1
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
3
|
Li B, Zhang L, Yin Y, Chen A, Seo BR, Lou J, Mooney DJ, Weitz DA. Stiff Hydrogel Encapsulation Retains Mesenchymal Stem Cell Stemness for Regenerative Medicine. MATTER 2024; 7:3447-3468. [PMID: 39553898 PMCID: PMC11567665 DOI: 10.1016/j.matt.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mesenchymal stem cell (MSC) stands as a prominent choice in regenerative medicine, yet their therapeutic potential remains controversial due to challenges in maintaining lineage and viability. As directly injected MSCs are quickly cleared by the host immune system, entrapping viable cells in a 3D semi-permeable hydrogel matrix extends cell retention, showing great promise in enhancing therapeutic effect. However, the effects of hydrogel encapsulation on MSC subpopulations are not fully understood. Here, we fabricate thin-shell alginate hydrogel microcapsules using droplet microfluidics, controlling the shell mechanical properties by adjusting alginate molecular weight. We find that a stiffer shell increases the proliferation and supports the residence of MSCs in vivo than a softer shell. The stiff 3D hydrogel also promotes the maintenance of stemness, as confirmed by single-cell RNA sequencing. Our work demonstrates the potential of hydrogel-encapsulated stem cells for long-term therapeutic applications, offering insight into modulating MSC subpopulations for specific function.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, CN, 310003
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, CN, 266580
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
| | - Yuan Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, CN, 310003
| | - Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
| | - Bo Ri Seo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Takeda Pharmaceutical Company Limited, Los Angeles, CA, 90039
| | - Junzhe Lou
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02138
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Department of Physics, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
4
|
Sousa AR, Cunha AF, Santos-Coquillat A, Estrada BH, Spiller KL, Barão M, Rodrigues AF, Simões S, Vilaça A, Ferreira L, Oliveira MB, Mano JF. Shape-Versatile Fixed Cellular Materials for Multiple Target Immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405367. [PMID: 38739450 PMCID: PMC11272431 DOI: 10.1002/adma.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs. Here, the manufacturing of shape-versatile fixed cell-based materials with immunomodulatory properties is reported. Living cell aggregates with different shapes (spheres and centimeter-long fibers) are fixed using a method compatible with maintenance of structural integrity, robustness, and flexibility of 3D constructs. The biological properties of living cells can be modulated before fixation, rendering an in vitro anti-inflammatory effect toward human macrophages, in line with a decreased activation of the nuclear factor kappa B (NF-κB) pathway that preponderantly correlated with the surface area of the materials. These findings are further corroborated in vivo in mouse skin wounds. Contact with fixed materials also reduces the proliferation of activated primary T lymphocytes, while promoting regulatory populations. The fixation of cellular constructs is proposed as a versatile phenotypic stabilization method that can be easily implemented to prepare immunomodulatory materials with therapeutic potential.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana F Cunha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana Santos-Coquillat
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Beatriz Hernaez Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Marta Barão
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Artur Filipe Rodrigues
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Susana Simões
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Andreia Vilaça
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Zhou AW, Jin J, Liu Y. Cellular strategies to induce immune tolerance after liver transplantation: Clinical perspectives. World J Gastroenterol 2024; 30:1791-1800. [PMID: 38659486 PMCID: PMC11036497 DOI: 10.3748/wjg.v30.i13.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/03/2024] Open
Abstract
Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.
Collapse
Affiliation(s)
- Ai-Wei Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Jin
- Department of Nursing, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Liver Transplantation, Shanghai Immune Therapy Institute, Shanghai 200127, China
| |
Collapse
|
6
|
Annamalai C, Kute V, Sheridan C, Halawa A. Hematopoietic cell-based and non-hematopoietic cell-based strategies for immune tolerance induction in living-donor renal transplantation: A systematic review. Transplant Rev (Orlando) 2023; 37:100792. [PMID: 37709652 DOI: 10.1016/j.trre.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Postgraduate School of Medicine, Institute of Teaching and Learning, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | - Vivek Kute
- Nephrology and Transplantation, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Carl Sheridan
- Department of Eye and Vision Science, Ocular Cell Transplantation, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Ahmed Halawa
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
7
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
8
|
Večerić-Haler Ž, Sever M, Kojc N, Halloran PF, Boštjančič E, Mlinšek G, Oblak M, Poženel P, Švajger U, Hartman K, Kneževič M, Barlič A, Girandon L, Aleš Rigler A, Zver S, Buturović Ponikvar J, Arnol M. Autologous Mesenchymal Stem Cells for Treatment of Chronic Active Antibody-Mediated Kidney Graft Rejection: Report of the Phase I/II Clinical Trial Case Series. Transpl Int 2022; 35:10772. [PMID: 36484064 PMCID: PMC9722440 DOI: 10.3389/ti.2022.10772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Mesenchymal stem cell (MSCs) therapy has already been studied in kidney transplant recipients (KTRs), and the available data showed that it is safe and well tolerated. The aim of this study was to evaluate the safety and efficacy of autologous MSCs in combination with standard therapy in KTRs with biopsy-proven chronic active antibody-mediated rejection (AMR). Patients with biopsy-proven chronic active AMR received treatment with autologous bone marrow-derived MSCs (3 × 106 cells/kg iv) after completion of standard therapy and were followed for up to 12 months. The primary endpoints were safety by assessment of adverse events. Secondary endpoints included assessment of kidney graft function, immunological and histological changes related to AMR activity and chronicity assessed by conventional microscopy and molecular transcripts. A total of 3 patients were enrolled in the study before it was terminated prematurely because of adverse events. We found that AMR did not improve in any of the patients after treatment with MSCs. In addition, serious adverse events were observed in one case when autologous MSCs therapy was administered in the late phase after kidney transplantation, which requires further elucidation.
