1
|
Chen Y, Sun T, Yuan P, Liu C. Dissecting the genetic association between abnormal sperm parameters and depression: a transcriptome-wide analysis of 157 participants. J Assist Reprod Genet 2025:10.1007/s10815-025-03470-0. [PMID: 40263245 DOI: 10.1007/s10815-025-03470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
PURPOSE Depression often occurs in the males with semen abnormalities. Evidence suggested a genetic correlation between depression and the pathogenesis of abnormal sperm parameters, whereas the mechanisms remained unclear. METHODS Genomic datasets of major depressive disorder (MDD) and abnormal sperm parameters were obtained from the Gene Expression Omnibus database. After screening the datasets, differentially expressed genes (DEGs) were identified. GO and pathway enrichment analyses, a protein-protein interaction network, and receiver operator characteristic curve analysis were conducted. Then, MDD-related DEGs (MDRGs), the external validation, immunological, and translational regulation analysis were performed. Moreover, tissue expression of MDRGs was explored. RESULTS A total of 249 overlapped MDRGs were discovered in the MDD and abnormal sperm parameters gene sets. MDRGs had a tight relationship with adhesion-associated and PI3 K-Akt-associated biological signaling. The protein-protein interaction module showed the enriched pathways involved in neuron differentiation and cell adhesion. Drug prediction revealed ten pharmacologic candidates. Finally, two hub MDRGs were identified and validated with good diagnostic values. Immunological and translational results showed three closely correlated kinds of CD8 + T lymphocytes, neutrophils, and macrophages, 19 transcription factor-MDRGs, and 71 miRNA-MDRGs interactions. Furthermore, expression signatures of Carnosine Dipeptidase 2 (CNDP2) and Galectin 3 Binding Protein (LGALS3BP) were displayed in cortex and testis. CONCLUSION Our study discovered the genetic profiles in abnormal sperm parameters and MDD and elucidated enriched pathways and molecular associations between hub genes and immune infiltration. These findings provide novel insights into the common pathogenesis of both diseases as well as the potential biomarkers for MDD-associated abnormal sperm parameters.
Collapse
Affiliation(s)
- Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penghui Yuan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Chang Liu
- Department of Obstetrics and Gynecology, Centre for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Liu F, Wang Y, Li D, Yang T. Atractylodin ameliorates lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage. J Neuroimmunol 2024; 390:578349. [PMID: 38669915 DOI: 10.1016/j.jneuroim.2024.578349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Depression is a psychiatric disorder associated with multiple factors including microglia-mediated neuroinflammation. Although atractylodin exerted a variety of biological activities, however the effect of atractylodin on neuroinflammation-related depression was still unclear. In this study, the lipopolysaccharide (LPS)-induced mouse model was used to explore the antidepressant effects and molecular mechanisms of atractylodin. The results showed that atractylodin increased sugar preference, also reduced immobility time in FST and TST. Further study showed atractylodin reduced the oxidative stress and the activation of microglia in mouse hippocampus, also inhibited the level of cytokine release, especially IL-1β. The results of western blotting showed that atractylodin significantly inhibited the expression of NLRP3 and pro-IL1β via inhibition of NF-κB pathway. Our studies showed that atractylodin upregulated BDNF/Akt pathway in mouse hippocampus. Therefore, this study firstly indicated that atractylodin can ameliorate lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage, and its molecular mechanism may be associated with the decrease of the expression of NLRP3 inflammasome and upregulation of BDNF/Akt pathway.
Collapse
Affiliation(s)
- Feng Liu
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yaping Wang
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China.
| | - Dongbo Li
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Tao Yang
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| |
Collapse
|
3
|
Yin Y, Liu J, Xu C, Zeng D, Zhu Y, Wu X, Fan Q, Zhao S, Wang J, Liu Y, Li Y, Lu W. Whole-transcriptome RNA sequencing reveals CeRNA regulatory network under long-term space composite stress in Rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:136-145. [PMID: 38670640 DOI: 10.1016/j.lssr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.
Collapse
Affiliation(s)
- YiShu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - JunLian Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - DeYong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - YuanBing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - XiaoRui Wu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - QuanChun Fan
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Shuang Zhao
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - JiaPing Wang
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - YongZhi Li
- China Astronaut Research and Training Center, Beijing 100094, PR China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China.
| |
Collapse
|
4
|
Zhang H, Xie X, Xu S, Wang C, Sun S, Song X, Li R, Li N, Feng Y, Duan H, Li D, Liu Z. Oligodendrocyte-derived exosomes-containing SIRT2 ameliorates depressive-like behaviors and restores hippocampal neurogenesis and synaptic plasticity via the AKT/GSK-3β pathway in depressed mice. CNS Neurosci Ther 2024; 30:e14661. [PMID: 38439616 PMCID: PMC10912796 DOI: 10.1111/cns.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
AIMS To investigate the antidepressant role of oligodendrocyte-derived exosomes (ODEXs)-containing sirtuin 2 (SIRT2) and the underlying mechanism both in vivo and in vitro. METHODS Oligodendrocyte-derived exosomes isolated from mouse serum were administered to mice with chronic unpredictable mild stress (CUMS)-induced depression via the tail vein. The antidepressant effects of ODEXs were assessed through behavioral tests and quantification of alterations in hippocampal neuroplasticity. The role of SIRT2 was confirmed using the selective inhibitor AK-7. Neural stem/progenitor cells (NSPCs) were used to further validate the impact of overexpressed SIRT2 and ODEXs on neurogenesis and synapse formation in vitro. RESULTS Oligodendrocyte-derived exosome treatment alleviated depressive-like behaviors and restored neurogenesis and synaptic plasticity in CUMS mice. SIRT2 was enriched in ODEXs, and blocking SIRT2 with AK-7 reversed the antidepressant effects of ODEXs. SIRT2 overexpression was sufficient to enhance neurogenesis and synaptic protein expression. Mechanistically, ODEXs mediated transcellular delivery of SIRT2, targeting AKT deacetylation and AKT/GSK-3β signaling to regulate neuroplasticity. CONCLUSION This study establishes how ODEXs improve depressive-like behaviors and hippocampal neuroplasticity and might provide a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Honghan Zhang
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xin‐hui Xie
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Shu‐xian Xu
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Chao Wang
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Siqi Sun
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinhua Song
- Clinical College of Traditional Chinese MedicineHubei University of Chinese MedicineWuhanChina
| | - Ruiling Li
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Ningyuan Li
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yuqi Feng
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Hao Duan
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhongchun Liu
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Menegas S, Keller GS, Possamai-Della T, Aguiar-Geraldo JM, Quevedo J, Valvassori SS. Potential mechanisms of action of resveratrol in prevention and therapy for mental disorders. J Nutr Biochem 2023; 121:109435. [PMID: 37669710 DOI: 10.1016/j.jnutbio.2023.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
