1
|
Bregant E, Betto E, Dal Secco C, Zucco J, Baldan F, Allegri L, Lonigro IR, Faletra F, Verriello L, Damante G, Mio C. The molecular landscape of hereditary ataxia: a single-center study. Hum Genet 2025; 144:545-557. [PMID: 40208338 PMCID: PMC12033174 DOI: 10.1007/s00439-025-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Hereditary ataxia (HA) is a heterogeneous group of complex neurological disorders, which represent a diagnostic challenge due to their diverse phenotypes and genetic etiologies. Next-generation sequencing (NGS) has revolutionized the field of neurogenetics, improving the identification of ataxia-associated genes. Notwithstanding, repeat expansions analysis remains a cornerstone in the diagnostic workflow of these diseases. Here we describe the molecular characterization of a consecutive single-center series of 70 patients with genetically uncharacterized HA. Patients' samples were analyzed for known HA-associated repeat expansions as first tier and negative ones were analyzed by whole exome sequencing (WES) as second tier. Overall, we identified pathogenic/likely pathogenic variants in 40% (n = 28/70) and variants of unknown significance (VUS) in 20% (n = 14/70) of cases. In particular, 10 patients (14.3%, n = 10/70) presented pathogenic repeat expansions while 18 cases (30%, n = 18/60) harbored at least a single nucleotide variant (SNV) or a copy number variant (CNV) in HA or HSP-related genes. WES allowed assessing complex neurological diseases (i.e., leukodystrophies, cerebrotendinous xanthomatosis and atypical xeroderma pigmentosum), which are not usually referred as pure genetic ataxias. Our data suggests that the combined use of repeat expansion analysis and WES, coupled to detailed clinical phenotyping, is able to detect the molecular alteration underpinning ataxia in almost 50% cases, regardless of the hereditary pattern. Indeed, NGS-based tests are fundamental to acknowledge novel HA-associated genes useful to explain the remaining wide fraction of negative tests. Nowadays, this gap is problematic since these patients could not benefit from an etiological diagnosis of their disease that allows prognostic trajectories and prenatal/preimplantation diagnosis.
Collapse
Affiliation(s)
- Elisa Bregant
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elena Betto
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Chiara Dal Secco
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy
| | - Jessica Zucco
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Federica Baldan
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy
| | - Lorenzo Allegri
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy
| | | | - Flavio Faletra
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy
| | - Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giuseppe Damante
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy
| | - Catia Mio
- Department of Medicine (DMED), University of Udine, Via Chiusaforte ingresso E, 33100, Udine, Italy.
| |
Collapse
|
2
|
Garg V, Möbius W, Heinrich R, Ruhwedel T, Perera RP, Scholz P, Ischebeck T, Salinas G, Dullin C, Göpfert MC, Engelmann J, Dosch R, Geurten BRH. Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration. Dis Model Mech 2025; 18:dmm052029. [PMID: 40151845 DOI: 10.1242/dmm.052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | | | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University33615 Bielefeld, Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Department of Zoology, University of Otago39054 Dunedin, New Zealand
| |
Collapse
|
3
|
Brooks AK, Quiroz V, Schierbaum L, Tam A, Alecu JE, Ebrahimi‐Fakhari D. Expanding molecular and clinical spectrum of CPT1C-associated hereditary spastic paraplegia (SPG73)-a case series. Ann Clin Transl Neurol 2025; 12:648-652. [PMID: 39737739 PMCID: PMC11920729 DOI: 10.1002/acn3.52288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
Autosomal-dominant variants in the CPT1C gene have been associated with hereditary spastic paraplegia type 73 (SPG73), which typically presents with slowly progressive lower limb weakness and spasticity and is therefore considered a pure form of hereditary spastic paraplegia. However, we report two unrelated males with novel CPT1C variants (NM_001199753.2: patient 1: c.2057_2061del (p.Ile686SerfsTer8) and patient 2: c.2020-1G>C (p.?)) who presented with lower limb spasticity at 4 and 3 years old, respectively. Both patients also experienced significant cognitive impairment, seizures, or neurobehavioral symptoms. These cases illustrate a broader and more complex clinical spectrum of SPG73, extending beyond the traditionally recognized pure motor symptoms.
Collapse
Affiliation(s)
- Alexandra K. Brooks
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of General PediatricsBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vicente Quiroz
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Luca Schierbaum
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Amy Tam
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Julian E. Alecu
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Darius Ebrahimi‐Fakhari
- Department of Neurology, Movement Disorders ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Moura J, Oliveira J, Santos M, Costa S, Silva L, Lemos C, Barros J, Sequeiros J, Damásio J. Spinocerebellar Ataxias: Phenotypic Spectrum of PolyQ versus Non-Repeat Expansion Forms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2258-2268. [PMID: 39048885 PMCID: PMC11585503 DOI: 10.1007/s12311-024-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Spinocerebellar ataxias (SCA) are most frequently due to (CAG)n (coding for polyglutamine, polyQ) expansions and, less so, to expansion of other oligonucleotide repeats (non-polyQ) or other type of variants (non-repeat expansion SCA). In this study we compared polyQ and non-repeat expansion SCA, in a cohort of patients with hereditary ataxia followed at a tertiary hospital. From a prospective study, 88 patients (51 families) with SCA were selected, 74 (40 families) of whom genetically diagnosed. Thirty-eight patients (51.4%, 19 families) were confirmed as having a polyQ (no other repeat-expansions were identified) and 36 (48.6%, 21 families) a non-repeat expansion SCA. Median age-at-onset was 39.5 [30.0-45.5] for polyQ and 7.0 years [1.00-21.50] for non-repeat expansion SCA. PolyQ SCA were associated with cerebellar onset, and non-repeat expansion forms with non-cerebellar onset. Time to diagnosis was longer for non-repeat expansion SCA. The most common polyQ SCA were Machado-Joseph disease (MJD/SCA3) (73.7%) and SCA2 (15.8%); whereas in non-repeat expansion SCA ATX-CACNA1A (14.3%), ATP1A3-related ataxia, ATX-ITPR1, ATX/HSP-KCNA2, and ATX-PRKCG (9.5% each) predominated. Disease duration (up to inclusion) was significantly higher in non-repeat expansion SCA, but the difference in SARA score was not statistically significant. Cerebellar peduncles and pons atrophy were more common in polyQ ataxias, as was axonal neuropathy. SCA had a wide range of genetic etiology, age-at-onset and presentation. Proportion of polyQ and non-repeat expansion SCA was similar; the latter had a higher genetic heterogeneity. While polyQ ataxias were typically linked to cerebellar onset in adulthood, non-repeat expansion forms associated with early onset and non-cerebellar presentations.
Collapse
Affiliation(s)
- João Moura
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Jorge Oliveira
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Costa
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Lénia Silva
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Carolina Lemos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal.
