1
|
Moshkelgosha S, Levy L, Safavi S, Karunagaran S, Wilson G, Renaud-Picard B, Madu G, Ramchandani R, Oliver J, Watanabe T, Bei KF, Joe B, Li Q, Huszti E, Cheung M, Hedley D, Yeung J, Keshavjee S, Martinu T, Juvet S. Emergence of a senescent and inflammatory pulmonary CD4 + T cell population prior to lung allograft failure. SCIENCE ADVANCES 2025; 11:eadp9052. [PMID: 40117366 PMCID: PMC11927631 DOI: 10.1126/sciadv.adp9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Survival after lung transplantation is limited by chronic lung allograft dysfunction (CLAD), an alloimmune fibrotic process leading to death or retransplantation after a median of 6 years. Immunosuppression fails to prevent CLAD, suggesting the existence of drug-resistant alloimmune pathways. We used time-of-flight mass cytometry to identify cells enriched in the bronchoalveolar lavage of patients with subsequent acute lung allograft dysfunction (ALAD), a risk factor for CLAD. We show that CD4+CD57+PD1+ T cells emerge in stable patients, conferring risks for ALAD, CLAD, and death. These cells are senescent, secrete inflammatory cytokines, and fall into two oligoclonal subsets with putative cytotoxic and follicular helper functions. Last, they are associated with fibrosis in mouse and human lung allografts, where they localize near airway epithelium and B cells. Together, our findings reveal an inflammatory T cell population that predicts future lung allograft dysfunction and may represent a rational therapeutic target.
Collapse
Affiliation(s)
- Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Liran Levy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahideh Safavi
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Barts Health NHS Trust, London, UK
| | - Sumiha Karunagaran
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Gavin Wilson
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Benjamin Renaud-Picard
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Nouvel Hôpital Civil, Strasbourg, France
| | - Goodness Madu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Rashi Ramchandani
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Oliver
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Tatsuaki Watanabe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ke Fan Bei
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Betty Joe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Qixuan Li
- Biostatistics Department, University Health Network, Toronto, ON, Canada
| | - Ella Huszti
- Biostatistics Department, University Health Network, Toronto, ON, Canada
| | - May Cheung
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - David Hedley
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan Yeung
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Zhanzak Z, Johnson AC, Foster P, Cardenas MA, Morris AB, Zhang J, Karadkhele G, Badell IR, Morris AA, Au-Yeung BB, Roversi FM, Silva JAF, Breeden C, Hadley A, Zhang W, Larsen CP, Kissick HT. Identification of indirect CD4 + T cell epitopes associated with transplant rejection provides a target for donor-specific tolerance induction. Immunity 2025; 58:448-464.e6. [PMID: 39889703 DOI: 10.1016/j.immuni.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/24/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Antibodies against the donor human leukocyte antigen (HLA) molecules drive late transplant failure, with HLA-DQ donor-specific antibodies (DSAs) posing the highest rejection risk. Here, we investigated the role of indirect CD4+ T cell epitopes-donor-derived peptides presented by recipient major histocompatibility complex (MHC) class II-in DSA formation. Antigen mapping of samples from HLA-DQ DSA-positive kidney and heart transplant recipients revealed two polymorphic hotspots in donor HLA-DQ that generated alloreactive peptides. Antigen mapping of indirect CD4+ T cell epitopes in a mouse model of fully MHC mismatched skin graft transplantation (BALB/c to C57BL/6) identified a similar epitope (amino acids 287-301) derived from the donor H2-Kd. Tetramer-binding Kd287+ CD4+ T cells were detected during rejection and their transfer into T cell-deficient mice induced DSA. Systemic delivery of high-dose donor H2-Kd peptides combined with CTLA4-Ig reduced the frequencies of Kd287+ CD4+ T cells and DSA formation. Thus, targeting a narrow range of donor antigens may prevent DSA formation and improve transplant outcomes.
Collapse
Affiliation(s)
- Zhuldyz Zhanzak
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aileen C Johnson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Foster
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna B Morris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joan Zhang
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Geeta Karadkhele
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - I Raul Badell
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alanna A Morris
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Byron B Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Immunology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine Atlanta, GA, USA
| | - Fernanda M Roversi
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Juliete A F Silva
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Cynthia Breeden
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette Hadley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiwen Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian P Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Liu Y, Feng H, Li K, Li R, Zhang XJ, Tian Y, Fang Y, Zhou Y, Liu L, Zhang X. Donor MHC-specific thymus vaccination allows for immunocompatible allotransplantation. Cell Res 2025; 35:132-144. [PMID: 39748049 PMCID: PMC11770082 DOI: 10.1038/s41422-024-01049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025] Open
Abstract
Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection. We herein present a "donor MHC-specific thymus vaccination" (DMTV) strategy to induce T cell tolerance to both autologous and allogeneic donor MHC. Allogeneic MHC molecules were expressed in the recipient thymus through adeno-associated virus-mediated delivery, which led to stable expression of allogeneic MHC together with the autologous MHC in the engineered thymus. During local T cell education, those T cells recognizing either autologous MHC or allogeneic MHC were equally depleted. We constructed C57BL/6-MHC and BALB/c-MHC dual immunocompatible mice via thymus vaccination of C57BL/6-MHC into the BALB/c thymus and observed long-term graft tolerance after transplantation of C57BL/6 skin and C57BL/6 mouse embryonic stem cells into the vaccinated BALB/c mice. We also validated our DMTV strategy in a bone marrow, liver, thymus (BLT)-humanized mouse model for immunocompatible allotransplantation of human embryonic stem cells. Our study suggests that the DMTV strategy is a potent avenue to introduce a donor compatible immune system in recipients, which overcomes the clinical dilemma of the extreme shortage of MHC-matched donor organs for treating patients with end-stage organ failure.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Ke Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Ruiyi Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Xiao-Jie Zhang
- Department of Gynaecology, Jing'an District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ye Tian
- School of Foreign Studies, Tongji University, Shanghai, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Stem Cell Research Center and Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.
| |
Collapse
|
4
|
Nicosia M, Valujskikh A. Recognizing Complexity of CD8 T Cells in Transplantation. Transplantation 2024; 108:2186-2196. [PMID: 38637929 PMCID: PMC11489323 DOI: 10.1097/tp.0000000000005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
5
|
Lonez C, Breman E. Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met? Cells 2024; 13:146. [PMID: 38247837 PMCID: PMC10814647 DOI: 10.3390/cells13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
Collapse
|
6
|
Estimation of Sensitization Status in Renal Transplant Recipients by Assessing Indirect Pathway CD4+ T cell Response to Donor Cell-pulsed Dendritic Cell. Transplantation 2023; 107:1079-1088. [PMID: 36814087 DOI: 10.1097/tp.0000000000004491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND . Generation of donor-specific human leukocyte antigen antibody (DSA) via indirect allorecognition is detrimental to long-term survival of transplant organs. The detection of such immune responses would make it possible to define patients with high risk of sensitization. In this study, we established a novel method for evaluating indirect allorecognition to assess sensitization in kidney transplant recipients. METHODS . Recipient CD14+ monocytes were mixed with donor peripheral blood mononuclear cells; cultured in the presence of IL-4, GM-CSF, IL-1β, and TNFα; and used as pulsed dendritic cells (DCs). Cell proliferation and cytokine production were evaluated by carboxyfluorescein diacetate succinimidyl ester-based T cell proliferation assay and Enzyme-Linked ImmunoSpot assay, respectively. RESULTS . CD4+ T cell proliferation was strongly observed in following coculture with allogeneic antigen-pulsed DC leading to interferon-γ and IL-21 production. About 1% of CD4+ T cells exhibited Tfh-like phenotype (PD-1highCXCR5+ICOS+CD40L+). Recipient DC pulsed with donor peripheral blood mononuclear cells was cocultured with recipient CD45RA+CD4+ and CD45RA-CD4+ (generally defined as naive and memory in humans, respectively) T cells. Irrespective of preformed or de novo DSA status, CD45RA+CD4+ T cells constantly produced IL-21. In contrast, IL-21-produced CD45RA-CD4+ T cells were significantly higher in preformed DSA-positive patients than those in negative patients (80.8 ± 51.2 versus 14.8 ± 20.4, P < 0.001). In de novo DSA-positive patients, IL-21-produced CD45RA-CD4+ T cells were significantly increased after transplantation compared with before transplantation (9.23 ± 9.08 versus 43.9 ± 29.1, P < 0.001). CONCLUSIONS . Assessment of indirect pathway CD4+ T cell response could provide new insights into the underlying mechanism of de novo DSA production, leading to the development of effective strategies against antibody-mediated rejection.