There is a growing body of evidence about the potential of diet and nutrients to improve the population's mental health and the treatment of psychiatric disorders. Some studies have suggested that resveratrol has therapeutic properties in mental disorders, such as major depressive disorder, bipolar disorder, Alzheimer's disease, and autism. In addition, resveratrol is known to induce several benefits modulated by multiple synergistic pathways, which control oxidative stress, inflammation, and cell death. This review collects the currently available data from animal and human studies and discusses the potential mechanisms of action of resveratrol in prevention and therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela S Keller
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
6
|
Ahmed HH, Essam RM, El-Yamany MF, Ahmed KA, El-Sahar AE. Unleashing lactoferrin's antidepressant potential through the PI3K/Akt/mTOR pathway in chronic restraint stress rats. Food Funct 2023; 14:9265-9278. [PMID: 37767889 DOI: 10.1039/d3fo02222f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Depression is a widespread neuropsychiatric illness whose etiology is yet mysterious. Lactoferrin (LF), an iron-binding glycoprotein, is reported to promote neuroprotection through its role in the modulation of oxidative stress and inflammation. The objective of the present research was to evaluate the efficacy of LF against chronic restraint stress (CRS)-induced depressive behavior in rats. Depression was evidenced by a reduced grooming time in the splash test and an increased immobility time in the tail suspension test (TST) and forced swimming test (FST). This effect was also accompanied by reduced GSH and serotonin levels and elevated lipid peroxidation and corticosterone levels in the hippocampus. Additionally, an exaggerated hippocampal inflammatory response was also shown by a rise in NF-κB (p65) and TNF-α levels and a reduced IL-10 level. Moreover, CRS substantially reduced the BDNF content as well as the protein levels of PI3K, Akt, and mTOR while boosting the GSK3β content. Interestingly, LF therapy significantly improved CRS-induced behavioral and biochemical aberrations, an effect which was suppressed upon pretreatment with LY294002 (PI3K inhibitor). This suggests that the antidepressant potential of LF may be mediated through the modulation of the PI3K/Akt/mTOR signaling pathway. Furthermore, LF succeeded in restoring 5-HT and corticosterone levels, diminishing oxidative stress and ameliorating the inflammatory cascades. Therefore, and for the first time, LF might serve as a promising antidepressant drug through targeting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Hanan H Ahmed
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Muhammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
7
|
Ahmed A, Zeng G, Azhar M, Wang F, Wang J, Fan B, Liu X, Jiang D, Wang Q. Combination of Shengmai San and Radix puerariae ameliorates depression-like symptoms in diabetic rats at the nexus of PI3K/BDNF/SYN protein expression. Animal Model Exp Med 2023; 6:211-220. [PMID: 37317044 PMCID: PMC10272924 DOI: 10.1002/ame2.12333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Hyperglycemia is a characteristic feature of diabetes that often results in neuropsychological complications such as depression. Diabetic individuals are more vulnerable to experience depression compared to the normal population. Thus, novel treatment approaches are required to reduce depressive symptoms among diabetic individuals. Traditional Chinese medicines (TCMs) such as Shengmai San (SMS) and Radix puerariae (R) are usually widely used to treat ailments such as neurological complications since ancient time. METHODS In this study, SMS was combined with R to prepare an R-SMS formulation and screened for their antidepressant activity in diabetic rats. The antidepressant potential of the prepared combination was evaluated behaviorally using open field test, novelty-induced hypophagia, and forced swim test in diabetic rats with biochemical and protein expression (PI3K, BDNF [brain-derived neurotrophic factor], and SYN [presynaptic vesicle protein]) analysis. RESULTS Diabetic rats (streptozotocin, 45 mg/kg) showed elevated fasting blood glucose (FBG) >12 mM with depressive symptoms throughout the study. Treatment with R-SMS (0.5, 1.5, and 4.5 g/kg) significantly reverted depressive symptoms in diabetic rats as evinced by significantly (p < 0.05) reduced immobility time with an increased tendency to eat food in a novel environment. Treatment with R-SMS also significantly increased the protein expression of PI3K, BDNF, and SYN protein, which play a crucial role in depression. CONCLUSION This study showed that R-SMS formulation antagonized depressive symptoms in diabetic rats; thus, this formulation might be studied further to develop as an antidepressant.
Collapse
Affiliation(s)
- Ayaz Ahmed
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Mudassar Azhar
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Fengzhong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Jingru Wang
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Bei Fan
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Xinmin Liu
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
| | - Dejiang Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
| | - Qiong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation CenterThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
8
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
9
|
Xiong M, Wu Z, Zhao Y, Zhao D, Pan Z, Wu X, Liu W, Hu K. Intermittent hypoxia exacerbated depressive and anxiety-like behaviors in the bleomycin-induced pulmonary fibrosis mice. Brain Res Bull 2023; 198:55-64. [PMID: 37094614 DOI: 10.1016/j.brainresbull.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Depression and anxiety are prevalent in patients with idiopathic pulmonary fibrosis (IPF). Recent researchers reveal that intermittent hypoxia (IH) increases the severity of bleomycin (BLM)-induced lung injury. However, experimental studies dealing with anxiety- and depression-like behavior in animal models of BLM-induced pulmonary fibrosis in a combination of IH are lacking, hence, this study aimed to investigate that. In this study, 80 C57BL/6J male mice were intratracheally injected with BLM or normal saline at day0 and then exposed to IH (alternating cycles of FiO2 21% for 60s and FiO2 10% for 30s, 40 cycles/hour, 8hours/day) or intermittent air (IA) for 21 days. Behavioral tests, including open field test (OFT), sucrose preference test (SPT) and tail suspension test (TST), were detected from day22 to day26. This study found that pulmonary fibrosis developed and lung inflammation were activated in BLM-induced mice, which were potentiated by IH. Significant less time in center and less frequency of entries in the centre arena in OFT were observed in BLM treated mice, and IH exposure further decreased that. Marked decreased percent of sucrose preference in SPT, and significant increased immobility time of the TST were detected in BLM treated mice and IH widen the gaps. The expression of ionized calcium-binding adaptor molecule (Iba1) was activated in the hippocampus of BLM instillation mice and IH enlarged it. Moreover, a positive correlation between hippocampal microglia activation and inflammatory factors was observed. Our results demonstrated that IH exacerbated depressive and anxiety-like behaviors in the BLM-induced pulmonary fibrosis mice. The changes in pulmonary inflammation-hippocampal microglia activation may be a potential mechanism in this phenomenon, which can be researched in future.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Mu D, Ma Q. A Review of Antidepressant Effects and Mechanisms of Three Common Herbal Medicines: Panax ginseng, Bupleurum chinense, and Gastrodia elata. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1164-1175. [PMID: 36397625 DOI: 10.2174/1871527322666221116164836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) has been reported to affect an increasing number of individuals due to the modern lifestyle. Because of its complicated mechanisms and recurrent attacks, MDD is considered a refractory chronic disease. Although the mainstream therapy for MDD is chemical drugs, they are not a panacea for MDD because of their expensiveness, associated serious adverse reactions, and endless treatment courses. Hence, we studied three kinds of herbal medicines, namely, Panax ginseng C.A. Mey (PGM), Bupleurum chinense DC (BCD), and Gastrodia elata Blume (GEB), and reviewed the mechanisms underlying their antidepressant properties to provide a reference for the development of antidepressants and clinical medications. METHODS An extensive range of medicinal, clinical, and chemistry databases and search engines were used for our literature search. We searched the literature using certain web literature search engines, including Google Scholar, PubMed, Science Direct, CNKI (China National Knowledge Infrastructure), and Web of Science. RESULTS Experimental research found that active compounds of these three medicines exhibited good antidepressant effects in vivo and in vitro. Clinical investigations revealed that single or combined treatment of these medicines improved certain depressive symptoms. Antidepressant mechanisms are summarized based on this research. CONCLUSION The antidepressant mechanism of these three medicines includes but is not limited to ameliorating inflammation within the brain, reversing the hypothalamic-pituitary adrenal axis (HPA) system hyperfunction, inhibiting monoamine neurotransmitters reuptake, anti-neuron apoptosis and preventing neurotoxicity, and regulating depressive-related pathways such as the BDNF pathway and the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Dan Mu
- Substance Dependence Department, The Fourth People's Hospital of Chengdu, No. 8, West Yixiang, Jinniu District, Chengdu City, Sichuan Provence, China
| | - Qin Ma
- Substance Dependence Department, The Fourth People's Hospital of Chengdu, No. 8, West Yixiang, Jinniu District, Chengdu City, Sichuan Provence, China
| |
Collapse
|
11
|
Ding H, Ouyang M, Wang J, Xie M, Huang Y, Yuan F, Jia Y, Zhang X, Liu N, Zhang N. Shared genetics between classes of obesity and psychiatric disorders: A large-scale genome-wide cross-trait analysis. J Psychosom Res 2022; 162:111032. [PMID: 36137488 DOI: 10.1016/j.jpsychores.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022]
Abstract
AIMS Epidemiological studies demonstrate an association between classes of obesity and psychiatric disorders, although little is known about shared genetics and causality of association. Thus, we aimed to investigate shared genetics and causal link between different classes of obesity and psychiatric disorders. METHODS We used genome-wide association study (GWAS) summary data range from 9725 to 500,199 sample sizes of European descent, conducted a large-scale genome-wide cross-trait association study to investigate genetic overlap between the classes of obesity and anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, anxiety disorders and Tourette syndrome. We conducted transcriptome-wide association study analysis (TWAS) to identified variants regulated gene expression in those related disorders. Finally, pathway enrichment analysis to identified major pathways. RESULTS In the combined analysis, we replicated 211 previously reported loci and discovered 58 novel independent loci that were associated with all three classes of obesity and related psychiatric disorders. Functional analysis revealed that the identified variants regulated gene expression in major tissues belonging to exocrine/endocrine, digestive, circulatory, adipose, digestive, respiratory, and nervous systems, such as DCC, NEGR1, INO80E. Mendelian randomization analyses suggested that there may be a two-way or one-way causal relationship between obesity and psychiatric disorders. CONCLUSION This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal links between classes of obesity and psychiatric disorders (attention deficit hyperactivity disorder, autism spectrum disorder, anorexia nervosa, major depressive disorder, schizophrenia, and obsessive-compulsive disorder). Such shared genetics suggests potential new biological functions in common among them.
Collapse
Affiliation(s)
- Hui Ding
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jinyi Wang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yanyuan Huang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Yunhan Jia
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Xuedi Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Na Liu
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
13
|
Xie Y, Wu Z, Sun L, Zhou L, Xiao L, Wang H, Wang G. Swimming exercise reverses chronic unpredictable mild stress-induced depression-like behaviors and alleviates neuroinflammation and collapsing response mediator protein-2-mediated neuroplasticity injury in adult male mice. Neuroreport 2022; 33:272-282. [PMID: 35383656 PMCID: PMC9354724 DOI: 10.1097/wnr.0000000000001779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Impaired neuroplasticity and neuroinflammation are vital in the mechanisms of depression. Exercise alleviates depressive symptoms and ameliorates body functions. Swimming is one of the most common exercises; however, whether swimming alters depressive behaviors and the underlying mechanism has not been fully elucidated. METHODS Male C57/BL6J mice were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks and then were subjected to a 5-week swimming program. Behavioral test, including sucrose preference test (SPT), open field test (OFT), elevated plus-maze (EPM) test, and tail suspension test (TST), was conducted to assess the anxiety-like and depressive behaviors. Western blotting and immunofluorescence staining were carried out after tissue collection. RESULTS This study showed that CUMS-induced depressive behaviors but swimming exercise increased sucrose preference in SPT, increased time and velocity in the center on OFT, decreased time in the closed arm, increased time in the open arm in EPM, and decreased immobility time in TST. We further found swimming exercise increased hippocampal collapsing response mediator protein-2 (CRMP2) expression and decreased p-CRMP2 expression in CUMS mice. CUMS inhibited the levels of α-tubulin and CRMP2, and the expression of ionized calcium-binding adaptor molecule 1 and caspase-1, whereas swimming reversed them in CUMS-exercised mice. CONCLUSION Our study confirmed that swimming exercise reverses CUMS-induced depressive behaviors, and neuroinflammation and CRMP2-mediated neuroplasticity are involved, which may provide a new insight into the antidepression therapy of exercise.
Collapse
Affiliation(s)
- Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| |
Collapse
|
14
|
Dopamine D3 receptor in the nucleus accumbens alleviates neuroinflammation in a mouse model of depressive-like behavior. Brain Behav Immun 2022; 101:165-179. [PMID: 34971757 DOI: 10.1016/j.bbi.2021.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
We recently reported that dopamine D3 receptor (D3R) was involved in inflammation-related depression. Nucleus accumbens (NAc) inflammation is implicated in the development and progression of depression, but its regulatory mechanism remains largely unknown. In a mouse model of NAc neuroinflammation induced by bilateral NAc injection of lipopolysaccharide (LPS), we observed that NAc neuroinflammation triggered depressive-like behaviors, and D3R expression decline and microglial activation in the NAc. A selective knockdown of D3R in the NAc elicited depressive-like behaviors, while re-expression of D3R in the NAc of global D3RKO mice alleviated depressive-like behaviors induced by D3R deficiency. D3R downregulation in the NAc shifted microglia toward a proinflammatory state, which was validated with cultured mouse microglial cultures. Further in vitro results demonstrated that D3R inhibition induced microglia to enter a proinflammatory state primarily through the Akt signaling pathway. In conclusion, our results suggest that D3R expression in the NAc may inhibit microglial proinflammatory responses in the NAc, thus alleviating NAc neuroinflammation and subsequent depressive-like behaviors through the Akt signaling pathway.