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Sadr Z, Ghasemi A, Rohani M, Khorram Khorshid HR, Habibi-Kavashkohie MR, Mohammadi Y, Alavi A. Three Iranian patients with rare subtypes of hereditary spastic paraplegia (HSP): SPG76, SPG56, and SPG69. Neurogenetics 2024; 26:12. [PMID: 39607444 DOI: 10.1007/s10048-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024]
Abstract
Some subtypes of hereditary spastic paraplegia (HSP), especially with autosomal recessive inheritance (AR-HSP), have been reported rarely. In this study, we report the clinical features and molecular results of three unrelated Iranian patients with rare subtypes of HSP, including SPG76, SPG56, and SPG69; thereafter, we compare them to other reported cases. Three patients who were clinically diagnosed with HSP and born to consanguineous parents underwent molecular assessment by whole-exome sequencing (WES), followed by Sanger sequencing and co-segregation analysis. Two patients carried biallelic pathogenic variants in CAPN1, or CYP2U1, resulting in SPG76, and SPG56, respectively. Additionally, another patient presented with a variant of uncertain significance (VUS) in the gene associated with SPG69, known as RAB3GAP2. Variants of CAPN1 and RAB3GAP2 are novel while the CYP2U1 variant has been previously reported. The patient with the RAB3GAP2 variant is the second reported SPG69 case. Our findings emphasize that the rare forms of AR-HSP may be more prevalent in communities with a high rate of consanguineous marriages, and WES can be a highly effective tool for identifying pathogenic variants in these communities. Also, the CYP2U1 variant seems to be a founder mutation because it was previously reported in 8 patients of three families from the Middle East. These results expand the variant spectrum of the CAPN1 and RAB3GAP2 genes. Also, given the association of variants in CAPN1 and RAB3GAP2 with a diverse array of phenotypes, we propose the use of the terms "CAPN1-related disorders" and "RAB3GAP2-related disorders" as alternatives to HSP76 and HSP69, respectively.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Habibi-Kavashkohie
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- CHU Sainte Justine Research Center, University of Montreal, Montréal, Canada
| | - Yusuf Mohammadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lettman MM, Mendina CA, Burkard E, Alvin JR, Zhu Y, Coon JJ, Audhya A. Cell type-specific gene therapy confers protection against motor neuron disease caused by a TFG variant. Proc Natl Acad Sci U S A 2024; 121:e2410996121. [PMID: 39527745 PMCID: PMC11588061 DOI: 10.1073/pnas.2410996121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Inherited forms of motor neuron disease (MND), including hereditary spastic paraplegias (HSP), are associated with the death or dysfunction of nerve cells that control skeletal muscle activity. However, in some cases, the impacts of genetic variants underlying MND act in a non-cell autonomous manner, instead affecting the function of other cell types necessary for neuronal maintenance. Pathological mutations in TFG, which have been implicated in HSP, lead to axonopathy within the corticospinal tract, but it remains unclear whether this problem arises due to perturbations within neurons or supporting neuroglia. To address this question, we leveraged a rat model harboring the recessive TFG p.R106C mutation (mRATBN7.2, g.11:43897639C>T, c.316C>T), which recapitulates multiple phenotypes associated with HSP in humans, including progressive motor deficits, leg spasticity, and indications of an inflammatory response within the motor cortex. In particular, we took advantage of cell type-specific gene therapies to demonstrate that the reintroduction of wild-type TFG into synapsin 1-positive neurons provides robust protection against MND, whereas its expression in GFAP-positive glial cells provides no significant improvement in quantitative measures of gait, despite a dramatic reduction in the presence of reactive astrocytes throughout the brain. These data strongly suggest that therapeutic approaches targeting neurons should be pursued in cases of TFG-HSP, with our animal model offering a unique platform for preclinical assessment.
Collapse
Affiliation(s)
- Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Caitlin A. Mendina
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emma Burkard
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - James R. Alvin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Chemistry, University of Wisconsin, Madison, WI53706
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, WI53706
- Morgridge Institute for Research, Madison, WI53715
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
7
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
8
|
Yahia A, Hamed AAA, Mohamed IN, Elseed MA, Salih MA, El-Sadig SM, Siddig HE, Nasreldien AEM, Abdullah MA, Elzubair M, Omer FY, Bakhiet AM, Abubaker R, Abozar F, Adil R, Emad S, Musallam MA, Eltazi IZM, Omer Z, Malik H, Mohamed MOE, Elhassan AA, Mohamed EOE, Ahmed AKMA, Ahmed EAA, Eltaraifee E, Hussein BK, Abd Allah ASI, Salah L, Nimir M, Tag Elseed OM, Elhassan TEA, Elbashier A, Alfadul ESA, Fadul M, Ali KF, Taha SOMA, Bushara EE, Amin M, Koko M, Ibrahim ME, Ahmed AE, Elsayed LEO, Stevanin G. Clinical phenotyping and genetic diagnosis of a large cohort of Sudanese families with hereditary spinocerebellar degenerations. Eur J Hum Genet 2024; 32:1214-1226. [PMID: 37012327 PMCID: PMC11499676 DOI: 10.1038/s41431-023-01344-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Hereditary spinocerebellar degenerations (SCDs) is an umbrella term that covers a group of monogenic conditions that share common pathogenic mechanisms and include hereditary spastic paraplegia (HSP), cerebellar ataxia, and spinocerebellar ataxia. They are often complicated with axonal neuropathy and/or intellectual impairment and overlap with many neurological conditions, including neurodevelopmental disorders. More than 200 genes and loci inherited through all modes of Mendelian inheritance are known. Autosomal recessive inheritance predominates in consanguineous communities; however, autosomal dominant and X-linked inheritance can also occur. Sudan is inhabited by genetically diverse populations, yet it has high consanguinity rates. We used next-generation sequencing, genotyping, bioinformatics analysis, and candidate gene approaches to study 90 affected patients from 38 unrelated Sudanese families segregating multiple forms of SCDs. The age-at-onset in our cohort ranged from birth to 35 years; however, most patients manifested childhood-onset diseases (the mean and median ages at onset were 7.5 and 3 years, respectively). We reached the genetic diagnosis in 63% and possibly up to 73% of the studied families when considering variants of unknown significance. Combining the present data with our previous analysis of 25 Sudanese HSP families, the success rate reached 52-59% (31-35/59 families). In this article we report candidate variants in genes previously known to be associated with SCDs or other phenotypically related monogenic disorders. We also highlight the genetic and clinical heterogeneity of SCDs in Sudan, as we did not identify a major causative gene in our cohort, and the potential for discovering novel SCD genes in this population.
Collapse
Affiliation(s)
- Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
- Paris Brain Institute - ICM, CNRS UMR7225, INSERM 1127, Sorbonne University, F-75000, Paris, France.
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden.
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- College of Medicine, AlMughtaribeen University, Khartoum, Sudan
| | | | | | - Ali Elsir Musa Nasreldien
- Pediatric Neurology Department, Red Cross Memorial Children Hospital (RCWMCH), University of Cape Town (UCT), Cape Town, South Africa
| | | | - Maha Elzubair
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | | | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- National University Biomedical Research Institute, National University, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rawaa Adil
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Emad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Isra Z M Eltazi
- Neurology Department, Hamad Medical Corporation, Doha, Qatar
| | - Zulfa Omer
- Department of Hematology and Medical Oncology, University of Cincinnati Medical Center, Ohio, USA
| | - Hiba Malik
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mayada O E Mohamed
- Division of Emergency Medicine, Sudan Medical Specialization Board, Khartoum, Sudan
| | - Ali A Elhassan
- Sudan Neuroscience Projects, University of Khartoum, Khartoum, Sudan
| | | | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate school of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | - Bidour K Hussein
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Lina Salah
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed Nimir
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | | | | | - Moneeb Fadul
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Khalil F Ali
- Department of Cardiology, Royal Derby Hospital, Derby, UK
| | | | | | - Mutaz Amin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Giovanni Stevanin
- Paris Brain Institute - ICM, CNRS UMR7225, INSERM 1127, Sorbonne University, F-75000, Paris, France.
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
- EPHE, PSL Research university, CNRS, INCIA, UMR 5287, F-75000, Paris, France.
| |
Collapse
|
9
|
Tenorio RB, Camargo CHF, Donis KC, Almeida CCB, Teive HAG. Diagnostic Yield of NGS Tests for Hereditary Ataxia: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1552-1565. [PMID: 37950147 DOI: 10.1007/s12311-023-01629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Next-generation sequencing (NGS), comprising targeted panels (TP), exome sequencing (ES), and genome sequencing (GS) became robust clinical tools for diagnosing hereditary ataxia (HA). Determining their diagnostic yield (DY) is crucial for optimal clinical decision-making. We conducted a comprehensive systematic literature review on the DY of NGS tests for HA. We searched PubMed and Embase databases for relevant studies between 2016 and 2022 and manually examined reference lists of relevant reviews. Eligible studies described the DY of NGS tests in patients with ataxia as a significant feature. Data from 33 eligible studies showed a median DY of 43% (IQR = 9.5-100%). The median DY for TP and ES was 46% and 41.9%, respectively. Higher DY was associated with specific phenotype selection, such as episodic ataxia at 68.35% and early and late onset of ataxia at 46.4% and 54.4%. Parental consanguinity had a DY of 52.4% (p = 0.009), and the presumed autosomal recessive (AR) inheritance pattern showed 62.5%. There was a difference between the median DY of studies that performed targeted sequencing (tandem repeat expansion, TRE) screening and those that did not (p = 0.047). A weak inverse correlation was found between DY and the extent of previous genetic investigation (rho = - 0.323; p = 0.065). The most common genes were CACNA1A and SACS. DY was higher for presumed AR inheritance pattern, positive family history, and parental consanguinity. ES appears more advantageous due to the inclusion of rare genes that might be excluded in TP.
