1
|
Ghaffary EM, Bjørklund G, Bhat RS, Mirmosayyeb O. Adipokines in multiple sclerosis: Immune dysregulation, neuroinflammation, and therapeutic opportunities. Autoimmun Rev 2025:103825. [PMID: 40311722 DOI: 10.1016/j.autrev.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), characterized by demyelination, neuroinflammation, and the progressive accumulation of neurologic deficits. Adipose tissue secretes predominantly the bioactive molecules, known as adipokines, which have drawn considerable attention for their roles in modulating immune and metabolic pathways in people with MS (PwMS). Dysregulated adipokines, such as resistin, leptin, and chemerin, induce pro-inflammatory T-cell polarization while deteriorating Blood-Brain Barrier (BBB) integrity. Adiponectin, by contrast, has both immunomodulatory and neuroprotective functions. The opposing functionality highlights the biomarker and the therapeutic potential of adipokines. Preclinical and translational findings have shed light on the role of adipokines in the pathophysiology of MS by influencing T-cell, glial, and BBB functions. In clinical settings, the assessment of adipokines can function as an indicator of prognosis and diagnosis via distinct patterns of expression. In addition, alterations to adipokine profiles through lifestyle changes and pharmaceutical treatment may complement established disease-modifying treatments (DMTs). This study has highlighted the multifaceted role of adipokines in MS management, while further studies exploring the role of adipokine-mediated immunometabolic regulation are suggested.
Collapse
Affiliation(s)
- Elham Moases Ghaffary
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College of King Saud University, Riyadh, Saudi Arabia
| | - Omid Mirmosayyeb
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Lambe J, Ontaneda D. Re-defining progression in multiple sclerosis. Curr Opin Neurol 2025:00019052-990000000-00237. [PMID: 40197617 DOI: 10.1097/wco.0000000000001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide an overview of progression in multiple sclerosis (MS), including definitions, pathological mechanisms, and evidence that progressive biology begins early in the disease course. RECENT FINDINGS Definitions of MS clinical course have been refined to acknowledge the presence of both relapse and progression biology throughout the disease. Progression independent of relapse activity represents a significant proportion of disability worsening in relapsing-remitting MS (RRMS) disease. Progression in MS appears to be caused by the complex interplay of multiple processes, including nonresolving inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, energetic failure, and neuro-axonal degeneration. These processes appear to begin in the earliest disease stages and their contribution to clinical phenotypes is dynamic over time. Promising results from clinical trials of tolebrutinib, in particular, underline the utility of targeting both innate and adaptive immune mechanisms to reduce disability accumulation. SUMMARY Pathological processes that underpin MS progression are detectable early in RRMS, evolve throughout the disease course and correlate with disability accumulation. Progression in MS should not be defined dichotomously - the focus instead should be on recognizing progressive components based on clinical measures and biomarkers early in the disease to better individualize treatment strategies.
Collapse
Affiliation(s)
- Jeffrey Lambe
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurology Department, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
3
|
Manavi Z, Melchor GS, Bullard MR, Gross PS, Ray S, Gaur P, Baydyuk M, Huang JK. Senescent cell reduction does not improve recovery in mice under experimental autoimmune encephalomyelitis (EAE) induced demyelination. J Neuroinflammation 2025; 22:101. [PMID: 40197319 PMCID: PMC11974124 DOI: 10.1186/s12974-025-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by immune cell-driven demyelination and progressive neurodegeneration. Senescent cells (SCs) have recently been observed in chronic MS lesions indicating their possible involvement in disease progression. However, the role of SCs and the potential therapeutic benefit of their reduction through senolytic therapy remains to be determined in experimental autoimmune encephalomyelitis (EAE), a widely used preclinical model of MS. Here, we show that senescent-like myeloid cells accumulate in the spinal cord parenchyma and meninges in mice after myelin oligodendrocyte glycoprotein (MOG33-55) EAE induction. Treatment with the senolytic cocktail, Dasatinib and Quercetin (DQ), effectively reduces the senescent-like myeloid cells, but this does not translate into improved clinical outcomes in EAE mice. Increasing DQ dosage or using INK-ATTAC transgenic mice also failed to ameliorate EAE severity. Additionally, histopathological analysis shows no significant differences in demyelination or axonal degeneration between treated and control groups. Our findings indicate that senescent-like myeloid cells are present in an immune-mediated demyelinating model of MS and can be reduced through senolytic therapy with Dasatinib and Quercetin. However, their reduction through DQ does not significantly impact inflammation or recovery, suggesting that the therapeutic potential of senolytics as disease-modifying drugs in MS may be limited.
Collapse
Affiliation(s)
- Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Meghan R Bullard
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Phillip S Gross
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Shinjini Ray
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Pankaj Gaur
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 PMCID: PMC11876910 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Davis SE, Hu J, Nanescu SE, Kumar MN, Baydyuk M, Oft HC, Amjad FS, Wellstein A, Huang JK. Differential Effects of IL4I1 Protein on Lymphocytes From Healthy and Multiple Sclerosis Patients. Pharmacol Res Perspect 2025; 13:e70062. [PMID: 40102177 PMCID: PMC11919572 DOI: 10.1002/prp2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 03/20/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by immune-mediated demyelination of the central nervous system, resulting in extensive neurological deficit and remyelination impairment. We have previously found that interleukin-four induced one (IL4I1) protein modulates CNS inflammation and enhances remyelination in mouse models of experimental demyelination. However, it remained unclear if IL4I1 regulates lymphocyte activity in MS. To assess the therapeutic potential of IL4I1 in MS, we investigated the impact of IL4I1 treatment on human lymphocytes from peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and MS patients. We found that IL4I1 increased the relative densities of Th2 and regulatory T-cells, while reducing Th17 cell density in healthy control (HC) samples. Furthermore, IL4I1-treated lymphocytes promoted CNS remyelination when grafted into demyelinated spinal cord lesions in mice. We found that baseline endogenous IL4I1 expression was reduced in people with MS. However, unlike HCs, IL4I1 treatment had no significant effect on IL17 or TOB1 expression in lymphocytes derived from MS patients. These results suggest that IL4I1 skews CD4+ T-cells to a regulatory state in healthy human lymphocytes, which may be essential for promoting remyelination. However, IL4I1 appears unable to exert its influence on lymphocytes in MS, indicating that impaired IL4I1-mediated activity may underlie MS pathology.
Collapse
Affiliation(s)
- Stephanie E Davis
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Georgetown University School of Medicine, Georgetown University, Washington, DC, USA
| | - Jingwen Hu
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Sonia E Nanescu
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Mahesh N Kumar
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Helena C Oft
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Faria S Amjad
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Anton Wellstein
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
6
|
Abulaban A, Al‐kuraishy H, Al‐Gareeb A, Ahmed E, Alruwaili M, Alexiou A, Papadakis M, El‐Saber Batiha G. The Possible Role of Metformin and Fibroblast Growth Factor-21 in Multiple Sclerosis Neuropathology: Birds of a Feather Flock Together. Eur J Neurosci 2025; 61:e70067. [PMID: 40172524 PMCID: PMC11963988 DOI: 10.1111/ejn.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
Multiple sclerosis (MS) is a progressive demyelinating disease of the CNS, characterized by inflammation, the formation of CNS plaques, and damage to the neuronal myelin sheath (Graphical abstract). Fibroblast growth factor 21 (FGF21) is involved in various metabolic disorders and neurodegenerative diseases. FGF21 and its co-receptor β-Kloth are essential in the remyelination process of MS. Metformin, an insulin-sensitizing drug that is the first-line treatment for type 2 diabetes mellitus (T2DM), may have a potential neuroprotective impact by up-regulating the production of FGF21, which may prevent the onset of neurodegenerative diseases including MS. The purpose of this review is to clarify how metformin affects MS neuropathology mechanistically via modifying FGF21. Metformin increases the expression of FGF21. Metformin also increases the expression of β-Klotho, modulates oxidative stress, reduces glutamate-induced excitotoxicity, and regulates platelet function and coagulation cascades. In conclusion, metformin can enhance the functional activity of FGF21 in counteracting the development and progression of MS. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad A. Abulaban
- College of MedicineKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
- Division of Neurology, King Abdulaziz Medical CityMinistry of the National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
7
|
Talente B, Finseth LT, Blake N, Costello K, Schmidt H, Vandigo J, Oehrlein EM. Patient Experiences with the Impacts of Multiple Sclerosis & Disease-Modifying Therapies. CLINICOECONOMICS AND OUTCOMES RESEARCH 2025; 17:199-215. [PMID: 40110032 PMCID: PMC11921794 DOI: 10.2147/ceor.s489929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/28/2024] [Indexed: 03/22/2025] Open
Abstract
Purpose Disease-modifying therapies (DMTs) are vital for managing multiple sclerosis (MS), but research using administrative data often excludes patient preferences and factors clinicians consider in treatment decisions. Patient experience data are crucial to understand and improve MS treatment initiation, adherence, and outcomes. Methods A cross-sectional survey of US adults with MS or clinically isolated syndrome was conducted online from December 2022 to January 2023 by the MS Coalition. A mixed methods analysis was conducted: logistic regression for quantitative data and thematic analysis of qualitative data. Results Among 1,323 participants (median age 55; 78% female), 80% expressed concerns about loss of independence, 65% about financial impacts, 64% about emotional impacts, 57% about relationships, and 42% about careers. Emotional tolls included identity loss, stress from navigating healthcare, and financial strain on families. Concerns varied by age, sex, and disability status. Nearly all participants (97%) reported DMT experience, with 73% having used two or more DMTs. Key factors in initiating DMT included slowing disease progression (92%), preventing relapses (89%), and following medical advice (89%). Financial barriers, such as high out-of-pocket costs, led to treatment delays or discontinuation in 19%. Barriers varied by demographic factors and included stress from medication costs, insurance denials, and fear of losing health coverage. Financial assistance was crucial for many. Half of participants had stopped a DMT due to doctor recommendations, side effects, or insurance issues. Conclusion The survey highlights the emotional and financial burdens of living with MS, including concerns about independence and relationships. The findings underscore the need for comprehensive care and provide actionable recommendations for managed care, research, and healthcare providers.