Collapse
|
7
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Extracellular Vesicle-Associated TWEAK Contributes to Vascular Inflammation and Remodeling During Acute Cellular Rejection. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Senev A, Van Loon E, Lerut E, Coemans M, Callemeyn J, Daniëls L, Kerkhofs J, Koshy P, Kuypers D, Lamarthée B, Sprangers B, Tinel C, Van Craenenbroeck AH, Van Sandt V, Emonds MP, Naesens M. Association of Predicted HLA T-Cell Epitope Targets and T-Cell-Mediated Rejection After Kidney Transplantation. Am J Kidney Dis 2022; 80:718-729.e1. [PMID: 35690154 DOI: 10.1053/j.ajkd.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/09/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS Observational clinical data and residual confounding. CONCLUSIONS In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.
Collapse
Affiliation(s)
- Aleksandar Senev
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Jasper Callemeyn
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Liesbeth Daniëls
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Ben Sprangers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Vicky Van Sandt
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Marie-Paule Emonds
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
12
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Heterologous Immunity of Virus-Specific T Cells Leading to Alloreactivity: Possible Implications for Solid Organ Transplantation. Viruses 2021; 13:v13122359. [PMID: 34960628 PMCID: PMC8706157 DOI: 10.3390/v13122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.
Collapse
|
14
|
Pure T-cell mediated rejection following kidney transplant according to response to treatment. PLoS One 2021; 16:e0256898. [PMID: 34478461 PMCID: PMC8415619 DOI: 10.1371/journal.pone.0256898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The focus of studies on kidney transplantation (KT) has largely shifted from T-cell mediated rejection (TCMR) to antibody-mediated rejection (ABMR). However, there are still cases of pure acute TCMR in histological reports, even after a long time following transplant. We thus evaluated the impact of pure TCMR on graft survival (GS) according to treatment response. We also performed molecular diagnosis using a molecular microscope diagnostic system on a separate group of 23 patients. A total of 63 patients were divided into non-responders (N = 22) and responders (N = 44). Non-response to rejection treatment was significantly associated with the following factors: glomerular filtration rate (GFR) at biopsy, ΔGFR, TCMR within one year, t score, and IF/TA score. We also found that non-responder vs. responder (OR = 3.31; P = 0.036) and lower GFR at biopsy (OR = 0.56; P = 0.026) were independent risk factors of graft failure. The responders had a significantly superior overall GS rate compared with the non-responders (P = 0.004). Molecular assessment showed a good correlation with histologic diagnosis in ABMR, but not in TCMR. Solitary TCMR was a significant risk factor of graft failure in patients who did not respond to rejection treatment.
Collapse
|
15
|
Kim JY, Lei Z, Maienschein-Cline M, Chlipala GE, Balamurugan A, McDiarmid SV, Azari K, Yang OO. Longitudinal Analysis of the T-cell Receptor Repertoire in Graft-infiltrating Lymphocytes Following Hand Transplantation. Transplantation 2021; 105:1502-1509. [PMID: 33208695 PMCID: PMC8221714 DOI: 10.1097/tp.0000000000003535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND T lymphocyte-mediated acute rejection is a significant complication following solid organ transplantation. Standard methods of monitoring for acute rejection rely on assessing histological tissue damage but do not define the immunopathogenesis. Additionally, current therapies for rejection broadly blunt cellular immunity, creating a high risk for opportunistic infections. There is, therefore, a need to better understand the process of acute cellular rejection to help develop improved prognostic tests and narrowly targeted therapies. METHODS Through next-generation sequencing, we characterized and compared the clonal T-cell receptor (TCR) repertoires of graft-infiltrating lymphocytes (GILs) and blood-derived lymphocytes from a hand transplant recipient over 420 days following transplantation. We also tracked the TCR clonal persistence and V beta (BV) gene usage, evaluating overlap between these 2 compartments. RESULTS TCR repertoires of blood and GIL populations remained distinct throughout the sampling period, and differential BV usage was consistently seen between these compartments. GIL TCR clones persisted over time and were seen in only limited frequency in the blood T-lymphocyte populations. CONCLUSIONS We demonstrate that blood monitoring of TCR clones does not reveal the pathogenic process of acute cellular rejection in transplanted tissue. GILs show clonal persistence with biased BV usage, suggesting that tissue TCR clonal monitoring could be useful, although a deeper understanding is necessary to prognosticate rejection based on TCR clonal repertoires. Finally, the distinct TCR BV usage bias in GILs raises the possibility for prevention and therapy of acute cellular rejection based on targeting of specific TCR clones.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Division of Infectious Diseases, Department of Medicine, University of Illinois College of Medicine Peoria, Peoria, IL
| | - Zhengdeng Lei
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL
| | - George E. Chlipala
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL
| | - Arumugam Balamurugan
- Division of Infectious Diseases, Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Sue V. McDiarmid
- Department of Pediatrics, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Department of Surgery, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kodi Azari
- Department of Surgery, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Department of Orthopaedic Surgery, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
16
|
Garcia-Sanchez C, Casillas-Abundis MA, Pinelli DF, Tambur AR, Hod-Dvorai R. Impact of SIRPα polymorphism on transplant outcomes in HLA-identical living donor kidney transplantation. Clin Transplant 2021; 35:e14406. [PMID: 34180101 DOI: 10.1111/ctr.14406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Signal-regulatory protein α (SIRPα), a polymorphic inhibitory membrane-bound receptor, and its ligand CD47 have recently been implicated in the modulation of innate immune allorecognition in murine models. Here, we investigate the potential impact of SIRPα donor-recipient mismatches on graft outcomes in human kidney transplantation. To eliminate the specific role of HLA-matching in alloresponse, we genotyped the two most common variants of SIRPα in a cohort of 55 HLA-identical, biologically-related, donor-recipient pairs. 69% of pairs were SIRPα identical. No significant differences were found between donor-recipient SIRPα-mismatch status and T cell-mediated rejection/borderline changes (25.8% vs. 25%) or slow graft function (15.8% vs. 17.6%). A trend towards more graft failure (GF) (23.5% vs. 5.3%, P = .06), interstitial inflammation (50% vs. 23%, P = .06) and significant changes in peritubular capillaritis (ptc) (25% vs. 0%, P = .02) were observed in the SIRPα-mismatched group. Unexpectedly, graft-versus-host (GVH) SIRPα-mismatched pairs exhibited higher rates of GF and tubulitis (38% vs. 5%, P = .031 and .61 ± .88 vs. 0, P = .019; respectively). Whether the higher prevalence of ptc in SIRPα-mismatched recipients and the higher rates of GF in GVH SIRPα-mismatched pairs represent a potential role for SIRPα in linking innate immunity and alloimmune rejection requires further investigation in larger cohorts.
