1
|
Gravesteijn AS, Beckerman H, Broeders TAA, Schoonheim MM, Hulst HE, de Jong BA, de Groot V. Effects of 16-week progressive resistance training on neurodegeneration in people with progressive multiple sclerosis: An extended baseline within-person trial. Mult Scler Relat Disord 2025; 98:106411. [PMID: 40209557 DOI: 10.1016/j.msard.2025.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Progressive multiple sclerosis (PMS) is characterized by ongoing neurodegeneration, which current therapies inadequately address. Exercise therapy has emerged as a potential approach to mitigate this process. OBJECTIVES To investigate the effects of a 16-week progressive resistance training (PRT) on neurodegeneration and neuronal function in people with PMS. METHODS In this extended-baseline within-person trial, neurodegeneration and neuronal function were assessed (i.e. total brain volume (TBV), cortical and deep gray matter volume (CGMV & DGMV) normalized for intercranial volume, default mode network (DMN) and sensorimotor network (SMN) resting-state functional connectivity and blood-based biomarkers (brain-derived neurotrophic factor, neurofilament light, and glial fibrillary acidic protein)). Muscle strength changes were also measured. Linear mixed model analysis was used to assess changes. RESULTS Thirty participants (20 females; mean age 54 years) significantly improved in muscle strength (3-11 kg). No significant changes were observed in neurodegeneration nor neuronal function. CGMV demonstrated a trend towards decline during the baseline (-0.0008, 95 %CI:-0.0017, 0.0001, p = 0.10) and intervention period (-0.0007, 95 %CI:-0.0016, 0.0001, p = 0.10), but not during the follow-up (0.0002, 95 %CI:-0.0007, 0.0011, p = 0.60). CONCLUSIONS The PRT intervention improved muscle strength but did not affect neurodegeneration and neuronal function in people with PMS. Further research on longer-term exercise interventions is warranted.
Collapse
Affiliation(s)
- Arianne S Gravesteijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neuroinfection & -inflammation, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands.
| | - Heleen Beckerman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, Social Participation and Health, Amsterdam, the Netherlands
| | - Tommy A A Broeders
- Amsterdam Neuroscience, Neuroinfection & -inflammation, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- Amsterdam Neuroscience, Neuroinfection & -inflammation, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Leiden University, Faculty of Social Sciences, Institute of Psychology, Health, Medical and Neuropsychology unit, Leiden, the Netherlands
| | - Brigit A de Jong
- Amsterdam Neuroscience, Neuroinfection & -inflammation, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Neurology, Amsterdam, the Netherlands; Amsterdam Public Health, Quality of Care, Amsterdam, the Netherlands
| | - Vincent de Groot
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neuroinfection & -inflammation, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Nikolova A, Milanov I, Kmetska K. Prevalence and incidence of multiple sclerosis in Bulgaria. Front Neurol 2025; 16:1513390. [PMID: 40170901 PMCID: PMC11960440 DOI: 10.3389/fneur.2025.1513390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune, demyelinating and neurodegenerative disease of the central nervous system that primarily affects young, active people and is a leading cause of non-traumatic, irreversible neurological deficit. Multiple sclerosis is one of the most studied diseases in neuroepidemiology and is characterized by an uneven geographical distribution worldwide. Objective To estimate the prevalence and incidence of multiple sclerosis in Bulgaria and their distribution by age and gender, using data from the latest population census in the country, provided by the National Statistical Institute. Methods An epidemiological study, covering a 7-year period-from 2015 to 2021 was conducted in Bulgaria. Eight regions with their population were included in the study-Blagoevgrad, Montana, Pernik, Svoge, Smolyan, Troyan, Haskovo and Shumen. Data, provided by the National Statistical Institute, were used to calculate the values of prevalence and incidence of multiple sclerosis. All cases were diagnosed using the 2017 McDonald's diagnostic criteria. The results obtained from the study were also used to determine the clinical characteristics of the Bulgarian patient. For the purposes of the epidemiological study an individual questionnaire was developed. Results On the prevalence day-07.09.2021, there were 532 people with multiple sclerosis in the studied regions of the country, revealing a prevalence of 121.2/100000 and an incidence of 4.2/100000. 182 of them were males and 350 were females comprising a ratio of 2:1 in favor of the women. More than 50% of all cases had relapsing-remitting course of disease. Secondary-progressive MS had 30% of all patients and 10% suffered from primary progressive multiple sclerosis. Clinically isolated syndrome was present in less than 5% of patients. The mean age at disease onset was 32.2 ± 10.3 years. Conclusion The established values of prevalence and incidence position Bulgaria in the area with a high frequency of MS. There is an increase in prevalence and incidence compared to previous studies conducted in the country. The results obtained are similar to those reported by the neighboring countries of the Balkan Peninsula and are close to the average values in Europe according to the latest edition of Atlas of Multiple Sclerosis.
Collapse
Affiliation(s)
- Antonia Nikolova
- Department of Neurology, Medical University, Sofia, Bulgaria
- Multiprofile Hospital for Treatment in Neurology and Psychiatry, Sofia, Bulgaria
| | - Ivan Milanov
- Department of Neurology, Medical University, Sofia, Bulgaria
- Multiprofile Hospital for Treatment in Neurology and Psychiatry, Sofia, Bulgaria
| | - Ksenia Kmetska
- Department of Neurology, Medical University, Sofia, Bulgaria
- Multiprofile Hospital for Treatment in Neurology and Psychiatry, Sofia, Bulgaria
| |
Collapse
|
3
|
Agostini S, Mancuso R, Citterio LA, Caputo D, Oreni L, Nuzzi R, Pasanisi MB, Rovaris M, Clerici M. Serum miR-34a-5p, miR-103a-3p, and miR-376a-3p as possible biomarkers of conversion from relapsing-remitting to secondary progressive multiple sclerosis. Neurobiol Dis 2024; 200:106648. [PMID: 39181188 DOI: 10.1016/j.nbd.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Relapsing-remitting (RR) Multiple Sclerosis (MS) is the most common form of the disease; RRMS patients can maintain their clinical phenotype throughout life or can develop a secondary progressive (SP) course over time. We investigated whether circulating miRNAs can predict RR-to-SPMS conversion. A serum miRNAs profile was initially analyzed in a cross-sectional study by qPCR in 16 patients (8 RRMS and 8 SPMS) (Discovery cohort). Three miRNAs, i.e. miR-34a-5p, miR-103a-3p and miR-376a-3p, were significantly up-regulated in SPMS compared to RRMS patients (p < 0.0 5). Serum concentration of the same miRNAs was subsequently analyzed in a retrospective study by ddPCR at baseline in 69 RRMS patients who did (N = 36 cSPMS) or did not (N = 33) convert into SPMS over a 10-year observation period (Study cohort). The results showed that these miRNAs were significantly increased at baseline only in those RRMS patients who converted to SPMS over time. miR-34a-5p and miR-376a-3p alone were significantly increased in cSPMS sera at the end of the 10-years period too. Serum concentration of miR-34a-5p, miR-103a-3p and miR-376a-3p is increased in RRMS patients several years before their conversion to SPMS. These miRNAs might be useful biomarkers to predict the conversion from RRMS to SPMS.
Collapse
Affiliation(s)
| | | | | | | | - Letizia Oreni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
5
|
Montobbio N, Carmisciano L, Signori A, Ponzano M, Schiavetti I, Bovis F, Sormani MP. Creating an automated tool for a consistent and repeatable evaluation of disability progression in clinical studies for multiple sclerosis. Mult Scler 2024; 30:1185-1192. [PMID: 39143826 DOI: 10.1177/13524585241243157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
BACKGROUND The lack of standardized disability progression evaluation in multiple sclerosis (MS) hinders reproducibility of clinical study results, due to heterogeneous and poorly reported criteria. OBJECTIVE To demonstrate the impact of using different parameters when evaluating MS progression, and to introduce an automated tool for reproducible outcome computation. METHODS Re-analyzing BRAVO clinical trial data (NCT00605215), we examined the fluctuations in computed treatment effect on confirmed disability progression (CDP) and progression independent of relapse activity (PIRA) when varying different parameters. These analyses were conducted using the msprog package for R, which we developed as a tool for CDP assessment from longitudinal data, given a set of criteria that can be specified by the user. RESULTS The BRAVO study reported a hazard ratio (HR) of 0.69 (95% confidence interval (CI): 0.46-1.02) for CDP. Using the different parameter configurations, the resulting treatment effect on CDP varied considerably, with HRs ranging from 0.59 (95% CI: 0.41-0.86) to 0.72 (95% CI: 0.48-1.07). The treatment effect on PIRA varied from an HR = 0.62 (95% CI: 0.41-0.93) to an HR = 0.65 (95% CI: 0.40-1.04). CONCLUSIONS The adoption of an open-access tool validated by the research community, with clear parameter specification and standardized output, could greatly reduce heterogeneity in CDP estimation and promote repeatability of study results.