Collapse
Affiliation(s)
- Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Željka Večerić-Haler,
| | - Matjaž Sever
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip F. Halloran
- Division of Nephrology and Transplant Immunology, Alberta Transplant Applied Genomics Centre, University of Alberta, Edmonton, AB, Canada
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Mlinšek
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manca Oblak
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Poženel
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Urban Švajger
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Katrina Hartman
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Ariana Barlič
- Educell d.o.o Cell Therapy Service, Ljubljana, Slovenia
| | | | - Andreja Aleš Rigler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Zver
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jadranka Buturović Ponikvar
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Guo H, Li B, Li N, Liu X, Gao H, Sun X, Zhao N. Exosomes: Potential executors of IL‐35 gene‐modified adipose‐derived mesenchymal stem cells in inhibiting acute rejection after heart transplantation. Scand J Immunol 2022; 96:e13171. [PMID: 35398907 DOI: 10.1111/sji.13171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Guo
- Department of General Surgery Tianjin Medical University General Hospital Tianjin China
| | - Baozhu Li
- Department of General Surgery Tianjin Medical University General Hospital Tianjin China
| | - Nan Li
- Department of General Surgery Tianjin Medical University General Hospital Tianjin China
| | - Xin Liu
- Tianjin General Surgery Institute Tianjin Medical University General Hospital Tianjin China
| | - Haopeng Gao
- Department of General Surgery Tianjin Medical University General Hospital Tianjin China
| | - Xuan Sun
- Department of Pharmacy Tianjin Medical University General Hospital Tianjin China
| | - Na Zhao
- Tianjin General Surgery Institute Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
10
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
11
|
Lin L, He E, Wang H, Guo W, Wu Z, Huang K, Zhao Q. Intravenous Transplantation of Human Hair Follicle-Derived Mesenchymal Stem Cells Ameliorates Trabecular Bone Loss in Osteoporotic Mice. Front Cell Dev Biol 2022; 10:814949. [PMID: 35359450 PMCID: PMC8960386 DOI: 10.3389/fcell.2022.814949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Hair follicles harbor a rich autologous stem cell pool and human hair follicle-derived mesenchymal stem cells (hHF-MSCs) have multi-lineage differentiation potential. Many sources of MSCs include hHF-MSCs have been attractive candidates for cell therapy, regenerative medicine and tissue engineering. The present study is to explore the effect of intravenous transplantation of hHF-MSCs on bone mass in osteoporotic mice and its mechanism, and provides prospects for clinical applications for the treatment of osteoporosis with hHF-MSCs. Methods: Physically pull out about 20 hairs with intact hair follicles from the occipital area of the scalp of healthy volunteers, and extract hair follicle-derived fibroblast-like cells. These cells were cultured and characterized in vitro. Intravenous injection of hHF-MSCs was performed on ovariectomy-induced and age-related osteoporotic SCID mice for osteoporosis treatment. The mice were sacrificed 7 weeks after the second injection and samples were collected. The long bones and L1 vertebrae were collected for micro-CT scan, histomorphometry and immunohistochemical analysis. Peripheral serum were collected for ELISA analysis and antibody array. Results: Hair follicle-derived fibroblast-like cells were defined as hHF-MSCs. Intravenous transplantation of hHF-MSCs can better restores trabecular bone mass in osteoporotic mice. The double calcein labeling assay, trap staining of bones and ELISA analysis in peripheral serum showed enhanced bone formation and weakened bone resorption after transplantation. Antibody array and immunohistochemical analysis showed that several cytokines including OPG, Wnt2b, Noggin, VCAM-1 and RANKL might be involved in this process. Conclusion: Human HF-MSCs transplantation can combat trabecular bone loss induced by menopause and aging in mice. And the above mechanism that hHF-MSCs transplantation inhibits bone resorption and promote bone formation is related to OPG, Wnt2b, VCAM-1, Noggin and RANKL.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhenkai Wu, ; Kai Huang, ; Qinghua Zhao,
| |
Collapse
|
12
|
Yeo WS, Ng QX. Biomarkers of immune tolerance in kidney transplantation: an overview. Pediatr Nephrol 2022; 37:489-498. [PMID: 33712863 DOI: 10.1007/s00467-021-05023-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Kidney failure, one of the most prevalent diseases in the world and with increasing incidence, is associated with substantial morbidity and mortality. Currently available modes of kidney replacement therapy include dialysis and kidney transplantation. Though kidney transplantation is the preferred and ideal mode of kidney replacement therapy, this modality, however, is not without its risks. Kidney transplant recipients are constantly at risk of complications associated with immunosuppression, namely, opportunistic infections (e.g., Epstein-Barr virus and cytomegalovirus infections), post-transplant lymphoproliferative disorder, and complications associated with immunosuppressants (e.g., calcineurin inhibitor- and corticosteroid-associated new onset diabetes after transplantation and calcineurin inhibitor-associated nephrotoxicity). Transplantation tolerance, an acquired state in which immunocompetent recipients have developed donor-specific unresponsiveness, may be the Holy Grail in enabling optimal allograft survival and obviating the risks associated with immunosuppression in kidney transplant recipients. This review aims to discuss the biomarkers available to predict, identify, and define the transplant immune tolerant state and various tolerance induction strategies. Regrettably, pediatric patients have not been included in any tolerance studies and this should be the focus of future studies.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Mount Elizabeth Hospital, 3 Mount Elizabeth, Singapore, 228510, Singapore.
| | - Qin Xiang Ng
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore, 099253, Singapore
| |
Collapse
|
13
|
Mesenchymal Stromal Cells Mediate Clinically Unpromising but Favourable Immune Responses in Kidney Transplant Patients. Stem Cells Int 2022; 2022:2154544. [PMID: 35211176 PMCID: PMC8863486 DOI: 10.1155/2022/2154544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/11/2022] [Indexed: 01/22/2023] Open
Abstract
Background Allograft rejection postkidney transplantation (KTx) is a major clinical challenge despite increased access to a healthcare system and improvement in immunosuppressive (IS) drugs. In recent years, mesenchymal stromal cells (MSCs) have aroused considerable interest in field of transplantation due to their immunomodulatory and regenerative properties. This study was aimed at investigating safety, feasibility, and immunological effects of autologous MSCs (auto-MSCs) and allogeneic MSCs (allo-MSCs) as a complement to IS drug therapy in KTx patients. Methods 10 patients undergoing KTx with a living-related donor were analysed along with 5 patients in the control group. Patients were given auto-MSCs or allo-MSCs at two time points, i.e., one day before transplant (D-0) and 30 days after transplant (D-30) at the rate of 1.0-1.5 × 106 MSCs per kg body weight in addition to immunosuppressants. Patients were followed up for 2 years, and 29 immunologically relevant lymphocyte subsets and 8 cytokines and important biomarkers were analysed at all time points. Results Patients displayed no signs of discomfort or dose-related toxicities in response to MSC infusion. Flow cytometric analysis revealed an increase in B regulatory lymphocyte populations and nonconventional T regulatory cells and a decrease in T effector lymphocyte proportions in auto-MSC-infused patients. No such favourable immune responses were observed in all MSC-infused patients. Conclusion This study provides evidence that auto-MSCs are safe and well tolerated. This is the first ever report to compare autologous and allogeneic MSC infusion in KTx patients. Importantly, our data demonstrated that MSC-induced immune responses in patients did not completely correlate with clinical outcomes. Our findings add to the current perspective of using MSCs in KTx and explore possibilities through which donor/recipient chimerism can be achieved to induce immune tolerance in KTx patients.