Collapse
Affiliation(s)
- Cynthia Garcia-Sanchez
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - M Aurora Casillas-Abundis
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - David F Pinelli
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Anat R Tambur
- Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Reut Hod-Dvorai
- Pathology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
17
|
Pre-transplant donor-reactive IL-21 producing T cells as a tool to identify an increased risk for acute rejection. Sci Rep 2021; 11:12445. [PMID: 34127739 PMCID: PMC8203783 DOI: 10.1038/s41598-021-91967-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Pre-transplant screening focuses on the detection of anti-HLA alloantibodies. Previous studies have shown that IFN-γ and IL-21 producing T cells are associated with the development of acute rejection (AR). The aim of this study, was to assess whether pre-transplant donor-reactive T cells and/or B cells are associated with increased rejection risk. Samples from 114 kidney transplant recipients (transplanted between 2010 and 2013) were obtained pre-transplantation. The number of donor-reactive IFN-γ and IL-21 producing cells was analyzed by ELISPOT assay. The presence of donor specific antibodies (DSA) was also determined before transplantation. Numbers of donor-reactive IFN-γ producing cells were similar in patients with or without AR whereas those of IL-21 producing cells were higher in patients with AR (p = 0.03). Significantly more patients with AR [6/30(20%)] had detectable DSA compared to patients without AR [5/84(5.9%), p = 0.03]. Multivariate logistic regression showed that donor age (OR 1.06), pre-transplant DSA (OR 5.61) and positive IL-21 ELISPOT assay (OR 2.77) were independent predictors of an increased risk for the development of AR. Aside from an advanced donor-age and pre-transplant DSA, also pre-transplant donor-reactive IL-21 producing cells are associated with the development of AR after transplantation.
Collapse
|
18
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
19
|
Schaenman JM, Rossetti M, Liang EC, Lum E, Abdalla B, Bunnapradist S, Pham PT, Danovitch G, Reed EF, Cole SW. Leukocyte transcriptome indicators of development of infection in kidney transplant recipients. Clin Transplant 2021; 35:e14252. [PMID: 33570750 PMCID: PMC9341289 DOI: 10.1111/ctr.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 12/01/2022]
Abstract
After kidney transplantation, infection and death are important clinical complications, especially for the growing numbers of older patients with limited resilience to withstand adverse events. Evaluation of changes in gene expression in immune cells can reveal the underlying mechanisms behind vulnerability to infection. A cohort of 60 kidney transplant recipients was evaluated. Gene expression in peripheral blood mononuclear cells 3 months after kidney transplantation was analyzed to compare differences between patients with infection and those who were infection-free in the first-year post-transplant. Pro-inflammatory genes such as IL1B, CCL4, and TNF were found to be downregulated in post-transplant PBMC from patients who developed infection. In contrast, genes involved in metabolism, HLA genes, and transcripts involved in type I interferon innate antiviral responses were found to be upregulated. Promoter-based bioinformatic analyses implicated increased activity of interferon regulatory factors, erythroid nuclear factor (E2), and CCAAT-enhancer-binding protein (C/EBP) in patients who developed infections. Differential patterns of gene expression were observed in patients who developed infection after kidney transplantation, with patterns distinct from changes associated with patient age, suggesting possible mechanisms behind vulnerability to infection. Assessment of gene expression in blood may offer an approach for patient risk stratification and monitoring after transplantation.
Collapse
Affiliation(s)
- Joanna M Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emily C Liang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Erik Lum
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Basmah Abdalla
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Phuong Thu Pham
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gabriel Danovitch
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steve W Cole
- Department of Medicine, Division of Hematology-Oncology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Oberholtzer N, Atkinson C, Nadig SN. Adoptive Transfer of Regulatory Immune Cells in Organ Transplantation. Front Immunol 2021; 12:631365. [PMID: 33737934 PMCID: PMC7960772 DOI: 10.3389/fimmu.2021.631365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic graft rejection remains a significant barrier to solid organ transplantation as a treatment for end-organ failure. Patients receiving organ transplants typically require systemic immunosuppression in the form of pharmacological immunosuppressants for the duration of their lives, leaving these patients vulnerable to opportunistic infections, malignancies, and other use-restricting side-effects. In recent years, a substantial amount of research has focused on the use of cell-based therapies for the induction of graft tolerance. Inducing or adoptively transferring regulatory cell types, including regulatory T cells, myeloid-derived suppressor cells, and IL-10 secreting B cells, has the potential to produce graft-specific tolerance in transplant recipients. Significant progress has been made in the optimization of these cell-based therapeutic strategies as our understanding of their underlying mechanisms increases and new immunoengineering technologies become more widely available. Still, many questions remain to be answered regarding optimal cell types to use, appropriate dosage and timing, and adjuvant therapies. In this review, we summarize what is known about the cellular mechanisms that underly the current cell-based therapies being developed for the prevention of allograft rejection, the different strategies being explored to optimize these therapies, and all of the completed and ongoing clinical trials involving these therapies.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
21
|
Kroemer A, Belyayev L, Khan K, Loh K, Kang J, Duttargi A, Dhani H, Sadat M, Aguirre O, Gusev Y, Bhuvaneshwar K, Kallakury B, Cosentino C, Houlihan B, Diaz J, Moturi S, Yazigi N, Kaufman S, Subramanian S, Hawksworth J, Girlanda R, Robson SC, Matsumoto CS, Zasloff M, Fishbein TM. Rejection of intestinal allotransplants is driven by memory T helper type 17 immunity and responds to infliximab. Am J Transplant 2021; 21:1238-1254. [PMID: 32882110 PMCID: PMC8049508 DOI: 10.1111/ajt.16283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Intestinal transplantation (ITx) can be life-saving for patients with advanced intestinal failure experiencing complications of parenteral nutrition. New surgical techniques and conventional immunosuppression have enabled some success, but outcomes post-ITx remain disappointing. Refractory cellular immune responses, immunosuppression-linked infections, and posttransplant malignancies have precluded widespread ITx application. To shed light on the dynamics of ITx allograft rejection and treatment resistance, peripheral blood samples and intestinal allograft biopsies from 51 ITx patients with severe rejection, alongside 37 stable controls, were analyzed using immunohistochemistry, polychromatic flow cytometry, and reverse transcription-PCR. Our findings inform both immunomonitoring and treatment. In terms of immunomonitoring, we found that while ITx rejection is associated with proinflammatory and activated effector memory T cells in the blood, evidence of treatment efficacy can only be found in the allograft itself, meaning that blood-based monitoring may be insufficient. In terms of treatment, we found that the prominence of intra-graft memory TNF-α and IL-17 double-positive T helper type 17 (Th17) cells is a leading feature of refractory rejection. Anti-TNF-α therapies appear to provide novel and safer treatment strategies for refractory ITx rejection; with responses in 14 of 14 patients. Clinical protocols targeting TNF-α, IL-17, and Th17 warrant further testing.
Collapse
Affiliation(s)
- Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Leonid Belyayev
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC,Department of Gastroenterology, Hepatology and Nutrition, Children’s National Medical Center, Washington, DC
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Anju Duttargi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Harmeet Dhani
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Oswaldo Aguirre
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC
| | - Christopher Cosentino
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Brenna Houlihan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Jamie Diaz
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD
| | - Sangeetha Moturi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Nada Yazigi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Jason Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD
| | - Raffaele Girlanda
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Simon C. Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
22
|
Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res 2020; 49:102035. [PMID: 33221677 DOI: 10.1016/j.scr.2020.102035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
The development of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka and colleagues in 2006 has led to a potential new paradigm in cellular therapeutics, including the possibility of producing patient-specific, disease-specific and immune matched allogeneic cell therapies. One can envisage two routes to immunologically compatible iPSC therapies: using genetic modification to generate a 'universal donor' with reduced expression of Human Leukocyte Antigens (HLA) and other immunological targets or developing a haplobank containing iPSC lines specifically selected to provide HLA matched products to large portions of the population. HLA matched lines can be stored in a designated physical or virtual global bank termed a 'haplobank'. The process of 'iPSC haplobanking' refers to the banking of iPSC cell lines, selected to be homozygous for different HLA haplotypes, from which therapeutic products can be derived and matched immunologically to patient populations. By matching iPSC and derived products to a patient's HLA class I and II molecules, one would hope to significantly reduce the risk of immune rejection and the use of immunosuppressive medication. Immunosuppressive drugs are used in several conditions (including autoimmune disease and in transplantation procedures) to reduce rejection of infused cells, or transplanted tissue and organs, due to major and minor histocompatibility differences between donor and recipient. Such regimens can lead to immune compromise and pathological consequences such as opportunistic infections or malignancies due to decreased cancer immune surveillance. In this article, we will discuss what is practically involved if one is developing and executing an iPSC haplobanking strategy.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.