Collapse
Affiliation(s)
- Noemi Montobbio
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Marta Ponzano
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Irene Schiavetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Francesca Bovis
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy / IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Cujbă L, Banc A, Stan C, Drugan T, Nicula C. Macular OCT's Proficiency in Identifying Retrochiasmal Visual Pathway Lesions in Multiple Sclerosis-A Pilot Study. Diagnostics (Basel) 2024; 14:1221. [PMID: 38928637 PMCID: PMC11202879 DOI: 10.3390/diagnostics14121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique based on the principle of low-coherence interferometry that captures detailed images of ocular structures. Multiple sclerosis (MS) is a neurodegenerative disease that can lead to damage of the optic nerve and retina, which can be depicted by OCT. The purpose of this pilot study is to determine whether macular OCT can be used as a biomarker in the detection of retrochiasmal lesions of the visual pathway in MS patients. We conducted a prospective study in which we included 52 MS patients and 27 healthy controls. All participants underwent brain MRI, visual field testing, and OCT evaluation of the thicknesses of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer (GCL), and macular inner plexiform layer (IPL). OCT measurements were adjusted for optic neuritis (ON). VF demonstrated poor capability to depict a retrochiasmal lesion identified by brain MRI (PPV 0.50). In conclusion, the OCT analysis of the macula appears to excel in identifying retrochiasmal MS lesions compared to VF changes. The alterations in the GCL and IPL demonstrate the most accurate detection of retrochiasmal visual pathway changes in MS patients.
Collapse
Affiliation(s)
- Larisa Cujbă
- Medical Doctoral School, University of Oradea, 410087 Oradea, Romania;
| | - Ana Banc
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Cristina Stan
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Maxillo-Facial Surgery and Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
8
|
Zinganell A, Göbel G, Berek K, Hofer B, Asenbaum-Nan S, Barang M, Böck K, Bsteh C, Bsteh G, Eger S, Eggers C, Fertl E, Joldic D, Khalil M, Langenscheidt D, Komposch M, Kornek B, Kraus J, Krendl R, Rauschka H, Sellner J, Auer M, Hegen H, Pauli FD, Deisenhammer F. Multiple sclerosis in the elderly: a retrospective cohort study. J Neurol 2024; 271:674-687. [PMID: 37855871 DOI: 10.1007/s00415-023-12041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND There is a lack of knowledge of disease course, prognosis, comorbidities and potential treatments of elderly MS patients. OBJECTIVE To characterize the disease course including disability progression and relapses, to quantify the use of DMTs and to identify comorbidities and risk factors for progression in elderly multiple sclerosis (MS) patients. METHODS This is a retrospective study of 1200 Austrian MS patients older than 55 years as of May 1st, 2017 representing roughly one-third of all the MS patients of this age in Austria. Data were collected from 15 MS centers including demographics, first symptom at onset, number of relapses, evolvement of disability, medication, and comorbidities. RESULTS Median observation time was 17.1 years with 957 (80%) relapsing and 243 (20%) progressive onsets. Average age at diagnosis was 45 years with a female predominance of 71%. Three-hundred and twenty-six (27%) patients were never treated with a DMT, while most treated patients received interferons (496; 41%) at some point. At last follow-up, 420 (35%) patients were still treated with a DMT. No difference was found between treated and never-treated patients in terms of clinical outcome; however, patients with worse disability progression had significantly more DMT switches. Pyramidal onset, number of comorbidities, dementia, epilepsy, and psychiatric conditions as well as a higher number of relapses were associated with worse outcome. The risk of reaching EDSS 6 rose with every additional comorbidity by 22%. In late and very-late-onset MS (LOMS, VLOMS) time to diagnosis took nearly twice the time compared to adult and early onset (AEOMS). The overall annualized relapse rate (ARR) decreased over time and patients with AEOMS had significantly higher ARR compared to LOMS and VLOMS. Four percent of MS patients had five medications or more fulfilling criteria of polypharmacy and 20% of psychiatric drugs were administered without a matching diagnosis. CONCLUSIONS In this study, we identified number of comorbidities, pyramidal and cerebellar signs, and a higher number of relapses as unfavorable prognostic factors in elderly MS patients filling gaps of knowledge in patients usually underrepresented in clinical trials and may guide future therapeutic studies.
Collapse
Affiliation(s)
- Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Georg Göbel
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Barbara Hofer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | - Matin Barang
- Department of Neurology, Hospital of St. Pölten, St. Pölten, Austria
| | - Klaus Böck
- Department of Neurology, Kepler Universitätsklinikum, Linz, Austria
| | | | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stephan Eger
- Department of Neurology, Kepler Universitätsklinikum, Linz, Austria
| | - Christian Eggers
- Department of Neurology, Kepler Universitätsklinikum, Linz, Austria
| | - Elisabeth Fertl
- Department of Neurology, Klinik Landstrasse, Vienna, Austria
| | - Damir Joldic
- Department of Neurology, Klinik Landstrasse, Vienna, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Martina Komposch
- Department of Neurology, Hospital of Klagenfurt, Klagenfurt, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jörg Kraus
- Neurologist, Zell Am See, Austria
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Reinhard Krendl
- Department of Neurology, Hospital of Villach, Villach, Austria
| | - Helmut Rauschka
- Department of Neurology, Klinik Donaustadt, Vienna, Austria
- Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Department of Neurology, Klinik Donaustadt, Vienna, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach, Mistelbach, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
10
|
McGuire J, Muto C, Marcello C. Multiple sclerosis: Implications for the primary care NP. Nurse Pract 2023; 48:38-47. [PMID: 37487047 DOI: 10.1097/01.npr.0000000000000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
ABSTRACT Multiple sclerosis is a demyelinating disease of the central nervous system. It contributes to a variety of symptoms affecting different areas of the body. The primary care NP must be familiar with the disease, therapies, and social impact to provide proper care to affected patients.
Collapse
|
11
|
Prajjwal P, Marsool MDM, Asharaf S, Inban P, Gadam S, Yadav R, Vora N, Nandwana V, Marsool ADM, Amir O. Comparison of recent updates in genetics, immunology, biomarkers, and neuroimaging of primary-progressive and relapsing-remitting multiple sclerosis and the role of ocrelizumab in the management of their refractory cases. Health Sci Rep 2023; 6:e1422. [PMID: 37448727 PMCID: PMC10337274 DOI: 10.1002/hsr2.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Background Primary-progressive multiple sclerosis (PPMS) and relapsing-remitting multiple sclerosis (RRMS) are two frequent multiple sclerosis (MS) subtypes that involve 10%-15% of patients. PPMS progresses slowly and is diagnosed later in life. Both subtypes are influenced by genetic and environmental factors such as smoking, obesity, and vitamin D insufficiency. Although there is no cure, ocrelizumab can reduce symptoms and delay disease development. RRMS is an autoimmune disease that causes inflammation, demyelination, and disability. Early detection, therapy, and lifestyle changes are critical. This study delves into genetics, immunology, biomarkers, neuroimaging, and the usefulness of ocrelizumab in the treatment of refractory patients of PPMS. Method In search of published literature providing up-to-date information on PPMS and RRMS, this review conducted numerous searches in databases such as PubMed, Google Scholar, MEDLINE, and Scopus. We looked into genetics, immunology, biomarkers, current breakthroughs in neuroimaging, and the role of ocrelizumab in refractory cases. Results Our comprehensive analysis found considerable advances in genetics, immunology, biomarkers, neuroimaging, and the efficacy of ocrelizumab in the treatment of refractory patients. Conclusion Early detection, timely intervention, and the adoption of lifestyle modifications play pivotal roles in enhancing treatment outcomes. Notably, ocrelizumab has demonstrated potential in symptom control and mitigating the rate of disease advancement, further underscoring its clinical significance in the management of MS.
Collapse
Affiliation(s)
- Priyadarshi Prajjwal
- Department of NeurologyBharati Vidyapeeth University Medical College PunePuneIndia
| | | | | | | | | | - Rukesh Yadav
- Internal Medicine, Maharajgunj Medical CampusTribhuvan UniversityKathmanduNepal
| | - Neel Vora
- Internal Medicine, B.J. Medical CollegeAhmedabadIndia
| | - Varsha Nandwana
- Department of NeurologyVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | | | - Omniat Amir
- Internal Medicine, Al Manhal AcademyKhartoumSudan
| |
Collapse
|
12
|
Alkhuder K. Fourier-transform infrared spectroscopy: a universal optical sensing technique with auspicious application prospects in the diagnosis and management of autoimmune diseases. Photodiagnosis Photodyn Ther 2023; 42:103606. [PMID: 37187270 DOI: 10.1016/j.pdpdt.2023.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Autoimmune diseases (AIDs) are poorly understood clinical syndromes due to breakdown of immune tolerance towards specific types of self-antigens. They are generally associated with an inflammatory response mediated by lymphocytes T, autoantibodies or both. Ultimately, chronic inflammation culminates in tissue damages and clinical manifestations. AIDs affect 5% of the world population, and they represent the main cause of fatality in young to middle-aged females. In addition, the chronic nature of AIDs has a devastating impact on the patient's quality of life. It also places a heavy burden on the health care system. Establishing a rapid and accurate diagnosis is considered vital for an ideal medical management of these autoimmune disorders. However, for some AIDs, this task might be challenging. Vibrational spectroscopies, and more particularly Fourier-transform infrared (FTIR) spectroscopy, have emerged as universal analytical techniques with promising applications in the diagnosis of various types of malignancies and metabolic and infectious diseases. The high sensitivity of these optical sensing techniques and their minimal requirements for test reagents qualify them to be ideal analytical techniques. The aim of the current review is to explore the potential applications of FTIR spectroscopy in the diagnosis and management of most common AIDs. It also aims to demonstrate how this technique has contributed to deciphering the biochemical and physiopathological aspects of these chronic inflammatory diseases. The advantages that can be offered by this optical sensing technique over the traditional and gold standard methods used in the diagnosis of these autoimmune disorders have also been extensively discussed.