Collapse
|
15
|
Tang WQ, Liu Y, Ji CH, Gu JH, Chen YM, Huang J, Guan W, Xu DW, Jiang B. Virus-mediated decrease of LKB1 activity in the mPFC diminishes stress-induced depressive-like behaviors in mice. Biochem Pharmacol 2021; 197:114885. [PMID: 34968488 DOI: 10.1016/j.bcp.2021.114885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
Abstract
As a highly prevalent neuropsychiatric disorder worldwide, the pathophysiology of depression is not yet fully understood and based on multiple factors among which chronic stress is critical. Numerous previous studies have shown the role of central mammalian target of rapamycin complex 1 (mTORC1) signaling in depression. However, so far it remains elusive by which way chronic stress down-regulates the activity of central mTORC1. Liver kinase b1 (LKB1) has been demonstrated to regulate the activity of the mTORC1 signaling cascade by phosphorylating AMP activated protein kinase (AMPK). Here, this study aimed to explore whether LKB1 participates in depression by regulating the downstream AMPK-mTORC1 signaling, and various methods including mouse models of depression, western blotting and immunofluorescence were used together. Our results showed that chronic stress significantly enhanced the expression of both phosphorylated LKB1 and total LKB1 in the medial prefrontal cortex (mPFC) but not the hippocampus. Furthermore, genetic knockdown of LKB1 in the mPFC fully reversed not only the depressive-like behaviors induced by chronic stress in mice but also the effects of chronic stress on the activity of AMPK and the mTORC1 system. Taken together, this study preliminarily suggests that LKB1 in the mPFC could be a feasible target for antidepressants. This study also provides support for the potential use of LKB1 inhibition strategies against the chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Da-Wei Xu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
16
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
17
|
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci 2021; 11:1633. [PMID: 34942936 PMCID: PMC8699555 DOI: 10.3390/brainsci11121633] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is one of the leading causes of disability, and, if left unmanaged, it can increase the risk for suicide. The evidence base on the determinants of depression is fragmented, which makes the interpretation of the results across studies difficult. The objective of this study is to conduct a thorough synthesis of the literature assessing the biological, psychological, and social determinants of depression in order to piece together the puzzle of the key factors that are related to this condition. Titles and abstracts published between 2017 and 2020 were identified in PubMed, as well as Medline, Scopus, and PsycInfo. Key words relating to biological, social, and psychological determinants as well as depression were applied to the databases, and the screening and data charting of the documents took place. We included 470 documents in this literature review. The findings showed that there are a plethora of risk and protective factors (relating to biological, psychological, and social determinants) that are related to depression; these determinants are interlinked and influence depression outcomes through a web of causation. In this paper, we describe and present the vast, fragmented, and complex literature related to this topic. This review may be used to guide practice, public health efforts, policy, and research related to mental health and, specifically, depression.
Collapse
Affiliation(s)
- Olivia Remes
- Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK
| | | | - Peter Templeton
- IfM Engage Limited, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK;
- The William Templeton Foundation for Young People’s Mental Health (YPMH), Cambridge CB2 0AH, UK
| |
Collapse
|
18
|
Wei Y, Wang G, Chen J, Xiao L, Wu Z, He J, Zhang N. Maternal deprivation induces cytoskeletal alterations and depressive-like behavior in adult male rats by regulating the AKT/GSK3β/CRMP2 signaling pathway. Physiol Behav 2021; 242:113625. [PMID: 34666114 DOI: 10.1016/j.physbeh.2021.113625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Early-life adverse events exert persistent effects on brain functions and may increase the risk of psychopathology in adulthood. However, the underlying mechanism remains unclear. The purpose of our study was to study the long-lasting effects of maternal deprivation (MD) on depression-related behaviors and microtubule dynamics, and to illuminate the underlying molecular mechanism. Rat pups were separated from the dams for 360 min (MD) or 15 min (brief maternal separation) each day from postnatal day 4 through 10. Rats with MD experience showed significant depressive-like behaviors in adulthood, while brief maternal separation did not alter the behaviors. Behavioral alterations in the MD group were accompanied by alterations in the AKT/GSK3β/CRMP2 signaling pathway and hyperphosphorylation of CRMP2. CRMP2 interacted and colocalized with the cytoskeleton in the hippocampus, and the overlap of CRMP2 and tubulin staining in the hippocampus of MD rats was decreased. In MD rats, the expression of the α-tubulin isoforms Acet-tubulin and Tyr-tubulin changed, and the ratio of Tyr/Acet-tubulin, which is an important marker of microtubule dynamics, was decreased, indicating decreased microtubule dynamics. Furthermore, regulation of the AKT/GSK3β/CRMP2 signaling pathway by an LY294002 microinjection in the hippocampus resulted in cytoskeletal alterations and depressive-like behaviors in rats. These findings suggest that early-life MD induces depressive-like behaviors and cytoskeletal alterations in adult male rats and that the effects may be partly mediated by the AKT/GSK3β/CRMP2 signaling pathway. An understanding of the mechanism underlying the effect of MD on behaviors is crucial for developing pharmacological and psychological interventions for childhood neglect.
Collapse
Affiliation(s)
- Yanyan Wei
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Jingxu Chen
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Jing He
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
19
|
Sun L, Wang G, Wu Z, Xie Y, Zhou L, Xiao L, Wang H. Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. Pharmacol Biochem Behav 2021; 211:173285. [PMID: 34626621 DOI: 10.1016/j.pbb.2021.173285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
While swimming exercise has been shown to positively affect the development of the nervous system, it still remains unclear whether it reduces the vulnerability to stress. In this study, male C57BL/6 mice were exposed to swimming training for 5 weeks, and then subjected to chronic unpredictable mild stress (CUMS) for 4 weeks. We found that swimming exercise prevented anxiety-like and depressive phenotypes induced by CUMS, including increased anxiety-like behavior in the open field test (OFT) and elevated plus-maze (EPM) test and increased despair behavior in the tail suspension test (TST). Moreover, the control+stress group showed reduced expression of phosphorylated AKT kinase (p-AKT), phosphorylated glycogen synthase kinase-3β (p-GSK3β), and tubulin-tyrosine ligase (Tyr-tubulin) and increased protein expression of phosphorylated collapsin response mediator protein 2 (p-CRMP-2); the control+control, swim+control, and swim+stress groups exhibited higher expression of these proteins than the control+stress group. This study confirmed that swimming exercise could reduce the vulnerability of individuals to stress and that it contributes to the AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics mediated protective effects on neuroplasticity. The AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics may be involved in resilience to stress.
Collapse
Affiliation(s)
- Limin Sun
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Lin Zhou
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| |
Collapse
|
20
|
Li Q, Cai D, Huang H, Zhang H, Bai R, Zhao X, Sun H, Qin P. Phosphoproteomic profiling of the hippocampus of offspring rats exposed to prenatal stress. Brain Behav 2021; 11:e2233. [PMID: 34520625 PMCID: PMC8553319 DOI: 10.1002/brb3.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Prenatal stress (PS) can cause depression in offspring. However, the underlying biological mechanism of these influences is still unclear. This work was implemented to investigate the molecular mechanisms of depressive-like behavior of offspring rats insulted with PS. METHODS Relative quantitative phosphoproteomics of the hippocampus of PS susceptibility (PS-S) and control (CON) rat offspring was performed using liquid chromatography-tandem mass spectrometry to confirm known pathways and to identify new mechanisms involved in depression. RESULTS A total of 6790 phosphopeptides, 9817 phosphorylation sites, and 2978 phosphoproteins were detected. Among the 2978 phosphoproteins, 1760 (59.09%) had more than two phosphorylated sites, the ENSRNOP00000023460 protein had more than 117 phosphorylated sites, and the average distribution of modification sites per 100 amino acids was 2.97. There were 197 different phosphopeptides, including 140 increased phosphopeptides and 57 decreased phosphopeptides in the PS-S offspring rats, compared to the CON offspring rats. These differential phosphopeptides corresponded to 100 upregulated and 44 downregulated phosphoproteins, respectively. Gene ontology enrichment analysis revealed that these different phosphoproteins in the top five enriched terms in the cellular component, molecular function, and biological proces categories were involved in a total of 35 different phosphoproteins, and these phosphoproteins were mainly related to myelin-, microtubule- and synapse-associated proteins. The enrichment of Kyoto Encyclopedia of Genes and Genome pathways was found to be involved in many essential biological pathways, and the top five pathways included amphetamine addiction, insulin secretion, Cushing syndrome, and the circadian entrainment signaling pathway. These first five pathways were related to nine phosphoproteins, including Adcy9, Apc, Cacna1c, Camk2a, Camk2b, Camk2g, Ctnnd2, Grin2a, and Stx1a. The full data are available via ProteomeXchange with identifier PXD019117. CONCLUSION We preliminarily identified 144 different phosphoproteins involved in myelin, microtubule, and synapse formation and plasticity in the hippocampus of susceptible offspring rats exposed to PS.