| | - Paul J Fairchild
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Carlheinz R Müller
- Zentrales Knochenmarkspender-Register Deutschland (ZKRD), Helmholtzstraße, 1089081 Ulm, Germany
| | - Marc L Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Jihwan Song
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Immunological organ modification during Ex Vivo machine perfusion: The future of organ acceptance. Transplant Rev (Orlando) 2020; 35:100586. [PMID: 33876730 DOI: 10.1016/j.trre.2020.100586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Ex vivo machine perfusion (EVMP) has gained revitalized interest in recent years due to the increasing use of marginal organs which poorly tolerate the standard preservation method static cold storage (SCS). EVMP improves on SCS in a number of ways, most notably by the potential for reconditioning of the donor organ prior to transplantation without the ethical concerns associated with organ modulation before procurement. Immunomodulatory therapies administered during EVMP can influence innate and adaptive immune responses to reduce production of inflammatory molecules and polarize tissue-resident immune cells to a regulatory phenotype. The targeted inhibition of an inflammatory response can reduce ischemia-reperfusion injury following organ reoxygenation and therefore reduce incidence of graft dysfunction and rejection. Numerous approaches to modulate the inflammatory response have been applied in experimental models, with the ultimate goal of clinical translatability. Strategies to target the innate immune system include inhibiting inflammatory signaling pathways, upregulating anti-inflammatory mediators, and decreasing mitochondrial damage while those which target the adaptive immune system include mesenchymal stromal cells. Inhibitory RNA approaches target both the innate and adaptive immune systems with a focus on MHC knock-down. Future studies may address issues of therapeutic agent delivery through use of nanoparticles and explore novel strategies such as targeting co-inhibitory molecules to educate T-cells to a tolerogenic state. In this review, we summarize the cellular and acellular contributors to allograft dysfunction and rejection, discuss the strategies which have been employed pre-clinically during EVMP to modulate the donor organ immune environment, and suggest future directions for immunomodulatory EVMP studies.
Collapse
|
24
|
Saris A, Pavenski K. Human Leukocyte Antigen Alloimmunization and Alloimmune Platelet Refractoriness. Transfus Med Rev 2020; 34:250-257. [PMID: 33127210 DOI: 10.1016/j.tmrv.2020.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Despite significant advancements in the production of platelet products, storage, and transfusion, transfusion refractoriness remains a significant clinical problem, affecting up to 14% of hematological patients receiving platelet transfusions. Human leukocyte antigen (HLA) alloimmunization is a major cause of immune platelet refractoriness, and its rate can be significantly reduced by implementation of leukoreduction. Despite promising preclinical results, pathogen reduction does not reduce HLA alloimmunization. Patients with HLA alloimmune refractoriness are usually managed with HLA-selected platelet transfusions. In this review, we describe the pathophysiology of HLA alloimmunization and alloimmune refractoriness, as well as options to prevent and treat these transfusion complications. We discuss the evidence supporting these options and point out the outstanding gaps. Finally, we review the possible future directions for prevention and treatment of alloimmune refractoriness.
Collapse
Affiliation(s)
- Anno Saris
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Katerina Pavenski
- Departments of Medicine and Laboratory Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C, Rong Y, Samojlik MM, Bayer AL, Stabler CL. In vitro platform establishes antigen-specific CD8 + T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 2020; 256:120182. [PMID: 32599358 PMCID: PMC7480933 DOI: 10.1016/j.biomaterials.2020.120182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
The curative potential of non-autologous cellular therapy is hindered by the requirement of anti-rejection therapy. Cellular encapsulation within nondegradable biomaterials has the potential to inhibit immune rejection, but the efficacy of this approach in robust preclinical and clinical models remains poor. While the responses of innate immune cells to the encapsulating material have been characterized, little attention has been paid to the contributions of adaptive immunity in encapsulated graft destabilization. Avoiding the limitations of animal models, we established an efficient, antigen-specific in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluated their consequential impacts. Using ovalbumin (OVA) as a model antigen, we determined that alginate microencapsulation abrogates direct CD8+ T cell activation by interrupting donor-host interaction; however, indirect T cell activation, mediated by host antigen presenting cells (APCs) primed with shed donor antigens, still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, comprehensively addressing a long-standing hypothesis of the field. Furthermore, it provides an efficient benchtop screening tool for the investigation of new encapsulation methods and/or synergistic immunomodulatory agents.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ethan Y Yang
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA
| | - Irayme Labrada-Miravet
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Allison L Bayer
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Karahan GE, Claas FHJ, Heidt S. Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Front Med (Lausanne) 2020; 7:340. [PMID: 32793610 PMCID: PMC7385137 DOI: 10.3389/fmed.2020.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
In allogeneic transplantation, genetic disparities between patient and donor may lead to cellular and humoral immune responses mediated by both naïve and memory alloreactive cells of the adaptive immune system. This review will focus on alloreactive T and B cells with emphasis on the memory compartment, their role in relation to kidney rejection, and in vitro assays to detect these alloreactive cells. Finally, the potential additional value of utilizing donor-specific memory T and B cell assays supplementary to current routine pre-transplant risk assessment of kidney transplant recipients will be discussed.
Collapse
Affiliation(s)
- Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Abstract
Purpose of the review The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) following organ transplantation is an emerging treatment paradigm that may induce tolerance and reduce the risk for graft rejection. In particular, redirecting Treg specificity via expression of synthetic chimeric antigen receptors (CARs) has demonstrated therapeutic promise in several preclinical studies. In this review, we highlight recent progress and remaining barriers to the clinical translation of CAR-Treg therapies. Recent findings CAR Tregs targeting human leukocyte antigen (HLA)-A2 showed antigen-specific in vitro activation and superior in vivo protective function relative to polyclonal Tregs. Adoptively transferred anti-HLA-A2 CAR Tregs prolonged the survival of HLA-A2-positive grafts in humanized mouse models. Summary Donor HLA molecules are attractive candidate antigens to target with CAR Tregs in transplantation due to mismatched HLA only expressed on the transplanted organ. The feasibility of this approach has been demonstrated by several independent groups in recent years. However, substantial challenges in CAR design and preclinical modeling must be more extensively addressed prior to clinical application.
Collapse
|
28
|
Ex Vivo Lung Perfusion Improves the Inflammatory Signaling Profile of the Porcine Donor Lung Following Transplantation. Transplantation 2020; 104:1899-1905. [DOI: 10.1097/tp.0000000000003338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Human leukocyte antigen molecular mismatch to risk stratify kidney transplant recipients. Curr Opin Organ Transplant 2020; 25:8-14. [DOI: 10.1097/mot.0000000000000714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Rimando J, Slade M, DiPersio JF, Westervelt P, Gao F, Liu C, Romee R. The Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) Score for HLA Class I Graft-versus-Host Disparity Is Associated with Increased Acute Graft-versus-Host Disease in Haploidentical Transplantation with Post-Transplantation Cyclophosphamide. Biol Blood Marrow Transplant 2020; 26:123-131. [PMID: 31563575 PMCID: PMC7286229 DOI: 10.1016/j.bbmt.2019.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022]
Abstract
The Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) score quantifies the number of PIRCHEs in patient-donor pairs and represents an in silico measure of indirect alloreactivity. This biologic process is defined as T cell recognition of epitopes derived from mismatched, allogeneic HLA peptides that are subsequently presented by shared HLA molecules. Its association with clinical outcome has not been examined in haploidentical hematopoietic cell transplantation (haplo-HCT) with post-transplantation cyclophosphamide (PTCy). We hypothesized that the PIRCHE score (PS) would correlate with indirect alloreactivity and predict graft-versus-host disease (GVHD) risk and the incidence of relapse after haplo-HCT with PTCy. We retrospectively analyzed 148 patients who underwent peripheral blood stem cell T cell-replete haplo-HCT with PTCy at a single center between 2009 and 2016. For each patient-donor pair, the PS was calculated using the PIRCHE online matching tool. PSs were categorized by class and vector. The median class I graft-versus-host (GVH) PS was 11 (range, 0 to 56), and the median class I host-versus-graft (HVG) PS was 10 (range, 0 to 51). Class I GVH PS was associated with increased risk of grade II-IV acute GVHD (adjusted hazard ratio, 1.03 per PS unit increase; 95% confidence interval, 1.01 to 1.05; P= .008) but not of chronic GVHD or relapse. Our data show that use of the PS is a novel strategy for predicting clinical outcome in haplo-HCT; further studies using registry data and prospective cohorts are warranted to validate these findings.