Collapse
Affiliation(s)
- Bari Talente
- National Multiple Sclerosis Society, Washington, DC, USA
| | | | - Natalie Blake
- Multiple Sclerosis Foundation, Fort Lauderdale, FL, USA
| | | | - Hollie Schmidt
- Accelerated Cure Project for Multiple Sclerosis, Waltham, MA, USA
| | - Joe Vandigo
- Applied Patient Experience, Washington, DC, USA
| | | |
Collapse
|
8
|
Pagalilauan AM, Everest E, Rachimi S, Reich DS, Waldman AD, Sadovnick AD, Vilarino-Guell C, Lenardo MJ. The Canadian collaborative project on genetic susceptibility to multiple sclerosis cohort population structure and disease etiology. Front Neurol 2025; 16:1509371. [PMID: 40109847 PMCID: PMC11919664 DOI: 10.3389/fneur.2025.1509371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Background Previous genetic and epidemiological studies have examined subpopulations from the Canadian Collaborative Project on Genetic Susceptibility to Multiple Sclerosis (CCPGSMS) patient cohort, but an encompassing analysis of the study population has not yet been carried out. Objective This retrospective study examines patterns of multiple sclerosis (MS) prevalence in 13,663 cohort members, including 4,821 persons with MS or suspected MS and 8,842 family members. Methods We grouped participants into epidemiologic subgroups based on age of MS onset, clinical stage at diagnosis, symptom type at disease onset, sex, proband status, disability as measured by the EDSS, and ancestry based on reported ethnicity. Results We observed a 2.7:1 MS prevalence ratio of women to men, though disease severity was greater for male patients. Variation in the age of disease onset between patients was only slightly associated with sex and strongly associated with disease type. Specific types of clinical symptoms at disease onset were associated with the prognosis. Regional residence did not correlate with disease onset, type, or severity. Conclusion Population trends, as presented here, are not explained by environmental factors alone, highlighting the need for a comprehensive genetic analysis to understand disease variance across families.
Collapse
Affiliation(s)
- Alison M Pagalilauan
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Elif Everest
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Suzanna Rachimi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
- Emory University MD/PhD Program, Emory University School of Medicine, Atlanta, GA, United States
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Carles Vilarino-Guell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Fu H, Huang K, Zhu W, Zhang L, Bandaru R, Wang L, Liu Y, Xia Z. Circulating cell-free DNA methylation profiles as noninvasive multiple sclerosis biomarkers: A proof-of-concept study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322180. [PMID: 40034794 PMCID: PMC11875267 DOI: 10.1101/2025.02.14.25322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In multiple sclerosis (MS), there is a critical need for non-invasive biomarkers to concurrently classify disease subtypes, evaluate disability severity, and predict long-term progression. In this proof-of-concept study, we performed low-coverage whole-genome bisulfite sequencing (WGBS) on 75 plasma cell-free DNA (cfDNA) samples and assessed the clinical utility of cfDNA methylation as a single assay for distinguishing MS patients from non-MS controls, identifying MS subtypes, estimating disability severity, and predicting disease trajectories. We identified thousands of differentially methylated CpGs and hundreds of differentially methylated regions (DMRs) that significantly distinguished MS from controls, separated MS subtypes, and stratified disability severity levels. These DMRs were highly enriched in immunologically and neurologically relevant regulatory elements (e.g., active promoters and enhancers) and contained motifs associated with neuronal function and T-cell differentiation. To distinguish MS subtypes and severity groups, we achieved area-under-the-curve (AUC) values ranging from 0.67 to 0.81 using DMRs and 0.70 to 0.82 using inferred tissue-of-origin patterns from cfDNA methylation, significantly outperforming benchmark neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the same cohort. Finally, a linear mixed-effects model identified "prognostic regions" where baseline cfDNA methylation levels were associated with disease progression and predicted future disability severity (AUC=0.81) within a 4-year evaluation window. As we plan to generate higher-depth WGBS data and validation in independent cohorts, the present findings suggest the potential clinical utility of circulating cfDNA methylation profiles as promising noninvasive biomarkers in MS diagnosis and prognosis.
Collapse
Affiliation(s)
- Hailu Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
| | - Kevin Huang
- Computational Sciences, gRED, Genentech Inc. South San Francisco, CA 94080
| | - Wen Zhu
- University of Pittsburgh, Pittsburgh, PA 15260
| | - Lili Zhang
- University of Pittsburgh, Pittsburgh, PA 15260
| | - Ravi Bandaru
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
| | - Li Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
| | - Yaping Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
| | - Zongqi Xia
- University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
10
|
Balcom EF, Mccombe JA, Kate MP, Vu K, Martins KJB, Aponte-Hao S, Richer L, Williamson T, Klarenbach SW, Smyth PS. Inequities in the Use of Disease-Modifying Therapy Among Adults Living With Multiple Sclerosis in Urban and Rural Areas in Alberta, Canada. Neurology 2025; 104:e210251. [PMID: 39772662 PMCID: PMC11708828 DOI: 10.1212/wnl.0000000000210251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES To compare disease-modifying therapy (DMT) use between people living with multiple sclerosis (pwMS) who resided in rural vs urban areas. METHODS This retrospective cohort study used population-level individually linked administrative data to identify pwMS on April 1, 2019 (index date), in Alberta, Canada. DMT use was compared between pwMS who resided in rural vs urban areas during a 1-year postindex period. Structural equation modelling (SEM) and logistic regression (with 95% confidence intervals) were applied. RESULTS PwMS (n = 4,593) who resided in rural areas (vs urban) were 17% less likely to have received a DMT (odds ratio: 0.83 [0.69-0.99]; SEM total β: -0.032, p < 0.05), of which 39% of this disparity was explained by a lower socioeconomic status (SEM indirect β: -0.012 [p < 0.001]/total β: -0.032); 26% were less likely to have received an induction/higher efficacy therapy (odds ratio: 0.74 [0.57-0.95]), of which <1% of this disparity was explained by socioeconomic status (SEM indirect β: -0.0001 [p < 0.01]/total β: -0.040). DISCUSSION PwMS residing in rural (vs urban) Alberta are less likely to receive any DMT, especially induction/higher-efficacy therapy; this inequality may be mediated by socioeconomic status and geography. Identifying and overcoming barriers to optimal clinical care in this patient population is needed.
Collapse
Affiliation(s)
- Erin F Balcom
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jennifer A Mccombe
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mahesh P Kate
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khanh Vu
- Real World Evidence Unit, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Karen J B Martins
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | - Lawrence Richer
- Department of Paediatrics, College of Health Sciences, University of Alberta, Edmonton, Canada
| | - Tyler Williamson
- Alberta Children's Hospital Research Institute, University of Calgary Libin Cardiovascular Institute, O'Brien Institute for Public Health, Department of Community Health Sciences, Cumming School of Medicine, Edmonton, Canada; and
| | - Scott W Klarenbach
- Department of Medicine, Real World Evidence Unit, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Penelope S Smyth
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Rovira À, Auger C, Sceppacuercia S, Torres C. Typical and Emerging Diagnostic MRI Features in Multiple Sclerosis. Can Assoc Radiol J 2025; 76:122-144. [PMID: 39044390 DOI: 10.1177/08465371241261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) stands as the most sensitive paraclinical technique for detecting the demyelinating lesions characteristic of multiple sclerosis (MS). Consequently, MRI plays a pivotal role in establishing an accurate and timely diagnosis of the disease, ultimately based on the application of the McDonald criteria. Early diagnosis is particularly important as it facilitates the prompt initiation of disease-modifying treatments, deemed most effective during the initial phases of MS. This review article examines the recommended standardized MRI protocol, as well as the classic imaging features of MS in the brain, optic nerve, and spinal cord, capable of discriminating, in most cases, MS from other disorders that can mimic this disease. Additionally, novel MR imaging findings, such as the central vein sign and paramagnetic rim lesion, which have been proposed as new imaging biomarkers to enhance diagnostic specificity for MS, are also discussed. These emerging features are likely to be incorporated in the future iterations of the McDonald criteria, and therefore, radiologists should be familiar with their appearance and with the optimal MRI protocols required for their detection.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Carlos Torres
- Department of Radiology, University of Ottawa, The Ottawa Hospital Civic and General Campus, Ottawa, ON, Canada
| |
Collapse
|
12
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Meca-Lallana JE, Robles R, Landete L, Téllez N, García-Domínguez JM, Garcés P, Costa-Frossard L. A Clinical Care Algorithm for Detecting Progression in Multiple Sclerosis: RetratEMos Project. Cureus 2024; 16:e74001. [PMID: 39703306 PMCID: PMC11657311 DOI: 10.7759/cureus.74001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE The diagnosis of secondary progressive multiple sclerosis (SPMS) is often established retrospectively leading to a delay in detection. This work presents a clinical care algorithm that aims to facilitate the recognition of the secondary progressive phase of the disease, analyzing its usefulness and the feasibility of its implementation in routine clinical practice. METHODS The algorithm was developed in four phases: 1) choice of validated diagnostic tools for the detection of progression; 2) assessment of these tools based on experience of use, applicability, time consumed, perceived usefulness and suitability for a profile of a patient in transition to SPMS; 3) framework and final sequence of application; 4) feasibility evaluation through application in clinical practice. RESULTS A hierarchical algorithm was developed with an initial screening phase to detect warning signs and establish suspicion of progression (which included the tests "Your Multiple Sclerosis (Your MS)," "MSProDiscuss," and "Nomogram") and a second phase conditional on a positive result in the first, including a functional examination with the Symbol Digit Modalities Test (SDMT), 9-Hole Peg Test (9-HPT), and Timed 25-Foot Walk (T25FW) tools. The algorithm was applied to 373 patients with Expanded Disability Status Scale (EDSS) ≥ 2. The mean time spent per patient in the screening was eight minutes and 20.4 minutes for the complete algorithm. The perceived usefulness of the process by the neurologists was 3.1 (range of 1-4, with 4 being the maximum). In 46% of the cases, the algorithm detected the need for additional functional exploration. CONCLUSIONS From our experience, this clinical care algorithm is effective and feasible for detecting progression in MS, although its implementation requires proper organization and can be uneven depending on the resources of each center.