Collapse
Affiliation(s)
- Renata Barreto Tenorio
- Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
- Movement Disorders Sector, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Carvalho Donis
- Medical Genetics Service, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Hélio A G Teive
- Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
- Movement Disorders Sector, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
11
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Malina J, Huessler EM, Jöckel KH, Boog-Whiteside E, Jeschonneck N, Schröder B, Schüle R, Kühl T, Klebe S. Development and validation of TreatHSP-QoL: a patient-reported outcome measure for health-related quality of life in hereditary spastic paraplegia. Orphanet J Rare Dis 2024; 19:2. [PMID: 38167479 PMCID: PMC10763482 DOI: 10.1186/s13023-023-03012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease that lacks specific and validated patient-centered outcome measures (PCOMs). We aimed to develop and validate a health-related quality of life (HRQoL) questionnaire specific to HSP ("TreatHSP-QoL") that could be used as a PCOM. RESULTS The pilot-items of the TreatHSP-QoL (45 five-level Likert scale items, with values per item between 0 and 4) were developed based on a qualitative data analysis of 54 semi-structured interviews, conducted in person with 36 HSP patients and 18 caregivers. It was then reduced and modified through the validation process to 25 items. The main validation was performed using the online questionnaire in 242 HSP patients and 56 caregivers. The exploratory factor analysis defined five subdomains. Cronbach's alpha ranged from 0.57 to 0.85 for the subdomains and reached 0.85 for the total score. The test-retest Pearson correlation reached 0.86 (95% Confidence Interval (CI) [0.79, 0.91]). Pearson correlations with the EuroQol-5 Dimension (5 levels) (EQ-5D-5L) and Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) questionnaires varied strongly among the subdomains, with the total scores reaching 0.53 (95% CI [0.42, 0.61]) and -0.45 (95% CI [- 0.55, - 0.35]), respectively. The caregiver-patient response Pearson correlation ranged between 0.64 and 0.82 for subdomains and reached 0.65 (95% CI [0.38, 0.81]) for the total score. CONCLUSIONS TreatHSP-QoL can be used in high-quality clinical trials and clinical practice as a disease-specific PCOM (i.e., HRQoL measure) and is also applicable as a proxy questionnaire. Score values between 0 and 100 can be reached, where higher value represents better HRQoL. The Pearson correlations to the EQ-5D-5L and FARS-ADL support the additional value and need of HSP-specific PCOM, while non-specific QoL-assessment and specific clinical self-assessment tools already exist. All in all, the results demonstrate good validity and reliability for this new patient-centered questionnaire for HSP.
Collapse
Affiliation(s)
| | - Eva-Maria Huessler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | | | | | | | - Rebecca Schüle
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias Kühl
- Center for Clinical Trials, University Hospital Essen, Essen, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
13
|
Ferese R, Scala S, Suppa A, Campopiano R, Asci F, Zampogna A, Chiaravalloti MA, Griguoli A, Storto M, Pardo AD, Giardina E, Zampatti S, Fornai F, Novelli G, Fanelli M, Zecca C, Logroscino G, Centonze D, Gambardella S. Cohort analysis of novel SPAST variants in SPG4 patients and implementation of in vitro and in vivo studies to identify the pathogenic mechanism caused by splicing mutations. Front Neurol 2023; 14:1296924. [PMID: 38145127 PMCID: PMC10748595 DOI: 10.3389/fneur.2023.1296924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.
Collapse
Affiliation(s)
| | | | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppe Novelli
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari “Aldo Moro” at “Pia Fondazione Card G. Panico” Hospital Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari “Aldo Moro” at “Pia Fondazione Card G. Panico” Hospital Tricase, Lecce, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| |
Collapse
|
14
|
Lee H, Jeon J, Jung D, Won JI, Kim K, Kim YJ, Yoon J. RelCurator: a text mining-based curation system for extracting gene-phenotype relationships specific to neurodegenerative disorders. Genes Genomics 2023; 45:1025-1036. [PMID: 37300788 DOI: 10.1007/s13258-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The identification of gene-phenotype relationships is important in medical genetics as it serves as a basis for precision medicine. However, most of the gene-phenotype relationship data are buried in the biomedical literature in textual form. OBJECTIVE We propose RelCurator, a curation system that extracts sentences including both gene and phenotype entities related to specific disease categories from PubMed articles, provides rich additional information such as entity taggings, and predictions of gene-phenotype relationships. METHODS We targeted neurodegenerative disorders and developed a deep learning model using Bidirectional Gated Recurrent Unit (BiGRU) networks and BioWordVec word embeddings for predicting gene-phenotype relationships from biomedical texts. The prediction model is trained with more than 130,000 labeled PubMed sentences including gene and phenotype entities, which are related to or unrelated to neurodegenerative disorders. RESULTS We compared the performance of our deep learning model with those of Bidirectional Encoder Representations from Transformers (BERT), Support Vector Machine (SVM), and simple Recurrent Neural Network (simple RNN) models. Our model performed better with an F1-score of 0.96. Furthermore, the evaluation done using a few curation cases in the real scenario showed the effectiveness of our work. Therefore, we conclude that RelCurator can identify not only new causative genes, but also new genes associated with neurodegenerative disorders' phenotype. CONCLUSION RelCurator is a user-friendly method for accessing deep learning-based supporting information and a concise web interface to assist curators while browsing the PubMed articles. Our curation process represents an important and broadly applicable improvement to the state of the art for the curation of gene-phenotype relationships.
Collapse
Affiliation(s)
- Heonwoo Lee
- Department of Computer Engineering, Hallym University, Chuncheon, Gangwon-do, 200- 702, Republic of Korea
| | - Junbeom Jeon
- Department of Computer Engineering, Hallym University, Chuncheon, Gangwon-do, 200- 702, Republic of Korea
| | - Dawoon Jung
- Department of Computer Engineering, Hallym University, Chuncheon, Gangwon-do, 200- 702, Republic of Korea
| | - Jung-Im Won
- Center for Innovation in Engineering Education, Hanyang University, Seoul, Republic of Korea
| | - Kiyong Kim
- Department of Electronic Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yonsei University Health System, Yongin, Gyeonggi-do, 16995, Republic of Korea.
| | - Jeehee Yoon
- Department of Computer Engineering, Hallym University, Chuncheon, Gangwon-do, 200- 702, Republic of Korea.
| |
Collapse
|
15
|
Saadi SM, Cali E, Khalid LB, Yousaf H, Zafar G, Khan HN, Sher M, Vona B, Abdullah U, Malik NA, Klar J, Efthymiou S, Dahl N, Houlden H, Toft M, Baig SM, Fatima A, Iqbal Z. Genetic Investigation of Consanguineous Pakistani Families Segregating Rare Spinocerebellar Disorders. Genes (Basel) 2023; 14:1404. [PMID: 37510308 PMCID: PMC10379343 DOI: 10.3390/genes14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.