Collapse
|
13
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
14
|
El Ayoubi NK, Sabbagh HM, Bou Rjeily N, Hannoun S, Khoury SJ. Rate of Retinal Layer Thinning as a Biomarker for Conversion to Progressive Disease in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200030. [PMID: 36229190 PMCID: PMC9562042 DOI: 10.1212/nxi.0000000000200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
Abstract
Background and Objectives The diagnosis of secondary progressive multiple sclerosis (SPMS) is often delayed because of the lack of objective clinical tools, which increases the diagnostic uncertainty and hampers the therapeutic development in progressive multiple sclerosis (MS). Optical coherence tomography (OCT) has been proposed as a promising biomarker of progressive neurodegeneration. To explore longitudinal changes in the thicknesses of retinal layers on OCT in individuals with relapsing-remitting MS (RRMS) who converted to SPMS vs matched patients with RRMS who did not convert to SPMS. Our hypothesis is that the 2 cohorts exhibit different rates of retinal thinning. Methods From our prospective observational cohort of patients with MS at the American University of Beirut, we selected patients with RRMS who converted to SPMS during the observation period and patients with RRMS, matched by age, disease duration, and Expanded Disability Status Scale (EDSS) at the first visit. Baseline retinal measurements were obtained using spectral domain OCT, and all patients underwent clinical and OCT evaluation every 6–12 months on average throughout the study period (mean = 4 years). Mixed-effect regression models were used to assess the annualized rates of retinal changes and the differences between the 2 groups and between converters to SPMS before and after their conversion. Results A total of 61 participants were selected (21 SPMS and 40 RRMS). There were no differences in baseline characteristics and retinal measurements between the 2 groups. The annualized rates of thinning of all retinal layers, except for macular volume, were greater in converters before conversion compared with nonconverters by 112% for peripapillary retinal nerve fiber layer (p = 0.008), 344% for tRNFL (p < 0.0001), and 82% for cell-inner plexiform layer (GCIPL) (p = 0.002). When comparing the annualized rate of thinning for the same patients with SPMS before and after conversion, no significant differences were found except for tRNFL and GCIPL with slower thinning rates postconversion (46% and 68%, respectively). Discussion Patients who converted to SPMS exhibited faster retinal thinning as reflected on OCT. Longitudinal assessment of retinal thinning could confirm the transition to SPMS and help with the therapeutic decision making for patients with MS with clinical suspicion of disease progression.
Collapse
|
15
|
Calvier L, Alexander AE, Herz J. The "6B" strategy: Build Back a Better Blood-Brain Barrier. IMMUNO 2022; 2:506-511. [PMID: 38098699 PMCID: PMC10720986 DOI: 10.3390/immuno2030032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Under pathological conditions like multiple sclerosis (MS), leukocytes infiltrate the central nervous system where they, in concert with activated microglia, promote inflammatory demyelination resulting in a broad spectrum of symptoms including paralysis. Therefore, all current therapeutic approaches to MS target the immune system, blocking inflammation and paralysis progression, but may compromise the immune system. In this focused review, we present an underestimated compartment, the blood-brain barrier, which is compromised during MS and becomes permeable to leukocytes infiltrating the central nervous system. This barrier has the potential to offer new therapeutic strategies and is easily accessible for drugs. We highlight this paradigm using the example of the therapeutic anti-Reelin strategy we have developed. Reelin is a plasma protein that regulates the expression of adhesion markers on the endothelial surface, thus promoting the infiltration of inflammatory cells and propagating inflammation. Building Back a Better Blood-Brain Barrier (the "6B" strategy) may have advantages compared to actual immunosuppressive drugs because it restores a physiological function rather than suppressing the immune system.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, USA
| | - Anna E Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
16
|
Iaffaldano P, Lucisano G, Guerra T, Patti F, Onofrj M, Brescia Morra V, Zaffaroni M, Pozzilli C, Cocco E, Sola P, Salemi G, Inglese M, Bergamaschi R, Gasperini C, Conte A, Salvetti M, Lus G, Maniscalco GT, Totaro R, Vianello M, Granella F, Ferraro E, Aguglia U, Gatto M, Sangalli F, Chisari CG, De Luca G, Carotenuto A, Baroncini D, Colombo D, Nica M, Paolicelli D, Comi G, Filippi M, Amato MP, Trojano M. Towards a validated definition of the clinical transition to secondary progressive multiple sclerosis: A study from the Italian MS Register. Mult Scler 2022; 28:2243-2252. [PMID: 35971322 DOI: 10.1177/13524585221114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Definitions for reliable identification of transition from relapsing-remitting multiple sclerosis (MS) to secondary progressive (SP)MS in clinical cohorts are not available. OBJECTIVES To compare diagnostic performances of two different data-driven SPMS definitions. METHODS Data-driven SPMS definitions based on a version of Lorscheider's algorithm (DDA) and on the EXPAND trial inclusion criteria were compared, using the neurologist's definition (ND) as gold standard, in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), Akaike information criterion (AIC) and area under the curve (AUC). RESULTS A cohort of 10,240 MS patients with ⩾5 years of follow-up was extracted from the Italian MS Registry; 880 (8.5%) patients were classified as SPMS according to the neurologist definition, 1806 (17.6%) applying the DDA and 1134 (11.0%) with the EXPAND definition. The DDA showed greater discrimination power (AUC: 0.8 vs 0.6) and a higher sensitivity (77.1% vs 38.0%) than the EXPAND definition, with similar specificity (88.0% vs 91.5%). PPV and NPV were higher using the DDA than considering EXPAND definition (37.5% vs 29.5%; 97.6% vs 94.0%). CONCLUSION Data-driven definitions demonstrated greater ability to capture SP transition than neurologist's definition and the global accuracy of DDA seems to be higher than the EXPAND definition.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Lucisano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy/Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Tommaso Guerra
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Patti
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi Multipla, Università di Catania, Catania, Italy
| | - Marco Onofrj
- Centro Sclerosi Multipla, Clinica Neurologica, Policlinico SS Annunziata, Università 'G. d'Annunzio', Chieti-Pescara, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Mauro Zaffaroni
- Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Carlo Pozzilli
- Multiple Sclerosis Center, Sant' Andrea Hospital, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Cocco
- Department Medical Science and Public health, University of Cagliari, Cagliari, Italy/Centro Sclerosi Multipla, ATS Sardegna, Cagliari, Italy
| | - Patrizia Sola
- Neurology Unit, Department of Neurosciences, University of Modena and Reggio Emilia, Nuovo Ospedale Civile S. Agostino/Estense, Modena, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Matilde Inglese
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno - Infantili (DINOGMI), Universita' di Genova, Genova, Italy/Ospedale Policlinico San Martino, IRCCS, Genova, Italy
| | | | - Claudio Gasperini
- Centro Sclerosi Multipla, Azienda Ospedaliera S. Camillo Forlanini, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marco Salvetti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy/Centro Neurologico Terapie Sperimentali (CENTERS), Sapienza Universita' Di Roma, Azienda Ospedaliera Sant' Andrea, Rome, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Rocco Totaro
- Centro Malattie Demielinizzanti, Clinica Neurologica, Ospedale San Salvatore, L'Aquila, Italy
| | - Marika Vianello
- MS Unit, O.U. Neurology 'Ca' Foncello' Hospital, Treviso, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maurizia Gatto
- Centro Malattie Demielinizzanti, Ospedale Generale Regionale F. Miulli, Acquaviva delle Fonti, Italy
| | - Francesca Sangalli
- Neurology, Neurorehabilitation and Neuroimaging Research Units, Neurophysiology Service, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Clara Grazia Chisari
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi Multipla, Università di Catania, Catania, Italy
| | - Giovanna De Luca
- Centro Sclerosi Multipla, Clinica Neurologica, Policlinico SS Annunziata, Università 'G. d'Annunzio', Chieti-Pescara, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Clinical Care and Research Center, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Damiano Baroncini
- Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | | | | | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Comi
- Università Vita Salute San Raffaele, Milano, Italy/Casa di Cura del Policlinico, Milano, Italy
| | - Massimo Filippi
- Neurology, Neurorehabilitation and Neuroimaging Research Units, Neurophysiology Service, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro' Bari, Piazza G. Cesare, 11, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
17
|
Brain Structural and Functional Alterations in Multiple Sclerosis-Related Fatigue: A Systematic Review. Neurol Int 2022; 14:506-535. [PMID: 35736623 PMCID: PMC9228847 DOI: 10.3390/neurolint14020042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Fatigue is one of the most disabling symptoms of multiple sclerosis (MS); it influences patients’ quality of life. The etiology of fatigue is complex, and its pathogenesis is still unclear and debated. The objective of this review was to describe potential brain structural and functional dysfunctions underlying fatigue symptoms in patients with MS. To reach this purpose, a systematic review was conducted of published studies comparing functional brain activation and structural brain in MS patients with and without fatigue. Electronic databases were searched until 24 February 2021. The structural and functional outcomes were extracted from eligible studies and tabulated. Fifty studies were included: 32 reported structural brain differences between patients with and without fatigue; 14 studies described functional alterations in patients with fatigue compared to patients without it; and four studies showed structural and functional brain alterations in patients. The results revealed structural and functional abnormalities that could correlate to the symptom of fatigue in patients with MS. Several studies reported the differences between patients with fatigue and patients without fatigue in terms of conventional magnetic resonance imaging (MRI) outcomes and brain atrophy, specifically in the thalamus. Functional studies showed abnormal activation in the thalamus and in some regions of the sensorimotor network in patients with fatigue compared to patients without it. Patients with fatigue present more structural and functional alterations compared to patients without fatigue. Specifically, abnormal activation and atrophy of the thalamus and some regions of the sensorimotor network seem linked to fatigue.