Collapse
Affiliation(s)
- José E Meca-Lallana
- Clinical Neuroimmunology Unit, Neurology Department, "Virgen de la Arrixaca" Clinical University Hospital (IMIB-Arrixaca), Murcia, ESP
- Multiple Sclerosis and Clinical Neuroimmunology, NICEM Cathedral, UCAM-San Antonio Catholic University, Murcia, ESP
| | - René Robles
- Neurology, Hospital Universitario Dr. Josep Trueta, Girona, ESP
| | | | - Nieves Téllez
- Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, ESP
| | | | - Pilar Garcés
- Medical Department, Novartis Farmacéutica, S.A., Madrid, ESP
| | | |
Collapse
|
14
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Sokolowski I, Kucharska-Lusina A, Miller E, Poplawski T, Majsterek I. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Curr Issues Mol Biol 2024; 46:11668-11680. [PMID: 39451573 PMCID: PMC11505768 DOI: 10.3390/cimb46100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by immune-mediated inflammation and neurodegeneration in the central nervous system (CNS). In this study; we aimed to investigate the gene expression and plasma protein levels of three neuroprotective genes-heat shock proteins (HSP90 and HSP60) and glial cell line-derived neurotrophic factor (GDNF)-in MS patients compared to healthy controls. Forty patients with relapsing-remitting MS and 40 healthy volunteers participated in this study. Gene expression was measured using reverse transcription quantitative real-time PCR, and protein levels were assessed via ELISA. The results showed a significant increase in HSP90 (1.7-fold) and HSP60 (2-fold) gene expression in MS patients compared to controls, along with corresponding increases in protein levels (1.5-fold for both HSP90 and HSP60). In contrast, GDNF gene expression and protein levels were significantly reduced in MS patients, with a 7-fold decrease in gene expression and a 1.6-fold reduction in protein levels. Notably, a non-linear relationship between GDNF gene expression and protein concentration was observed in MS patients, suggesting complex regulatory mechanisms influencing GDNF in the disease. The upregulation of HSP90 and HSP60 in MS highlights their roles in immune regulation and stress responses, while the reduction in GDNF indicates impaired neuroprotection. These findings suggest that HSP90, HSP60, and GDNF could serve as biomarkers for disease progression and as potential therapeutic targets in MS, offering promising avenues for future research and treatment development.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| |
Collapse
|
16
|
Stojkovic L, Djordjevic A, Stefanovic M, Stankovic A, Dincic E, Djuric T, Zivkovic M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing-Remitting and Progressive Multiple Sclerosis. Int J Mol Sci 2024; 25:11024. [PMID: 39456806 PMCID: PMC11507982 DOI: 10.3390/ijms252011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis, a lipid peroxidation- and iron-mediated type of regulated cell death, relates to both neuroinflammation, which is common in relapsing-remitting multiple sclerosis (RRMS), and neurodegeneration, which is prevalent in progressive (P)MS. Currently, findings related to the molecular markers proposed in this paper in patients are scarce. We analyzed circulatory molecular indicators of the main ferroptosis-related processes, comprising lipid peroxidation (malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and hexanoyl-lysine adduct (HEL)), glutathione-related antioxidant defense (total glutathione (reduced (GSH) and oxidized (GSSG)) and glutathione peroxidase 4 (GPX4)), and iron metabolism (iron, transferrin and ferritin) to estimate their contributions to the clinical manifestation of MS and differences between RRMS and PMS disease course. In 153 patients with RRMS and 69 with PMS, plasma/serum lipid peroxidation indicators and glutathione were quantified using ELISA and colorimetric reactions, respectively. Iron serum concentrations were determined using spectrophotometry, and transferrin and ferritin were determined using immunoturbidimetry. Compared to those with RRMS, patients with PMS had decreased 4-HNE (median, 1368.42 vs. 1580.17 pg/mL; p = 0.03). Interactive effects of MS course (RRMS/PMS) and disease-modifying therapy status on MDA (p = 0.009) and HEL (p = 0.02) levels were detected. In addition, the interaction of disease course and self-reported fatigue revealed significant impacts on 4-HNE levels (p = 0.01) and the GSH/GSSG ratio (p = 0.04). The results also show an association of MS course (p = 0.03) and EDSS (p = 0.04) with GSH levels. No significant changes were observed in the serum concentrations of iron metabolism indicators between the two patient groups (p > 0.05). We suggest circulatory 4-HNE as an important parameter related to differences between RRMS and PMS. Significant interactions of MS course and other clinically relevant parameters with changes in redox processes associated with ferroptosis support the further investigation of MS with a larger sample while taking into account both circulatory and central nervous system estimation.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Milan Stefanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| |
Collapse
|
17
|
McCombe JA, Smyth P, Kate M, So H, Vu K, Luu H, Martins KJB, Aponte-Hao S, Nguyen PU, Richer L, Williamson T, Klarenbach SW. Healthcare Cost of Multiple Sclerosis and in Relation to Disability Level in Alberta. Can J Neurol Sci 2024:1-12. [PMID: 39356041 DOI: 10.1017/cjn.2024.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND We aimed to (1) report updated estimates of direct healthcare costs for people living with MS (pwMS), (2) contrast costs to a control population and (3) explore differences between disability levels among pwMS. METHODS Administrative data were used to identify adult pwMS (MS cohort) and without (control cohort) in Alberta, Canada; disability level (based on the Expanded Disability Status Scale) among pwMS was estimated. One- and two-part generalized linear models with gamma distribution were used to estimate the incremental direct healthcare cost (2021 $CDN) of MS during a 1-year observation period. RESULTS Adjusting for confounders, the total healthcare cost ratio was higher in the MS cohort (n = 13,089) versus control (n = 150,080) (5.24 [95% CI: 5.08, 5.41]) with a predicted incremental cost of $15,016 (95% CI: $14,497, $15,535) per person-year. Among the MS cohort, total predicted direct healthcare costs were higher with greater disability, $14,430 (95% CI: $13,980, $14,880) to $58,697 ($51,514, $65,879) per person-year in mild and severe disability, respectively. The primary health resource cost component shifted from disease-modifying therapies in mild disability to supportive care in moderate and severe disability. CONCLUSION Adult pwMS had greater direct healthcare costs than those without. Extrapolating to the population level (where 14,485 adult pwMS were identified in the study), it is estimated that $218 million per year in healthcare costs may be attributable to MS in Alberta. The significantly larger economic impact associated with greater disability underscores the importance of preventing or delaying disease progression and functional impairment in MS.