Collapse
|
14
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Zhang L, Lai X, Guo Y, Ma J, Fang J, Li G, Xu L, Yin W, Chen Z. Autologous bone marrow-derived mesenchymal stem cells for interstitial fibrosis and tubular atrophy: a pilot study. Ren Fail 2021; 43:1266-1275. [PMID: 34493167 PMCID: PMC8425735 DOI: 10.1080/0886022x.2021.1968432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs)-based therapy has shown promising results for renal injury. In this study, the efficacy and safety of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in treating nonspecific interstitial fibrosis and tubular atrophy (IFTA) were evaluated. Methods From March 2011 to January 2013, 11 renal transplanted patients with IFTA were recruited. At baseline, patients were given one intra-arterial infusion of BM-MSCs; 7 days and 1 month later, another two intravenous infusions of cells were followed. Serum creatinine, creatinine clearance rate, and serum cystatin-C at baseline and 7 days, 1 month, 3 months, 6 months, and 12 months after the intra-arterial infusion of BM-MSCs were used to assess renal function. At baseline and 6 months, histological examination based on hematoxylin-eosin, Masson’s trichrome and periodic acid-Schiff staining and immunohistochemistry for transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) was performed. Adverse events were recorded to evaluate the safety of BM-MSCs treatment. Results At 12 months, the renal function of 6 patients (54.5%) was improved, 3 (27.3%) were stable and 2 (18.2%) were worsened. At 6 months, the mean IFTA scores of all participators were similar with the baseline (1.73 ± 0.41 vs.1.50 ± 0.0.77, p = 0.242); however, it was significantly decreased when only 6 patients with improved renal function were analyzed (1.67 ± 0.41 vs. 1.08 ± 0.20, p = 0.013). Besides, decreased expression of TGF-β1 and CTGF were also observed at 6 months. During 1 year follow-up period, only two minor complications including infection and allergy were observed. Conclusion Our results demonstrated that autologous BM-MSCs are safe and beneficial for IFTA patients. Abbreviations: MSCs: mesenchymal stem cells; BM-MSCs: marrow-derived mesenchymal stem cells; IFTA: interstitial fibrosis and tubular atrophy; CAN: chronic allograft nephropathy; CNIs: calcineurin inhibitors; Scr: serum creatinine; CCr: creatinine clearance rate; Cys-C: cystatin-C; TGF-β1: transforming growth factor β1; CTGF: connective tissue growth factor
Collapse
Affiliation(s)
- Lei Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xingqiang Lai
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yuhe Guo
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Junjie Ma
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Jiali Fang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Guanghui Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Lu Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wei Yin
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Zheng Chen
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University/The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Shaw BI, Ord JR, Nobuhara C, Luo X. Cellular Therapies in Solid Organ Allotransplantation: Promise and Pitfalls. Front Immunol 2021; 12:714723. [PMID: 34526991 PMCID: PMC8435835 DOI: 10.3389/fimmu.2021.714723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Donor specific transfusions have been the basis of tolerance inducing protocols since Peter Medawar showed that it was experimentally feasible in the 1950s. Though trials of cellular therapies have become increasingly common in solid organ transplantation, they have not become standard practice. Additionally, whereas some protocols have focused on cellular therapies as a method for donor antigen delivery-thought to promote tolerance in and of itself in the correct immunologic context-other approaches have alternatively focused on the intrinsic immunosuppressive properties of the certain cell types with less emphasis on their origin, including mesenchymal stem cells, regulatory T cells, and regulatory dendritic cells. Regardless of intent, all cellular therapies must contend with the potential that introducing donor antigen in a new context will lead to sensitization. In this review, we focus on the variety of cellular therapies that have been applied in human trials and non-human primate models, describe their efficacy, highlight data regarding their potential for sensitization, and discuss opportunities for cellular therapies within our current understanding of the immune landscape.
Collapse
Affiliation(s)
- Brian I. Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jeffrey R. Ord
- School of Medicine, Duke University, Durham, NC, United States
| | - Chloe Nobuhara
- School of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Division of Nephrology, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Večerić-Haler Ž, Kojc N, Sever M, Zver S, Švajger U, Poženel P, Hartman K, Urdih T, Mlinšek G, Oblak M, Aleš Rigler A, Ihan A, Buturović Ponikvar J, Halloran PP, Arnol M. Case Report: Capillary Leak Syndrome With Kidney Transplant Failure Following Autologous Mesenchymal Stem Cell Therapy. Front Med (Lausanne) 2021; 8:708744. [PMID: 34368198 PMCID: PMC8334176 DOI: 10.3389/fmed.2021.708744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted great interest in the field of kidney transplantation due to their immunomodulatory and reparative properties. In registered clinical trials, MSCs have been used before, at the time of, or early after transplantation and have been reported to be well-tolerated with no serious safety concerns. No results are available on the use of MSCs in the late post-transplant period. Here, we present a case report of a severe systemic complication mimicking capillary leak syndrome with ultimate kidney transplant failure after autologous transplantation of MSCs used as rescue treatment of late antibody-mediated kidney allograft rejection.
Collapse
Affiliation(s)
- Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Sever
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Samo Zver
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urban Švajger
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Primož Poženel
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Katrina Hartman
- Division for Cells and Tissue, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Tereza Urdih
- Department of Haematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gregor Mlinšek
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manca Oblak
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreja Aleš Rigler
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jadranka Buturović Ponikvar
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip P Halloran
- Division of Nephrology and Transplant Immunology, University of Alberta, Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Wysong A, Ortiz P, Bittel D, Ott L, Karanu F, Filla M, Stehno-Bittel L. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots. BMC Vet Res 2021; 17:244. [PMID: 34266445 PMCID: PMC8281647 DOI: 10.1186/s12917-021-02948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Collapse
Affiliation(s)
- Amy Wysong
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | | | - Douglas Bittel
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Francis Karanu
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Michael Filla
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.
- Department of Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, KS, 66160, Kansas City, USA.