Collapse
Affiliation(s)
- Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lubaba Bintee Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Ghazala Zafar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Muhammad Sher
- Department of Allied Health Sciences, Iqra National University Swat Campus, Swat 19200, Pakistan
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Naveed Altaf Malik
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, N-0318 Oslo, Norway
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
16
|
Mou Y, Nandi G, Mukte S, Chai E, Chen Z, Nielsen JE, Nielsen TT, Criscuolo C, Blackstone C, Fraidakis MJ, Li XJ. Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients. Orphanet J Rare Dis 2023; 18:72. [PMID: 37024986 PMCID: PMC10080795 DOI: 10.1186/s13023-023-02666-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/11/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ghata Nandi
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Sukhada Mukte
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jorgen E Nielsen
- Neurogenetics Clinic & Research Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Boston, MA, 02129, USA
| | - Matthew J Fraidakis
- Rare Neurological Diseases Unit, Department of Neurology, Attikon University Hospital, Medical School of the University of Athens, Athens, Greece
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
17
|
Gunduz A, Aktan Süzgün M, Tütüncü M, Apaydın H, Kızıltan G. Ataxia in a Movement Disorders Outpatient Clinic: a Single-Center Experience in Turkey. CEREBELLUM (LONDON, ENGLAND) 2023; 22:183-191. [PMID: 35143029 DOI: 10.1007/s12311-022-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The etiology may not be determined in patients with ataxia despite detailed evaluations. The aim of this study was to investigate the clinical and laboratory characteristics of a large cohort of patients with adult-onset ataxia of different etiologies, particularly, undetermined etiologies despite extensive clinical, genetic, laboratory, electrophysiological, and imaging investigations. The medical records of all patients diagnosed with ataxia of subacute-chronic onset between January 2011 and March 2021 were reviewed retrospectively. The records of patients with symptom onset after 16 years of age were included in the study. In all patients, clinical and demographic findings were noted. Etiologies were classified as acquired, hereditary, degenerative (multiple system atrophy-cerebellar, MSA-C), functional, and undetermined. During the study period, we determined 74 patients with ataxia and 59 (35 males) patients met the study criteria. The age range was 22-87 years. The etiologies were hereditary (n = 19), acquired (n = 14), MSA-C (n = 9), functional (n = 2), and undetermined (n = 15). The patients with hereditary etiologies and undetermined causes were significantly younger at admission and at symptom onset (p = 0.001 and p = 0.000). There was a significant delay until diagnosis in patients with hereditary etiologies compared to other etiologies. In acquired etiologies, axial findings (71.4%) were more prominent whereas extremity and axial findings were more common in patients with hereditary etiologies (83.3%, p = 0.030). There were systemic and radiological indicators such as hearing loss, juvenile cataract, or dentate hyperintensity in certain disorders. Hereditary etiologies are as common as acquired or degenerative etiologies in adults. However, they have an earlier onset and delayed diagnosis. Therefore, we should recognize the extracerebellar neurological, systemic, and neuroimaging findings.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Merve Aktan Süzgün
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melih Tütüncü
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hülya Apaydın
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Güneş Kızıltan
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
18
|
Wang J, Fang F, Ding C, Li J, Wu Y, Zhang W, Bao X, Lv J, Wang X, Ren X, Wang H. Clinical and genetic spectrum of hereditary spastic paraplegia in Chinese children. Dev Med Child Neurol 2023; 65:416-423. [PMID: 36109173 DOI: 10.1111/dmcn.15385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
AIM To explore the clinical and genetic spectrum of hereditary spastic paraplegia (HSP) in Chinese children. METHOD This retrospective study was conducted between January 2014 and October 2021 in children clinically diagnosed with either pure HSP (pHSP) or complex HSP (cHSP). RESULTS We investigated 45 children (32 males, 13 females; mean age [SD] at symptom onset 4 years [7 months]). clinically diagnosed with HSP and identified genetic causes in 35 patients. Most patients with autosomal dominant HSP had pHSP (16/18), whereas most patients with autosomal recessive HSP tended to have cHSP (14/16). SPG11 was the most common autosomal recessive subtype, followed by FA2H/SPG35, whereas SPAST/SPG4 was the most frequent cause of autosomal dominant HSP. Two patients with CPT1C mutations presented with a complex phenotype. Meanwhile, 10 patients were found to have likely pathogenic variants/variants of uncertain clinical significance in six genes related to HSP. INTERPRETATION SPG11 and SPG4 were the most frequent subtypes in Chinese children with autosomal recessive HSP and autosomal dominant HSP. However, the prevalence of SPG4 was much lower than that in adults, which might be explained by the late onset of the disease. On the other hand, FA2H/SPG35 was common in our cohort, while it contributed to only a small proportion of adult cases, which might be explained by its rapid progression and early death in some patients. We also expanded the genetic and clinical spectra of SPG73.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xinhua Bao
- Department of Paediatric Neurology, Peking University First Hospital, Beijing, China
| | - Junlan Lv
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
19
|
|
20
|
Marzoughi S, Pfeffer G, Cashman N. Primary lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:89-99. [PMID: 37620095 DOI: 10.1016/b978-0-323-98817-9.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Like motor neuron diseases (MNDs) refer to a constellation of primarily sporadic neurodegenerative diseases characterized by a progressive loss of upper and/or lower motor neurons. Primary lateral sclerosis (PLS) is considered a neurodegenerative disorder that is characterized by a gradually progressive course affecting the central motor systems, designated by the phrase "upper motor neurons." Despite significant development in neuroimaging, neurophysiology, and molecular biology, there is a growing consensus that PLS is of unknown etiology. Currently there is no disease-modifying treatment for PLS, or prospective randomized trials being carried out, partly due to the rarity of the disease and lack of significant understanding of the underlying pathophysiology. Consequently, the approach to treatment remains largely symptomatic. In this chapter we provide an overview of primary lateral sclerosis including clinical and electrodiagnostic considerations, differential diagnosis, updates in genetics and pathophysiology, and future directions for research.
Collapse
Affiliation(s)
- Sina Marzoughi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gerald Pfeffer
- Department of Neurosciences, Division of Neurology, University of Calgary, Calgary, AB, Canada
| | - Neil Cashman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Lan MY, Lu CS, Wu SL, Chen YF, Sung YF, Tu MC, Chang YY. Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 2022; 13:1005670. [PMID: 36247768 PMCID: PMC9563621 DOI: 10.3389/fneur.2022.1005670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower-limb spasticity. Cerebellar ataxia commonly co-occurs with complicated HSPs. HSP with concurrent cerebellar ataxia has significant clinical and genetic overlaps with hereditary cerebellar ataxia (HCA) and other inherited neurological diseases, adding to the challenge of planning genetic testing for the disease. In this study, we characterized clinical features of a cohort of 24 patients (male/female: 15/9) from 22 families who presented spastic paraparesis combined with cerebellar involvement, with a median disease onset age 20.5 (range 5–53) years. Aside from the core phenotype, 18 (75%) patients had additional neuropsychiatric and systemic manifestations. A stepwise genetic testing strategy stratified by mode of inheritance, distinct neuroimaging features (e.g., thin corpus callosum), population-specific prevalence and whole-exome sequencing was utilized to investigate the genetic etiology. Causative mutations in up to 10 genes traditionally related to HSP, HCA and other neurogenetic diseases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, neurodegeneration with brain iron accumulation, and progressive encephalopathy with brain atrophy and thin corpus callosum) were detected in 16 (73%) of the 22 pedigrees. Our study revealed the genetic complexity of HSP combined with cerebellar involvement. In contrast to the marked genetic diversity, the functions of the causative genes are restricted to a limited number of physiological themes. The functional overlap might reflect common underlying pathogenic mechanisms, to which the corticospinal tract and cerebellar neuron circuits may be especially vulnerable.
Collapse
Affiliation(s)
- Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
- Department of Neurology, Landseed International Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yung-Yee Chang
| |
Collapse
|
22
|
Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, Ancien F, Pucci F, Rooman M, Gilis D, Larivière R, Sgarioto N, Valter R, Guillot-Noel L, Le Ber I, Sayah S, Charles P, Nümann A, Pauly MG, Helmchen C, Deininger N, Haack TB, Brais B, Brice A, Trégouët DA, El Hachimi KH, Shoubridge EA, Durr A, Stevanin G. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain 2022; 145:1519-1534. [PMID: 34788392 DOI: 10.1093/brain/awab407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/14/2022] Open
Abstract
With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.
Collapse
Affiliation(s)
- Marie Coutelier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Maxime Jacoupy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Flore Renaud
- CNRS UMR 9019, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Ganapathi-Varma Saripella
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
| | - François Ancien
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Dimitri Gilis
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Nicolas Sgarioto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Léna Guillot-Noel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Sabrina Sayah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Perrine Charles
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Astrid Nümann
- Department of Neurology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - David-Alexandre Trégouët
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
- Université de Bordeaux, INSERM U1219, Bordeaux Population Health Research Center, 33076 Bordeaux, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| |
Collapse
|
23
|
Nuzhnyi EP, Abramycheva NY, Safonov DG, Fedotova EY, Illarioshkin SN. Massive Parallel Sequencing and the Problem of Overlapping Phenotypes in Hereditary Spastic Paraplegias and Spinocerebellar Ataxias. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Giangiardi VF, Perracini MR, da Silva ML, Setti GBR, Curzio LE, Vegas M, Alouche SR. Functional Outcomes Associated With Independence in Walking Among People With Hereditary Ataxias: An Exploratory Cross-sectional Study. Phys Ther 2022; 102:6506304. [PMID: 35079839 DOI: 10.1093/ptj/pzac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/14/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to identify functional outcomes related to independence in walking among people affected by hereditary ataxias. METHODS Sixty participants were selected by convenience in a list provided by an organization of people with ataxia. Sociodemographic and clinical data were collected using a semistructured questionnaire. The Assessment and Rating of Ataxia was used to assess and rate cerebellar ataxia. Changes in body structure and function, limitation in activities, and restriction in participation were evaluated with specific outcome measures. Participants were classified as independent in walking if they were able to walk without walking aids or human assistance and as dependent in walking if they have been using walking aids (sticks, crutches, or walkers) for more than 6 months, using a wheelchair for locomotion most of the day, or both. Multivariate logistic regression analyses were conducted hierarchically and in blocks considering upper limbs function, balance systems, sensory functions, postural control, walking, independence, cognition, and perception as independent variables. The prevalence ratio for walking independence was determined. RESULTS The final regression model pointed out that gait capacity assessed by the 6-Minute Walk Test and dexterity assessed by the Box and Blocks test were the main markers related to walking independence in individuals with hereditary ataxias. CONCLUSION The distance covered in 6 minutes of walking (walking endurance) and upper extremity dexterity can be used to better assess the progression of cerebellar disease related to walking independence in individuals with hereditary ataxias. IMPACT This study supports early detection of individuals who are at risk of loss of walking independence and an optimized rehabilitation plan.