Collapse
|
18
|
Dalla Costa G, Leocani L, Comi G. Ofatumumab subcutaneous injection for the treatment of relapsing forms of multiple sclerosis. Expert Rev Clin Immunol 2022; 18:105-114. [PMID: 35107057 DOI: 10.1080/1744666x.2022.2031982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In recent years, different studies have highlighted the importance of B cells in the pathophysiology of multiple sclerosis (MS): they secrete cytokines to modulate the inflammatory environment, present antigens for the activation of T lymphocytes, and they secrete antibodies contributing to the destruction of the myelin sheath. Combined, these findings have lead to new possible means for treating MS. AREAS COVERED In this review, we provide an up-to-date overview of the characteristics of ofatumumab (aka Kesimpta), and the differences between this drug and the other anti-CD20 monoclonal antibodies used to treat MS. EXPERT OPINION The evolution of disease-modifying treatment algorithms in MS underlines the importance of starting treatment as soon as the diagnosis is defined, and with adequate "treatment intensity". Monoclonal antibodies and other aggressive treatments are now considered as an option at the clinical presentation of the disease, based to the prognostic profile emerging through clinical and paraclinical investigations. The recent adoption of new diagnostic criteria allows for the early diagnosis of MS. This, together with the availability of disease-modifying therapies (DMTs), such as ofatumumab, with a good efficacy/safety profile and which are easy to administer, could contribute to significant improvements in the long-term prognosis of MS.
Collapse
Affiliation(s)
- G Dalla Costa
- Institute of Experimental Neurophysiology of San Raffaele Hospital, via Olgettina 60, Milan, Italy.,Vita-Salute San Raffaele University, via Olgettina 60, Milan, Italy
| | - L Leocani
- Institute of Experimental Neurophysiology of San Raffaele Hospital, via Olgettina 60, Milan, Italy.,Vita-Salute San Raffaele University, via Olgettina 60, Milan, Italy
| | - G Comi
- Vita-Salute San Raffaele University, via Olgettina 60, Milan, Italy.,Casa di Cura Privata del Policlinico, via Dezza 48, Milan, Italy
| |
Collapse
|
19
|
Miscioscia A, Puthenparampil M, Miante S, Pengo M, Rinaldi F, Perini P, Gallo P. Retinal inner nuclear layer thinning is decreased and associates with the clinical outcome in ocrelizumab-treated primary progressive multiple sclerosis. J Neurol 2022; 269:5436-5442. [PMID: 35648233 PMCID: PMC9467948 DOI: 10.1007/s00415-022-11183-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ocrelizumab was found to decrease brain atrophy rate in primary progressive multiple sclerosis (PPMS), but no data are currently available on the effect of ocrelizumab on retinal layer thicknesses in the PPMS population. OBJECTIVE To assess retinal layer changes in ocrelizumab-treated PPMS and test their possible application as biomarkers of therapy response. METHODS 36 PPMS patients, treated with ocrelizumab for at least 6 months, and 39 sex- and age-matched healthy controls (HC) were included in a blind, longitudinal study. Spectrum-domain optical coherence tomography (SD-OCT) was performed at study entry (T0) and after 6 (T6) and 12 months (T12). At month 24 (T24), patients were divided into responders (no evidence of 1-year confirmed disability progression, 1y-CDP) and non-responders (evidence of 1y-CDP). RESULTS At T24, 23/36 (64%) patients were considered responders and 13/36 (36%) non-responders. At T0, peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell-inner plexiform layer (GCIPL) and inner retinal layer (IRL) volume were significantly lower in PPMS compared to HC (p = 0.001 for all comparisons). At T6 and T12, non-responders significantly differed in the inner nuclear layer (INL) thinning rate compared to responders (p = 0.005 at both time-points). CONCLUSIONS Ocrelizumab significantly slows down INL thinning rate in PPMS responders. The longitudinal analysis of retina layer changes by means of OCT may be a promising prognostic test, and merits further investigations.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Marco Puthenparampil
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Silvia Miante
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy ,Present Address: Neurology Unit, Ospedale dell’Angelo, Mestre, Italy
| | - Marta Pengo
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy ,Present Address: Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Rinaldi
- Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Paola Perini
- Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| | - Paolo Gallo
- Department of Neuroscience DNS, School of Medicine, University of Padua, Via Giustiniani, 5, 35128 Padua, Veneto Region Italy ,Multiple Sclerosis Centre, University Hospital of Padua, Padua, Veneto Region Italy
| |
Collapse
|
20
|
Variability of Objective Gait Measures across the Expanded Disability Status Scale in People Living with Multiple Sclerosis: a cross-sectional retrospective analysis. Mult Scler Relat Disord 2022; 59:103645. [DOI: 10.1016/j.msard.2022.103645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/23/2022]
|
21
|
Backner Y, Zamir S, Petrou P, Paul F, Karussis D, Levin N. Anatomical and functional visual network patterns in progressive multiple sclerosis. Hum Brain Mapp 2021; 43:1590-1597. [PMID: 34931352 PMCID: PMC8886643 DOI: 10.1002/hbm.25744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
The gradual accrual of disability over time in progressive multiple sclerosis is believed to be driven by widespread degeneration. Yet another facet of the problem may reside in the loss of the brain's ability to adapt to the damage incurred as the disease progresses. In this study, we attempted to examine whether changes associated with optic neuritis in the structural and functional visual networks can still be discerned in progressive patients even years after the acute insult. Forty-eight progressive multiple sclerosis patients, 21 with and 27 without prior optic neuritis, underwent structural and functional MRI, including DTI and resting state fMRI. Anatomical and functional visual networks were analyzed using graph theory-based methods. While no functional metrics were significantly different between the two groups, anatomical global efficiency and density were significantly lower in the optic neuritis group, despite no significant difference in lesion load between the groups. We conclude that long-standing distal damage to the optic nerve causes trans-synaptic effects and the early ability of the cortex to adapt may be altered, or possibly nullified. We suggest that this limited ability of the brain to compensate should be considered when attempting to explain the accumulation of disability in progressive multiple sclerosis patients.
Collapse
Affiliation(s)
- Yael Backner
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sol Zamir
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Panayiota Petrou
- Multiple Sclerosis Center, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios Karussis
- Multiple Sclerosis Center, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel
| | - Netta Levin
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Guerrieri S, Comi G, Leocani L. Optical Coherence Tomography and Visual Evoked Potentials as Prognostic and Monitoring Tools in Progressive Multiple Sclerosis. Front Neurosci 2021; 15:692599. [PMID: 34421520 PMCID: PMC8374170 DOI: 10.3389/fnins.2021.692599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms underlying progression and developing new treatments for progressive multiple sclerosis (PMS) are among the major challenges in the field of central nervous system (CNS) demyelinating diseases. Over the last 10 years, also because of some technological advances, the visual pathways have emerged as a useful platform to study the processes of demyelination/remyelination and their relationship with axonal degeneration/protection. The wider availability and technological advances in optical coherence tomography (OCT) have allowed to add information on structural neuroretinal changes, in addition to functional information provided by visual evoked potentials (VEPs). The present review will address the role of the visual pathway as a platform to assess functional and structural damage in MS, focusing in particular on the role of VEPs and OCT, alone or in combination, in the prognosis and monitoring of PMS.
Collapse
Affiliation(s)
- Simone Guerrieri
- Experimental Neurophysiology Unit, San Raffaele Hospital, Institute of Experimental Neurology (INSPE), Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, San Raffaele Hospital, Institute of Experimental Neurology (INSPE), Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10:e1316. [PMID: 34336206 PMCID: PMC8312887 DOI: 10.1002/cti2.1316] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity plays a significant role in the pathogenesis of demyelination. Multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) are now recognised as separate disease entities under the amalgam of human central nervous system demyelinating disorders. While these disorders share inherent similarities, investigations into their distinct clinical presentations and lesion pathologies have aided in differential diagnoses and understanding of disease pathogenesis. An interplay of various genetic and environmental factors contributes to each disease, many of which implicate an autoimmune response. The pivotal role of the adaptive immune system has been highlighted by the diagnostic autoantibodies in NMOSD and MOGAD, and the presence of autoreactive lymphocytes in MS lesions. While a number of autoantigens have been proposed in MS, recent emphasis on the contribution of B cells has shed new light on the well‐established understanding of T cell involvement in pathogenesis. This review aims to synthesise the clinical characteristics and pathological findings, discuss existing and emerging hypotheses regarding the aetiology of demyelination and evaluate recent pathogenicity studies involving T cells, B cells, and autoantibodies and their implications in human demyelination.