| |
Collapse
|
20
|
Wang X, Zhou C, Liu J, Yang T, Mao L, Hong X, Jiang N, Jia R. Administration of Donor-Derived Nonexpanded Adipose Stromal Vascular Fraction Attenuates Ischemia-Reperfusion Injury in Donation After Cardiac Death Rat Renal Transplantation. Transplant Proc 2021; 53:2070-2081. [PMID: 34266654 DOI: 10.1016/j.transproceed.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Donation after cardiac death (DCD) has become a potential source for transplantation organs. However, ischemia/reperfusion injury (IRI) induced by cardiac arrest has limited the use of DCD organs. Stromal vascular fraction (SVF) without the culturing step has been proposed as a safer and easier source for stem cell therapy, which has emerged as an attractive technology that could facilitate the recovery of renal function and structure from acute kidney injury induced by IRI after DCD renal transplantation. In this study, freshly isolated donor-derived SVF was identified and then delivered intra-arterially into the grafts in DCD rat renal transplantation. Administration of freshly isolated donor-derived SVF could significantly alleviate the IRI of renal grafts and enhance graft reparation by promoting graft cell proliferation and microvascularization in DCD renal transplantation. Moreover, results revealed that the oxidative stress in grafts was significantly alleviated with SVF treatment, and this might be attributed to the overexpression of antioxidative molecules including nuclear factor erythroid-related factor 2, superoxide dismutase-1, and heme oxygenase-1. In conclusion, our study demonstrated that the administration of freshly isolated donor-derived nonexpanded adipose SVF could attenuate IRI and protect the grafts after DCD rat renal transplantation.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Chen Y, Yan G, Ma Y, Zhong M, Yang Y, Guo J, Wang C, Han W, Zhang L, Xu S, Huang J, Dai H, Qi Z. Combination of mesenchymal stem cells and FK506 prolongs heart allograft survival by inhibiting TBK1/IRF3-regulated-IFN-γ production. Immunol Lett 2021; 238:21-28. [PMID: 34228988 DOI: 10.1016/j.imlet.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Lifelong immunosuppression use presents many serious side effects to transplant recipients. Previous studies have shown that mesenchymal stem cells (MSC) regulate the progress of inflammation and protect allograft function. However, the benefits of MSC combined with low-dose tacrolimus (FK506) has not been investigated in heart transplant recipients, and its mechanism deserves further investigation. SD Rat bone marrow-derived MSC were infused into recipient mouse (C57BL/6, B6) through the tail vein, followed by a BALB/c donor cervical ectopic heart transplantation on the next day of infusion. T-lymphocyte subsets and their functions were determined using flow cytometry, ELISA, and qPCR. Thereafter, in vitro and in vivo experiments were conducted to identify the mechanisms regarding MSC and FK506 combination (MF group) use in regulating IFN-γ signaling. MF group in the allogeneic heart transplantation mouse model inhibited acute rejection and prolonged mean survival time (MST) of grafts from 7 days (d) to 22d. Pathological examination of heart grafts suggested that inflammatory cell infiltration decreased, and tissue damage was significantly reduced in the MF group. IFN-γ mRNA expression levels in the grafts and recipients decreased, while IL-4 and TGF-β mRNA expression increased in the MF group. Phosphorylation of TBK1/IRF3 in recipient immune cells decreased under donor antigen stimulation. Combination use of MSC and FK506 can prolong graft survival, possibly by down-regulating TBK1/IRF3 phosphorylation, thus reducing IFN-γ production to prevent infiltration of inflammatory cells in the graft and extend graft survival. The findings provide a potential new approach to immunosuppression selection.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoliang Yan
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunhan Ma
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengya Zhong
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Yang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weimin Han
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liyi Zhang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuangyue Xu
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinjin Huang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China; Clinical Immunology Center, Central South University, Changsha, China.
| | - Zhongquan Qi
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Medical College, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Wei Y, Chen X, Zhang H, Su Q, Peng Y, Fu Q, Li J, Gao Y, Li X, Yang S, Ye Q, Huang H, Deng R, Li G, Xu B, Wu C, Wang J, Zhang X, Su X, Liu L, Xiang AP, Wang C. Efficacy and Safety of Bone Marrow-Derived Mesenchymal Stem Cells for Chronic Antibody-Mediated Rejection After Kidney Transplantation- A Single-Arm, Two-Dosing-Regimen, Phase I/II Study. Front Immunol 2021; 12:662441. [PMID: 34248942 PMCID: PMC8267917 DOI: 10.3389/fimmu.2021.662441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the efficacy and safety of bone marrow-derived mesenchymal stem cells (BM-MSCs) on chronic active antibody-mediated rejection (cABMR) in the kidney allograft. Methods Kidney recipients with biopsy-proven cABMR were treated with allogeneic third-party BM-MSCs in this open-label, single-arm, single-center, two-dosing-regimen phase I/II clinical trial. In Regimen 1 (n=8), BM-MSCs were administered intravenously at a dose of 1.0×106 cells/kg monthly for four consecutive months, while in Regimen 2 (n=15), the BM-MSCs dose was 1.0×106 cells/kg weekly during four consecutive weeks. The primary endpoints were the absolute change of estimated glomerular filtration rate (eGFR) from baseline (delta eGFR) and the incidence of adverse events associated with BM-MSCs administration 24 months after the treatment. Contemporaneous cABMR patients who did not receive BM-MSCs were retrospectively analyzed as the control group (n =30). Results Twenty-three recipients with cABMR received BM-MSCs. The median delta eGFR of the total BM-MSCs treated patients was -4.3 ml/min per 1.73m2 (interquartile range, IQR -11.2 to 1.2) 2 years after BM-MSCs treatment (P=0.0233). The median delta maximum donor-specific antibody (maxDSA) was -4310 (IQR -9187 to 1129) at 2 years (P=0.0040). The median delta eGFR of the control group was -12.7 ml/min per 1.73 m2 (IQR -22.2 to -3.5) 2 years after the diagnosis, which was greater than that of the BM-MSCs treated group (P=0.0342). The incidence of hepatic enzyme elevation, BK polyomaviruses (BKV) infection, cytomegalovirus (CMV) infection was 17.4%, 17.4%, 8.7%, respectively. There was no fever, anaphylaxis, phlebitis or venous thrombosis, cardiovascular complications, or malignancy after BM-MSCs administration. Flow cytometry analysis showed a significant decreasing trend of CD27-IgD- double negative B cells subsets and trend towards the increase of CD3+CD4+PD-1+/lymphocyte population after MSCs therapy. Multiplex analysis found TNF-α, CXCL10, CCL4, CCL11 and RANTES decreased after MSCs treatment. Conclusion Kidney allograft recipients with cABMR are tolerable to BM-MSCs. Immunosuppressive drugs combined with intravenous BM-MSCs can delay the deterioration of allograft function, probably by decreasing DSA level and reducing DSA-induced injury. The underlying mechanism may involve immunomodulatory effect of MSCs on peripheral B and T cells subsets.
Collapse
Affiliation(s)
- Yongcheng Wei
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Su
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianyu Ye
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Bowen Xu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Su
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Willekens B, Wens I, Wouters K, Cras P, Cools N. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials. Autoimmun Rev 2021; 20:102873. [PMID: 34119672 DOI: 10.1016/j.autrev.2021.102873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
In the past years, translational approaches have led to early-stage clinical trials assessing safety and efficacy of tolerance-inducing cell-based treatments in patients. This review aims to determine if tolerance-inducing cell-based therapies, including dendritic cells, regulatory T cells and mesenchymal stem cells, are safe in adult patients who underwent organ transplantation or in those with autoimmune diseases, including multiple sclerosis, diabetes mellitus type 1, Crohn's disease and rheumatoid arthritis. Immunological and clinical outcomes were reviewed, to provide evidence for proof-of-concept and efficacy. To summarize the current knowledge, a systematic review and meta-analysis were conducted. A total of 8906 records were reviewed by 2 independent assessors and 48 records were included in the final quantitative analysis. The overall frequency of serious adverse events was low: 0.018 (95% CI: 0.006-0.051). Immunological outcomes could not be assessed quantitatively because of heterogeneity in outcome assessments and description as well as lack of individual data. Most randomized controlled studies were at a medium risk of bias due to open-label treatment without masking of assessors and/or patients to the intervention. In conclusion, tolerance-inducing cell-based therapies are safe. We advocate for harmonization of study protocols of trials investigating cell-based therapies, adverse event reporting and systematic inclusion of immunological outcome measures in clinical trials evaluating tolerance-inducingcell-basedtreatment. Registration: PROSPERO, registration number CRD42020170557.