Collapse
Affiliation(s)
- Vivian Farahte Giangiardi
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Monica Rodrigues Perracini
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Liliane da Silva
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Milena Vegas
- School of Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Kakouri AC, Votsi C, Oulas A, Nicolaou P, Aureli M, Lunghi G, Samarani M, Compagnoni GM, Salani S, Di Fonzo A, Christophides T, Tanteles GA, Zamba-Papanicolaou E, Pantzaris M, Spyrou GM, Christodoulou K. Transcriptomic characterization of tissues from patients and subsequent pathway analyses reveal biological pathways that are implicated in spastic ataxia. Cell Biosci 2022; 12:29. [PMID: 35277195 PMCID: PMC8917697 DOI: 10.1186/s13578-022-00754-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal β-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Andrea C. Kakouri
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Christina Votsi
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Paschalis Nicolaou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Maura Samarani
- Unité de Trafic Membranaire ét PathogénèseDépartement de Biologie Cellulaire et Infection, Institut Pasteur, 75015 Paris, France
| | - Giacomo M. Compagnoni
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Milan Italy
| | - Sabrina Salani
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - George A. Tanteles
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Eleni Zamba-Papanicolaou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Marios Pantzaris
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Kyproula Christodoulou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| |
Collapse
|
26
|
Votsi C, Ververis A, Nicolaou P, Christou YP, Christodoulou K, Zamba-Papanicolaou E. A Novel SPG7 Gene Pathogenic Variant in a Cypriot Family With Autosomal Recessive Spastic Ataxia. Front Genet 2022; 12:812640. [PMID: 35096021 PMCID: PMC8793673 DOI: 10.3389/fgene.2021.812640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The SPG7 gene encodes the paraplegin protein, an inner mitochondrial membrane—localized protease. It was initially linked to pure and complicated hereditary spastic paraplegia with cerebellar atrophy, and now represents a frequent cause of undiagnosed cerebellar ataxia and spastic ataxia. We hereby report the molecular characterization and the clinical features of a large Cypriot family with five affected individuals presenting with spastic ataxia in an autosomal recessive transmission mode, due to a novel SPG7 homozygous missense variant. Detailed clinical histories of the patients were obtained, followed by neurological and neurophysiological examinations. Whole exome sequencing (WES) of the proband, in silico gene panel analysis, variant filtering and family segregation analysis of the candidate variants with Sanger sequencing were performed. RNA and protein expression as well as in vitro protein localization studies and mitochondria morphology evaluation were carried out towards functional characterization of the identified variant. The patients presented with typical spastic ataxia features while some intrafamilial phenotypic variation was noted. WES analysis revealed a novel homozygous missense variant in the SPG7 gene (c.1763C > T, p. Thr588Met), characterized as pathogenic by more than 20 in silico prediction tools. Functional studies showed that the variant does not affect neither the RNA or protein expression, nor the protein localization. However, aberrant mitochondrial morphology has been observed thus indicating mitochondrial dysfunction and further demonstrating the pathogenicity of the identified variant. Our study is the first report of an SPG7 pathogenic variant in the Cypriot population and broadens the spectrum of SPG7 pathogenic variants.
Collapse
Affiliation(s)
- Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonis Ververis
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Kyproula Christodoulou,
| | | |
Collapse
|
27
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
28
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
29
|
Chen R, Du S, Yao Y, Zhang L, Luo J, Shen Y, Xu Z, Zeng X, Zhang L, Liu M, Yin C, Tang B, Tan J, Xu X, Liu JY. A Novel SPAST Mutation Results in Spastin Accumulation and Defects in Microtubule Dynamics. Mov Disord 2021; 37:598-607. [PMID: 34927746 PMCID: PMC9300132 DOI: 10.1002/mds.28885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Haploinsufficiency is widely accepted as the pathogenic mechanism of spastic paraplegia type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. Objectives To identify the causative gene of autosomal dominant hereditary spastic paraplegia in three large Chinese families and explore the pathological mechanism of a spastin variant. Methods Three large Chinese hereditary spastic paraplegia families with a total of 247 individuals (67 patients) were investigated, of whom 59 members were recruited to the study. Genetic testing was performed to identify the causative gene. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. Results In the three hereditary spastic paraplegia families, of whom three index cases were misdiagnosed as other types of neurological diseases, a novel c.985dupA (p.Met329Asnfs*3) variant in SPAST was identified and was shown to cosegregate with the phenotype in the three families. The c.985dupA mutation produced two truncated mutants (mutant M1 and M87 isoforms) that accumulated to a higher level than their wild‐type counterparts. Furthermore, the mutant M1 isoform heavily decorated the microtubules and rendered them resistant to depolymerization. In contrast, the mutant M87 isoform was diffusely localized in both the nucleus and the cytoplasm, could not decorate microtubules, and was not able to promote microtubule disassembly. Conclusions SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The truncated spastin may damage the corticospinal tracts through an isoform‐specific toxic effect.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Lu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yinhua Shen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhenping Xu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaomei Zeng
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Luoying Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chuang Yin
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jun Tan
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
31
|
Pujol C, Legrand A, Parodi L, Thomas P, Mochel F, Saracino D, Coarelli G, Croon M, Popovic M, Valet M, Villain N, Elshafie S, Issa M, Zuily S, Renaud M, Marelli-Tosi C, Legendre M, Trimouille A, Kemlin I, Mathieu S, Gleeson JG, Lamari F, Galatolo D, Alkouri R, Tse C, Rodriguez D, Ewenczyk C, Fellmann F, Kuntzer T, Blond E, El Hachimi KH, Darios F, Seyer A, Gazi AD, Giavalisco P, Perin S, Boucher JL, Le Corre L, Santorelli FM, Goizet C, Zaki MS, Picaud S, Mourier A, Steculorum SM, Mignot C, Durr A, Trifunovic A, Stevanin G. Implication of folate deficiency in CYP2U1 loss of function. J Exp Med 2021; 218:212651. [PMID: 34546337 PMCID: PMC8480666 DOI: 10.1084/jem.20210846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.