Collapse
Affiliation(s)
- Qinghong Li
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Dongge Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Huiping Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Ruimiao Bai
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Xiaolin Zhao
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Pei Qin
- Department of Anaesthesiology, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
21
|
Huang H, Wang Q, Guan X, Zhang X, Zhang Y, Cao J, Li X. Effects of enriched environment on depression and anxiety-like behavior induced by early life stress: A comparison between different periods. Behav Brain Res 2021; 411:113389. [PMID: 34058267 DOI: 10.1016/j.bbr.2021.113389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain development is a prolonged process and it is sensitive to the environment during critical periods. Stress in early life is believed to increase vulnerability to depression, while enriched environment (EE) has beneficial effects on neural plasticity and depression. In this study, we compared the therapeutic effect of EE during different periods on early life stress-induced depression, and investigated the role of brain-derived neurotrophic factor (BDNF) and protein kinase B (AKT) on the effect of EE. Plasma corticosterone level was also detected to evaluate the reactivity of hypothalamic-pituitary-adrenal axis. METHODS C57BL/6 mice were subjected to a 4-h maternal separation (MS) procedure during postnatal days 2-21. After this separation, the mice were assigned to standard environment groups (SE), EE in the early period groups (3-8 weeks, EEE) and EE in the adult groups (8-13 weeks, EEA). Depression and anxiety behavior were evaluated at 14-weeks of age. The plasma corticosterone was quantified utilizing enzyme-linked immunosorbent assay. Hippocampus BDNF and AKT/p-AKT were detected using Western blotting. RESULTS The results showed that MS increased depression and anxiety level, while EE in both intervention periods alleviated the symptoms of depression and anxiety. The EEE group showed better effects in terms of anhedonia and anxiety than the EEA group. The difference in despair behavior between the EEE and EEA groups was not significant. MS increased plasma corticosterone level, while EE decreased corticosterone level in both intervention periods. EE increased BDNF and p-AKT expression in the hippocampus, with stronger effects in the EEE group. CONCLUSION EE during the early development period was more effective in alleviating depression and anxiety induced by early life stress. BDNF and AKT may play a significant role in the effect of EE, and further research is needed to explore the detailed neurobiological mechanisms.
Collapse
Affiliation(s)
- Hongfei Huang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China; Department of Psychiatry, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110001, China
| | - Qi Wang
- Department of Psychiatry, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110001, China
| | - Xiaofeng Guan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xia Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yihan Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Jinlong Cao
- Department of Psychiatry, The Fourth Hospital of Haining People, Jiaxing, Zhejiang, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
22
|
Wu Z, Wang G, Zhou L, Sun L, Xie Y, Xiao L. Neuroinflammation decreased hippocampal microtubule dynamics in the acute behavioral deficits induced by intracerebroventricular injection of lipopolysaccharide in male adult rats. Neuroreport 2021; 32:603-611. [PMID: 33850084 DOI: 10.1097/wnr.0000000000001638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a vital role in the pathology of depression. Microtubule dynamics produces an immediate response to stress, but the effect of microtubule dynamics in the rats with acute behavioral deficits following a central immune challenge remains elusive. Adult male Sprague-Dawley rats were subjected to the intracerebroventricular (icv) injection of lipopolysaccharide (. Behavioral tests, including bodyweight, sucrose preference test (SPT), forced swimming test (FST) and open field test (OFT), were performed to evaluate anxiety-like and depressive-like phenotypes at 24 h after injection, and some neuroinflammation biomarkers and microtubule dynamics in the hippocampus were detected. Lipopolysaccharide decreased the bodyweight, sucrose preference in SPT (depressive-like behavior), spontaneous activity in OFT (anxiety-like behavior) and increased the immobility time in FST (depressive-like behavior). Besides, lipopolysaccharide increased the mRNA levels of hippocampal CD11b and ionized calcium binding adaptor molecule (Iba1), which suggest microglial activation, and also upregulated hippocampal NLR Family Pyrin Domain Containing 3 inflammasome/interleukin-18/nuclear factor kappa-B mRNA. Lipopolysaccharide injection(icv) reduced the ratio of Tyr-/Acet-tubulin, an important marker of microtubule dynamics, in the acute behavioral deficit rats. Specifically, a decrease in Tyr-tubulin and an increase in the expression of Acet-tubulin were observed, indicating weakened microtubule dynamics. Pearson correlation analysis further showed that there was a significant negative correlation between hippocampal microtubule dynamics and neuroinflammatory activity. This study confirmed that hippocampal microtubule dynamics was decreased in the rats with acute behavioral deficits following a central immune challenge.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang, Wuhan, China
| | | | | | | | | | | |
Collapse
|
23
|
Xiang D, Sun S, Wang G, Liu Z. Effects of CRMP2 DNA Methylation in the Hippocampus on Depressive-Like Behaviors and Cytoskeletal Proteins in Rats. Front Cell Neurosci 2021; 15:644663. [PMID: 33815064 PMCID: PMC8010135 DOI: 10.3389/fncel.2021.644663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic stress appears to alter DNA methylation and DNA methyltransferases (DNMTs) in brain regions related to emotion. Collapsin response mediator protein-2 (CRMP2) mediates the development of depression by regulating microtubule dynamics. In this study, rats were subjected to chronic unpredictable mild stress (CUMS). At the end of the CUMS procedure, normal saline or fluoxetine was administered to the rats. Moreover, normal saline or the 5-aza-2’-deoxycytidine (5-aza) was administered to the hippocampal CA1 region of the rats. Behavioral tests were performed to evaluate the depressive-like phenotypes. The CRMP2 DNA methylation levels and cytoskeletal microtubular system-related biomarkers were detected by several molecular biology techniques. The results showed that the rat model of depression was successfully established by exposure to CUMS, and fluoxetine treatment exerted an antidepressant-like effect. We observed the upregulation of DNMT1 and DNMT3a in the hippocampus of stressed rats. CUMS induced a decrease in CRMP2 expression and an increase in phosphorylated CRMP2 (pCRMP2) expression in the hippocampus of rats. The rate of DNA methylation in the CpG island of the CRMP2 promoter region in the hippocampus of stressed rats was significantly higher than that in control rats. Moreover, CUMS significantly decreased the interaction between CRMP2 and α-tubulin and decreased the microtubule dynamics. Chronic fluoxetine treatment reversed these changes. Also, hypomethylation induced by 5-aza injection into the hippocampal CA1 region caused antidepressant-like effects and increased CRMP2 expression and microtubule dynamics. These results suggested that CRMP2 DNA methylation may be involved in regulating the cytoskeletal microtubular system and mediating depressive-like behaviors.