Collapse
Affiliation(s)
- Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Belgium
| | - Patrick Cras
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
24
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
25
|
Sousa AR, Mano JF, Oliveira MB. Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends Mol Med 2021; 27:572-587. [PMID: 33865718 DOI: 10.1016/j.molmed.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Advances in allogeneic transplantation of solid organs and tissues depend on our understanding of mechanisms that mediate the prevention of graft rejection. For the past decades, clinical practice has established guidelines to prevent allograft rejection, which mostly rely on the intake of nontargeted immunosuppressants as the gold standard. However, such lifelong regimens have been reported to trigger severe morbidities and commonly fail in preventing late allograft loss. In this review, the biology of allogeneic rejection and self-tolerance is analyzed, as well as the mechanisms of cellular-based therapeutics driving suppression and/or tolerance. Bioinspired engineering strategies that take advantage of cells, biomaterials, or combinations thereof to prevent allograft rejection are addressed, as well as biological mechanisms that drive their efficacy.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
27
|
Stark HL, Wang HC, Kuburic J, Alzhrani A, Hester J, Issa F. Immune Monitoring for Advanced Cell Therapy Trials in Transplantation: Which Assays and When? Front Immunol 2021; 12:664244. [PMID: 33841448 PMCID: PMC8027493 DOI: 10.3389/fimmu.2021.664244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
A number of immune regulatory cellular therapies, including regulatory T cells and mesenchymal stromal cells, have emerged as novel alternative therapies for the control of transplant alloresponses. Clinical studies have demonstrated their feasibility and safety, however developing our understanding of the impact of cellular therapeutics in vivo requires advanced immune monitoring strategies. To accurately monitor the immune response, a combination of complementary methods is required to measure the cellular and molecular phenotype as well as the function of cells involved. In this review we focus on the current immune monitoring strategies and discuss which methods may be utilized in the future.
Collapse
Affiliation(s)
- Helen L Stark
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Hayson C Wang
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Division of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jasmina Kuburic
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alaa Alzhrani
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
29
|
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46:100742. [PMID: 32854985 PMCID: PMC7425550 DOI: 10.1016/j.blre.2020.100742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSC) have immune regulatory and tissue regenerative properties. MSCs are being studied as a therapy option for many inflammatory and immune disorders and are approved to treat acute graft-versus-host disease (GvHD). The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic and associated coronavirus infectious disease-19 (COVID-19) has claimed many lives. Innovative therapies are needed. Preliminary data using MSCs in the setting of acute respiratory distress syndrome (ARDS) in COVID-19 are emerging. We review mechanisms of action of MSCs in inflammatory and immune conditions and discuss a potential role in persons with COVID-19.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hillard Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, USA,Center of Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Riad El Fakih
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,Corresponding author at: Oncology Centre, KFSHRC, Section of Adult Hematology/HSCT, PO Box 3354, Riyadh 11471, Saudi Arabia
| |
Collapse
|
30
|
Johnstone BH, Messner F, Brandacher G, Woods EJ. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance. Front Immunol 2021; 12:622604. [PMID: 33732244 PMCID: PMC7959805 DOI: 10.3389/fimmu.2021.622604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed "hematopoietic progenitor cell (HPC), Marrow," recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to "delayed tolerance." Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.
Collapse
Affiliation(s)
- Brian H. Johnstone
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erik J. Woods
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
31
|
Clinical Trial of Allogeneic Mesenchymal Stem Cell Therapy for Chronic Active Antibody-Mediated Rejection in Kidney Transplant Recipients Unresponsive to Rituximab and Intravenous Immunoglobulin. Stem Cells Int 2021; 2021:6672644. [PMID: 33628269 PMCID: PMC7892211 DOI: 10.1155/2021/6672644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical trials of biologic agents for chronic active antibody-mediated rejection (CAMR) in kidney transplant recipients (KTRs) have been disappointing. We performed a clinical trial of mesenchymal stem cell (MSC) treatment in KTRs with CAMR unresponsive to rituximab and intravenous immunoglobulin. This study was a phase 1 clinical trial to confirm patient safety. Two patients with CAMR unresponsive to rituximab and intravenous immunoglobulin were included. Each patient received allogeneic MSCs for 4 cycles (1 × 106 cells/kg every other week) via the peripheral vein in the distal arm. We observed adverse events and renal function for 6 months after the final MSC infusion and analyzed changes in immunomodulatory parameters in the peripheral blood between the start of treatment and 3 months after the final MSC infusion. There were no serious adverse events during the study period. Renal function was stable during MSC treatment but gradually decreased between the final MSC infusion and the study endpoint (patient 1: creatinine levels ranged from 3.01 mg/dL to 7.81 mg/dL, patient 2: 2.87 mg/dL to 3.91 mg/dL). In peripheral blood sample analysis between the start of treatment and 3 months after the final MSC infusion, there were similar trends for immunomodulatory markers. Our study showed that there were no serious adverse events for six months after allogeneic MSC treatment in KTRs with CAMR refractory to rituximab and intravenous immunoglobulin, but further studies need to define the efficacy of MSC treatment in CAMR.
Collapse
|
32
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
33
|
Andres AM, Stringa P, Talayero P, Santamaria M, García-Arranz M, García Gómez-Heras S, Largo-Aramburu C, Aras-Lopez RM, Vallejo-Cremades MT, Guerra Pastrián L, Vega L, Encinas JL, Lopez-Santamaria M, Hernández-Oliveros F. Graft infusion of adipose-derived mesenchymal stromal cells to prevent rejection in experimental intestinal transplantation: A feasibility study. Clin Transplant 2021; 35:e14226. [PMID: 33465824 DOI: 10.1111/ctr.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have been proposed as a promising complement to standard immunosuppression in solid organ transplantation because of their immunomodulatory properties. The present work addresses the role of adipose-derived MSC (Ad-MSC) in an experimental model of acute rejection in small bowel transplantation (SBT). MATERIAL/METHODS Heterotopic allogeneic SBT was performed. A single dose of 1.5x106 Ad-MSC was intra-arterially delivered just before graft reperfusion. Animals were divided into CONTROL (CTRL), CONTROL+Ad-MSC (CTRL_MSC), tacrolimus (TAC), and TAC+Ad-MSC (TAC_MSC) groups. Each Ad-MSC groups was subdivided in autologous and allogeneic third-party groups. RESULTS Rejection rate and severity were similar in MSC-treated and untreated animals. CTRL_MSC animals showed a decrease in macrophages, T-cell (CD4, CD8, and Foxp3 subsets) and B-cell counts in the graft compared with CTRL, this decrease was attenuated in TAC_MSC animals. Pro- and anti-inflammatory cytokines and some chemokines and growth factors increased in CTRL_MSC animals, especially in the allogeneic group, whereas milder changes were seen in the TAC groups. CONCLUSION Ad-MSC did not prevent rejection when administered just before reperfusion. However, they showed immunomodulatory effects that could be relevant for a longer-term outcome. Interference between tacrolimus and the MSC effects should be addressed in further studies.