Collapse
Affiliation(s)
- Claire Pujol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | - Anne Legrand
- Paris University, Paris Cardiovascular Research Centre, Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares - Institut national de la santé et de la recherche médicale U97, Paris, France
| | - Livia Parodi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Priscilla Thomas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Dario Saracino
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Marijana Croon
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Milica Popovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Manon Valet
- Sorbonne University, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Nicolas Villain
- Sorbonne University, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Department of Neurology, Paris, France
| | - Shahira Elshafie
- Department of Clinical Pathology, Fayoum University, Fayoum, Egypt
| | - Mahmoud Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Stephane Zuily
- University of Lorraine, Institut national de la santé et de la recherche médicale U 1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Mathilde Renaud
- University of Lorraine, Institut national de la santé et de la recherche médicale U 1256, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Cécilia Marelli-Tosi
- Mécanismes Moléculaires dans les Démences Neurodégénératives, University of Montpellier, École pratique des hautes études, Institut national de la santé et de la recherche médicale, Montpellier, France; Expert Center for Neurogenetic Diseases, Centre Hospitalier Universitaire, Montpellier, France
| | - Marine Legendre
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Aurélien Trimouille
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Isabelle Kemlin
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Sophie Mathieu
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Foudil Lamari
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Daniele Galatolo
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Rana Alkouri
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Chantal Tse
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Diana Rodriguez
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Florence Fellmann
- University of Lausanne, Service de Génétique médicale, Lausanne, Switzerland
| | - Thierry Kuntzer
- University of Lausanne, Nerve-Muscle Unit, Department of Clinical Neurosciences, Lausanne, Switzerland
| | - Emilie Blond
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Pierre Bénite, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Paris Sciences et Lettres Research University, École pratique des hautes études, Neurogenetics Unit, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | | | - Anastasia D Gazi
- Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | | | - Silvina Perin
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jean-Luc Boucher
- Paris Descartes University, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Centre national de la recherche scientifique UMR 8601, Paris, France
| | - Laurent Le Corre
- Paris Descartes University, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Centre national de la recherche scientifique UMR 8601, Paris, France
| | - Filippo M Santorelli
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Cyril Goizet
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Serge Picaud
- Sorbonne University, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Arnaud Mourier
- Bordeaux University, Centre national de la recherche scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Sophie Marie Steculorum
- Group Neurocircuit and Function, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Cyril Mignot
- Genetics and Cytogenetics Department, Centre de Référence Déficiences Intellectuelles de Causes Rares, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Paris Sciences et Lettres Research University, École pratique des hautes études, Neurogenetics Unit, Paris, France
| |
Collapse
|
32
|
Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener 2021; 10:40. [PMID: 34663476 PMCID: PMC8522248 DOI: 10.1186/s40035-021-00264-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Background Although many causative genes have been uncovered in recent years, genetic diagnosis is still missing for approximately 50% of autosomal recessive cerebellar ataxia (ARCA) patients. Few studies have been performed to determine the genetic spectrum and clinical profile of ARCA patients in the Chinese population. Methods Fifty-four Chinese index patients with unexplained autosomal recessive or sporadic ataxia were investigated by whole-exome sequencing (WES) and copy number variation (CNV) calling with ExomeDepth. Likely causal CNV predictions were validated by CNVseq. Results Thirty-eight mutations including 29 novel ones were identified in 25 out of the 54 patients, providing a 46.3% positive molecular diagnostic rate. Ten different genes were involved, of which four most common genes were SACS, SYNE1, ADCK3 and SETX, which accounted for 76.0% (19/25) of the positive cases. The de novo microdeletion in SACS was reported for the first time in China and the uniparental disomy of ADCK3 was reported for the first time worldwide. Clinical features of the patients carrying SACS, SYNE1 and ADCK3 mutations were summarized. Conclusions Our results expand the genetic spectrum and clinical profiles of ARCA patients, demonstrate the high efficiency and reliability of WES combined with CNV analysis in the diagnosis of suspected ARCA, and emphasize the importance of complete bioinformatics analysis of WES data for accurate diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00264-z.
Collapse
Affiliation(s)
- Hao-Ling Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ya-Ru Shao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying Shen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200000, China.
| |
Collapse
|
33
|
Güner F, Pozner T, Krach F, Prots I, Loskarn S, Schlötzer-Schrehardt U, Winkler J, Winner B, Regensburger M. Axon-Specific Mitochondrial Pathology in SPG11 Alpha Motor Neurons. Front Neurosci 2021; 15:680572. [PMID: 34326717 PMCID: PMC8314181 DOI: 10.3389/fnins.2021.680572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in SPG11 are the most frequent cause of autosomal recessive complicated hereditary spastic paraplegia (HSP). In addition to spastic paraplegia caused by corticospinal degeneration, most patients are significantly affected by progressive weakness and muscle wasting due to alpha motor neuron (MN) degeneration. Mitochondria play a crucial role in neuronal health, and mitochondrial deficits were reported in other types of HSPs. To investigate whether mitochondrial pathology is present in SPG11, we differentiated MNs from induced pluripotent stem cells derived from SPG11 patients and controls. MN derived from human embryonic stem cells and an isogenic SPG11 knockout line were also included in the study. Morphological analysis of mitochondria in the MN soma versus neurites revealed specific alterations of mitochondrial morphology within SPG11 neurites, but not within the soma. In addition, impaired mitochondrial membrane potential was indicative of mitochondrial dysfunction. Moreover, we reveal neuritic aggregates further supporting neurite pathology in SPG11. Correspondingly, using a microfluidic-based MN culture system, we demonstrate that axonal mitochondrial transport was significantly impaired in SPG11. Overall, our data demonstrate that alterations in morphology, function, and transport of mitochondria are an important feature of axonal dysfunction in SPG11 MNs.
Collapse
Affiliation(s)
- Fabian Güner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
34
|
Soares IFZ, Ciarlariello VB, Feder D, Carvalho AADS. Cognitive dysfunction and psychosis: expanding the phenotype of SPG7. Neurocase 2021; 27:253-258. [PMID: 34003721 DOI: 10.1080/13554794.2021.1927114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Spastic paraplegia type 7 (SPG7) is one of the most common forms of autosomal recessive hereditary spastic paraplegia, which can lead to a hybrid spastic-ataxic phenotype. Recently, novel complicated forms of SPG7, including cognitive and social impairment phenotypes, have been reported. We present a SPG7 case with two pathogenic variants in compound heterozygosity in the SPG7 gene, featuring a cerebellar cognitive affective syndrome with psychosis not yet described in the literature.
Collapse
Affiliation(s)
| | | | - David Feder
- Department of Neurosciences, Centro Universitário FMABC, Santo Andre, São Paulo, Brazil
| | | |
Collapse
|
35
|
Vavouraki N, Tomkins JE, Kara E, Houlden H, Hardy J, Tindall MJ, Lewis PA, Manzoni C. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. iScience 2021; 24:102484. [PMID: 34113825 PMCID: PMC8169945 DOI: 10.1016/j.isci.2021.102484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.
Collapse
Affiliation(s)
- Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | | | - Eleanna Kara
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL IoN, UCL London, W1T 7NF UK
- Reta Lila Weston Institute, UCL IoN, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| |
Collapse
|
36
|
Webb BD, Evans A, Naidich TP, M Bird L, Parikh S, Fernandez Garcia M, Henderson LB, Millan F, Si Y, Brennand KJ, Hung P, Rucker JC, Wheeler PG, Schadt EE. Haploinsufficiency of POU4F1 causes an ataxia syndrome with hypotonia and intention tremor. Hum Mutat 2021; 42:685-693. [PMID: 33783914 DOI: 10.1002/humu.24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Sumit Parikh
- Neurometabolism & Neurogenetics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Meilin Fernandez Garcia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Yue Si
- GeneDx, Gaithersburg, Maryland, USA
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Hung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA.,Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
37
|
Dosi C, Pasquariello R, Ticci C, Astrea G, Trovato R, Rubegni A, Tessa A, Cioni G, Santorelli FM, Battini R. Neuroimaging patterns in paediatric onset hereditary spastic paraplegias. J Neurol Sci 2021; 425:117441. [PMID: 33866115 DOI: 10.1016/j.jns.2021.117441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs with a notable phenotypic variation and an autosomal recessive (AR), autosomal dominant (AD), and X-linked inheritance pattern. The recent clinical use of next generation sequencing methods has facilitated the diagnostic approach to HSPs, but the diagnosis remains quite challenging considering its wide clinical and genetic heterogeneity. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool in helping to exclude mimicking disorders and to guide genetic testing. The aim of this study is to investigate the presence of possible patterns of morphostructural MRI findings that may provide relevant clues for a specific genetic HSP subtype. In our cohort, for example, white matter abnormalities were the most common finding followed by the thinning of the corpus callosum, which, interestingly, presented different thinning characteristics depending on the HSP subtype.
Collapse
Affiliation(s)
- Claudia Dosi
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Giovanni Cioni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
| | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy.