Collapse
Affiliation(s)
- Joseph Rimando
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael Slade
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - John F DiPersio
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Peter Westervelt
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri.
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Reindl-Schwaighofer R, Heinzel A, Gualdoni GA, Mesnard L, Claas FHJ, Oberbauer R. Novel insights into non-HLA alloimmunity in kidney transplantation. Transpl Int 2019; 33:5-17. [PMID: 31650645 PMCID: PMC6972536 DOI: 10.1111/tri.13546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Recognition of non‐self structures on donor cells represents the main immunological barrier in solid organ transplantation. The human leukocyte antigens (HLA) are considered the most important non‐self (allo)antigens in transplantation. Long‐term graft attrition is mainly caused by the formation of alloreactive antibodies that are directed against non‐self structures (i.e., epitopes) on cell surface proteins. Recently published data provided evidence for a similar importance of non‐HLA mismatches between donors and recipients in acute rejection as well as long‐term kidney allograft survival. These data suggest a broader concept of immunological non‐self that goes beyond HLA incompatibility and expands the current concept of polymorphic non‐self epitopes on cell surface molecules from HLA to non‐HLA targets. Amino acid substitutions caused by single nucleotide variants in protein‐coding genes or complete loss of gene expression represent the basis for polymorphic residues in both HLA and non‐HLA molecules. To better understand these novel insights in non‐HLA alloimmunity, we will first review basic principles of the alloimmune response with a focus on the HLA epitope concept in donor‐specific antibody formation before discussing key publications on non‐HLA antibodies.
Collapse
Affiliation(s)
- Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Laurent Mesnard
- Sorbonne Université, Urgences Néphrologiques et Transplantation Rénale, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Tenon, Paris, France
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Miyamae J, Yagi H, Sato K, Okano M, Nishiya K, Katakura F, Sakai M, Nakayama T, Moritomo T, Shiina T. Evaluation of alloreactive T cells based on the degree of MHC incompatibility using flow cytometric mixed lymphocyte reaction assay in dogs. Immunogenetics 2019; 71:635-645. [PMID: 31745606 DOI: 10.1007/s00251-019-01147-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
It has become anticipated that regenerative medicine will extend into the field of veterinary medicine as new treatments for various disorders. Although the use of allogeneic stem cells for tissue regeneration is more attractive than that of autologous cells in emergencies, the therapeutic potential of allogeneic transplantation is often limited by allo-immune responses inducing graft rejection. Therefore, a methodology for quantifying and monitoring alloreactive T cells is necessary for evaluating allo-immune responses. The mixed lymphocyte reaction (MLR) is widely used to evaluate T cell alloreactivity. In human, flow cytometric MLR with carboxyfluorescein diacetate succinimidyl ester has been established and used as a more useful assay than conventional MLR with radioisotope labeling. However, the available information about alloreactivity based on the differences of dog major histocompatibility complex (MHC) (dog leukocyte antigen, DLA) is quite limited in dog. In this paper, we describe our established flow cytometric MLR method that can quantify the T cell alloreactivity while distinguishing cell phenotypes in dog, and T cell alloreactivity among DLA-type matched pairs was significantly lower than DLA-mismatched pairs, suggesting that our developed flow cytometric MLR method is useful for quantifying T cell alloreactivity. In addition, we demonstrated the advantage of DLA homozygous cells as a donor (stimulator) for allogeneic transplantation. We also elucidated that the frequency of alloreactive T cell precursors was almost the same as that of mouse and human (1-10%). To our knowledge, this is the first report to focus on the degree of allo-immune responses in dog based on the differences of DLA polymorphisms.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan.
| | - Hayato Yagi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Keita Sato
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaharu Okano
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Manabu Sakai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomohiro Nakayama
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
33
|
Geneugelijk K, Spierings E. PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics 2019; 72:119-129. [PMID: 31741009 PMCID: PMC6971131 DOI: 10.1007/s00251-019-01140-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) mismatches between donors and recipients may lead to alloreactivity after solid organ transplantation. Over the last few decades, our knowledge of the complexity of the HLA system has dramatically increased, as numerous new HLA alleles have been identified. As a result, the likelihood of alloreactive responses towards HLA mismatches after solid organ transplantation cannot easily be assessed. Algorithms are promising solutions to estimate the risk for alloreactivity after solid organ transplantation. In this review, we show that the recently developed PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) algorithm can be used to minimize alloreactivity towards HLA mismatches. Together with the use of other algorithms and simulation approaches, the PIRCHE-II algorithm aims for a better estimated alloreactive risk for individual patients and eventually an improved graft survival after solid organ transplantation.
Collapse
Affiliation(s)
- Kirsten Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Eric Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| |
Collapse
|
34
|
Nakamura T, Shirouzu T, Nakata K, Yoshimura N, Ushigome H. The Role of Major Histocompatibility Complex in Organ Transplantation- Donor Specific Anti-Major Histocompatibility Complex Antibodies Analysis Goes to the Next Stage. Int J Mol Sci 2019; 20:E4544. [PMID: 31540289 PMCID: PMC6769817 DOI: 10.3390/ijms20184544] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation has progressed with the comprehension of the major histocompatibility complex (MHC). It is true that the outcome of organ transplantation largely relies on how well rejection is managed. It is no exaggeration to say that to be well acquainted with MHC is a shortcut to control rejection. In human beings, MHC is generally recognized as human leukocyte antigens (HLA). Under the current circumstances, the number of alleles is still increasing, but the function is not completely understood. Their roles in organ transplantation are of vital importance, because mismatches of HLA alleles possibly evoke both cellular and antibody-mediated rejection. Even though the control of cellular rejection has improved by recent advances of immunosuppressants, there is no doubt that antibody-mediated rejection (AMR), which is strongly correlated with donor-specific anti-HLA antibodies (DSA), brings a poor outcome. Thus, to diagnose and treat AMR correctly is a clear proposition. In this review, we would like to focus on the detection of intra-graft DSA as a recent trend. Overall, here we will review the current knowledge regarding MHC, especially with intra-graft DSA, and future perspectives: HLA epitope matching; eplet risk stratification; predicted indirectly recognizable HLA epitopes etc. in the context of organ transplantation.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Takayuki Shirouzu
- Molecular Diagnositcs Division, Wakunaga Pharmaceutical Co., Led. 4-5-36 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan.
| | - Katsuya Nakata
- Molecular Diagnositcs Division, Wakunaga Pharmaceutical Co., Led. 4-5-36 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan.
| | - Norio Yoshimura
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Hidetaka Ushigome
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
35
|
Kampstra ASB, van Heemst J, Janssen GM, de Ru AH, van Lummel M, van Veelen PA, Toes REM. Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft. Immunogenetics 2019; 71:519-530. [PMID: 31520135 PMCID: PMC6790208 DOI: 10.1007/s00251-019-01129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Human CD4+ T lymphocytes play an important role in inducing potent immune responses. T cells are activated and stimulated by peptides presented in human leucocyte antigen (HLA)-class II molecules. These HLA-class II molecules typically present peptides of between 12 and 20 amino acids in length. The region that interacts with the HLA molecule, designated as the peptide-binding core, is highly conserved in the residues which anchor the peptide to the molecule. In addition, as these peptides are the product of proteolytic cleavages, certain conserved residues may be expected at the N- and C-termini outside the binding core. To study whether similar conserved residues are present in different cell types, potentially harbouring different proteolytic enzymes, the ligandomes of HLA-DRB1*03:01/HLA-DRB > 1 derived from two different cell types (dendritic cells and EBV-transformed B cells) were identified with mass spectrometry and the binding core and N- and C-terminal residues of a total of 16,568 peptides were analysed using the frequencies of the amino acids in the human proteome. Similar binding motifs were found as well as comparable conservations in the N- and C-terminal residues. Furthermore, the terminal conservations of these ligandomes were compared to the N- and C-terminal conservations of the ligandome acquired from dendritic cells homozygous for HLA-DRB1*04:01. Again, comparable conservations were evident with only minor differences. Taken together, these data show that there are conservations in the terminal residues of peptides, presumably the result of the activity of proteases involved in antigen processing.