Collapse
Affiliation(s)
- Jennifer A McCombe
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Penelope Smyth
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mahesh Kate
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Helen So
- Faculty of Medicine and Dentistry, Real World Evidence Unit, University of Alberta, Edmonton, AB, Canada
| | - Khanh Vu
- Faculty of Medicine and Dentistry, Real World Evidence Unit, University of Alberta, Edmonton, AB, Canada
| | - Huong Luu
- Faculty of Medicine and Dentistry, Real World Evidence Unit, University of Alberta, Edmonton, AB, Canada
| | - Karen J B Martins
- Faculty of Medicine and Dentistry, Real World Evidence Unit, University of Alberta, Edmonton, AB, Canada
| | - Sylvia Aponte-Hao
- Data and Research Services, Alberta SPOR SUPPORT Unit Data Platform, Calgary, AB, Canada
- The Centre for Health Informatics, University of Calgary, Calgary, AB, Canada
| | - Phuong Uyen Nguyen
- The Centre for Health Informatics, University of Calgary, Calgary, AB, Canada
| | - Lawrence Richer
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tyler Williamson
- The Centre for Health Informatics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Libin Cardiovascular Institute, O'Brien Institute for Public Health, Calgary, AB, Canada
| | - Scott W Klarenbach
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Real World Evidence Unit, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
19
|
Ridley B, Minozzi S, Gonzalez-Lorenzo M, Del Giovane C, Piggott T, Filippini G, Peryer G, Foschi M, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for progressive multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2024; 9:CD015443. [PMID: 39254048 PMCID: PMC11384553 DOI: 10.1002/14651858.cd015443.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND In recent years a broader range of immunomodulatory and immunosuppressive treatment options have emerged for people with progressive forms of multiple sclerosis (PMS). While consensus supports these options as reducing relapses, their relative benefit and safety profiles remain unclear due to a lack of direct comparison trials. OBJECTIVES To compare through network meta-analysis the efficacy and safety of alemtuzumab, azathioprine, cladribine, cyclophosphamide, daclizumab, dimethylfumarate, diroximel fumarate, fingolimod, fludarabine, glatiramer acetate, immunoglobulins, interferon beta 1-a and beta 1-b, interferon beta-1b (Betaferon), interferon beta-1a (Avonex, Rebif), laquinimod, leflunomide, methotrexate, minocycline, mitoxantrone, mycophenolate mofetil, natalizumab, ocrelizumab, ofatumumab, ozanimod, pegylated interferon beta-1a, ponesimod, rituximab, siponimod, corticosteroids, and teriflunomide for PMS. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase up to August 2022, as well as ClinicalTrials.gov and the WHO ICTRP. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more treatments as monotherapy, compared to placebo or to another active agent, for use in adults with PMS. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data. We performed data synthesis by pair-wise and network meta-analysis. We assessed the certainty of the body of evidence according to GRADE. MAIN RESULTS We included 23 studies involving a total of 10,167 participants. The most frequent (39% of studies) reason for a rating of high risk of bias was sponsor role in study authorship and data management and analysis. Other concerns were performance, attrition, and selective reporting bias, with 8.7% of studies at high risk of bias for all three of these domains. The common comparator for network analysis was placebo. Relapses over 12 months: assessed in one study (318 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 24 months: assessed in six studies (1622 participants). The number of people with clinical relapses is probably trivially reduced with rituximab (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.19 to 1.95; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 36 months: assessed in four studies (2095 participants). The number of people with clinical relapses is probably trivially reduced with interferon beta-1b (RR 0.82, 95% CI 0.73 to 0.93; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 24 months: assessed in 11 studies (5284 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 36 months: assessed in five studies (2827 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Serious adverse events: assessed in 15 studies (8019 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Discontinuation due to adverse events: assessed in 21 studies (9981 participants). The number of people who discontinued treatment due to adverse events is trivially increased with interferon beta-1a (odds ratio (OR) 2.93, 95% CI 1.64 to 5.26; high certainty evidence). The number of people who discontinued treatment due to adverse events is probably trivially increased with rituximab (OR 4.00, 95% CI 0.84 to 19.12; moderate certainty evidence); interferon beta-1b (OR 2.98, 95% CI 1.92 to 4.61; moderate certainty evidence); immunoglobulins (OR 1.95, 95% CI 0.99 to 3.84; moderate certainty evidence); glatiramer acetate (OR 3.98, 95% CI 1.48 to 10.72; moderate certainty evidence); natalizumab (OR 1.02, 95% CI 0.55 to 1.90; moderate certainty evidence); siponimod (OR 1.53, 95% CI 0.98 to 2.38; moderate certainty evidence); fingolimod (OR 2.29, 95% CI 1.46 to 3.60; moderate certainty evidence), and ocrelizumab (OR 1.24, 95% CI 0.54 to 2.86; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. AUTHORS' CONCLUSIONS The number of people with PMS with relapses is probably slightly reduced with rituximab at two years, and interferon beta-1b at three years, compared to placebo. Both drugs are also probably associated with a slightly higher proportion of withdrawals due to adverse events, as are immunoglobulins, glatiramer acetate, natalizumab, fingolimod, siponimod, and ocrelizumab; we have high confidence that this is the case with interferon beta-1a. We found only low or very low certainty evidence relating to disability progression for the included disease-modifying treatments compared to placebo, largely due to imprecision. We are also uncertain about the effect of interventions on serious adverse events, also because of imprecision. These findings are due in part to the short follow-up of the included RCTs, which lacked detection of less common severe adverse events. Moreover, the funding source of many included studies may have introduced bias into the results. Future research on PMS should include head-to-head rather than placebo-controlled trials, with a longer follow-up of at least three years. Given the relative rarity of PMS, controlled, non-randomised studies on large samples may usefully integrate data from pivotal RCTs. Outcomes valuable and meaningful to people with PMS should be consistently adopted and measured to permit the evaluation of relative effectiveness among treatments.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Marien Gonzalez-Lorenzo
- Laboratorio di Metodologia delle revisioni sistematiche e produzione di Linee Guida, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), Bern, Switzerland
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Piggott
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Family Medicine, Queens University, Kingston, Ontario, Canada
| | - Graziella Filippini
- Scientific Director's Office, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Guy Peryer
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
20
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
21
|
Chaves AR, Tremblay S, Pilutti L, Ploughman M. Lowered ratio of corticospinal excitation to inhibition predicts greater disability, poorer motor and cognitive function in multiple sclerosis. Heliyon 2024; 10:e35834. [PMID: 39170378 PMCID: PMC11337054 DOI: 10.1016/j.heliyon.2024.e35834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Investigate excitatory-inhibitory (E/I) (im)balance using transcranial magnetic stimulation (TMS) in individuals with Multiple Sclerosis (MS) and determine its validity as a neurophysiological biomarker of disability. Methods Participants with MS (n = 83) underwent TMS, cognitive, and motor function assessments. TMS-induced motor evoked potential amplitudes (excitability) and cortical silent periods (inhibition) were assessed bilaterally through recruitment curves. The E/I ratio was calculated as the ratio of excitation to inhibition. Results Participants with greater disability (Expanded Disability Status Scale, EDSS≥3) exhibited lower excitability and increased inhibition compared to those with lower disability (EDSS<3). This resulted in lower E/I ratios in the higher disability group. Individuals with higher disability presented with asymmetrical E/I ratios between brain hemispheres, a pattern not present in the group with lower disability. In regression analyses controlling for demographics, lowered TMS-probed E/I ratio predicted variance in disability (R2 = 0.37, p < 0.001), upper extremity function (R2 = 0.35, p < 0.001), walking speed (R2 = 0.22, p = 0.005), and cognitive performance (R2 = 0.25, p = 0.007). Receiver Operating Characteristic curve analysis confirmed 'excellent' discriminative ability of the E/I ratio in distinguishing high and low disability. Finally, excitation superiorly correlated with the E/I ratio than overall inhibition in both hemispheres (p ≤ 0.01). Conclusion The E/I ratio is a potential neurophysiological biomarker of disability level in MS, especially when assessed in the hemisphere corresponding to the weaker body side. Interventions aimed at increasing cortical excitation or reducing inhibition may restore E/I balance potentially stalling progression or improving function in MS.
Collapse
Affiliation(s)
- Arthur R. Chaves
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
| | - Sara Tremblay
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
- Faculty of Social Sciences, School of Psychology, University of Ottawa, ON, Canada
- Department of Molecular and Cellular Medicine, University of Ottawa, ON, Canada
| | - Lara Pilutti
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
| | | |
Collapse
|
22
|
Kaye AD, Sala KR, Abbott BM, Dicke AN, Johnson LD, Wilson PA, Amarasinghe SN, Singh N, Ahmadzadeh S, Kaye AM, Shekoohi S, Varrassi G. The Role of Glucagon-Like Peptide-1 Agonists in the Treatment of Multiple Sclerosis: A Narrative Review. Cureus 2024; 16:e67232. [PMID: 39301360 PMCID: PMC11410460 DOI: 10.7759/cureus.67232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive autoimmune disease modulated by autoantibodies that inflame and destroy the myelin sheath encasing neuronal axons, impairing proper axonal conduction and function. Glucagon-like peptide-1 (GLP-1) receptor agonists have been demonstrated to exert anti-inflammatory and neuroprotective effects, making these drugs particularly exciting prospects in the treatment of MS. While the exact mechanism remains unclear, GLP-1 receptor agonists may modulate inflammatory responses by targeting GLP-1 receptors present on immune cells such as macrophages, monocytes, and lymphocytes. In animal models, GLP-1 agonists have been shown to significantly delay the onset and severity of experimental autoimmune encephalopathy symptoms, as well as to increase nerve myelination and brain weight. In further experiments using animal models of nerve crush injury, specimens given GLP-1 agonists reported a significant increase in the rate and density of nerve regeneration compared to controls. Thus, GLP-1 agonists show promise as both prophylactic and symptomatic treatment for MS and may provide further utility in the treatment of other autoimmune, inflammatory, and neurodegenerative conditions.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kelly R Sala
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Brennan M Abbott
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandra N Dicke
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Landyn D Johnson
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Parker A Wilson
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sam N Amarasinghe
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Naina Singh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
23
|
Krieger S, Cook K, Hersh CM. Understanding multiple sclerosis as a disease spectrum: above and below the clinical threshold. Curr Opin Neurol 2024; 37:189-201. [PMID: 38535979 PMCID: PMC11064902 DOI: 10.1097/wco.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Research in multiple sclerosis (MS) has long been predicated on clinical groupings that do not reflect the underlying biologic heterogeneity apparent within patient populations. This review explicates the various levels of explanation through which the spectrum of disease is described and investigated both above and below the clinical threshold of detection, as framed by the topographical model of MS, to help advance a cogent mechanistic framework. RECENT FINDINGS Contemporary evidence has amended the view of MS as consisting of sequential disease phases in favor of a spectrum of disease with an admixture of interdependent and dynamic pathobiological axes driving tissue injury and progression. Recent studies have shown the presence of acute and compartmentalized inflammation and mechanisms of neurodegeneration beginning early and evolving throughout the disease continuum. Still, the gap between the understanding of immunopathologic processes in MS and the tools used to measure relevant molecular, laboratory, radiologic, and clinical metrics needs attention to enable better prognostication of disease and monitoring for changes along specific pathologic axes and variable treatment outcomes. SUMMARY Aligning on a consistently-applied mechanistic framework at distinct levels of explanation will enable greater precision across bench and clinical research, and inform discourse on drivers of disability progression and delivery of care for individuals with MS.