| |
Collapse
|
38
|
Kim DH, Kim R, Lee JY, Lee KM. Clinical, Imaging, and Laboratory Markers of Premanifest Spinocerebellar Ataxia 1, 2, 3, and 6: A Systematic Review. J Clin Neurol 2021; 17:187-199. [PMID: 33835738 PMCID: PMC8053554 DOI: 10.3988/jcn.2021.17.2.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Premanifest mutation carriers with spinocerebellar ataxia (SCA) can exhibit subtle abnormalities before developing ataxia. We summarized the preataxic manifestations of SCA1, -2, -3, and -6, and their associations with ataxia onset. Methods We included studies of the premanifest carriers of SCA published between January 1998 and December 2019 identified in Scopus and PubMed by searching for terms including ‘spinocerebellar ataxia’ and several synonyms of ‘preataxic manifestation’. We systematically reviewed the results obtained in studies categorized based on clinical, imaging, and laboratory markers. Results We finally performed a qualitative analysis of 48 papers. Common preataxic manifestations appearing in multiple SCA subtypes were muscle cramps, abnormal muscle reflexes, instability in gait and posture, lower Composite Cerebellar Functional Severity scores, abnormalities in video-oculography and transcranial magnetic stimulation, and gray-matter loss and volume reduction in the brainstem and cerebellar structures. Also, decreased sensory amplitudes in nerve conduction studies were observed in SCA2. Eotaxin and neurofilament light-chain levels were revealed as sensitive blood biomarkers in SCA3. Concerning potential predictive markers, hyporeflexia and abnormalities of somatosensory evoked potentials showed correlations with the time to ataxia onset in SCA2 carriers. However, no longitudinal data were found for the other SCA gene carriers. Conclusions Our results suggest that preataxic manifestations vary among SCA1, -2, -3, and -6, with some subtypes sharing specific features. Combining various markers into a standardized index for premanifest carriers may be useful for early screening and assessing the risk of disease progression in SCA carriers.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee Young Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyoung Min Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Barbuto S, Martelli D, Isirame O, Lee N, Bishop L, Kuo SH, Agrawal S, Lee S, O’Dell M, Stein J. Phase I Single-Blinded Randomized Controlled Trial Comparing Balance and Aerobic Training in Degenerative Cerebellar Disease. PM R 2021; 13:364-371. [PMID: 32383352 PMCID: PMC7647960 DOI: 10.1002/pmrj.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Primary deficits in individuals with cerebellar degeneration include ataxia, unstable gait, and incoordination. Balance training is routinely recommended to improve function whereas little is known regarding aerobic training. OBJECTIVE To determine the feasibility of conducting a randomized trial comparing balance and aerobic training in individuals with cerebellar degeneration. DESIGN Assessor blinded randomized control phase I trial. SETTING Assessments in medical center, home training. PARTICIPANTS Twenty participants with cerebellar degeneration were randomized to home balance or aerobic training. INTERVENTION Aerobic training consisted of 4 weeks of stationary bicycle training, five times per week for 30-minute sessions. Home balance training consisted of performing the same duration of easy, moderate, and/or hard exercises. OUTCOME MEASURES Scale for the Assessment and Rating of Ataxia (SARA), maximal oxygen consumption (VO2 max), Dynamic Gait Index, Timed Up and Go, gait speed. RESULTS All 20 participants completed assigned training with no major adverse events. Seven of each group attained target training duration, frequency, and intensity. Although both groups had significant improvements in ataxia severity, balance, and gait measures, there were greater improvements in individuals who performed aerobic training in ataxia severity and maximal oxygen consumption when compared to balance training. The effect size for these outcome measures was determined to be large, indicating a phase II trial comparing the benefits of aerobic and balance training was feasible and required 26 participants per group. Improvements in SARA score and VO2 max remained in the aerobic training group at 3 months posttraining, but these improvements were trending back to baseline. In contrast, all balance group measures for pretraining and 3 months posttraining were statistically similar. CONCLUSIONS A phase II trial comparing balance and aerobic training in individuals with cerebellar degeneration is feasible. Benefits trended back toward baseline after training stopped, although benefits of longer duration exercise programs still need to be determined.
Collapse
Affiliation(s)
- Scott Barbuto
- Department of Physical Medicine and Rehabilitation, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Dario Martelli
- Department of Engineering, Columbia University, New York, NY, USA
| | - Omofuma Isirame
- Department of Engineering, Columbia University, New York, NY, USA
| | - Nancy Lee
- Department of Physical Medicine and Rehabilitation, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Laurie Bishop
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Sunil Agrawal
- Department of Engineering, Columbia University, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Michael O’Dell
- Department of Physical Medicine and Rehabilitation, Weill Cornell Medical College, New York, NY, USA
| | - Joel Stein
- Department of Physical Medicine and Rehabilitation, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Department of Physical Medicine and Rehabilitation, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
40
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
41
|
Lallemant-Dudek P, Darios F, Durr A. Recent advances in understanding hereditary spastic paraplegias and emerging therapies. Fac Rev 2021; 10:27. [PMID: 33817696 PMCID: PMC8009193 DOI: 10.12703/r/10-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of rare, inherited, neurological diseases characterized by broad clinical and genetic heterogeneity. Lower-limb spasticity with first motoneuron involvement is the core symptom of all HSPs. As spasticity is a syndrome and not a disease, it develops on top of other neurological signs (ataxia, dystonia, and parkinsonism). Indeed, the definition of genes responsible for HSPs goes beyond the 79 identified SPG genes. In order to avoid making a catalog of the different genes involved in HSP in any way, we have chosen to focus on the HSP with cerebellar ataxias since this is a frequent association described for several genes. This overlap leads to an intermediary group of spastic ataxias which is actively genetically and clinically studied. The most striking example is SPG7, which is responsible for HSP or cerebellar ataxia or both. There are no specific therapies against HSPs, and there is a dearth of randomized trials in patients with HSP, especially on spasticity when it likely results from other mechanisms. Thus far, no gene-specific therapy has been developed for HSP, but emerging therapies in animal models and neurons derived from induced pluripotent stem cells are potential treatments for patients.
Collapse
Affiliation(s)
- Pauline Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frederic Darios
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Alexandra Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
42
|
Morgan NV, Yngvadottir B, O'Driscoll M, Clark GR, Walsh D, Martin E, Tee L, Reid E, Titheradge HL, Maher ER. Evidence that autosomal recessive spastic cerebral palsy-1 (CPSQ1) is caused by a missense variant in HPDL. Brain Commun 2021; 3:fcab002. [PMID: 33634263 PMCID: PMC7892364 DOI: 10.1093/braincomms/fcab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023] Open
Abstract
A subset of individuals diagnosed with cerebral palsy will have an underlying genetic diagnosis. Previously, a missense variant in GAD1 was described as a candidate mutation in a single family diagnosed with autosomal recessive spastic cerebral palsy-1 (CPSQ1; OMIM 603513). Following the ascertainment of a further branch of the CPSQ1 kindred, we found that the previously reported GAD1 variant did not segregate with the neurological disease phenotype in the recently ascertained branch of the kindred. Following genetic linkage studies to map autozygous regions and whole-exome sequencing, a missense variant (c.527 T > C; p. Leu176Pro, rs773333490) in the HPDL gene was detected and found to segregate with disease status in both branches of the kindred. HPDL encodes a 371-amino acid protein (4-Hydroxyphenylpyruvate Dioxygenase Like) that localizes to mitochondria but whose function is uncertain. Recently, biallelic loss of function variants and missense substitution-causing variants in HPDL were reported to cause a childhood onset progressive spastic movement disorder with a variable presentation. These findings suggest that HPDL-related neurological disease may mimic spastic cerebral palsy and that GAD1 should not be included in diagnostic gene panels for inherited cerebral palsy.
Collapse
Affiliation(s)
- Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Bryndis Yngvadottir
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Mary O'Driscoll
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Trust, Birmingham B15 2TG, UK
| | - Graeme R Clark
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Diana Walsh
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Trust, Birmingham B15 2TG, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK.,Oncology Department, Cancer Molecular Diagnostics Laboratory, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Louise Tee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evan Reid
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK.,Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hannah L Titheradge
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Trust, Birmingham B15 2TG, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
43
|
Silani V, Corcia P, Harms MB, Rouleau G, Siddique T, Ticozzi N. Genetics of primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 21:28-34. [DOI: 10.1080/21678421.2020.1837177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milano, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Philippe Corcia
- Centre de Reference SLA, CHU Tours, and UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | | | - Guy Rouleau
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Teepu Siddique
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milano, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Yahia A, Chen ZS, Ahmed AE, Emad S, Adil R, Abubaker R, Taha SOMA, Salih MA, Elsayed L, Chan HYE, Stevanin G. A heterozygous mutation in the CCDC88C gene likely causes early-onset pure hereditary spastic paraplegia: a case report. BMC Neurol 2021; 21:78. [PMID: 33602173 PMCID: PMC7890981 DOI: 10.1186/s12883-021-02113-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND CCDC88C is a ubiquitously expressed protein with multiple functions, including roles in cell polarity and the development of dendrites in the nervous system. Bi-allelic mutations in the CCDC88C gene cause autosomal recessive congenital hydrocephalus (OMIM #236600). Studies recently linked heterozygous mutations in CCDC88C to the development of the late-onset spinocerebellar ataxia type 40 (OMIM #616053). CASE PRESENTATION A 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. Exome sequencing, in-silico analysis, and Sanger sequencing identified the heterozygous NM_001080414.4:c.1993G > A (p.E665K) variant in CCDC88C as a potential cause of her illness. To explore the pathogenicity of the NM_001080414.4:c.1993G > A (p.E665K) variant, we expressed it in human embryonic kidney 293 cells and assessed its effects on apoptosis. In our experiment, NM_001080414.4:c.1993G > A (p.E665K) induced JNK hyper-phosphorylation and enhanced apoptosis. In contrast to previous reports, our patient developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. CONCLUSION We, herein, heighlighted the possibility of extending the phenotype associated with variants in CCDC88C to include early-onset pure hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Alqsr Street, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
| | - Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Emad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rawaa Adil
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Liena Elsayed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Alqsr Street, Khartoum, Sudan.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
45
|
Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience. Brain Sci 2021; 11:brainsci11020246. [PMID: 33669240 PMCID: PMC7919782 DOI: 10.3390/brainsci11020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients’ selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era.