Collapse
Affiliation(s)
- Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - George M Janssen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
Chen X, Wang L, Deng Y, Li X, Li G, Zhou J, Cheng D, Yang Y, Yang Q, Chen G, Wang G. Inhibition of Autophagy Prolongs Recipient Survival Through Promoting CD8 + T Cell Apoptosis in a Rat Liver Transplantation Model. Front Immunol 2019; 10:1356. [PMID: 31258533 PMCID: PMC6587890 DOI: 10.3389/fimmu.2019.01356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
In liver transplantation (LT), although various immunosuppressants have been used in clinical practice, acute rejection remains a common complication that significantly shortens recipient survival. In recent years, manipulating immune tolerance has been regarded as one of the promising solutions to rejection. Autophagy, an evolutionarily conserved protein degradation system, has been reported to be involved in immune rejection and may be a target to establish immune tolerance. However, the role of autophagy in acute rejection reaction after LT has not been elucidated. Here, we showed that the autophagy of CD8+ T cells was strongly enhanced in patients with graft rejection and that the autophagy level was positively correlated with the severity of rejection. Similar findings were observed in a rat acute hepatic rejection model. Furthermore, administration of the autophagy inhibitor 3-methyladenine (3-MA) largely decreased the viability and function of CD8+ T cells through inhibiting autophagy, which significantly prolonged graft survival in rats. In addition, inhibiting the autophagy of activated CD8+ T cells in vitro considerably suppressed mitochondria mediated survival and downregulated T cell function. Conclusions: We first showed that the inhibition of autophagy significantly prolongs liver allograft survival by promoting the apoptosis of CD8+ T cells, which may provide a novel strategy for immune tolerance induction.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinan Deng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guolin Li
- Department of Biliary and Pancreatic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daorou Cheng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Genshu Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Copley HC, Elango M, Kosmoliaptsis V. Assessment of human leukocyte antigen immunogenicity: current methods, challenges and opportunities. Curr Opin Organ Transplant 2019; 23:477-485. [PMID: 29870434 PMCID: PMC6082597 DOI: 10.1097/mot.0000000000000544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of review Donor–recipient human leukocyte antigen (HLA) matching improves outcomes after solid-organ transplantation, but current assessment of HLA incompatibility is inadequate as it does not consider the relative immunogenicity of individual HLA mismatches. In this article, we review existing strategies for assessing HLA immunogenicity and discuss current challenges and future opportunities in this field. Recent findings Current HLA immunogenicity algorithms focus primarily on the humoral component of the alloimmune response and aim to determine a measure of ‘dissimilarity’ between donor and recipient HLA. This can be achieved by deriving information from comparison of donor and recipient HLA at the amino acid sequence, structural and/or the physicochemical level, accounting for both B-cell and T-cell pathways of alloreactivity. Substantial evidence now supports the superiority of this molecular definition of HLA incompatibility, over conventional enumeration of HLA antigenic differences, for assessing the risk of humoral alloimmunity and for predicting graft outcomes after transplantation. Summary Significant progress has been made in developing computational HLA immunogenicity algorithms that offer exciting opportunities for a more rational approach to determining the degree of donor–recipient HLA incompatibility and to defining HLA-related immunological risk. A number of challenges now need to be overcome to enable their implementation into clinical practice.
Collapse
Affiliation(s)
- Hannah C Copley
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital
| | - Madhivanan Elango
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Hundrieser J, Hein R, Pokoyski C, Brinkmann A, Düvel H, Dinkel A, Trautewig B, Siegert JF, Römermann D, Petersen B, Schwinzer R. Role of human and porcine MHC DRB1 alleles in determining the intensity of individual human anti-pig T-cell responses. Xenotransplantation 2019; 26:e12523. [PMID: 31074044 DOI: 10.1111/xen.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences in quality and strength of immune responses between individuals are mainly due to polymorphisms in major histocompatibility complex (MHC) molecules. Focusing on MHC class-II, we asked whether the intensity of human anti-pig T-cell responses is influenced by genetic variability in the human HLA-DRB1 and/or the porcine SLA-DRB1 locus. METHODS ELISpot assays were performed using peripheral blood mononuclear cells (PBMCs) from 62 HLA-DRB1-typed blood donors as responder and the porcine B cell line L23 as stimulator cells. Based on the frequency of IFN-γ-secreting cells, groups of weak, medium, and strong responder individuals were defined. Mixed lymphocyte reaction (MLR) assays were performed to study the stimulatory capacity of porcine PBMCs expressing different SLA-DRB1 alleles. RESULTS Concerning the MHC class-II configuration of human cells, we found a significant overrepresentation of HLA-DRB1*01 alleles in the medium/strong responder group as compared to individuals showing weak responses to stimulation with L23 cells. Evaluation of the role of MHC class-II variability in porcine stimulators revealed that cells expressing SLA-DRB1*06 alleles triggered strong proliferation in approximately 70% of humans. Comparison of amino acid sequences indicated that strong human anti-pig reactivity may be associated with a high rate of similarity between human and pig HLA/SLA-DRB1 alleles. CONCLUSION Variability in human and porcine MHC determines the intensity of individual human anti-pig T-cell responses. MHC typing and cross-matching of prospective recipients of xenografts and donor pigs could be relevant to select for donor-recipient combinations with minimal anti-porcine immunity.
Collapse
Affiliation(s)
- Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Heike Düvel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Astrid Dinkel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Britta Trautewig
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Janina-Franziska Siegert
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Römermann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Harper IG, Gjorgjimajkoska O, Siu JHY, Parmar J, Mulder A, Claas FHJ, Hosgood SA, Nicholson ML, Motallebzadeh R, Pettigrew GJ. Prolongation of allograft survival by passenger donor regulatory T cells. Am J Transplant 2019; 19:1371-1379. [PMID: 30548563 PMCID: PMC6519070 DOI: 10.1111/ajt.15212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 01/25/2023]
Abstract
Tissue resident lymphocytes are present within many organs, and are presumably transferred at transplantation, but their impact on host immunity is unclear. Here, we examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit host alloimmunity and prolong allograft survival. Transfer of donor-strain lymphocytes was first assessed by identifying circulating donor-derived CD4 T cells in 21 consecutive human lung transplant recipients, with 3 patterns of chimerism apparent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months, and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then confirmed by analysis of leukocyte filters recovered from ex vivo normothermic perfusion circuits of human kidneys retrieved for transplantation. Finally, in a murine model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ recovery resulted in markedly accelerated heart allograft rejection and augmented host effector antibody responses. Conversely, adoptive transfer or purified donor-strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and more effectively so than following administration of recipient nT-regs. In summary, following transplantation, passenger donor-strain nT-regs can inhibit host adaptive immune responses and prolong allograft survival. Isolated donor-derived nT-regs may hold potential as a cellular therapy to improve transplant outcomes.