Collapse
Affiliation(s)
- Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Martina Denkova
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Department of Neurology Concord Hospital Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
24
|
Rzepiński Ł, Kucharczuk J, Maciejek Z, Grzybowski A, Parisi V. Spectral-Domain Optical Coherence Tomography Assessment in Treatment-Naïve Patients with Clinically Isolated Syndrome and Different Multiple Sclerosis Types: Findings and Relationship with the Disability Status. J Clin Med 2021; 10:jcm10132892. [PMID: 34209692 PMCID: PMC8268329 DOI: 10.3390/jcm10132892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV) using spectral-domain optical coherence tomography in treatment naïve patients with the clinically isolated syndrome (CIS) and different multiple sclerosis (MS) types. A total of 126 patients (15 CIS, 65 relapsing-remitting MS, 14 secondary progressive MS, 11 primary progressive MS, 21 benign MS) with or without optic neuritis (ON) history and 63 healthy age-similar controls were assessed. Concerning controls' eyes, pRNFL thickness was significantly reduced in CIS-ON eyes (p < 0.01), while both TMV and pRNFL thickness was decreased in all MS eyes regardless of ON history (p < 0.01). Significant differences in pRNFL thickness and TMV between MS variants were observed for non-ON eyes (p < 0.01), with the lowest values in benign and secondary progressive disease type, respectively. The pRNFL thickness was inversely correlated with Expanded Disability Status Scale (EDSS) score in non-ON subgroups (p < 0.01), whereas TMV was inversely correlated with EDSS score in both ON and non-ON subgroups (p < 0.01). Concluding, pRNFL thinning confirms optic nerve damage in CIS-ON eyes and appears to be disproportionately high with respect to the disability status of benign MS patients. The values of TMV and pRNFL in non-ON eyes significantly correspond to MS course heterogeneity and patients' disability than in ON eyes.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
- Correspondence:
| | - Jan Kucharczuk
- Department of Ophthalmology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Zdzisław Maciejek
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Żołnierska 18, 10-561 Olsztyn, Poland;
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836 Poznan, Poland
| | | |
Collapse
|
25
|
Inojosa H, Proschmann U, Akgün K, Ziemssen T. Should We Use Clinical Tools to Identify Disease Progression? Front Neurol 2021; 11:628542. [PMID: 33551982 PMCID: PMC7859270 DOI: 10.3389/fneur.2020.628542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
The presence of disability progression in multiple sclerosis (MS) is an important hallmark for MS patients in the course of their disease. The transition from relapsing remitting (RRMS) to secondary progressive forms of the disease (SPMS) represents a significant change in their quality of life and perception of the disease. It could also be a therapeutic key for opportunities, where approaches different from those in the initial phases of the disease can be adopted. The characterization of structural biomarkers (e.g., magnetic resonance imaging or neurofilament light chain) has been proposed to differentiate between both phenotypes. However, there is no definite threshold between them. Whether the risk of clinical progression can be predicted by structural markers at early disease phases is still a focus of clinical research. However, several theories and pathological evidence suggest that both disease phenotypes are part of a continuum with common pathophysiological mechanisms. In this case, the clinical evaluation of the patients would play a preponderant role above destruction biomarkers for the early identification of disability progression and SPMS. For this purpose, the use of clinical tools beyond the Expanded Disability Status Scale (EDSS) should be considered. Besides established functional tests such as the Multiple Sclerosis Functional Composite (MSFC), patient's neurological history or digital resources may help neurologists in the decision-taking. In this article, we discuss arguments for the use of clinical markers in the detection of secondary progressive MS and the characterization of progressive disease activity.
Collapse
Affiliation(s)
- Hernan Inojosa
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
26
|
AlTokhis AI, AlOtaibi AM, Felmban GA, Constantinescu CS, Evangelou N. Iron Rims as an Imaging Biomarker in MS: A Systematic Mapping Review. Diagnostics (Basel) 2020; 10:diagnostics10110968. [PMID: 33218056 PMCID: PMC7698946 DOI: 10.3390/diagnostics10110968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). To date, there is no definitive imaging biomarker for diagnosing MS. The current diagnostic criteria are mainly based on clinical relapses supported by the presence of white matter lesions (WMLs) on MRI. However, misdiagnosis of MS is still a significant clinical problem. The paramagnetic, iron rims (IRs) around white matter lesions have been proposed to be an imaging biomarker in MS. This study aimed to carry out a systematic mapping review to explore the detection of iron rim lesions (IRLs), on clinical MR scans, and describe the characteristics of IRLs presence in MS versus other MS-mimic disorders. Methods: Publications from 2001 on IRs lesions were reviewed in three databases: PubMed, Web of Science and Embase. From the initial result set 718 publications, a final total of 38 papers were selected. Results: The study revealed an increasing interest in iron/paramagnetic rims lesions studies. IRs were more frequently found in periventricular regions and appear to be absent in MS-mimics. Conclusions IR is proposed as a promising imaging biomarker for MS.
Collapse
Affiliation(s)
- Amjad I. AlTokhis
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- Correspondence:
| | - Abdulmajeed M. AlOtaibi
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Ghadah A. Felmban
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Cris S. Constantinescu
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| | - Nikos Evangelou
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| |
Collapse
|
27
|
Akaishi T, Fujimori J, Takahashi T, Misu T, Takai Y, Nishiyama S, Kaneko K, Ogawa R, Abe M, Ishii T, Aoki M, Fujihara K, Nakashima I. Seasonal variation of onset in patients with anti-aquaporin-4 antibodies and anti-myelin oligodendrocyte glycoprotein antibody. J Neuroimmunol 2020; 349:577431. [PMID: 33147540 DOI: 10.1016/j.jneuroim.2020.577431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to determine the seasonal impact on the clinical onset of inflammatory neurological diseases of the central nervous system by analyzing the onset month with information on clinical manifestations in Japanese patients. As a result, patients with anti-aquaporin-4 antibodies (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSD) showed spring-summer predominance of the clinical onset. Conversely, patients with anti-myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease showed autumn-winter predominance of the clinical onset. Both seasonal variations were irrespective of the clinical manifestation. Environmental factors with seasonal variation influence the development of neurological conditions related to AQP4-IgG and MOG-IgG.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
28
|
Akaishi T, Takahashi T, Misu T, Abe M, Ishii T, Fujimori J, Aoki M, Fujihara K, Nakashima I. Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Sci Rep 2020; 10:13890. [PMID: 32807848 PMCID: PMC7431838 DOI: 10.1038/s41598-020-70919-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
The progressive patterns of neurological disability in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) and the significance of clinical relapses to the progressions of neurological disability in these diseases have not been fully elucidated. In this study, to elucidate the impact of relapses to the progression of accumulated neurological disability and to identify the factors to affect the progression of neurological disability in MS and NMOSD, we followed 62 consecutive MS patients and 33 consecutive NMOSD patients for more than 5 years with the clinical symptoms, relapse occurrence, and Expanded Disability Status Scale (EDSS) in the chronic phase. All enrolled MS patients were confirmed to be negative for serum anti-myelin oligodendrocyte glycoprotein antibody. As a result, patients with NMOSD showed significantly severer neurological disability at 5 years from onset than MS patients. Progression in EDSS score was almost exclusively seen after clinical attacks in NMOSD, whereas progression could be observed apart from relapses in MS. Neurological disability did not change without attacks in NMOSD, whereas it sometimes spontaneously improved or deteriorated apart from relapses in MS (p < 0.001). In patients with MS, those with responsible lesions primarily in spinal cord were more likely to show such spontaneous improvement. In conclusion, clinical deterioration in NMOSD patients is irreversible and almost exclusively takes place at the timing of clinical attacks with stepwise accumulation of neurological disability. Meanwhile, changes in EDSS score can be seen apart from relapses in MS patients. Neurological disability in MS patients is partly reversible, and the patients with disease modifying drugs sometimes present spontaneous improvement of the neurological disability.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan. .,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
29
|
Calvier L, Demuth G, Manouchehri N, Wong C, Sacharidou A, Mineo C, Shaul PW, Monson NL, Kounnas MZ, Stüve O, Herz J. Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Sci Transl Med 2020; 12:eaay7675. [PMID: 32801146 PMCID: PMC7860587 DOI: 10.1126/scitranslmed.aay7675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Neuroinflammation as a result of immune cell recruitment into the central nervous system (CNS) is a key pathogenic mechanism of multiple sclerosis (MS). However, current anti-inflammatory interventions depleting immune cells or directly targeting their trafficking into the CNS can have serious side effects, highlighting a need for better immunomodulatory strategies. We detected increased Reelin concentrations in the serum of patients with MS, resulting in increased endothelial permeability to leukocytes through increased nuclear factor κB-mediated expression of vascular adhesion molecules. We thus investigated the prophylactic and therapeutic potential of Reelin immunodepletion in experimental autoimmune encephalomyelitis (EAE) and further validated the results in Reelin knockout mice. Removal of plasma Reelin by either approach protected against neuroinflammation and largely abolished the neurological consequences by reducing endothelial permeability and immune cell accumulation in the CNS. Our findings suggest Reelin depletion as a therapeutic approach with an inherent good safety margin for the treatment of MS and other diseases where leukocyte extravasation is a major driver of pathogenicity.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guillaume Demuth
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Navid Manouchehri
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Connie Wong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, VA North Texas Health Care System, Medical Service, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Al Turaiki AM, Al Ammari MA, Alabdulkarim DA, Althemery AU. Assessment of safety and effectiveness of oral multiple sclerosis medication. Saudi Med J 2020; 40:1116-1122. [PMID: 31707408 PMCID: PMC6901776 DOI: 10.15537/smj.2019.11.24630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the effectiveness and safety profile of the new disease modifying drugs (fingolimod, teriflunomide, and dimethyl fumarate) at a local hospital in Riyadh, Saudi Arabia. METHODS This is a retrospective cohort, where institutional review board approval was granted in December 2015. The study was conducted at King Abdulaziz Medical City Research Center, Riyadh, Saudi Arabia. Demographic variables (age, gender, disease onset, and duration on medication), clinical variables (medication side effects and radiological findings), in addition to relapse frequency per year was collected. RESULTS Fifty-seven patients' records were retrieved from the pharmacy and included in the analysis. Eight patients were on teriflunomide, 5 patients on dimethyl fumarate and 44 patients on fingolimod were enrolled. The patients' average age was 32.5 years with female gender representing 63% the study population. Annual relapse rates were 0.24, 0.34, and 0.5 per patient per year for those taking fingolimod, dimethyl fumarate, and teriflunomide, correspondingly, lymphopenia (91.4%), neutropenia (23%), and bradycardia (16%) were the most reported side effects for fingolimod therapy. CONCLUSION The study results were able to capture the effectiveness rate for the targeted treatment in the studied population, with the frequency of incidence of side effects. However, as these results cannot be generalized for the entire Saudi population.