Collapse
Affiliation(s)
- Stephen Krieger
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai
| | - Karin Cook
- Medical Education Director, Neurology at Heartbeat/Publicis Health, New York
| | - Carrie M. Hersh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic Las Vegas, Nevada, USA
| |
Collapse
|
24
|
Pagalilauan AM, Everest E, Rachimi S, Reich D, Waldman AD, Sadovnick AD, Vilariño-Guell C, Lenardo MJ. The Canadian Collaborative Project on Genetic Susceptibility to Multiple Sclerosis cohort population structure and disease etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.18.24305992. [PMID: 38712288 PMCID: PMC11071557 DOI: 10.1101/2024.04.18.24305992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Previous genetic and epidemiological studies have examined subpopulations from the Canadian Collaborative Project on Genetic Susceptibility to Multiple Sclerosis (CCPGSMS) patient cohort, but an encompassing analysis of the study population has not yet been carried out. Objective This study examines patterns of multiple sclerosis (MS) prevalence in 13,663 cohort members, including 4,821 patients with MS or suspected MS and 8,842 family members. Methods We grouped participants into epidemiologic subgroups based on age of MS onset, clinical stage at diagnosis, symptom type at disease onset, sex, proband status, disability as measured by the EDSS, and ancestry based on reported ethnicity. Results We observed a 2.7:1 MS prevalence ratio of women to men, though disease severity was greater for male patients. Variation in the age of disease onset between patients was only slightly associated with sex and strongly associated with disease type. Specific types of clinical symptoms at disease onset were associated with the prognosis. Regional residence did not correlate with disease onset, type, or severity. Conclusion Population trends, as presented here, are not explained by environmental factors alone, highlighting the need for a comprehensive genetic analysis to understand disease variance across families.
Collapse
|
25
|
Balcom EF, Smyth P, Kate M, Vu K, Martins KJB, Aponte-Hao S, Luu H, Richer L, Williamson T, Klarenbach SW, McCombe JA. Disease-modifying therapy use and health resource utilisation associated with multiple sclerosis over time: A retrospective cohort study from Alberta, Canada. J Neurol Sci 2024; 458:122913. [PMID: 38335712 DOI: 10.1016/j.jns.2024.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Estimating multiple sclerosis (MS) prevalence and incidence, and assessing the utilisation of disease-modifying therapies (DMTs) and healthcare resources over time is critical to understanding the evolution of disease burden and impacts of therapies upon the healthcare system. METHODS A retrospective population-based study was used to determine MS prevalence and incidence (2003-2019), and describe utilisation of DMTs (2009-2019) and healthcare resources (1998-2019) among people living with MS (pwMS) using administrative data in Alberta. RESULTS Prevalence increased from 259 (95% confidence interval [CI]: 253-265) to 310 (95% CI: 304, 315) cases per 100,000 population, and incidence decreased from 21.2 (95% CI: 19.6-22.8) to 12.7 (95% CI: 11.7-13.8) cases per 100,000 population. The proportion of pwMS who received ≥1 DMT dispensation increased (24% to 31% annually); use of older platform injection therapies decreased, and newer oral-based, induction, and highly-effective therapies increased. The proportion of pwMS who had at least one MS-related physician, ambulatory, or tertiary clinic visits increased, and emergency department visits and hospitalizations decreased. CONCLUSIONS Alberta has one of the highest rates of MS globally. The proportion of pwMS who received DMTs and had outpatient visits increased, while acute care visits decreased over time. The landscape of MS care appears to be rapidly evolving in response to changes in disease burden and new highly-effective therapies.
Collapse
Affiliation(s)
- Erin F Balcom
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medicine, Edmonton, Alberta T6G 2R3, Canada
| | - Penelope Smyth
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medicine, Edmonton, Alberta T6G 2R3, Canada
| | - Mahesh Kate
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medicine, Edmonton, Alberta T6G 2R3, Canada
| | - Khanh Vu
- University of Alberta, Faculty of Medicine and Dentistry, Real World Evidence Unit, Edmonton, Alberta T6G 2R3, Canada
| | - Karen J B Martins
- University of Alberta, Faculty of Medicine and Dentistry, Real World Evidence Unit, Edmonton, Alberta T6G 2R3, Canada
| | - Sylvia Aponte-Hao
- University of Calgary, Department of Community Health Sciences and the Centre for Health Informatics, Calgary, Alberta T2N 1N4, Canada
| | - Huong Luu
- University of Alberta, Faculty of Medicine and Dentistry, Real World Evidence Unit, Edmonton, Alberta T6G 2R3, Canada
| | - Lawrence Richer
- University of Alberta, Faculty of Medicine and Dentistry, Real World Evidence Unit, Edmonton, Alberta T6G 2R3, Canada; University of Alberta, Faculty of Medicine and Dentistry, Department of Pediatrics, Edmonton, Alberta T6G 2R3, Canada
| | - Tyler Williamson
- University of Calgary, Department of Community Health Sciences and the Centre for Health Informatics, Calgary, Alberta T2N 1N4, Canada
| | - Scott W Klarenbach
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medicine, Edmonton, Alberta T6G 2R3, Canada; University of Alberta, Faculty of Medicine and Dentistry, Real World Evidence Unit, Edmonton, Alberta T6G 2R3, Canada.
| | - Jennifer A McCombe
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medicine, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
26
|
Kandpal M, Varshney N, Rawal KS, Jha HC. Gut dysbiosis and neurological modalities: An engineering approach via proteomic analysis of gut-brain axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:199-248. [PMID: 38762270 DOI: 10.1016/bs.apcsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Kunal Sameer Rawal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India; Centre for Rural Development & Technology, IIT Indore, Indore, India.
| |
Collapse
|
27
|
Rovira À, Pareto D. MRI as a biomarker of the smouldering component of multiple sclerosis: time to wake up. Eur Radiol 2024; 34:1677-1679. [PMID: 37973633 DOI: 10.1007/s00330-023-10416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
28
|
Yamazaki R, Ohno N. The Mouse Model of Internal Capsule Demyelination: A Novel Tool for Investigating Motor Functional Changes Caused by Demyelination and for Evaluating Drugs That Promote Remyelination. Acta Histochem Cytochem 2024; 57:1-5. [PMID: 38463203 PMCID: PMC10918433 DOI: 10.1267/ahc.24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, characterized by remyelination failure and axonal dysfunction. Remyelination by oligodendrocytes is critical for improvement of neurological deficits associated with demyelination. Rodent models of demyelination are frequently used to develop and evaluate therapies for MS. However, a suitable mouse model for assessing remyelination-associated recovery of motor functions is currently unavailable. In this review, we describe the development of the mouse model of internal capsule (IC) demyelination by focal injection of lysolecithin into brain and its application in the evaluation of drugs for demyelinating diseases. This mouse model exhibits motor deficits and subsequent functional recovery accompanying IC remyelination. Notably, this model shows enhancement of functional recovery as well as tissue regeneration when treated with clemastine, a drug that promotes remyelination. The IC demyelination mouse model should contribute to the development of novel drugs that promote remyelination and ameliorate neurological deficits in demyelinating diseases.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
29
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
30
|
Le HH, Ken-Opurum J, LaPrade A, Maculaitis MC, Sheehan JJ. Exploring humanistic burden of fatigue in adults with multiple sclerosis: an analysis of US National Health and Wellness Survey data. BMC Neurol 2024; 24:51. [PMID: 38297247 PMCID: PMC10832085 DOI: 10.1186/s12883-023-03423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This retrospective study examined the humanistic burden of fatigue in patients with relapsing-remitting multiple sclerosis (RRMS), compared with adults without MS, using data from the 2017 and 2019 US National Health and Wellness Survey. METHODS The 5-item Modified Fatigue Impact Scale (MFIS-5) was used to assess level of fatigue (MFIS-5 score <15: low fatigue [LF]; MFIS-5 score ≥15: high fatigue [HF]) in patients with RRMS. Health-related quality of life (HRQoL) measures (Short Form 36-Item Health Survey version 2, Euroqol-5 Dimensions-5 Levels [EQ-5D-5L], Patient Health Questionnaire-9 [PHQ-9], Generalized Anxiety Disorder-7 [GAD-7], Perceived Deficits Questionnaire-5) and treatment-related characteristics were assessed. RESULTS In total, 498 respondents were identified as RRMS (n=375 RRMS+LF, n=123 RRMS+HF) and compared with 1,494 matched non-MS controls. RRMS+LF and RRMS+HF had significantly lower Short Form 6 Dimensions health utility, Mental and Physical Component Summary, and EQ-5D-5L scores and higher PHQ-9 and GAD-7 scores, compared with matched non-MS controls (all p<0.001); scores were worse for RRMS+HF than RRMS+LF across all measures (all p<0.001). A higher proportion of RRMS+HF reported moderate-to-severe depression and moderate-to-severe anxiety, compared with RRMS+LF and matched non-MS controls (both p<0.001). Fatigue was a significant predictor of poor HRQoL across all measures (all p<0.001). CONCLUSIONS Patients with RRMS experienced lower HRQoL with higher levels of fatigue, highlighting an unmet need. Results may help to inform physician-patient communication and shared decision-making to address fatigue and its associated impact on patients' HRQoL.