Collapse
Affiliation(s)
- Ines G. Harper
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Jacqueline H. Y. Siu
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Jasvir Parmar
- Department of Cardiothoracic TransplantationPapworth HospitalCambridgeUK
| | - Arend Mulder
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah A. Hosgood
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Michael L. Nicholson
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Reza Motallebzadeh
- Centre for Surgical Innovation, Organ Repair & TransplantationUniversity College LondonLondonUK
- Centre for Transplantation, Department of Renal MedicineUniversity College LondonLondonUK
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Gavin J. Pettigrew
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
40
|
Qureshi MS, Alsughayyir J, Chhabra M, Ali JM, Goddard MJ, Devine CA, Conlon TM, Linterman MA, Motallebzadeh R, Pettigrew GJ. Germinal center humoral autoimmunity independently mediates progression of allograft vasculopathy. J Autoimmun 2019; 98:44-58. [DOI: 10.1016/j.jaut.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
41
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
42
|
Smirnova NF, Conlon TM, Morrone C, Dorfmuller P, Humbert M, Stathopoulos GT, Umkehrer S, Pfeiffer F, Yildirim AÖ, Eickelberg O. Inhibition of B cell-dependent lymphoid follicle formation prevents lymphocytic bronchiolitis after lung transplantation. JCI Insight 2019; 4:123971. [PMID: 30728330 DOI: 10.1172/jci.insight.123971] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lung transplantation (LTx) is the only therapeutic option for many patients with chronic lung disease. However, long-term survival after LTx is severely compromised by chronic rejection (chronic lung allograft dysfunction [CLAD]), which affects 50% of recipients after 5 years. The underlying mechanisms for CLAD are poorly understood, largely due to a lack of clinically relevant animal models, but lymphocytic bronchiolitis is an early sign of CLAD. Here, we report that lymphocytic bronchiolitis occurs early in a long-term murine orthotopic LTx model, based on a single mismatch (grafts from HLA-A2:B6-knockin donors transplanted into B6 recipients). Lymphocytic bronchiolitis is followed by formation of B cell-dependent lymphoid follicles that induce adjacent bronchial epithelial cell dysfunction in a spatiotemporal fashion. B cell deficiency using recipient μMT-/- mice prevented intrapulmonary lymphoid follicle formation and lymphocytic bronchiolitis. Importantly, selective inhibition of the follicle-organizing receptor EBI2, using genetic deletion or pharmacologic inhibition, prevented functional and histological deterioration of mismatched lung grafts. In sum, we provided what we believe to be a mouse model of chronic rejection and lymphocytic bronchiolitis after LTx and identified intrapulmonary lymphoid follicle formation as a target for pharmacological intervention of long-term allograft dysfunction after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Peter Dorfmuller
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Stephan Umkehrer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
43
|
McCaughan J, Xu Q, Tinckam K. Detecting donor-specific antibodies: the importance of sorting the wheat from the chaff. Hepatobiliary Surg Nutr 2019; 8:37-52. [PMID: 30881964 DOI: 10.21037/hbsn.2019.01.01] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human leukocyte antigen (HLA) compatibility is very important for successful transplantation of solid organs. In this paper, we focused on the humoral arm of immunity in the clinical setting of organ transplantation: how HLA antibodies develop, how they can be detected, and what they can do to injure organ transplants. Specifically, we explore the technical perspectives of detecting donor-specific antibodies (DSA) in HLA laboratories, and use real-life clinical cases to explain the principles. Currently there are many tools in our HLA antibody detection toolbox: conventional cytotoxicity cross match, flow cross match, and solid phase assays using beads conjugated with single or multiple HLA antigens. Single antigen bead (SAB) assay is the most sensitive tool available for detecting HLA antibodies and assessing the immunological risk for organ transplant. However, there are intrinsic limitations to solid-phase assays and they are prone to both false negativity and importantly, false positivity. Denatured antigens on single antigen beads might be the most prominent source of false positive reactivity, and may have been underestimated by many HLA experts. No single assay is perfect and therefore multiple methods, including the less sensitive assays, should be employed to determine the clinical relevance of detected HLA antibodies. Thoughtful process, including knowledge of HLA systems, cross reactivity, epitopes, and the patient's clinical history should be employed to correctly interpret data. The clinical team should work closely with HLA laboratories to ensure accurate interpretation of information and optimal management of patients before and after organ transplantation.
Collapse
Affiliation(s)
- Jennifer McCaughan
- Regional Histocompatibility Laboratory, University Health Network, Toronto, ON, Canada
| | - Qingyong Xu
- Transplant Immunology Lab, London Health Sciences Centre, London, ON, Canada
| | - Kathryn Tinckam
- Regional Histocompatibility Laboratory, University Health Network, Toronto, ON, Canada
| |
Collapse
|
44
|
Alsughayyir J, Chhabra M, Qureshi MS, Mallik M, Ali JM, Gamper I, Moseley EL, Peacock S, Kosmoliaptsis V, Goddard MJ, Linterman MA, Motallebzadeh R, Pettigrew GJ. Relative Frequencies of Alloantigen-Specific Helper CD4 T Cells and B Cells Determine Mode of Antibody-Mediated Allograft Rejection. Front Immunol 2019; 9:3039. [PMID: 30740108 PMCID: PMC6357941 DOI: 10.3389/fimmu.2018.03039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/07/2018] [Indexed: 02/02/2023] Open
Abstract
Humoral alloimmunity is now recognized as a major determinant of transplant outcome. MHC glycoprotein is considered a typical T-dependent antigen, but the nature of the T cell alloresponse that underpins alloantibody generation remains poorly understood. Here, we examine how the relative frequencies of alloantigen-specific B cells and helper CD4 T cells influence the humoral alloimmune response and how this relates to antibody-mediated rejection (AMR). An MHC-mismatched murine model of cardiac AMR was developed, in which T cell help for alloantibody responses in T cell deficient (Tcrbd-/-) C57BL/6 recipients against donor H-2Kd MHC class I alloantigen was provided by adoptively transferred "TCR75" CD4 T cells that recognize processed H-2Kd allopeptide via the indirect-pathway. Transfer of large numbers (5 × 105) of TCR75 CD4 T cells was associated with rapid development of robust class-switched anti-H-2Kd humoral alloimmunity and BALB/c heart grafts were rejected promptly (MST 9 days). Grafts were not rejected in T and B cell deficient Rag2-/- recipients that were reconstituted with TCR75 CD4 T cells or in control (non-reconstituted) Tcrbd-/- recipients, suggesting that the transferred TCR75 CD4 T cells were mediating graft rejection principally by providing help for effector alloantibody responses. In support, acutely rejecting BALB/c heart grafts exhibited hallmark features of acute AMR, with widespread complement C4d deposition, whereas cellular rejection was not evident. In addition, passive transfer of immune serum from rejecting mice to Rag2-/- recipients resulted in eventual BALB/c heart allograft rejection (MST 20 days). Despite being long-lived, the alloantibody responses observed at rejection of the BALB/c heart grafts were predominantly generated by extrafollicular foci: splenic germinal center (GC) activity had not yet developed; IgG secreting cells were confined to the splenic red pulp and bridging channels; and, most convincingly, rapid graft rejection still occurred when recipients were reconstituted with similar numbers of Sh2d1a-/- TCR75 CD4 T cells that are genetically incapable of providing T follicular helper cell function for generating GC alloimmunity. Similarly, alloantibody responses generated in Tcrbd-/- recipients reconstituted with smaller number of wild-type TCR75 CD4 T cells (103), although long-lasting, did not have a discernible extrafollicular component, and grafts were rejected much more slowly (MST 50 days). By modeling antibody responses to Hen Egg Lysozyme protein, we confirm that a high ratio of antigen-specific helper T cells to B cells favors development of the extrafollicular response, whereas GC activity is favored by a relatively high ratio of B cells. In summary, a relative abundance of helper CD4 T cells favors development of strong extrafollicular alloantibody responses that mediate acute humoral rejection, without requirement for GC activity. This work is composed of two parts, of which this is Part I. Please read also Part II: Chhabra et al., 2019.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manu Chhabra
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Saeed Qureshi
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mekhola Mallik
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jason M. Ali
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivonne Gamper
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ellen L. Moseley
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Sarah Peacock
- Histocompatibility and Immunogenetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Martin J. Goddard
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Michelle A. Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Centre for Transplantation, Department of Renal Medicine, University College London, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Gavin J. Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition Pathways in Solid Organ Transplantation. Front Immunol 2018; 9:2548. [PMID: 30455697 PMCID: PMC6230624 DOI: 10.3389/fimmu.2018.02548] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation.