Collapse
Affiliation(s)
- Abdulrahman M Al Turaiki
- Pharmaceutical Care Services, Ministry of the National Guard- Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | |
Collapse
|
31
|
Gravesteijn AS, Beckerman H, de Jong BA, Hulst HE, de Groot V. Neuroprotective effects of exercise in people with progressive multiple sclerosis (Exercise PRO-MS): study protocol of a phase II trial. BMC Neurol 2020; 20:177. [PMID: 32393193 PMCID: PMC7212565 DOI: 10.1186/s12883-020-01765-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background Neurodegeneration, rather than inflammation, plays a key role in the progressive phase of multiple sclerosis (MS). Current disease modifying treatment options for people with progressive MS (PMS) do not specifically target neurodegeneration. Preliminary evidence suggests that exercise therapy might have neuroprotective effects. However, neuroprotective effect studies of exercise interventions in PMS are scarce and the possible mode of action underlying neuroprotective effects of exercise are unknown and need to be elucidated. The main aim of this phase II trial is to assess whether progressive resistance training (PRT) and high intensity interval training (HIIT), can slow down neurodegeneration in people with PMS. Methods In a single-blinded phase II clinical trial with an extended baseline period, 60 people with PMS will be randomly assigned to PRT or HIIT. The participants should have had a relapse onset of MS with confirmed disease progression, however still ambulatory. The duration of the study is 48 weeks, consisting of 16 weeks baseline period (no intervention), 16 weeks intervention and 16 weeks follow-up. Patient-tailored training will be performed 3 times per week for one hour in groups, led by an experienced physiotherapist. The primary outcome measure is neurodegeneration, measured as whole brain atrophy on magnetic resonance imaging (MRI). Secondary outcome parameters will include other biomarkers associated with neurodegeneration (i.e. regional brain atrophy, lesion load, white matter integrity, resting state functional connectivity, blood biomarkers (brain derived neurotrophic factor (BDNF) and serum neurofilament light (sNFL)), patient functioning (physical and cognitive) and cardiovascular risk factors. Discussion Besides the primary outcome measures, this study will examine a large variety of biomarkers associated with neurodegeneration after an exercise intervention. Combining outcome parameters may help to elucidate the mode of action underlying neuroprotective effects of exercise. Trial registration This trial is prospectively registered at the Dutch Trial Registry (number NL8265, date 06-01-2020).
Collapse
Affiliation(s)
- A S Gravesteijn
- Department of Rehabilitation Medicine, MS Center Amsterdam, Amsterdam Neuroscience research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007, MB, Amsterdam, the Netherlands.
| | - H Beckerman
- Department of Rehabilitation Medicine, MS Center Amsterdam, Amsterdam Neuroscience research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007, MB, Amsterdam, the Netherlands
| | - B A de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007, MB, Amsterdam, the Netherlands
| | - H E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007, MB, Amsterdam, the Netherlands
| | - V de Groot
- Department of Rehabilitation Medicine, MS Center Amsterdam, Amsterdam Neuroscience research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007, MB, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Grgić S, Dominović-Kovačević A, Đajić V, Vukojević Z, Tadić D, Račić D, Vujković Z. Prognostic significance of intrathecal oligoclonal immunoglobulin G in multiple sclerosis. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-27558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction/Aim: Detection of intrathecal oligoclonal bands of immunoglobulin G (OB IgG), in addition to diagnostic, has a predictive significance in multiple sclerosis (MS). The aim of the study was to determine the prognostic significance of OB IgG and to correlate the presence of OB IgG with the progression of disability in MS patients. Methods: A retrospective-prospective cohort study included 177 MS patients examined at the Centre for MS, Clinic of Neurology, University Clinical Centre of the Republic of Srpska. In all patients, demographic data, clinical parameters, Expanded Disability Status Scale (EDSS) score, isoelectric focusing (IEF) of cerebrospinal fluid (CSF), cyto-biochemical analysis of CSF, evoked potentials (EP) and magnetic resonance (MR) of the head were analysed. MS patients were divided in two groups: with and without intrathecal synthesis of oligoclonal IgG. According to the EDSS determined in both groups, the relation between the degree of functional disability and the presence of OB in the CSF and also with characteristics of the cyto-biochemical profile were analysed. Methods of descriptive and analytical statistics, analysis of variance, chi-square test, Bonferroni's post hoc test, correlation and regression analysis were used in the analysis of the results. Results: In the examined cohort of MS patients, the sensitivity of IEF was 96.6 %. There was a statistically significant association between the detectability of intrathecally synthesised IgG and EDSS score (p = 0.004) so that individuals who do not have intrathecally synthesised IgG had lower EDSS scores. MS patients with a CSF protein concentration > 0.40 g/L were 2.45 times more likely to enter secondary progression and 2.51 times more likely to achieve EDSS 4.0. Conclusion: IEF is a very sensitive diagnostic and prognostic method for MS patients, which indicates a more benign course of MS in patients without oligoclonal bands in the CSF.
Collapse
|
33
|
Islam MA, Kundu S, Hassan R. Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis. Curr Gene Ther 2020; 19:376-385. [PMID: 32141417 DOI: 10.2174/1566523220666200306092556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
Collapse
Affiliation(s)
- Md. Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
34
|
Oh J, Alikhani K, Bruno T, Devonshire V, Giacomini PS, Giuliani F, Nakhaipour HR, Schecter R, Larochelle C. Diagnosis and management of secondary-progressive multiple sclerosis: time for change. Neurodegener Dis Manag 2019; 9:301-317. [PMID: 31769344 DOI: 10.2217/nmt-2019-0024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Identifying the transition of relapsing-remitting multiple sclerosis (MS) to the secondary-progressive MS form remains a clinical challenge due to the gradual nature of the transition, superimposed relapses, the heterogeneous course of disease among patients and the absence of validated biomarkers and diagnostic tools. The uncertainty associated with the transition makes clinical care challenging for both patients and physicians. The emergence of new disease-modifying treatments for progressive MS and the increasing emphasis of nonpharmacological strategies mark a new era in the treatment of progressive MS. This article summarizes challenges in diagnosis and management, discusses novel treatment strategies and highlights the importance of establishing a clear diagnosis and instituting an interdisciplinary management plan in the care of patients with progressive MS.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Katayoun Alikhani
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tania Bruno
- Division of Physiatry, Department of Medicine, University Health Network - Toronto Rehabilitation Institute, University of Toronto, Toronto, ON M4G 1R7, Canada
| | - Virginia Devonshire
- Division of Neurology, Department of Medicine, University of British Columbia MS/NMO Center, Vancouver, BC V6T 1Z3, Canada
| | - Paul S Giacomini
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Fabrizio Giuliani
- Division of Neurology, Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | | | - Robyn Schecter
- Novartis Pharmaceuticals Canada, Montreal, QC H9S 1A9, Canada
| | | |
Collapse
|
35
|
Abstract
Multiple sclerosis is the leading non-traumatic cause of disability in young adults, affecting up to 100,000 Canadians. This chronic inflammatory and neurodegenerative disease of the central nervous system leads to irreversible neurologic disability if inadequately controlled. Though many current medications are available that reduce inflammatory damage, most patients continue to show some evidence of disease activity and accrue disability. In this review, we discuss the role of immune ablation followed by autologous hematopoietic stem cell transplantation (AHSCT), a therapeutic option for select patients with a more aggressive disease course. By "resetting" the immune system with a variety of ablative conditioning regimens, followed by immune reconstitution, this therapy has shown a durable response in halting evidence of inflammatory activity in most patients, without the need for continued disease-modifying therapies (DMT). Since the introduction of this therapy, there have been advances in patient selection and supportive care, such that morbidity has significantly declined and treatment-related mortality is minimized. Recent phase-II trials have shown excellent results in efficacy and safety of AHSCT; however, challenges exist which require ongoing study. The future challenges include comparing the variety of AHSCT conditioning regimens with each other as well as with existing highly effective DMT; identifying patients with an aggressive disease course through novel biomarkers who may benefit the most from AHSCT; and surveillance of long-term outcomes of different treatment protocols. In select patients, replacing the immune system with AHSCT holds promise of fundamentally altering the trajectory of their aggressive disease course.