Collapse
Affiliation(s)
- Hoa H Le
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA.
| | | | | | | | | |
Collapse
|
31
|
Aghajanian S, Shafiee A, Akhondi A, Abadi SRF, Mohammadi I, Ehsan M, Mohammadifard F. The effect of COVID-19 on Multiple Sclerosis relapse: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 81:105128. [PMID: 37979408 DOI: 10.1016/j.msard.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/08/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic autoimmune disease, affecting over 2.5 million people worldwide. There has been growing concern about the impact of COVID-19 on the clinical course of MS. However, these findings remain controversial, and there is a lack of high-quality evidence to establish the relationship between COVID-19 and MS. METHODS A comprehensive search was done to identify relevant studies reporting relapse rate in patients with MS (pwMS), those comparing the relapse rate of COVID-19 pwMS and MS controls, and studies investigating the effect of COVID-19 on relapse rate of pwMS. The results were presented as proportion of COVID-19 pwMS experiencing relapse and odds ratio determining the impact of COVID-19 on relapse rate. RESULTS Fourteen studies were included in the analyses. The proportion of COVID-19 positive pwMS with relapse was 7.71 per 100 cases (95 % confidence interval, CI: 4.41-13.89, I2=96 %). Quantitative evaluation of studies with pwMS without COVID-19 did not demonstrate a statistically significant difference in relapse rate of patients with COVID-19 (OR: 0.75, 95 %CI: 0.44-1.29, I2= 54 %). Subgroup and sensitivity analyses did not alter the lack of significance of association between COVID-19 and MS relapse. Sensitivity analysis excluding the outlying study was largely in favor of no difference between the groups (OR:1.00, 95 %CI: 0.72-1.38, I2=34 %) CONCLUSION: The results of this review does not suggest that COVID-19 influences the relapse rate in pwMS. While the findings alleviate the concerns regarding the co-occurrence of the diseases, further studies are needed to investigate the effects of confounding factors.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Iran
| | - Amirhossein Akhondi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Iran
| | | | - Ida Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | | | - Fateme Mohammadifard
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Iran
| |
Collapse
|
32
|
Moslemi Z, Toledo-Aldana EA, Baldwin B, Donkers SJ, Eng JJ, Mondal P, de Zepetnek JOT, Buttigieg J, Levin MC, Mang CS. Task-oriented exercise effects on walking and corticospinal excitability in multiple sclerosis: protocol for a randomized controlled trial. BMC Sports Sci Med Rehabil 2023; 15:175. [PMID: 38129896 PMCID: PMC10734154 DOI: 10.1186/s13102-023-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) that disrupts walking function and results in other debilitating symptoms. This study compares the effects of 'task-oriented exercise' against 'generalized resistance and aerobic exercise' and a 'stretching control' on walking and CNS function in people with MS (PwMS). We hypothesize that task-oriented exercise will enhance walking speed and related neural changes to a greater extent than other exercise approaches. METHODS This study is a single-blinded, three-arm randomized controlled trial conducted in Saskatchewan, Canada. Eligible participants are those older than 18 years of age with a diagnosis of MS and an expanded Patient-Determined Disease Steps (PDDS) score between 3 ('gait disability') and 6 ('bilateral support'). Exercise interventions are delivered for 12 weeks (3 × 60-min per week) in-person under the supervision of a qualified exercise professional. Interventions differ in exercise approach, such that task-oriented exercise involves weight-bearing, walking-specific activities, while generalized resistance and aerobic exercise uses seated machine-based resistance training of major upper and lower body muscle groups and recumbent cycling, and the stretching control exercise involves seated flexibility and relaxation activities. Participants are allocated to interventions using blocked randomization that stratifies by PDDS (mild: 3-4; moderate: 5-6). Assessments are conducted at baseline, post-intervention, and at a six-week retention time point. The primary and secondary outcome measures are the Timed 25-Foot Walk Test and corticospinal excitability for the tibialis anterior muscles determined using transcranial magnetic stimulation (TMS), respectively. Tertiary outcomes include assessments of balance, additional TMS measures, blood biomarkers of neural health and inflammation, and measures of cardiorespiratory and musculoskeletal fitness. DISCUSSION A paradigm shift in MS healthcare towards the use of "exercise as medicine" was recently proposed to improve outcomes and alleviate the economic burden of MS. Findings will support this shift by informing the development of specialized exercise programming that targets walking and changes in corticospinal excitability in PwMS. TRIAL REGISTRATION ClinicalTrials.gov, NCT05496881, Registered August 11, 2022. https://classic. CLINICALTRIALS gov/ct2/show/NCT05496881 . Protocol amendment number: 01; Issue date: August 1, 2023; Primary reason for amendment: Expand eligibility to include people with all forms of MS rather than progressive forms of MS only.
Collapse
Affiliation(s)
- Zahra Moslemi
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Eduardo A Toledo-Aldana
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Bruce Baldwin
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Sarah J Donkers
- School of Rehabilitation Sciences, College of Medicine, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK, S7N 2Z4, Canada
| | - Janice J Eng
- Centre for Aging SMART at Vancouver Coastal Health, Department of Physical Therapy, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Prosanta Mondal
- Clinical Research Support Unit, University of Saskatchewan, 3200 Health Science E-wing, Saskatoon, SK, S7N 5B5, Canada
| | - Julia O Totosy de Zepetnek
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Michael C Levin
- Department of Neurology and Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Cameron S Mang
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada.
| |
Collapse
|
33
|
Lam M, Lee D, Kosater I, Khairallah A, Taga M, Zhang Y, Fujita M, Nag S, Bennett DA, De Jager P, Menon V. Human disease-specific cell signatures in non-lesional tissue in Multiple Sclerosis detected by single-cell and spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572491. [PMID: 38187779 PMCID: PMC10769298 DOI: 10.1101/2023.12.20.572491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent investigations of cell type changes in Multiple Sclerosis (MS) using single-cell profiling methods have focused on active lesional and peri-lesional brain tissue, and have implicated a number of peripheral and central nervous system cell types. However, an important question is the extent to which so-called "normal-appearing" non-lesional tissue in individuals with MS accumulate changes over the lifespan. Here, we compared post-mortem non-lesional brain tissue from donors with a pathological or clinical diagnosis of MS from the Religious Orders Study or Rush Memory and Aging Project (ROSMAP) cohorts to age- and sex-matched brains from persons without MS (controls). We profiled three brain regions using single-nucleus RNA-seq: dorsolateral prefrontal cortex (DLPFC), normal appearing white matter (NAWM) and the pulvinar in thalamus (PULV), from 15 control individuals, 8 individuals with MS, and 5 individuals with other detrimental pathologies accompanied by demyelination, resulting in a total of 78 samples. We identified region- and cell type-specific differences in non-lesional samples from individuals diagnosed with MS and/or exhibiting secondary demyelination with other neurological conditions, as compared to control donors. These differences included lower proportions of oligodendrocytes with expression of myelination related genes MOBP, MBP, PLP1, as well as higher proportions of CRYAB+ oligodendrocytes in all three brain regions. Among microglial signatures, we identified subgroups that were higher in both demyelination (TMEM163+/ERC2+), as well as those that were specifically higher in MS donors (HIF1A+/SPP1+) and specifically in donors with secondary demyelination (SOCS6+/MYO1E+), in both white and grey matter. To validate our findings, we generated Visium spatial transcriptomics data on matched tissue from 13 donors, and recapitulated our observations of gene expression differences in oligodendrocytes and microglia. Finally, we show that some of the differences observed between control and MS donors in NAWM mirror those previously reported between control WM and active lesions in MS donors. Overall, our investigation sheds additional light on cell type- and disease-specific differences present even in non-lesional white and grey matter tissue, highlighting widespread cellular signatures that may be associated with downstream pathological changes.