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Zhao Y, Coulson EJ, Su X, Zhang J, Sha B, Xu H, Deng Y, Chen Y, Cao J, Wang Y, Wang S. Identification of 14-3-3 epsilon as a regulator of the neural apoptotic pathway for chronic-stress-induced depression. iScience 2021; 24:102043. [PMID: 33537655 PMCID: PMC7840470 DOI: 10.1016/j.isci.2021.102043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022] Open
Abstract
Major depression is a prevalent and long-lasting psychiatric illness with severe functional impairment and high suicide rate. We have previously shown that the ventrolateral orbital cortex (VLO) plays a key role in the stress responses in mice, but the underlying mechanisms remains unclear. Here, we used proteomic method to identify differentially expressed proteins in VLO of chronic unpredictable mild stress (CUMS) mice. Of 4,953 quantified proteins, 45 proteins were differentially expressed following CUMS. The integrated pathway analyses identified 14-3-3ε and TrkB signaling as differentially downregulated in association with stress-induced depressive-like behaviors. 14-3-3ε overexpression in VLO relieved the depressive-like behaviors by rescue of Bad-mediated apoptosis. Moreover, treatment with the 14-3-3ε stabilizer FC-A precluded neuronal apoptotic signaling in VLO of depressed mice. Because 14-3-3ε provides significant protection against chronic stress, boosting 14-3-3ε expression, pharmacological stabilization of 14-3-3s (e.g. with FC-A) is identified as an exciting therapeutic target for major depression. Novel screening of chronic mild stress-induced depression phenotypes in mice Proteomics identify 14-3-3ε as a key modulator of depressive behaviors in VLO 14-3-3ε partially reversed depressive behaviors through neural apoptotic pathway 14-3-3ε stabilizer FC-A ameliorates depression phenotypes after chronic mild stress
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Xingli Su
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Junfeng Zhang
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Baoyong Sha
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Hao Xu
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yating Deng
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Jian Cao
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuang Wang
- Institute of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
25
|
Zhao L, Guo R, Cao N, Lin Y, Yang W, Pei S, Ma X, Zhang Y, Li Y, Song Z, Du W, Xiao X, Liu C. An Integrative Pharmacology-Based Pattern to Uncover the Pharmacological Mechanism of Ginsenoside H Dripping Pills in the Treatment of Depression. Front Pharmacol 2021; 11:590457. [PMID: 33658934 PMCID: PMC7917282 DOI: 10.3389/fphar.2020.590457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives: To evaluate the pharmacodynamical effects and pharmacological mechanism of Ginsenoside H dripping pills (GH) in chronic unpredictable mild stress (CUMS) model rats. Methods: First, the CUMS-induced rat model was established to assess the anti-depressant effects of GH (28, 56, and 112 mg/kg) by the changes of the behavioral indexes (sucrose preference, crossing score, rearing score) and biochemical indexes (serotonin, dopamine, norepinephrine) in Hippocampus. Then, the components of GH were identified by ultra-performance liquid chromatography-iron trap-time of flight-mass spectrometry (UPLC/IT-TOF MS). After network pharmacology analysis, the active ingredients of GH were further screened out based on OB and DL, and the PPI network of putative targets of active ingredients of GH and depression candidate targets was established based on STRING database. The PPI network was analyzed topologically to obtain key targets, so as to predict the potential pharmacological mechanism of GH acting on depression. Finally, some major target proteins involved in the predictive signaling pathway were validated experimentally. Results: The establishment of CUMS depression model was successful and GH has antidepressant effects, and the middle dose of GH (56 mg/kg) showed the best inhibitory effects on rats with depressant-like behavior induced by CUMS. Twenty-eight chemical components of GH were identified by UPLC/IT-TOF MS. Subsequently, 20(S)-ginsenoside Rh2 was selected as active ingredient and the PPI network of the 43 putative targets of 20(S)-ginsenoside Rh2 containing in GH and the 230 depression candidate targets, was established based on STRING database, and 47 major targets were extracted. Further network pharmacological analysis indicated that the cAMP signaling pathway may be potential pharmacological mechanism regulated by GH acting on depression. Among the cAMP signaling pathway, the major target proteins, namely, cAMP, PKA, CREB, p-CREB, BDNF, were used to verify in the CUMS model rats. The results showed that GH could activate the cAMP-PKA-CREB-BDNF signaling pathway to exert antidepressant effects. Conclusions: An integrative pharmacology-based pattern was used to uncover that GH could increase the contents of DA, NE and 5-HT, activate cAMP-PKA-CREB-BDNF signaling pathway exert antidepressant effects.
Collapse
Affiliation(s)
- Libin Zhao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Zhendong Research Institute, Shanxi Zhendong Pharmaceutical Co., Ltd, Beijing, China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Cao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxian Lin
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjing Yang
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Shuai Pei
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Ma
- Shandong Huayu University of Technology, Shandong, China
| | - Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Song
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Wuxun Du
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
26
|
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 2021; 11:596. [PMID: 33436817 PMCID: PMC7803732 DOI: 10.1038/s41598-020-80045-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.