Collapse
Affiliation(s)
- Ane M Andres
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain.,Idipaz Institute, La Paz University Hospital, Madrid, Spain.,TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | - Pablo Stringa
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, Buenos Aires, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain.,imas12 Research Institute, 12 de Octubre University Hospital, Madrid, Spain
| | - Monica Santamaria
- Experimental Transplant Department, Alfonso X University, Madrid, Spain
| | | | | | | | - Rosa M Aras-Lopez
- Research Institute, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | | | | | - Luz Vega
- Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain
| | - Jose Luis Encinas
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Francisco Hernández-Oliveros
- TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain.,Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain.,Pediatric Surgery Department EOC TransplantChild ERN, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
34
|
Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int 2021; 34:233-244. [PMID: 33207013 PMCID: PMC7898347 DOI: 10.1111/tri.13789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.
Collapse
Affiliation(s)
- Martin J. Hoogduijn
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Marlies E. J. Reinders
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
35
|
Chen J, Wang Y, Hu H, Xiong Y, Wang S, Yang J. Adipose-derived cellular therapies prolong graft survival in an allogenic hind limb transplantation model. Stem Cell Res Ther 2021; 12:94. [PMID: 33514430 PMCID: PMC7847016 DOI: 10.1186/s13287-021-02162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 12/05/2022] Open
Abstract
Background The long-term survival after vascularized composite allotransplantation (VCA) is often limited by systemic rejection as well as the adverse effects of immunosuppressants. The stromal vascular fraction (SVF) can be expanded to produce adipose-derived stem cells (ADSC) which represents a combination of endothelial cells, preadipocytes, immune cells, and ADSC. It has been demonstrated that ADSC possess consistently reliable clinical results. However, literature is scarce regarding SVF in VCA. This study seeks to determine the impact of ex vivo allograft pretreatment in combination with SVF cells in the ability to promote composite tissue allotransplantation immunotolerance. Methods A rat hind limb allotransplant model was used to investigate the influence of ex vivo pretreatment of SVF and ADSC on VCA survival. Intravascular cell-free saline, ADSC, or SVF was infused into the models with immunosuppressants. The histopathological examination and duration that the allografts went without displaying symptoms of rejection was documented. Peripheral T lymphocytes and Tregs were quantified with flow cytometry while allotissue expressions of CD31 were quantified with immunohistochemical staining (IHC). ELISA was used to detect vascular endothelial growth factor (VEGF)-A as well as anti- and pro-inflammatory cytokines. Results We demonstrated that ex vivo treatment of allografts with SVF or ADSC prolonged allograft survival in contrast to medium control cohorts. There were also enhanced levels of immunomodulatory cytokines and increased VEGF-A and CD31 expression as well as reduced infiltration and proliferation of T lymphocytes along with raised Treg expressions. Conclusion These studies demonstrated that adipose-derived cellular therapies prolong graft survival in an allogenic hind limb transplantation model and have the potential to establish immunotolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02162-7.
Collapse
Affiliation(s)
- Jingting Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinmin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyue Hu
- Basic Medical School , Jining Medical University , Jining, 272000, China
| | - Yao Xiong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shoubao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Thompson ER, Connelly C, Ali S, Sheerin NS, Wilson CH. Cell therapy during machine perfusion. Transpl Int 2020; 34:49-58. [PMID: 33131097 DOI: 10.1111/tri.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
There has been increasing use of organs from extended criteria or donation after circulatory death donors to meet the demands of the transplant waiting list. Over the past decade, there has been considerable progress in technologies to preserve organs prior to transplantation to improve the function of these marginal organs. This has led to the development of normothermic machine perfusion, whereby an organ is perfused with warmed, oxygenated blood and nutrients to resume normal physiological function in an isolated ex-vivo platform. With this advance in preservation comes significant opportunities to recondition, repair and regenerate organs prior to transplantation using cellular therapies. This review aims to discuss the possibilities of machine perfusion technology; highlighting the potential for organ-directed reconditioning and the future avenues for investigation in this field.
Collapse
Affiliation(s)
- Emily R Thompson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chloe Connelly
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simi Ali
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
38
|
Abstract
Over the past decade, the clinical application of mesenchymal stromal cells (MSCs) has generated growing enthusiasm as an innovative cell-based approach in solid organ transplantation (SOT). These expectations arise from a significant number of both transplant- and non-transplant-related experimental studies investigating the complex anti-inflammatory, immunomodulatory, and tissue-repair properties of MSCs. Promising preclinical results have prompted clinical trials using MSC-based therapy in SOT. In the present review, the general properties of MSCs are summarized, with a particular emphasis on MSC-mediated impact on the immune system and in the ischemic conditioning strategy. Next, we chronologically detail all clinical trials using MSCs in the field of SOT. Finally, we envision the challenges and perspectives of MSC-based cell therapy in SOT.
Collapse
|
39
|
Dreyer GJ, Groeneweg KE, Heidt S, Roelen DL, van Pel M, Roelofs H, Huurman VAL, Bajema IM, Moes DJAR, Fibbe WE, Claas FHJ, van Kooten C, Rabelink RJ, de Fijter JW, Reinders MEJ. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: The Neptune study, a phase I single-center study. Am J Transplant 2020; 20:2905-2915. [PMID: 32277568 PMCID: PMC7586810 DOI: 10.1111/ajt.15910] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC) hold promise as a novel immune-modulatory therapy in organ transplantation. First clinical studies have used autologous MSCs; however, the use of allogeneic "off-the-shelf" MSCs is more sustainable for broad clinical implementation, although with the risk of causing sensitization. We investigated safety and feasibility of allogeneic MSCs in renal transplantation, using a matching strategy that prevented repeated mismatches. Ten patients received two doses of 1.5 × 106 /kg allogeneic MSCs 6 months after transplantation in a single-center nonrandomized phase Ib trial, followed by lowering of tacrolimus (trough level 3 ng/mL) in combination with everolimus and prednisone. Primary end point was safety, measured by biopsy proven acute rejection (BPAR) and graft loss 12 months after transplantation. Immune monitoring was performed before and after infusion. No BPAR or graft loss occurred and renal function remained stable. One patient retrospectively had DSAs against MSCs, formed before infusion. No major alterations in T and B cell populations or plasma cytokines were observed upon MSC infusion. Administration of HLA selected allogeneic MSCs combined with low-dose tacrolimus 6 months after transplantation is safe at least in the first year after renal transplantation. This sets the stage to further explore the efficacy of third-party MSCs in renal transplantation.