Collapse
|
46
|
Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, Kaneko S, Nakanishi M, Rao MS, Kurtz A, Stacey GN, Marsh SGE, Turner ML, Song J. Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells 2018; 36:1552-1566. [PMID: 30004605 DOI: 10.1002/stem.2865] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/17/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023]
Abstract
Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Young Huh
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David M Turner
- Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Soohyeon Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - James Robinson
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Jeremy E Stein
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - Sung Han Shim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang Pyo Hong
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Myung Seo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Mahendra S Rao
- New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, Hertfordshire, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Marc L Turner
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| |
Collapse
|
47
|
Panagouli E, Dinou A, Mallis P, Michalopoulos E, Papassavas A, Spyropoulou-Vlachou M, Meletis J, Angelopoulou M, Konstantopoulos K, Vassilakopoulos T, Stavropoulos-Giokas C. Non-Inherited Maternal Antigens Identify Acceptable HLA Mismatches: A New Policy for the Hellenic Cord Blood Bank. Bioengineering (Basel) 2018; 5:77. [PMID: 30248919 PMCID: PMC6316301 DOI: 10.3390/bioengineering5040077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND During pregnancy, the maternal-fetal contact may lead to the development of tolerance against the maternal human leukocyte antigen (HLA) that is not inherited by the fetus. These non-inherited maternal antigens (NIMAs) define acceptable HLA mismatches; therefore, the number of HLA phenotypes that are suitable matches for patients who need a hematopoietic stem cell transplant could be increased. Cord blood unit (CBU) transplantations to patients mismatched for a HLA loci, but similar to the ΝΙΜAs of the CBU, have a prognosis similar to 6/6-matched ones. METHODS The Hellenic Cord Blood Bank (HCBB) identified the maternal HLA of 380 cord blood donors, specifying the NIMA haplotypes of the related cryostored CBUs. RESULTS The HCBB extended the pool of HLA phenotypes through the generation of unique virtual phenotypes (VPs). A "VP database" was set up, using Microsoft Office-Access™, in order to provide NIMA-matched CBUs for potential recipients. The effectiveness of VPs' matching was tested in 80 Greek patients. CONCLUSION This methodology may contribute to the increase of the number of available CBUs for patients, in the case where there is no available CBU, or in case an additional one is needed. Through this method, the CBUs could be used faster and more effectively, rather than being cryostored for long periods of time.
Collapse
Affiliation(s)
- Effrosyni Panagouli
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Amalia Dinou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Andreas Papassavas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | | | - John Meletis
- Department of Hematology and Bone Marrow Transplantation, School of Medicine, National and Kapodistrian University of Athens, 17, Agiou Thoma Street, 11527 Athens, Greece.
| | - Maria Angelopoulou
- Department of Hematology and Bone Marrow Transplantation, School of Medicine, National and Kapodistrian University of Athens, 17, Agiou Thoma Street, 11527 Athens, Greece.
| | - Kostas Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation, School of Medicine, National and Kapodistrian University of Athens, 17, Agiou Thoma Street, 11527 Athens, Greece.
| | - Theodoros Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, School of Medicine, National and Kapodistrian University of Athens, 17, Agiou Thoma Street, 11527 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| |
Collapse
|
48
|
McCaughan JA, Tinckam KJ. Donor specific HLA antibodies & allograft injury: mechanisms, methods of detection, manifestations and management. Transpl Int 2018; 31:1059-1070. [DOI: 10.1111/tri.13324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer A. McCaughan
- HLA Laboratory; Laboratory Medicine Program; University Health Network; Toronto ON Canada
- Department of Nephrology and Transplantation; Belfast City Hospital; Belfast UK
| | - Kathryn J. Tinckam
- HLA Laboratory; Laboratory Medicine Program; University Health Network; Toronto ON Canada
- Division of Nephrology; Department of Medicine; University Health Network; Toronto ON Canada
| |
Collapse
|
49
|
Kanda Y, Takeuchi A, Ozawa M, Kurosawa Y, Kawamura T, Bogdanova D, Iioka H, Kondo E, Kitazawa Y, Ueta H, Matsuno K, Kinashi T, Katakai T. Visualizing the Rapid and Dynamic Elimination of Allogeneic T Cells in Secondary Lymphoid Organs. THE JOURNAL OF IMMUNOLOGY 2018; 201:1062-1072. [PMID: 29925676 DOI: 10.4049/jimmunol.1700219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/21/2018] [Indexed: 12/17/2022]
Abstract
Allogeneic organ transplants are rejected by the recipient immune system within several days or weeks. However, the rejection process of allogeneic T (allo-T) cells is poorly understood. In this study, using fluorescence-based monitoring and two-photon live imaging in mouse adoptive transfer system, we visualized the fate of allo-T cells in the in vivo environment and showed rapid elimination in secondary lymphoid organs (SLOs). Although i.v. transferred allo-T cells efficiently entered host SLOs, including lymph nodes and the spleen, ∼70% of the cells had disappeared within 24 h. At early time points, allo-T cells robustly migrated in the T cell area, whereas after 8 h, the numbers of arrested cells and cell fragments were dramatically elevated. Apoptotic breakdown of allo-T cells released a large amount of cell debris, which was efficiently phagocytosed and cleared by CD8+ dendritic cells. Rapid elimination of allo-T cells was also observed in nu/nu recipients. Depletion of NK cells abrogated allo-T cell reduction only in a specific combination of donor and recipient genetic backgrounds. In addition, F1 hybrid transfer experiments showed that allo-T cell killing was independent of the missing-self signature typically recognized by NK cells. These suggest the presence of a unique and previously uncharacterized modality of allorecognition by the host immune system. Taken together, our findings reveal an extremely efficient and dynamic process of allogeneic lymphocyte elimination in SLOs, which could not be recapitulated in vitro and is distinct from the rejection of solid organ and bone marrow transplants.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Arata Takeuchi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Madoka Ozawa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoichi Kurosawa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Toshihiko Kawamura
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Dana Bogdanova
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hidekazu Iioka
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; and
| | - Eisaku Kondo
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; and
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan;
| |
Collapse
|
50
|
CTLA4Ig Improves Murine iTreg Induction via TGF β and Suppressor Function In Vitro. J Immunol Res 2018; 2018:2484825. [PMID: 30057914 PMCID: PMC6051081 DOI: 10.1155/2018/2484825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Blockade of the CD28:CD80/86 costimulatory pathway has been shown to be potent in blocking T cell activation in vitro and in vivo. The costimulation blocker CTLA4Ig has been approved for the treatment of autoimmune diseases and transplant rejection. The therapeutic application of regulatory T cells (Tregs) has recently gained much attention for its potential of improving allograft survival. However, neither costimulation blockade with CTLA4Ig nor Treg therapy induces robust tolerance on its own. Combining CTLA4Ig with Treg therapy would be an attractive approach for minimizing immunosuppression or for possibly achieving tolerance. However, since the CD28 pathway is more complex than initially thought, the question arose whether blocking CD80/86 would inadvertently impact immunological tolerance by interfering with Treg generation and function. We therefore wanted to investigate the compatibility of CTLA4Ig with regulatory T cells by evaluating direct effects of CTLA4Ig on murine Treg generation and function in vitro. For generation of polyclonal-induced Tregs, we utilized an APC-free in vitro system and added titrated doses of CTLA4Ig at different time points. Phenotypical characterization by flow cytometry and functional characterization in suppressor assays did not reveal negative effects by CTLA4Ig. The costimulation blocker CTLA4Ig does not impair but rather improves murine iTreg generation and suppressor function in vitro.
Collapse
|