Collapse
Affiliation(s)
- James M. Brimson
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirikalaya Brimson
- grid.7922.e0000 0001 0244 7875Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Mani Iyer Prasanth
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Premrutai Thitilertdecha
- grid.10223.320000 0004 1937 0490Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
27
|
Chen S, Zhang Y, Yuan Y. The Combination of Serum BDNF, Cortisol and IFN-Gamma Can Assist the Diagnosis of Major Depressive Disorder. Neuropsychiatr Dis Treat 2021; 17:2819-2829. [PMID: 34471356 PMCID: PMC8405229 DOI: 10.2147/ndt.s322078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Misdiagnosis and ineffective treatment are common in major depressive disorder (MDD) in current clinical practice, while the combination of various serum proteins may assist the correct diagnosis. The study aimed to explore whether the combination of serum inflammatory, stress, and neurotrophic factors could be helpful for the diagnosis of MDD and to investigate the predictors associated with early symptom improvements. PATIENTS AND METHODS Baseline serum levels of C-reactive protein (CRP), interleukin (IL)-6, IL-10, IL-1beta, tumor necrosis factor (TNF)-alpha, interferon (INF)-gamma, cortisol, and brain-derived neurotrophic factor (BDNF) were detected in 30 MDD patients and 30 age- and gender-matched healthy controls. 17-item Hamilton Depression Rating Scale (HAMD-17) and Hamilton Anxiety Rating Scale (HAMA) were applied to assess symptoms both at baseline and two weeks after antidepressant treatment. Stepwise multiple linear regression was employed to identify the early efficacy predictors, and a logistic regression model was built with the above serum proteins. The area under the receiver operating characteristic (AUC) curve was calculated to evaluate the model's diagnostic power. RESULTS Multiple linear regression revealed that baseline scores of retardation (β = -0.432, P = 0.012) and psychological anxiety (β = -0.423, P = 0.014) factors were negatively associated with the reduction rate of HAMD-17. A simple and efficient diagnostic model using serum BDNF, cortisol, and IFN-gamma levels was established by the forward stepwise logistic regression, and the model achieved an AUC of 0.884, with 86.7% sensitivity and 83.3% specificity. CONCLUSION The results showed that combining serum BDNF, cortisol and IFN-gamma could aid the diagnosis of MDD, while baseline retardation and psychological anxiety may predict the poor early symptom improvement.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
28
|
Downregulation of hippocampal SIRT6 activates AKT/CRMP2 signaling and ameliorates chronic stress-induced depression-like behavior in mice. Acta Pharmacol Sin 2020; 41:1557-1567. [PMID: 32265492 DOI: 10.1038/s41401-020-0387-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Sirtuin 6 (SIRT6) has been reported to play a key role in cognitive function and mood regulation, yet its role in mood disorders is not completely understood. Here, we confirmed that knockdown of hippocampal SIRT6 alleviated depression-like behaviors induced by chronic unpredictable stress (CUS) in mice. Our in vitro data showed that SIRT6 negatively regulated protein kinase B (AKT) signaling by deacetylating histone 3 at Lys9 and Lys56. Knockdown of SIRT6 significantly increased AKT phosphorylation activity, while decreased collapsin response mediator protein 2 (CRMP2) phosphorylation activity. Furthermore, pharmacologic inhibition of SIRT6 by ferulic acid (FA) (40 or 80 mg· kg-1 per day, i.g.) could activate AKT/CRMP2 pathway in vitro, which has been proved to exert an antidepressant-like effect on CUS-induced depressive models. In conclusion, our study suggested that hippocampal SIRT6 contributes to the performance of depression-like behaviors by suppressing AKT/CRMP2 signaling, and FA ameliorates CUS-induced depression-like behaviors in mice as a potential pharmacologic inhibitor of SIRT6.
Collapse
|
29
|
Fang A, Li Y, Wu X, Wu B, Zhang Y. Baicalin attenuates inflammatory pain associated depressive symptoms via Akt-mediated adult hippocampal neurogenesis. Metab Brain Dis 2020; 35:1085-1093. [PMID: 32643091 DOI: 10.1007/s11011-020-00599-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023]
Abstract
Depression is one of main symptoms accompanying thermal hyperalgesia and mechanical allodynia induced by inflammatory pain. On physiological level, depressive symptoms could be attenuated by sufficient level of hippocampal neural plasticity. Adult hippocampal neurogenesis (AHN) plays critical roles in clearing panic memory, increasing psychiatric adaptability and preventing depressive emotion. Thus, targeting AHN is the applicable strategy to improve neural functions impaired and attenuate inflammatory pain. Previous reports indicate natural compound baicalin (BA) is one of the effective agents to promote AHN. In present study, we tested the effects of BA in mouse model of inflammatory pain as well as its biological underpinning. Behavioral tests indicate that BA treatment attenuated thermal hyperalgesia, mechanical allodynia and depressive symptoms. Meanwhile, treatment of BA promoted growth and differentiation of neural stem cells in hippocampus. AHN blocker temozolomide (TMZ) resulted in significant suppressed effects of BA to promote AHN, suggesting the critical role of AHN in regulating behavioral effects of BA to inflammatory pain. Akt plays the critical roles in the effects of BA to attenuate inflammatory pain induced symptoms. Prohibiting of Akt with GSK960693 dramatically prevented the effects of BA in attenuating inflammatory pain induced behavioral symptoms. Taken together, BA is the potential pain killer to alleviating inflammatory pain via Akt-mediated adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Aili Fang
- Department of Anesthesiology, Shanxi Bethune Hospital, No.99 Longcheng Street, Taiyuan, Shanxi Province, 030012, People's Republic of China.
| | - Yan Li
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuemei Wu
- Department of Neurology, General Hospital of TISCO, Taiyuan, Shanxi Province, China
| | - Bin Wu
- Department of Central Laboratory, General Hospital of TISCO, Taiyuan, Shanxi Province, China
| | - Yinhong Zhang
- Department of Laboratory Animal Science, Shanxi Key Laboratory of Laboratory Animal and Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
30
|
Chen ZY, Xie DF, Liu ZY, Zhong YQ, Zeng JY, Chen Z, Chen XL. Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology. PLoS One 2020; 15:e0239843. [PMID: 32997725 PMCID: PMC7527207 DOI: 10.1371/journal.pone.0239843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Banxia Houpu decoction (BXHPD) has been used to treat depression in clinical practice for centuries. However, the pharmacological mechanisms of BXHPD still remain unclear. Network Pharmacology (NP) approach was used to explore the potential molecular mechanisms of BXHPD in treating depression. Potential active compounds of BXHPD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform Database. STRING database was used to build a interaction network between the active compounds and target genes associated with depression. The topological features of nodes were visualized and calculated. Significant pathways and biological functions were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. A total of 44 active compounds were obtained from BXHPD, and 121 potential target genes were considered to be therapeutically relevant. Pathway analysis indicated that MAPK signaling pathway, ErbB signaling pathway, HIF-1 signaling pathway and PI3K-Akt pathway were significant pathways in depression. They were mainly involved in promoting nerve growth and nutrition and alleviating neuroinflammatory conditions. The result provided some potential ways for modern medicine in the treatment of depression.