Collapse
Affiliation(s)
- Geertje J. Dreyer
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Koen E. Groeneweg
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Dave L. Roelen
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Melissa van Pel
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Volkert A. L. Huurman
- Department of Transplant Surgery and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Ingeborg M. Bajema
- Department of PathologyLeiden University Medical CenterLeidenthe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Willem E. Fibbe
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Frans H. J. Claas
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Rabelink J. Rabelink
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
40
|
Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. Eur J Pharmacol 2020; 883:173343. [PMID: 32629029 DOI: 10.1016/j.ejphar.2020.173343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Renal fibrosis is a progressive pathological process that eventually leads to end-stage renal failure with limited therapeutic options. The aim of this study was to investigate the nephron-protective effect of human umbilical cord mesenchymal stem cells (ucMSCs) on renal fibrosis. UcMSCs were intravenously injected into renal fibrosis mice induced by aristolochic acid (AA) and co-cultured with HK-2 cells induced by TGF-β1, respectively. The kidney functions including serum creatinine (Scr) and blood urea nitrogen (BUN) levels, and histopathology were examined after treated with stem cells and normal saline as control. Immunohistochemical staining, immunofluorescent staining, and Western blot analysis were used to assessed the expression of proteins associated with epithelial to mesenchymal transition (EMT) and TGF-β/Smad signaling pathway. The results showed that ucMSCs effectively improved the kidney function and pathological structure, reduced AA-induced fibrosis and extracellular matrix deposition. Besides, UcMSCs significantly inhibited the EMT process and TGF-β1/Smad signaling pathway in AA-induced mice and TGF-β1-induced HK-2 cells compared to the control (p < 0.05). Our data suggested that ucMSCs play as a nephron-protective role in anti-fibrosis through inhibiting the activation of TGF-β1/Smad signaling pathway.
Collapse
|
41
|
Gao C, Wang X, Lu J, Li Z, Jia H, Chen M, Chang Y, Liu Y, Li P, Zhang B, Du X, Qi F. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation. Stem Cell Res Ther 2020; 11:241. [PMID: 32552823 PMCID: PMC7301524 DOI: 10.1186/s13287-020-01752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have become a promising candidate for cell-based immune therapy for acute rejection (AR) after heart transplantation due to possessing immunomodulatory properties. In this study, we evaluated the efficacy of soluble fibronectin-like protein 2 (sFgl2) overexpressing mesenchymal stem cells (sFgl2-MSCs) in inhibiting AR of heart transplantation in mice by regulating immune tolerance through inducing M2 phenotype macrophage polarization. METHODS AND RESULTS The sFgl2, a novel immunomodulatory factor secreted by regulatory T cells, was transfected into MSCs to enhance their immunosuppressive functions. After being co-cultured for 72 h, the sFgl2-MSCs inhibited M1 polarization whereas promoted M2 of polarization macrophages through STAT1 and NF-κB pathways in vitro. Besides, the sFgl2-MSCs significantly enhanced the migration and phagocytosis ability of macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Further, the application potential of sFgl2-MSCs in AR treatment was demonstrated by heterotopic cardiac transplantation in mice. The tissue damage and macrophage infiltration were evaluated by H&E and immunohistochemistry staining, and the secretion of inflammatory cytokines was analyzed by ELISA. The results showed that sFgl2-MSCs injected intravenously were able to locate in the graft, promote the M2 polarization of macrophages in vivo, regulate the local and systemic immune response, significantly protect tissues from damaging, and finally prolonged the survival time of mice heart grafts. CONCLUSION sFgl2-MSCs ameliorate AR of heart transplantation by regulating macrophages, which provides a new idea for the development of anti-AR treatment methods after heart transplantation.
Collapse
Affiliation(s)
- Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Zhilin Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Haowen Jia
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Minghao Chen
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yuchen Chang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin, 300052, China.
| |
Collapse
|
42
|
Sergeant E, Buysse M, Devos T, Sprangers B. Multipotent mesenchymal stromal cells in kidney transplant recipients: The next big thing? Blood Rev 2020; 45:100718. [PMID: 32507576 DOI: 10.1016/j.blre.2020.100718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived multipotent mesenchymal stromal cells (BM-MSCs) are non-haematopoietic cells present in the bone marrow stroma. They have the potential to modulate immune responses and exhibit a capacity to promote immune tolerance. Although the efficacy of immunosuppressive drugs has improved significantly, thereby ameliorating renal graft outcome, the use of these drugs still carries an increased risk of malignancies and opportunistic infections, and sometimes fail to prevent chronic allograft rejection or recurrence of the original kidney disease. As such, there is strong interest in ways to induce immune tolerance and thereby tempering or avoiding conventional immunosuppressive drugs. Cellular immunomodulation by MSCs can create a new way to induce transplant tolerance. This review will give a critical overview of the use of BM-MSCs as a cell-based immunosuppressive therapy in kidney transplant recipients. In vitro studies revealed several mechanisms that can clarify the immunomodulatory potential of BM-MSCs. Several clinical studies showed that BM-MSCs can modulate T-cell proliferation and can alter the ratio of T-cell subsets, favoring immune tolerance. However, this immunomodulation was often not associated with better clinical outcome during follow-up when compared to control groups. Some clinical studies found that BM-MSCs allow a reduction in dose of conventional immunosuppressive drugs and prevent acute graft dysfunction. Most clinical studies emphasized that BM-MSC infusion was safe. This review suggests that the use of BM-MSCs as cell-based immunosuppression therapy in kidney transplant recipients has potential, however some caution regarding their clinical use is appropriate. Mechanisms by which BM-MSCs induce transplant tolerance and factors that can alter their functionality need to be analyzed in more detail before clinical use.
Collapse
Affiliation(s)
- Elien Sergeant
- Division of Internal Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Malicorne Buysse
- Division of Hematology, University Hospitals Ghent, Ghent, Belgium.
| | - Timothy Devos
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Hematology, University Hospitals Leuven, Leuven, Belgium.
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium; Division of Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Effect of Timing and Complement Receptor Antagonism on Intragraft Recruitment and Protolerogenic Effects of Mesenchymal Stromal Cells in Murine Kidney Transplantation. Transplantation 2020; 103:1121-1130. [PMID: 30801518 DOI: 10.1097/tp.0000000000002611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have protolerogenic effects in renal transplantation, but they induce long-term regulatory T cells (Treg)-dependent graft acceptance only when infused before transplantation. When given posttransplant, MSCs home to the graft where they promote engraftment syndrome and do not induce Treg. Unfortunately, pretransplant MSC administration is unfeasible in deceased-donor kidney transplantation. METHODS To make MSCs a therapeutic option also for deceased organ recipients, we tested whether MSC infusion at the time of transplant (day 0) or posttransplant (day 2) together with inhibition of complement receptors prevents engraftment syndrome and allows their homing to secondary lymphoid organs for promoting tolerance. We analyzed intragraft and splenic MSC localization, graft survival, and alloimmune response in mice recipients of kidney allografts and syngeneic MSCs given on day 0 or on posttransplant day 2. C3a receptor (C3aR) or C5a receptor (C5aR) antagonists were administered to mice in combination with the cells or were used together to treat MSCs before infusion. RESULTS Syngeneic MSCs given at day 0 homed to the spleen increased Treg numbers and induced long-term graft acceptance. Posttransplant MSC infusion, combined with a short course of C3aR or C5aR antagonist or administration of MSCs pretreated with C3aR and C5aR antagonists, prevented intragraft recruitment of MSCs and graft inflammation, inhibited antidonor T-cell reactivity, but failed to induce Treg, resulting in mild prolongation of graft survival. CONCLUSIONS These data support testing the safety/efficacy profile of administering MSCs on the day of transplant in deceased-donor transplant recipients and indicate that complement is crucial for MSC recruitment into the kidney allograft.