Collapse
Affiliation(s)
- Matti Lam
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Dylan Lee
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Ivy Kosater
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Anthony Khairallah
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center
| |
Collapse
|
34
|
Snow NJ, Landine J, Chaves AR, Ploughman M. Age and asymmetry of corticospinal excitability, but not cardiorespiratory fitness, predict cognitive impairments in multiple sclerosis. IBRO Neurosci Rep 2023; 15:131-142. [PMID: 37577407 PMCID: PMC10412844 DOI: 10.1016/j.ibneur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Background Cognitive impairment is a disabling and underestimated consequence of multiple sclerosis (MS), with multiple determinants that are poorly understood. Objectives We explored predictors of MS-related processing speed impairment (PSI) and age-related mild cognitive impairment (MCI) and hypothesized that cardiorespiratory fitness and corticospinal excitability would predict these impairments. Methods We screened 73 adults with MS (53 females; median [range]: Age 48 [21-70] years, EDSS 2.0 [0.0-6.5]) for PSI and MCI using the Symbol Digit Modalities Test and Montréal Cognitive Assessment, respectively. We identified six persons with PSI (No PSI, n = 67) and 13 with MCI (No MCI, n = 60). We obtained clinical data from medical records and self-reports; used transcranial magnetic stimulation to test corticospinal excitability; and assessed cardiorespiratory fitness using a graded maximal exercise test. We used receiver operator characteristic (ROC) curves to discern predictors of PSI and MCI. Results Interhemispheric asymmetry of corticospinal excitability was specific for PSI, while age was both sensitive and specific for MCI. MS-related PSI was also associated with statin prescriptions, while age-related MCI was related to progressive MS and GABA agonist prescriptions. Cardiorespiratory fitness was associated with neither PSI nor MCI. Discussion Corticospinal excitability is a potential marker of neurodegeneration in MS-related PSI, independent of age-related effects on global cognitive function. Age is a key predictor of mild global cognitive impairment. Cardiorespiratory fitness did not predict cognitive impairments in this clinic-based sample of persons with MS.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Josef Landine
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Arthur R. Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
35
|
Sokolowski I, Kucharska-Lusina A, Miller E, Majsterek I. Exploring the mRNA and Plasma Protein Levels of BDNF, NT4, SIRT1, HSP27, and HSP70 in Multiple Sclerosis Patients and Healthy Controls. Int J Mol Sci 2023; 24:16176. [PMID: 38003363 PMCID: PMC10671202 DOI: 10.3390/ijms242216176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease affecting the central nervous system. It is a major cause of non-traumatic neurological disability among young adults in North America and Europe. This study focuses on neuroprotective genes (BDNF, NT4/5, SIRT1, HSP70, and HSP27). Gene expression and protein levels of these markers were compared between MS patients and healthy controls. Blood samples were collected from 42 patients with multiple sclerosis (MS) and 48 control subjects without MS. Quantitative real-time PCR was performed to measure the expression of specific genes. The samples were analyzed in duplicate, and the abundance of mRNA was quantified using the 2-ΔCt method. ELISA assay was used to measure the concentration of specific proteins in the plasma samples. The results show that a 3.5-fold decrease in the gene expression of BDNF corresponds to a 1.5-fold downregulation in the associated plasma protein concentration (p < 0.001). Similar trends were observed with NT-4 (five-fold decrease, slight elevation in protein), SIRT1 (two-fold decrease, two-fold protein decrease), HSP70 (four-fold increase, nearly two-fold protein increase), and HSP27 (four-fold increase, two-fold protein increase) (p < 0.001). This study reveals strong correlations between gene expression and protein concentration in MS patients, emphasizing the relevance of these neuroprotective markers in the disease.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| |
Collapse
|
36
|
Altunan B, Ünal A, Efendi H, Köseoğlu M, Terzi M, Kotan D, Tamam Y, Boz C, Güler S, Turan ÖF, Altunrende B, Balcı FB, Turgut N, Akçalı A, Yildirim KA, Günal Dİ, Sunter G, Bingöl A. Use of follow-on fingolimod for multiple sclerosis: Analysis of effectiveness and patient reported outcomes in a real-world clinical setting. Mult Scler Relat Disord 2023; 77:104880. [PMID: 37459716 DOI: 10.1016/j.msard.2023.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Follow-on disease modifying therapies (FO-DMTs) do not always require Phase III studies. There are concerns that cheaper FO-DMTs are only used to reduce healthcare costs. However, the well-being of people with MS (pwMS) should be a priority. We aimed to evaluate the efficacy, safety and treatment satisfaction of one of the FO- Fingolimod (FTY) used in Turkey with the approval of Turkish Ministry of Health. METHODS PwMS under FTY were recruited from 13 centers and real-world data and answers of satisfaction and adherence statements of pwMS on FTY treatment were analyzed. RESULTS Data of 239 pwMS were obtained. The duration of FTY treatment was 2.5 ± 0.8 (1-4) years in pwMS who were included in the study and whose treatment continued for at least one year. Significant decreases in annual relapse rate (p < 0.001), Expanded Disability Status Scale (p < 0.001) and neuroimaging findings (p < 0.001) were observed. While 64% of the patients were satisfied and 71.5% were found to adherent with this FO-FTY. CONCLUSION This multicenter retrospective study found that the efficacy, safety and treatment adherence of a prescribed FO-FTY were consistent with the results of real-world studies. Studies including real-world data may provide guidance to address issues related to FO-FTY use.
Collapse
Affiliation(s)
- Bengü Altunan
- Department of Neurology, Faculty of Medicine, Tekirdag Namık Kemal University, Kampus street,.Süleymanpasa, Tekirdag 59100, Turkey
| | - Aysun Ünal
- Department of Neurology, Faculty of Medicine, Tekirdag Namık Kemal University, Kampus street,.Süleymanpasa, Tekirdag 59100, Turkey.
| | - Hüsnü Efendi
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | | | - Murat Terzi
- Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Dilcan Kotan
- Department of Neurology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Yusuf Tamam
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Cavit Boz
- Department of Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Güler
- Department of Neurology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ömer Faruk Turan
- Department of Neurology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Burcu Altunrende
- Bilim University, Florence Nightingale Hospital, Istanbul, Turkey
| | | | - Nilda Turgut
- Department of Neurology, Faculty of Medicine, Tekirdag Namık Kemal University, Kampus street,.Süleymanpasa, Tekirdag 59100, Turkey
| | - Aylin Akçalı
- Department of Neurology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | | - Dilek İnce Günal
- Department of Neurology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Gulin Sunter
- Department of Neurology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
37
|
Zerimech S, Nguyen H, Vandenbark AA, Offner H, Baltan S. Novel therapeutic for multiple sclerosis protects white matter function in EAE mouse model. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1237078. [PMID: 37933270 PMCID: PMC10627517 DOI: 10.3389/fmmed.2023.1237078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease with prominent axon dysfunction. Our previous studies in an MS mouse model, experimental autoimmune encephalomyelitis (EAE), demonstrated that major histocompatibility complex Class II constructs can reverse clinical signs of EAE. These constructs block binding and downstream signaling of macrophage migration inhibitory factors (MIF-1/2) through CD74, thereby inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) activation and tissue inflammation and promoting remyelination. To directly assess the effects of a novel third generation construct, DRhQ, on axon integrity in EAE, we compared axon conduction properties using electrophysiology on corpus callosum slices and optic nerves. By using two distinct white matter (WM) tracts, we aimed to assess the impact of the EAE and the benefit of DRhQ on myelinated and unmyelinated axons as well as to test the clinical value of DRhQ on demyelinating lesions in CC and optic myelitis. Our study found that EAE altered axon excitability, delayed axon conduction and slowed spatiotemporal summation correlated with diffuse astrocyte and microglia activation. Because MS predisposes patients to stroke, we also investigated and showed that vulnerability to WM ischemia is increased in the EAE MS mouse model. Treatment with DRhQ after the onset of EAE drastically inhibited microglial and astrocyte activation, improved functional integrity of the myelinated axons and enhanced recovery after ischemia. These results demonstrate that DRhQ administered after the onset of EAE promotes WM integrity and function, and reduces subsequent vulnerability to ischemic injury, suggesting important therapeutic potential for treatment of progressive MS.
Collapse
Affiliation(s)
- Sarah Zerimech
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Arthur A. Vandenbark
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Selva Baltan
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
38
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Alsaleh NB, Alasmari AF, Al-Hamamah MA, Alanazi A, Alshamrani AA, Bakheet SA, Harisa GI. The small molecule Erk1/2 signaling pathway inhibitor PD98059 improves DNA repair in an experimental autoimmune encephalomyelitis SJL/J mouse model of multiple sclerosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503650. [PMID: 37491119 DOI: 10.1016/j.mrgentox.2023.503650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - G I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Liang S, Gao H, He T, Li L, Zhang X, Zhao L, Chen J, Xie Y, Bao J, Gao Y, Dai E, Wang Y. Association between SUMF1 polymorphisms and COVID-19 severity. BMC Genom Data 2023; 24:34. [PMID: 37344788 DOI: 10.1186/s12863-023-01133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Evidence shows that genetic factors play important roles in the severity of coronavirus disease 2019 (COVID-19). Sulfatase modifying factor 1 (SUMF1) gene is involved in alveolar damage and systemic inflammatory response. Therefore, we speculate that it may play a key role in COVID-19. RESULTS We found that rs794185 was significantly associated with COVID-19 severity in Chinese population, under the additive model after adjusting for gender and age (for C allele = 0.62, 95% CI = 0.44-0.88, P = 0.0073, logistic regression). And this association was consistent with this in European population Genetics Of Mortality In Critical Care (GenOMICC: OR for C allele = 0.94, 95% CI = 0.90-0.98, P = 0.0037). Additionally, we also revealed a remarkable association between rs794185 and the prothrombin activity (PTA) in subjects (P = 0.015, Generalized Linear Model). CONCLUSIONS In conclusion, our study for the first time identified that rs794185 in SUMF1 gene was associated with the severity of COVID-19.