Collapse
|
36
|
Buonvicino D, Ranieri G, Pratesi S, Guasti D, Chiarugi A. Neuroimmunological characterization of a mouse model of primary progressive experimental autoimmune encephalomyelitis and effects of immunosuppressive or neuroprotective strategies on disease evolution. Exp Neurol 2019; 322:113065. [PMID: 31536728 DOI: 10.1016/j.expneurol.2019.113065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
Progressive multiple sclerosis (PMS) is a devastating disorder sustained by neuroimmune interactions still wait to be identified. Recently, immune-independent, neural bioenergetic derangements have been hypothesized as causative of neurodegeneration in PMS patients. To gather information on the immune and neurodegenerative components during PMS, in the present study we investigated the molecular and cellular events occurring in a Non-obese diabetic (NOD) mouse model of experimental autoimmune encephalomyelitis (EAE). In these mice, we also evaluated the effects of clinically-relevant immunosuppressive (dexamethasone) or bioenergetic drugs (bezafibrate and biotin) on functional, immune and neuropathological parameters. We found that immunized NOD mice progressively accumulated disability and severe neurodegeneration in the spinal cord. Unexpectedly, although CD4 and CD8 lymphocytes but not B or NK cells infiltrate the spinal cord linearly with time, their suppression by different dexamethasone treatment schedules did not affect disease progression. Also, the spreading of the autoimmune response towards additional immunogenic myelin antigen occurred neither in the periphery nor in the CNS of EAE mice. Conversely, we found that altered mitochondrial morphology, reduced contents of mtDNA and decreased transcript levels for respiratory complex subunits occurred at early disease stages and preceded axonal degeneration within spinal cord columns. However, the mitochondria boosting drugs, bezafibrate and biotin, were unable to reduce disability progression. Data suggest that EAE NOD mice recapitulate some features of PMS. Also, by showing that bezafibrate or biotin do not affect progression in NOD mice, our study suggests that this model can be harnessed to anticipate experimental information of relevance to innovative treatments of PMS.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Silva BA, Ferrari CC. Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target? Rev Neurosci 2019; 30:221-232. [PMID: 30048237 DOI: 10.1515/revneuro-2018-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods ('relapsing-remitting') that can evolve to a 'secondary progressive' form or persistent progression from the onset of the disease ('primary progressive'). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina, e-mail:
| | - Carina Cintia Ferrari
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
38
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
39
|
D'Amico E, Chisari CG, Gitto L, Zanghì A, Toscano S, Patti F. Pharmacoeconomics of synthetic therapies for multiple sclerosis. Expert Opin Pharmacother 2019; 20:1331-1340. [PMID: 31090469 DOI: 10.1080/14656566.2019.1615880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Recently, the economic impact of multiple sclerosis (MS), which includes both direct and indirect costs, has been increasing. While direct costs comprise health-care costs, such as the cost of pharmaceuticals, additional treatments such as physiotherapy, and medical aids, indirect costs are triggered by the productivity loss of patients and caregivers. Although new drugs for MS have changed the therapeutic scenario, they have increased the direct costs of health-care services. Areas covered: This review describes the pharmacoeconomic aspects of synthetic therapies for MS. Additionally, it discusses the economic impact of the various classes of licensed disease-modifying treatments (DMTs) for relapsing forms of MS. Expert opinion: The emerging and more expensive DMTs for MS represent a considerable challenge for health-care systems and resource consumption. Future research should focus on the long-term efficacy of DMTs and the cost of treating MS in a real-life setting. Future biological and radiological biomarkers could help stratify patients at early stages of MS, helping physicians design a personalized therapeutic approach that could have a positive impact in economic terms.
Collapse
Affiliation(s)
- Emanuele D'Amico
- a Department "G.F. Ingrassia"; MS center , University of Catania , Catania , Italy
| | - Clara G Chisari
- a Department "G.F. Ingrassia"; MS center , University of Catania , Catania , Italy
| | - Lara Gitto
- b Department of Economy , University of Messina , Messina , Italy
| | - Aurora Zanghì
- a Department "G.F. Ingrassia"; MS center , University of Catania , Catania , Italy
| | - Simona Toscano
- a Department "G.F. Ingrassia"; MS center , University of Catania , Catania , Italy
| | - Francesco Patti
- a Department "G.F. Ingrassia"; MS center , University of Catania , Catania , Italy
| |
Collapse
|
40
|
Mills EA, Begay JA, Fisher C, Mao-Draayer Y. Impact of trial design and patient heterogeneity on the identification of clinically effective therapies for progressive MS. Mult Scler 2018; 24:1795-1807. [PMID: 30303445 DOI: 10.1177/1352458518800800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinically effective immunomodulatory therapies have been developed for relapsing-remitting multiple sclerosis (RRMS), but they have generally not translated to a corresponding slowing of disability accumulation in progressive forms of multiple sclerosis (MS). Since disability is multifaceted, progressive patients are heterogeneous, and the drivers of disease progression are still unclear, it has been difficult to identify the most informative outcome measures for progressive trials. Historically, secondary outcome measures have focused on inflammatory measures, which contributed to the recent identification of immunomodulatory therapies benefiting younger patients with more inflammatory progressive MS. Meanwhile, agents capable of treating late-stage disease have remained elusive. Consequently, measures of neurodegeneration are becoming common. Here, we review completed clinical trials testing immunomodulatory therapies in primary progressive multiple sclerosis (PPMS) or secondary progressive multiple sclerosis (SPMS) and discuss the features contributing to trial design variability in relation to trial outcomes, and how efforts toward better patient stratification and inclusion of reliable progression markers could improve outcomes.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joel A Begay
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Caitlyn Fisher
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA/Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Hernandez L, O'Donnell M, Postma M. Modeling Approaches in Cost-Effectiveness Analysis of Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis: An Updated Systematic Review and Recommendations for Future Economic Evaluations. PHARMACOECONOMICS 2018; 36:1223-1252. [PMID: 29971666 DOI: 10.1007/s40273-018-0683-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Numerous cost-effectiveness analyses (CEAs) of disease-modifying therapies (DMTs) for relapsing-remitting multiple sclerosis (RRMS) have been published in the last three decades. Literature reviews of the modeling methods and results from these CEAs have also been published. The last literature review that focused on modeling methods, without country or time horizon in the inclusion criteria, included studies published up to 2012. Since then, new DMTs have become available, and new models and data sources have been used to assess their cost effectiveness. OBJECTIVE The aim of this systematic review was to provide a detailed and comprehensive description of the relevant aspects of economic models used in CEAs of DMTs for RRMS, to understand how these models have progressed from recommendations provided in past reviews, what new approaches have been developed, what issues remain, and how they could be addressed. METHODS EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), the National Health System (NHS) Economic Evaluations Database, the Health Technology Assessment (HTA) Database, and EconLit were searched for cost-effectiveness studies of DMTs for RRMS that used decision-analytic models, published in English between 1 January 2012 and 24 December 2017. The inclusion criteria were as follows: being a full economic evaluation, a decision-analytic model was used, the target population concerned adult patients with RRMS, and being available in full-text format. Studies were not excluded based on the methodological quality. The background information of the included studies, as well as specific information on the components of the economic models related to the areas of recommendation from previous reviews were extracted. RESULTS Twenty-three studies from ten countries were included. The model structure of these studies has converged over time, characterizing the course of disease progression in terms of changes in disability and the occurrence of relapses over time. Variations were found in model approach; data sources for the natural course of the disease and comparative efficacy between DMTs; number of lines of treatment modeled; long-term efficacy waning and treatment discontinuation assumptions; type of withdrawal; and criteria for selecting adverse events. Main areas for improvement include using long-term time horizons and societal perspective; reporting relevant health outcomes; conducting scenario analyses using different sources of natural history and utility values; and reporting how the model was validated. CONCLUSION The structure of economic models used in CEAs of DMTs for RRMS has converged over time. However, variation remains in terms of model approach, inputs, and assumptions. Though some recommendations from previous reviews have been incorporated in later models, areas for improvement remain.
Collapse
Affiliation(s)
- Luis Hernandez
- Evidera, 500 Totten Pond Road, Suite 500, Waltham, MA, USA.
- Department of Health Sciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | | | - Maarten Postma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Unit of Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Eckstein O, McAtee CL, Greenberg J, Kumar A, Fein-Levy C, Smith T, Tran B, McClain KL. Rituximab therapy for patients with Langerhans cell histiocytosis-associated neurologic dysfunction. Pediatr Hematol Oncol 2018; 35:427-433. [PMID: 30596314 DOI: 10.1080/08880018.2018.1555297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Since patients with langerhans cell histiocytosis and neurologic dysfunction (LCH-ND) often have incomplete treatment responses we sought a new treatment regimen. Because of clinical benefit from rituximab in multiple sclerosis patients with neurodegeneration, we evaluated its use in patients with LCH-ND. PARTICIPANTS Eight LCH-ND patients who had failed prior therapies. METHODS Charts of the 8 patients treated with rituximab were reviewed. Signs/symptoms and MRI responses were assessed. RESULTS Seven of eight patients experienced some clinical improvement: gait abnormalities and tremors in four children, proprioceptive deficits in 2, and dysarthria/dysphagia in 2. Five of eight patients demonstrated improvement in intellectual/behavioral/psychological symptoms. CONCLUSION These findings suggest that prospective studies are warranted to define safety and efficacy of rituximab for patients with LCH-ND.