Collapse
|
44
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The shortage of kidneys for transplantation has led to an urgent need to efficiently utilize the available cadaveric kidneys. Efficient use of machine perfusion may potentially lead to increased use of marginal kidneys by lowering the incidence of delayed graft function (DGF) and improving graft outcomes. RECENT FINDINGS Machine perfusion has had a resurgence in the last 10-15 years over static cold storage (SCS). Hypothermic machine perfusion (HMP), the most commonly utilized type of machine perfusion reduces the rates of DGF when compared with SCS with a trend towards improving the overall graft survival. SUMMARY Despite reduction in the rates of DGF by HMP, its effect on long-term renal and patient outcomes is not clearly known. There is limited clinical literature in the use of normothermic machine perfusion (NMP) but a few pilot studies have shown its potential to resuscitate commonly discarded kidneys. In addition to preservation, machine perfusion also allows for various diagnostic and therapeutic interventions during the preservation period to assess and optimize the viability of the procured kidney.
Collapse
|
46
|
Negi N, Griffin MD. Effects of mesenchymal stromal cells on regulatory T cells: Current understanding and clinical relevance. Stem Cells 2020; 38:596-605. [PMID: 31995249 PMCID: PMC7217190 DOI: 10.1002/stem.3151] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
The immunomodulatory potential of mesenchymal stromal cells (MSCs) and regulatory T cells (T‐reg) is well recognized by translational scientists in the field of regenerative medicine and cellular therapies. A wide range of preclinical studies as well as a limited number of human clinical trials of MSC therapies have not only shown promising safety and efficacy profiles but have also revealed changes in T‐reg frequency and function. However, the mechanisms underlying this potentially important observation are not well understood and, consequently, the optimal strategies for harnessing MSC/T‐reg cross‐talk remain elusive. Cell‐to‐cell contact, production of soluble factors, reprogramming of antigen presenting cells to tolerogenic phenotypes, and induction of extracellular vesicles (“exosomes”) have emerged as possible mechanisms by which MSCs produce an immune‐modulatory milieu for T‐reg expansion. Additionally, these two cell types have the potential to complement each other's immunoregulatory functions, and a combinatorial approach may exert synergistic effects for the treatment of immunological diseases. In this review, we critically assess recent translational research related to the outcomes and mechanistic basis of MSC effects on T‐reg and provide a perspective on the potential for this knowledge base to be further exploited for the treatment of autoimmune disorders and transplants.
Collapse
Affiliation(s)
- Neema Negi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
47
|
Update on mesenchymal stromal cell studies in organ transplant recipients. Curr Opin Organ Transplant 2020; 25:27-34. [DOI: 10.1097/mot.0000000000000716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020; 64:101330. [PMID: 32473704 DOI: 10.1016/j.tice.2020.101330] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent, genomic stable, self-renewable, and culturally expandable adult stem cells. MSCs facilitate tissue development, maintenance and repair, and produce secretory factors that support engraftment and trophic functions, marking them an attractive option in cell therapy, regenerative medicine and tissue engineering. METHOD In this review, we summarize the recent researches regarding the isolation and characterization of MSCs, therapeutic applications and advanced engineering techniques. We also discuss the advantages and limitations that remain to be overcome for MSCs based therapy. RESULTS It has been demonstrated that MSCs are able to modulate endogenous tissue and immune cells. Preclinical studies and early phase clinical trials have shown their great potential for tissue engineering of bone, cartilage, marrow stroma, muscle, fat, and other connective tissues. CONCLUSIONS MSC-based therapy show considerable promise to rebuild damaged or diseased tissues, which could be a promising therapeutic method for regeneration medicine.
Collapse
|
49
|
Sávio-Silva C, Soinski-Sousa PE, Balby-Rocha MTA, Lira ÁDO, Rangel ÉB. Mesenchymal stem cell therapy in acute kidney injury (AKI): review and perspectives. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2020; 66:s45-s54. [DOI: 10.1590/1806-9282.66.s1.45] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Shao J, Wang C, Fu P, Chen F, Zhang Y, Wei J. Impact of Donor and Recipient CYP3A5*3 Genotype on Tacrolimus Population Pharmacokinetics in Chinese Adult Liver Transplant Recipients. Ann Pharmacother 2019; 54:652-661. [PMID: 31888346 DOI: 10.1177/1060028019897050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Tacrolimus (TAC) is widely used after liver transplantation, but the therapeutic window is narrow. Objective: The purpose was to study both donor and recipient CYP3A5*3 genotypes affecting TAC apparent clearance rate (CL/F) and investigate a TAC population pharmacokinetic (PPK) model in Chinese liver transplant recipients for potential starting-dose individualized medication. Methods: A data set of 721 TAC concentrations was obtained from 43 adult liver transplant recipients. The TAC PPK model was analyzed using nonlinear mixed-effects modeling. Potential covariates, including demographic characteristics, physiological and pathological data, concomitant medications, and CYP3A5*3 genotype, were evaluated. The final model was validated using normalized prediction distribution errors and bootstrapping. Results: A 2-compartment model with first-order absorption and elimination was used to describe TAC disposition. Population estimates of TAC, CL/F, apparent central distribution volume (V2/F), rate of absorption (Ka), and apparent peripheral distribution volume (V3/F) were 18.1 L/h (12%), 72.7 L (34%), 0.163 h−1 (17%), and 412 L (21%), respectively. The model and estimated parameters were found to be stable. Other covariates did not influence TAC CL/F. Both donor and recipient CYP3A5*1 genotypes were significantly correlated with TAC clearance, and CL/F was 1.70-fold higher in both donor and recipient CYP3A5*1 carriers than in noncarriers among Chinese liver transplant recipients. Conclusion and Relevance: A PPK model of TAC was established in Chinese adult liver transplantation recipients for starting-dose individualized medication, which can be expanded to optimize clinical efficacy and minimize toxicity with therapeutic drug monitoring.
Collapse
Affiliation(s)
- Jia Shao
- Tianjin First Central Hospital, Tianjin, China
| | - Chenyu Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Fu
- Tianjin First Central Hospital, Tianjin, China
| | - Fan Chen
- Tianjin First Central Hospital, Tianjin, China
| | - Yi Zhang
- Tianjin First Central Hospital, Tianjin, China
| | - Jinxia Wei
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|