. Brennan
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - A. Jaigirdar
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - V. Hoang
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - T. Hayden
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - F-C. Liu
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - H. Zaid
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - C.K. Chang
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - R.P. Bucy
- Department of Pathology, University of Alabama at Birmingham, 619 South 19 Street, Rm W287 Spain Wallace Bldg, Birmingham, AL 35294-2170
| | - Q. Tang
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780
| | - S-M. Kang
- Department of Surgery, Division of Transplantation, University of California, San Francisco, 513 Parnassus Ave, Box 0780, San Francisco, CA 94143-0780,Address Correspondence to: Sang-Mo Kang, MD, University of California, San Francisco, 513 Parnassus Ave, M884, San Francisco, CA 94143-0780, E-mail: , Phone: (415) 514-2982, Fax: (415) 502-8326
| |
Collapse
|