Collapse
Affiliation(s)
- Olive Eckstein
- a Texas Children's Cancer Center , Houston , Texas , USA
| | - Casey L McAtee
- a Texas Children's Cancer Center , Houston , Texas , USA
| | - Jay Greenberg
- b Childrens National Medical Center , Washington , District of Colombia , USA
| | - Ashish Kumar
- c Cincinnati Children's Medical Center , Cincinnati , Ohio , USA
| | - Carolyn Fein-Levy
- d The Steven and Alexandra Cohen Children's Medical Center of New York , New York , USA
| | - Thomas Smith
- e The Children's Hospital , Denver , Colorado , USA
| | - Brandon Tran
- f Texas Children's Hospital Department of Radiology , Houston , Texas , USA
| | | |
Collapse
|
43
|
Yan J, Winterford CM, Catts VS, Pat BK, Pender MP, McCombe PA, Greer JM. Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. J Neuroimmunol 2018; 320:111-116. [DOI: 10.1016/j.jneuroim.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
|
44
|
Silva BA, Leal MC, Farías MI, Avalos JC, Besada CH, Pitossi FJ, Ferrari CC. A new focal model resembling features of cortical pathology of the progressive forms of multiple sclerosis: Influence of innate immunity. Brain Behav Immun 2018; 69:515-531. [PMID: 29378262 DOI: 10.1016/j.bbi.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of unknown aetiology that causes neurological disabilities in young adults. MS displays different clinical patterns, including recurrent episodes with remission periods ("relapsing-remitting MS" (RRMS)), which can progress over several years to a secondary progressive form (SPMS). However, 10% of patients display persistent progression at the onset of disease ("primary progressive MS" (PPMS)). Currently, no specific therapeutic agents are available for the progressive forms, mainly because the underlying pathogenic mechanisms are not clear and because no animal models have been specifically developed for these forms. The development of MS animal models is required to clarify the pathological mechanisms and to test novel therapeutic agents. In the present work, we overexpressed interleukin 1 beta (IL-1β) in the cortex to develop an animal model reflecting the main pathological hallmarks of MS. The treated animals presented with neuroinflammation, demyelination, glial activation, and neurodegeneration along with cognitive symptoms and MRI images consistent with MS pathology. We also demonstrated the presence of meningeal inflammation close to cortical lesions, with characteristics similar to those described in MS patients. Systemic pro-inflammatory stimulation caused a flare-up of the cortical lesions and behavioural symptoms, including impairment of working memory and the appearance of anxiety-like symptoms. Our work demonstrated induced cortical lesions, reflecting the main histopathological hallmarks and cognitive impairments characterizing the cortical pathology described in MS patients with progressive forms of the disease.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Buenos Aires, Argentina
| | - María Celeste Leal
- Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Buenos Aires, Argentina
| | - María Isabel Farías
- Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Buenos Aires, Argentina
| | | | | | - Fernando Juan Pitossi
- Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Despite major progress in multiple sclerosis (MS) treatment, to date, accumulation of irreversible clinical disability is not sufficiently prevented with immunotherapies. In this context, repair strategies aimed at reducing axonal damage are becoming a very active field of preclinical and clinical research. RECENT FINDINGS Improved understanding of the cellular and molecular mechanisms of myelin repair, together with the emergence of new therapeutic candidates are paving the way for novel therapeutic strategies in MS. In parallel, there is a very active development of imaging methods to assess lesions ongoing remyelination that are crucially needed to evaluate therapeutic efficacy. SUMMARY The current development of a very dynamic and multidisciplinary research on remyelination should accelerate the development of myelin repair strategies in MS, to prevent disability progression.
Collapse
|
46
|
Nazish S, Shahid R, Zafar A, Alshamrani F, Sulaiman AA, Alabdali M, Aljaafari D, Al Wabari E, Alkhamis FA. Clinical Presentations and Phenotypic Spectrum of Multiple Sclerosis at a University Hospital in Saudi Arabia. J Clin Neurol 2018; 14:359-365. [PMID: 29971975 PMCID: PMC6031989 DOI: 10.3988/jcn.2018.14.3.359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/25/2018] [Accepted: 03/20/2018] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose The objective of this study was to determine the frequencies of different clinical presentations and the phenotypic spectrum of multiple sclerosis (MS). Methods This cross-sectional study was performed in the Neurology Department of King Fahd Hospital of University Alkhobar in the Kingdom of Saudi Arabia (KSA). Data of 190 MS patients who fulfilled the McDonald criteria were retrieved from medical records and analyzed. Results The age at disease onset was 26.27±8.2 years (mean±SD) and disease duration was 6.38±5.10 years. The male-to-female ratio was 1:1.6. Optic neuritis and myelitis were the most-frequent first clinical presentations. Sensory (73.1%), motor (61%), and visual (58.4%) symptoms were the most-frequent established clinical symptoms. Relapsing-remitting multiple sclerosis (RRMS) was present in 75% of the cases. Supratentorial T2-weighted white-matter lesions and deep-gray-matter or juxtacortical lesions were the most-frequent magnetic resonance imaging (MRI) lesions, comprising 28% and 23.7% of all MRI lesions observed in 93.6% and 79.4% of the cases, respectively. The scores on the Expanded Disability Status Scale were within the range of 1.0–5.5 in 82.1% of the patients. There were 145 (76.3%) patients taking interferon β therapy. Conclusions MS presenting in the hospital setting is more common in KSA than reported previously, and the number of diagnosed cases in increasing. It is therefore an emerging and disabling neurological illness in KSA with clinical characteristics not dissimilar to those in other middle eastern countries. A decrease in the frequency of patients with secondary progressive multiple sclerosis (SPMS) indicates either that more new cases of RRMS are being diagnosed or that adequate treatments of RRMS are preventing the evolution to SPMS. Further larger and population-wide epidemiological and clinical studies with the long-term follow-up of MS patients are required to better assess the clinical spectrum of MS in KSA.
Collapse
Affiliation(s)
- Saima Nazish
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Rizwana Shahid
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Azra Zafar
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Foziah Alshamrani
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah Al Sulaiman
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Majed Alabdali
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Danah Aljaafari
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Esraa Al Wabari
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahd A Alkhamis
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
47
|
Ecotropic Viral Integration Site 5 (EVI5) variants are associated with multiple sclerosis in Iranian population. Mult Scler Relat Disord 2017; 18:15-19. [PMID: 29141798 DOI: 10.1016/j.msard.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial disorder with immunological basis. Numerous genetic and environmental factors contribute in its pathogenesis. Several genetic loci have been shown to be associated with MS risk. Among genes whose participation in MS has been evaluated is Ecotropic Viral Integration Site 5 (EVI5). EVI5 is a common site of retroviral integration with a possible role in T-cell lymphomagenesis. METHODS In the current study, we aimed to confirm association of the single nucleotide polymorphisms (SNPs) within EVI5 gene with MS in 410 relapsing-remitting MS patients and 410 controls from Iranian population. The rs6680578, rs10537781 and rs11810217 genotypes were defined by amplification-refractory mutation system (ARMS)-PCR method. RESULTS The allele and genotype frequencies of rs6680578 and rs11810217 were not significantly different between cases and controls. However, in the rs10735781 the GG genotype was significantly associated with MS risk in recessive (P = 0.03, OR (95%CI) = 1.84 (1.05-3.19)) and co-dominant models (P = 0.02, OR 95%CI) = 1.90 (1.08-3.35)). In addition, T G T haplotype (rs6680578, rs10735781 and rs11810217 respectively) was associated with MS risk while T C C, A G T and A C T had a protective effect against MS. CONCLUSION The results of the current study provide further evidences for participation of EVI5 in MS pathogenesis.
Collapse
|
48
|
D'Amico E, Ziemssen T, Cottone S. To stop or not to stop disease modifying therapies in secondary progressive multiple sclerosis, that is the question. Expert Rev Neurother 2017; 17:847-849. [PMID: 28594298 DOI: 10.1080/14737175.2017.1340831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Tjalf Ziemssen
- b Center of Clinical Neuroscience , Carl Gustav Carus University Hospital , Dresden , Germany
| | - Salvatore Cottone
- c MS Center Department , Neurology A.O.O.R., Villa Sofia-Cervello , Palermo , Italy
| |
Collapse
|
49
|
Huang WJ, Chen WW, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med 2017; 13:3163-3166. [PMID: 28588671 PMCID: PMC5450788 DOI: 10.3892/etm.2017.4410] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease affecting the central nervous system (CNS). The onset of MS has been typically observed in individuals aged from 20 to 40-years, with the female to male ratio of 1:2. MS appears as abrupt onset of focal sensory disturbances that is accompanied by unilateral painless damage of vision, double vision, limb weakness, unsteadiness of gait, and bowel or bladder symptoms. Whereas the exact etiology of the disease is unknown, observational research has suggested genetic and environment influences through an underlined pathophysiology widely believed to be autoimmune in nature. Indeed, plaque of demyelination inside of the CNS with relative conservation of axons remains the clinical symptoms of MS. However, considerable advances in understanding the pathology have contributed to an early diagnosis, particularly the exact neuroanatomical setting of plaques. Accordingly, magnetic resonance imaging has been considered as the primarily adjunctive modality for the constant detection of abnormal white matter. In addition, the analysis of cerebrospinal fluid contents has also been of interest for the diagnosis to discriminate other affections such infection or vasculitis. These resulted in a broad variety of therapies that considerably control the activity and change the course and prognosis of the disease. In the present review, we evaluate the current state of knowledge on MS with emphasis on the pathology itself, the diagnosis and common therapeutical approaches accurately used.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
50
|
Pilutti LA, Edwards TA. Is Exercise Training Beneficial in Progressive Multiple Sclerosis? Int J MS Care 2017; 19:105-112. [PMID: 32607069 PMCID: PMC7313408 DOI: 10.7224/1537-2073.2016-034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is substantial evidence for the benefits of exercise training in people with multiple sclerosis (MS). These benefits, however, have primarily been established in the early, relapsing disease phase or are derived from heterogeneous MS samples (ie, relapsing and progressive MS). This makes it challenging to determine whether the consequences of exercise training are similar in the relapsing and progressive disease courses. The role of exercise training in progressive MS is far less clear. This study examined the potential role of exercise training in people with progressive MS. METHODS We review the current evidence from studies examining conventional exercise training modalities (eg, cycle ergometry) as well as specialized exercise training approaches (eg, functional electrical stimulation cycling) in samples involving exclusively individuals with progressive MS. RESULTS The evidence reviewed from nine trials provides preliminary support for the benefits of exercise training with regard to fitness, symptom, and quality of life outcomes in progressive MS, although these data are currently limited and at times conflicting. CONCLUSIONS Considering the prevalence of progressive MS (ie, 1 million people worldwide), the lack of effective treatment options, and the considerable frustration of researchers, clinicians, and patients, we believe that exercise training represents a viable therapeutic option worthy of further consideration. Future research should involve well-designed, randomized clinical trials with appropriate sample sizes and control conditions to establish the safety, feasibility, and therapeutic efficacy of exercise training in progressive MS.
Collapse
|