Collapse
Affiliation(s)
- Shaohui Liang
- Department of Respiratory, Hebei Chest Hospital, Shijiazhuang, 050000, Hebei, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China
| | - Tongxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Li Li
- Intensive Care Unit, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China
| | - Xin Zhang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China
| | - Lei Zhao
- The Second Internal Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China
| | - Jie Chen
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yanyan Xie
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jie Bao
- Department of Respiratory, Hebei Chest Hospital, Shijiazhuang, 050000, Hebei, China
| | - Yong Gao
- Department of Respiratory, Hebei Chest Hospital, Shijiazhuang, 050000, Hebei, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China.
| | - Yuling Wang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, Hebei, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
40
|
Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol 2023; 14:1187411. [PMID: 37351510 PMCID: PMC10282138 DOI: 10.3389/fphar.2023.1187411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines on Public Health in Chongqing, Chongqing, China
| |
Collapse
|
41
|
Florio-Smith J, Ayer M, Colhoun S, Daykin N, Hamill B, Liu X, Rogers E, Thomson A, Balzan RP. The importance of the patient's perspective in decision-making in multiple sclerosis: Results of the OwnMS patient perspectives study. Mult Scler Relat Disord 2023; 75:104757. [PMID: 37210990 DOI: 10.1016/j.msard.2023.104757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Research is needed to identify the unmet disease education and communication needs of people with multiple sclerosis (PwMS) to support informed decision-making, enable self-management and maintain independence for PwMS for as long as possible. METHODS An Expert Steering Group co-developed two studies for PwMS aged 18 years and over: a qualitative, online, patient community activity and a quantitative anonymised online survey. The quantitative survey was conducted in the UK from 12 September 2019 to 18 November 2019 amongst PwMS recruited via the Multiple Sclerosis (MS) Trust newsletter and their closed Facebook group. Questions explored the goals, desires, and knowledge gaps of PwMS. Self-reported data from people with relapsing-remitting multiple sclerosis (RRMS) were collated and reviewed, and discussed by the Steering Group. This paper presents descriptive statistics of the quantitative survey findings. RESULTS The sample consisted of 117 participants with RRMS. Most respondents (73%) had personal goals related to lifestyle and many (69%) were concerned about maintaining independence. More than half of respondents were worried about planning for the future in relation to income (56%), housing (40%) and most respondents also indicated MS had a negative impact on their lives, including their work life (73%) and social life (69%). Limited occupational support was forthcoming (17% were not provided with any support and only 27% report their work environment being adjusted to suit their needs). The ability to plan for the future and to understand the course of MS were highlighted as key priorities by respondents. A positive trend was observed between those who felt able to plan for the future and their knowledge of MS progression. The proportion of patients who report knowing a 'great deal' about MS prognosis and disability progression was low (16% and 9%, respectively), suggesting an increased role for clinical teams to provide information and education for PwMS. Communication between respondents and their clinical teams highlighted the role of specialist nurses for PwMS to provide holistic, informative support and demonstrated the level of comfort that PwMS have in discussing less clinical topics with these providers. CONCLUSION This UK nationwide survey highlighted some of the unmet needs in disease education and communication in a subgroup of UK patients with RRMS, which can impact quality of life. Discussing goals and planning alongside prognosis and disability progression with MS care teams may enable people with RRMS not only to make informed treatment decisions, but also to self-manage and plan for the future, factors which are important to maintain independence.
Collapse
Affiliation(s)
| | - Mavis Ayer
- University Hospital of Southampton NHS Foundation Trust, UKMSSNA Co chair.
| | - Samantha Colhoun
- Lead Clinical Nurse Specialist in MS, Queen Elizabeth Hospital, Birmingham.
| | - Nicola Daykin
- Multiple Sclerosis Nurse Specialist, Nottingham City Care, Nottingham.
| | - Brenda Hamill
- Multiple Sclerosis Nursing Service, Northern Health & Social Care Trust, Northern Ireland United Kingdom.
| | | | | | - Alison Thomson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London.
| | | |
Collapse
|
42
|
Alonso Torres AM, Arévalo Bernabé AG, Becerril Ríos N, Hellín Gil MF, Martínez Sesmero JM, Meca Lallana V, Ramió-Torrentà L, Rodríguez-Antigüedad A, Gómez Maldonado L, Triana Junco I, Gómez-Barrera M, Espinoza Cámac N, Oyagüez I. Cost-Analysis of Subcutaneous vs Intravenous Administration of Natalizumab Based on Patient Care Pathway in Multiple Sclerosis in Spain. PHARMACOECONOMICS - OPEN 2023; 7:431-441. [PMID: 36802327 PMCID: PMC10169937 DOI: 10.1007/s41669-023-00394-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION A subcutaneous (SC) formulation of natalizumab has been recently authorised for multiple sclerosis patients. This study aimed to assess the implications of the new SC formulation, and to compare the annual treatment costs of SC versus intravenous (IV) natalizumab therapy from both the Spanish healthcare system (direct health cost) and the patient (indirect cost) perspectives. METHODS A patient care pathway map and a cost-minimisation analysis were developed to estimate SC and IV natalizumab annual costs over a 2-year time horizon. Considering the patient care pathway and according to natalizumab experience (IV) or estimation (SC), a national expert panel involving neurologists, pharmacists, and nurses provided information/data regarding resource consumption for drug and patient preparation, administration, and documentation. One hour of observation was applied to the first six (SC) or 12 (IV) doses, and 5 min for successive doses. The Day hospital (infusion suite) facilities at a reference hospital were considered for IV administrations and the first six SC injections. For successive SC injections, either a reference hospital or regional hospital in a consulting room was considered. Productivity time associated with travel (56 min to reference hospital, 24 min to regional hospital) and waiting time pre- and post-treatment (SC 15 min, IV 25 min) were assessed for patients and caregivers (accompanying 20% of SC and 35% of IV administrations). National salaries for healthcare professionals were used for cost estimation (€, year 2021). RESULTS At years 1 and 2, total time and cost savings (excluding drug acquisition cost) per patient, driven by saving on administration and patient and caregiver productivity for SC at a reference hospital versus IV at a reference hospital, were 116 h (a reduction of 54.6%) and €3682.82 (a reduction of 66.2%). In the case of natalizumab SC at a regional hospital, the total time and cost saving were 129 h (a reduction of 60.6%) and €3883.47 (a reduction of 69.8%). CONCLUSIONS Besides the potential benefits of convenient administration and improving work-life balance, as suggested by the expert panel, natalizumab SC was associated with cost savings for the healthcare system by avoiding drug preparation, reducing administration time, and freeing up infusion suite capacity. Additional cost savings could be derived with regional hospital administration of natalizumab SC by reducing productivity loss.
Collapse
Affiliation(s)
- A M Alonso Torres
- Neurology Department, Hospital Universitario de Málaga, Málaga, Spain
| | | | | | - M F Hellín Gil
- Specialised Nurse, Hospital Virgen Arrixaca, Murcia, Spain
| | | | - V Meca Lallana
- Neurology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Ll Ramió-Torrentà
- Neurology Department, Hospital Universitario Josep Trueta, Girona, Spain
| | | | | | | | - M Gómez-Barrera
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), Madrid, Spain
| | - N Espinoza Cámac
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), Madrid, Spain.
| | - I Oyagüez
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), Madrid, Spain
| |
Collapse
|
43
|
Vesic K, Gavrilovic A, Mijailović NR, Borovcanin MM. Neuroimmune, clinical and treatment challenges in multiple sclerosis-related psychoses. World J Psychiatry 2023; 13:161-170. [PMID: 37123101 PMCID: PMC10130959 DOI: 10.5498/wjp.v13.i4.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
In recent years, epidemiological and genetic studies have shown an association between autoimmune diseases and psychosis. The question arises whether patients with schizophrenia are more likely to develop multiple sclerosis (MS) later in life. It is well known that the immune system plays an important role in the etiopathogenesis of both disorders. Immune disturbances may be similar or very different in terms of different types of immune responses, disturbed myelination, and/or immunogenetic predispositions. A psychotic symptom may be a consequence of the MS diagnosis itself or a separate entity. In this review article, we discussed the timing of onset of psychotic symptoms and MS and whether the use of corticosteroids as therapy for acute relapses in MS is unfairly neglected in patients with psychiatric comorbidities. In addition, we discussed that the anti-inflammatory potential of antipsychotics could be useful and should be considered, especially in the treatment of psychosis that coexists with MS. Autoimmune disorders could precipitate psychotic symptoms, and in this context, autoimmune psychosis must be considered as a persistent symptomatology that requires continuous and specific treatment.
Collapse
Affiliation(s)
- Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Aleksandar Gavrilovic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Nataša R Mijailović
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| |
Collapse
|
44
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Yamazaki R, Osanai Y, Kouki T, Huang JK, Ohno N. Pharmacological treatment promoting remyelination enhances motor function after internal capsule demyelination in mice. Neurochem Int 2023; 164:105505. [PMID: 36754122 DOI: 10.1016/j.neuint.2023.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system characterized by remyelination failure, axonal degeneration, and progressive worsening of motor functions. Animal models of demyelination are frequently used to develop and evaluate therapies for MS. We recently reported that focal internal capsule (IC) demyelination in mice with lysophosphatidylcholine injection induced acute motor deficits followed by recovery through remyelination. However, it remains unknown whether the IC demyelination mouse model can be used to evaluate changes in motor functions caused by pharmacological treatments that promote remyelination using behavioral testing and histological analysis. In this study, we examined the effect of clemastine, an anti-muscarinic drug that promotes remyelination, in the mouse IC demyelination model. Clemastine administration improved motor function and changed forepaw preference in the IC demyelinated mice. Moreover, clemastine-treated mice showed increased mature oligodendrocyte density, reduced axonal injury, an increased number of myelinated axons and thicker myelin in the IC lesions compared with control (PBS-treated) mice. These results suggest that the lysophosphatidylcholine-induced IC demyelination model is useful for evaluating changes in motor functions following pharmacological treatments that promote remyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA; Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
46
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
47
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
48
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|
49
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
50
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|