Collapse
Affiliation(s)
- Zi-ying Chen
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-feng Xie
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-yuan Liu
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-qi Zhong
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-yan Zeng
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (XLC); (ZC)
| | - Xin-lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XLC); (ZC)
| |
Collapse
|
31
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
32
|
Resilience in the LPS-induced acute depressive-like behaviors: Increase of CRMP2 neuroprotection and microtubule dynamics in hippocampus. Brain Res Bull 2020; 162:261-270. [DOI: 10.1016/j.brainresbull.2020.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
33
|
Zhou L, Wu Z, Wang G, Xiao L, Wang H, Sun L, Xie Y. Long-term maternal separation potentiates depressive-like behaviours and neuroinflammation in adult male C57/BL6J mice. Pharmacol Biochem Behav 2020; 196:172953. [PMID: 32450088 DOI: 10.1016/j.pbb.2020.172953] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Early life experience is closely related to depression caused by stress in adulthood. Early life experience, including maternal separation (MS), has been shown to evoke stress sensitivity to depression upon re-exposure to stress in adults. However, MS has also been shown to lead to resilience to stress-induced depression, which is contradictory and rarely studied. To investigate the effects of MS on depression in adults and the related mechanism, male C57/BL6J mouse pups were exposed to different MS procedures from postnatal day (PD)1 to PD21. Body weight (BW) measurements and behavioural tests (the forced swimming test (FST) and open field test (OFT)) were performed on PD41 to explore depressive and anxiety-like behaviours. Then, as adults, the mice were exposed to chronic unpredictable mild stress (CUMS) for 28 days, and then behavioural tasks were recorded. After CUMS exposure, the mice in the MS180 group (which were separated from their mothers for 3 h on PD1-PD21) showed significantly decreased time spent in the centre of the open field and reduced velocity in the OFT, a reduced latency to immobility in the FST, and decreased BW. However, the mice in the MS15 group (which were separated from their mothers for 15 min on PD1-PD21) performed similarly to NSNC mice (which were not separated from their mothers) in the behavioural tests. We further found that the expression of Iba1, a marker of neuroinflammation, was increased in the MS180 group but not in the MS15 group. In addition, our study showed decreased mRNA and protein expression of CRMP2, an important neuroprotective factor, in the MS180 group, but CRMP2 expression was unchanged in the MS15 group. This study confirmed the generation of different behavioural responses to stress exposure in adulthood due to different degrees of MS. Neuroinflammation and neuroprotection are involved, which requires further research.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| |
Collapse
|
34
|
Zhang H, Chi X, Pan W, Wang S, Zhang Z, Zhao H, Wang Y, Wu Z, Zhou M, Ma S, Zhao Q, Ma K. Antidepressant mechanism of classical herbal formula lily bulb and Rehmannia decoction: insights from gene expression profile of medial prefrontal cortex of mice with stress‐induced depression‐like behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12649. [DOI: 10.1111/gbb.12649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Hongxiu Zhang
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
- Institute of VirologyJinan Municipal Center for Disease Control and Prevention Jinan China
| | - Xiansu Chi
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Wenchao Pan
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Shijun Wang
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Zhe Zhang
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Haijun Zhao
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Yuan Wang
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Zhichun Wu
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Miaomiao Zhou
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Shan Ma
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Qitao Zhao
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| | - Ke Ma
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese Medicine Jinan China
| |
Collapse
|
35
|
Wu Z, Wang G, Wang H, Xiao L, Wei Y, Yang C. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells. Brain Res Bull 2020; 158:99-107. [PMID: 32070769 DOI: 10.1016/j.brainresbull.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies indicate that antidepressants treatment restores neuronal plasticity. In contrast, some researchers claim that serotonergic antidepressants, including fluoxetine (FLU), may exacerbate neuronal plasticity, which is contradictory and rarely studied. Since almost those studies exposed cells with drugs for 1-2 days as treatment models of antidepressants, it is possible that FLU exposure for longer periods would have opposite effects on neuronal plasticity. RESULTS In the present study, we examined the effects of FLU exposure (up to 3 days) on the neuronal plasticity in differentiated PC12 cells. The cell viability shown a slight decrease at day 2 (93.5 ± 3.5 %), followed by a highly significant decrease at day 3(71.4 ± 4.4 %). As previously reported, neuronal plasticity was significantly upregulated by FLU exposure at day 1. However, the neurite length, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos mRNA were inhibited with FLU exposure at day 3. Similarly, the expression of tubulin, which play important roles in the neuronal plasticity, was the same result. Furthermore, we found α-tubulin interacted with collapsing response mediator protein 2(CRMP2), which is related to neuronal plasticity, and the regulation of CRMP2 activity influenced the neurite length, Arc, c-Fos and tubulin expression. CONCLUSIONS The results demonstrated that neuronal plasticity was increased by FLU exposure at day 1, but exposure with FLU for more than 2 days had opposite effect on it. The reduction in neuronal plasticity with FLU exposure for more than 2 days might be involved in some aspects of the therapeutic effect of antidepressant on depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| |
Collapse
|
36
|
Miyata S, Kumagaya R, Kakizaki T, Fujihara K, Wakamatsu K, Yanagawa Y. Loss of Glutamate Decarboxylase 67 in Somatostatin-Expressing Neurons Leads to Anxiety-Like Behavior and Alteration in the Akt/GSK3β Signaling Pathway. Front Behav Neurosci 2019; 13:131. [PMID: 31275123 PMCID: PMC6591520 DOI: 10.3389/fnbeh.2019.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder worldwide. Several lines of evidence suggest that the dysfunction of somatostatin (SOM) neurons is associated with the pathophysiology of MDD. Importantly, most SOM neurons are γ-aminobutyric acid (GABA) interneurons. However, whether the dysfunction of GABAergic neurotransmission from SOM neurons contributes to the pathophysiology of MDD remains elusive. To address this issue, we investigated the emotional behaviors and relevant molecular mechanism in mice lacking glutamate decarboxylase 67 (GAD67), an isoform of GABA-synthesizing enzyme, specifically in SOM neurons (SOM-GAD67 mice). The SOM-GAD67 mice exhibited anxiety-like behavior in the open-field test without an effect on locomotor activity. The SOM-GAD67 mice showed depression-like behavior in neither the forced swimming test nor the sucrose preference test. In addition, the ability to form contextual fear memory was normal in the SOM-GAD67 mice. Furthermore, the plasma corticosterone level was normal in the SOM-GAD67 mice both under baseline and stress conditions. The expression ratios of p-AktSer473/Akt and p-GSK3βSer9/GSK3β were decreased in the frontal cortex of SOM-GAD67 mice. Taken together, these data suggest that the loss of GAD67 from SOM neurons may lead to the development of anxiety-like but not depression-like states mediated by modification of Akt/GSK3β activities.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Kumagaya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
37
|
Wu Y, Wang L, Hu K, Yu C, Zhu Y, Zhang S, Shao A. Mechanisms and Therapeutic Targets of Depression After Intracerebral Hemorrhage. Front Psychiatry 2018; 9:682. [PMID: 30618863 PMCID: PMC6304443 DOI: 10.3389/fpsyt.2018.00682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
The relationship between depression and intracerebral hemorrhage (ICH) is complicated. One of the most common neuropsychiatric comorbidities of hemorrhagic stroke is Post-ICH depression. Depression, as a neuropsychiatric symptom, also negatively impacts the outcome of ICH by enhancing morbidity, disability, and mortality. However, the ICH outcome can be improved by antidepressants such as the frequently-used selective serotonin reuptake inhibitors. This review therefore presents the mechanisms of post-ICH depression, we grouped the mechanisms according to inflammation, oxidative stress (OS), apoptosis and autophagy, and explained them through their several associated signaling pathways. Inflammation is mainly related to Toll-like receptors (TLRs), the NF-kB mediated signal pathway, the PPAR-γ-dependent pathway, as well as other signaling pathways. OS is associated to nuclear factor erythroid-2 related factor 2 (Nrf2), the PI3K/Akt pathway and the MAPK/P38 pathway. Moreover, autophagy is associated with the mTOR signaling cascade and the NF-kB mediated signal pathway, while apoptosis is correlated with the death receptor-mediated apoptosis pathway, mitochondrial apoptosis pathway, caspase-independent pathways and others. Furthermore, we found that neuroinflammation, oxidative stress, autophagy, and apoptosis experience interactions with one another. Additionally, it may provide several potential therapeutic targets for patients that might suffer from depression after ICH.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhan Zhu
- Department of Neurosurgery, Rongjun Hospital, Jiaxing, China
| | - Suzhan Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|