Collapse
|
46
|
Servelhere KR, Rezende TJR, de Lima FD, de Brito MR, de França Nunes RF, Casseb RF, Pedroso JL, Barsottini OGP, Cendes F, França MC. Brain Damage and Gene Expression Across Hereditary Spastic Paraplegia Subtypes. Mov Disord 2021; 36:1644-1653. [PMID: 33576112 DOI: 10.1002/mds.28519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord has been considered the main target of damage in hereditary spastic paraplegias (HSPs), but mounting evidence indicates that the brain is also affected. Despite this, little is known about the brain signature of HSPs, in particular regarding stratification for specific genetic subtypes. OBJECTIVE We aimed to characterize cerebral and cerebellar damage in five HSP subtypes (9 SPG3A, 27 SPG4, 10 SPG7, 9 SPG8, and 29 SPG11) and to uncover the clinical and gene expression correlates. METHODS We obtained high-resolution brain T1 and diffusion tensor image (DTI) datasets in this cross-sectional case-control study (n = 84). The MRICloud, FreeSurfer, and CERES-SUIT pipelines were employed to assess cerebral gray (GM) and white matter (WM) as well as the cerebellum. RESULTS Brain abnormalities were found in all but one HSP group (SPG3A), but the patterns were gene-specific: basal ganglia, thalamic, and posterior WM involvement in SPG4; diffuse WM and cerebellar involvement in SPG7; cortical thinning at the motor cortices and pallidal atrophy in SPG8; and widespread GM, WM, and deep cerebellar nuclei damage in SPG11. Abnormal regions in SPG4 and SPG8 matched those with higher SPAST and WASHC5 expression, whereas in SPG7 and SPG11 this concordance was only noticed in the cerebellum. CONCLUSIONS Brain damage is a conspicuous feature of HSPs (even for pure subtypes), but the pattern of abnormalities is genotype-specific. Correlation between brain structural damage and gene expression maps is different for autosomal dominant and recessive HSPs, pointing to distinct pathophysiological mechanisms underlying brain damage in these subgroups of the disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katiane R Servelhere
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Fabrício Diniz de Lima
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana Rabelo de Brito
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Raphael F Casseb
- Seaman Family MR Research Center, University of Calgary, Calgary, Alberta, Canada
| | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
47
|
Increasing involvement of CAPN1 variants in spastic ataxias and phenotype-genotype correlations. Neurogenetics 2021; 22:71-79. [PMID: 33486633 PMCID: PMC7997841 DOI: 10.1007/s10048-020-00633-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.
Collapse
|
48
|
Servelhere KR, Casseb RF, de Lima FD, Rezende TJR, Ramalho LP, França MC. Spinal Cord Gray and White Matter Damage in Different Hereditary Spastic Paraplegia Subtypes. AJNR Am J Neuroradiol 2021; 42:610-615. [PMID: 33478946 DOI: 10.3174/ajnr.a7017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Spinal cord damage is a hallmark of hereditary spastic paraplegias, but it is still not clear whether specific subtypes of the disease have distinctive patterns of spinal cord gray (GM) and white (WM) matter involvement. We compared cervical cross-sectional GM and WM areas in patients with distinct hereditary spastic paraplegia subtypes. We also assessed whether these metrics correlated with clinical parameters. MATERIALS AND METHODS We analyzed 37 patients (17 men; mean age, 47.3 [SD, 16.5] years) and 21 healthy controls (7 men; mean age, 42.3 [SD, 13.2] years). There were 7 patients with spastic paraplegia type 3A (SPG3A), 12 with SPG4, 10 with SPG7, and 8 with SPG11. Image acquisition was performed on a 3T MR imaging scanner, and T2*-weighted 2D images were assessed by the Spinal Cord Toolbox. Statistical analyses were performed in SPSS using nonparametric tests and false discovery rate-corrected P values < .05. RESULTS The mean disease duration for the hereditary spastic paraplegia group was 22.4 [SD, 13.8] years and the mean Spastic Paraplegia Rating Scale score was 22.8 [SD, 11.0]. We failed to identify spinal cord atrophy in SPG3A and SPG7. In contrast, we found abnormalities in patients with SPG4 and SPG11. Both subtypes had spinal cord GM and WM atrophy. SPG4 showed a strong inverse correlation between GM area and disease duration (ρ = -0.903, P < .001). CONCLUSIONS Cervical spinal cord atrophy is found in some but not all hereditary spastic paraplegia subtypes. Spinal cord damage in SPG4 and 11 involves both GM and WM.
Collapse
Affiliation(s)
- K R Servelhere
- From the School of Medical Sciences (K.R.S., F.D.d.L. T.J.R.R., L.P.R., M.C.F.), University of Campinas, Campinas, Brazil
| | - R F Casseb
- Seaman Family MR Research Center (R.F.C.), University of Calgary, Calgary, Alberta, Canada
| | - F D de Lima
- From the School of Medical Sciences (K.R.S., F.D.d.L. T.J.R.R., L.P.R., M.C.F.), University of Campinas, Campinas, Brazil
| | - T J R Rezende
- From the School of Medical Sciences (K.R.S., F.D.d.L. T.J.R.R., L.P.R., M.C.F.), University of Campinas, Campinas, Brazil
| | - L P Ramalho
- From the School of Medical Sciences (K.R.S., F.D.d.L. T.J.R.R., L.P.R., M.C.F.), University of Campinas, Campinas, Brazil
| | - M C França
- From the School of Medical Sciences (K.R.S., F.D.d.L. T.J.R.R., L.P.R., M.C.F.), University of Campinas, Campinas, Brazil
| |
Collapse
|
49
|
Weide G, Huijing PA, Bar-On L, Sloot L, Buizer AI, Becher JG, Harlaar J, Jaspers RT. Gastrocnemius Medialis Muscle Geometry and Extensibility in Typically Developing Children and Children With Spastic Paresis Aged 6-13 Years. Front Physiol 2020; 11:528522. [PMID: 33329011 PMCID: PMC7719761 DOI: 10.3389/fphys.2020.528522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Gait of children with spastic paresis (SP) is frequently characterized by a reduced ankle range of motion, presumably due to reduced extensibility of the triceps surae (TS) muscle. Little is known about how morphological muscle characteristics in SP children are affected. The aim of this study was to compare gastrocnemius medialis (GM) muscle geometry and extensibility in children with SP with those of typically developing (TD) children and assess how GM morphology is related to its extensibility. Thirteen children with SP, of which 10 with a diagnosis of spastic cerebral palsy and three with SP of unknown etiology (mean age 9.7 ± 2.1 years; GMFCS: I-III), and 14 TD children (mean age 9.3 ± 1.7 years) took part in this study. GM geometry was assessed using 3D ultrasound imaging at 0 and 4 Nm externally imposed dorsal flexion ankle moments. GM extensibility was defined as its absolute length change between the externally applied 0 and 4 Nm moments. Anthropometric variables and GM extensibility did not differ between the SP and TD groups. While in both groups, GM muscle volume correlated with body mass, the slope of the regression line in TD was substantially higher than that in SP (TD = 3.3 ml/kg; SP = 1.3 ml/kg, p < 0.01). In TD, GM fascicle length increased with age, lower leg length and body mass, whereas in SP children, fascicle length did not correlate with any of these variables. However, the increase in GM physiological cross-sectional area as a function of body mass did not differ between SP and TD children. Increases in lengths of tendinous structures in children with SP exceeded those observed in TD children (TD = 0.85 cm/cm; SP = 1.16 cm/cm, p < 0.01) and even exceeded lower-leg length increases. In addition, only for children with SP, body mass (r = -0.61), height (r = -0.66), muscle volume (r = - 0.66), physiological cross-sectional area (r = - 0.59), and tendon length (r = -0.68) showed a negative association with GM extensibility. Such negative associations were not found for TD children. In conclusion, physiological cross-sectional area and length of the tendinous structures are positively associated with age and negatively associated with extensibility in children with SP.
Collapse
Affiliation(s)
- Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter A. Huijing
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lizeth Sloot
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Annemieke I. Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jules G. Becher
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|