1
|
Remon A, Mascheretti S, Voronin I, Feng B, Ouellet-Morin I, Brendgen M, Vitaro F, Robaey P, Boivin M, Dionne G. The mediation role of reading-related endophenotypes in the gene-to-reading pathway. BRAIN AND LANGUAGE 2025; 264:105552. [PMID: 39983636 DOI: 10.1016/j.bandl.2025.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Although individual differences in reading-related skills are largely influenced by genetic variation, the molecular basis of the heritability of this phenotype is far from understood. Functional single-nucleotide polymorphisms spanning reading-candidate genes and genome-wide significant top hits were identified. By using a multiple-predictor/multiple-mediator framework, we investigated whether relationships between functional genetic variants (DYX1C1-rs3743205, DYX1C1-rs57809907, KIAA0319-rs9461045, and KIAA0319-Haplotype) and genome-wide significant top hits (rs11208009 on chromosome 1) and reading skills could be explained by reading-related cognitive and sensory endophenotypes in a sample of 328 8-year-old twins. The association between rs3743205 and rs57809907 with reading skills is partially mediated by phonological awareness (PA). Specifically, the rs3743205-C/C genotype and carrying the minor 'A' allele of rs57809907 were associated with lower PA scores which in turn was correlated with poorer reading skills. These findings reveal insights into the sequential gene-behavior cascade in reading acquisition and contribute to the growing literature on the neurogenetic machinery of reading development.
Collapse
Affiliation(s)
- Alexandra Remon
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.
| | - Ivan Voronin
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Bei Feng
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Isabelle Ouellet-Morin
- School of Criminology, University of Montreal, Montreal, Canada; Centre for Studies on Human Stress, Research Centre, Montreal Mental Health Institute, Montreal, Canada
| | - Mara Brendgen
- Department of Psychology, University of Québec at Montreal, Montréal, Canada; Ste-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Frank Vitaro
- Ste-Justine Hospital Research Center, Montreal, Quebec, Canada; School of Psychoeducation, University of Montreal, Montreal, Canada
| | - Philippe Robaey
- Deptartment of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Michel Boivin
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada; Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Tomsk, Russia
| | - Ginette Dionne
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada.
| |
Collapse
|
2
|
Mascheretti S, Arrigoni F, Toraldo A, Giubergia A, Andreola C, Villa M, Lampis V, Giorda R, Villa M, Peruzzo D. Alterations in neural activation in the ventral frontoparietal network during complex magnocellular stimuli in developmental dyslexia associated with READ1 deletion. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:16. [PMID: 38926731 PMCID: PMC11210179 DOI: 10.1186/s12993-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy.
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.
| | - Filippo Arrigoni
- Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, Milan, Italy
| | - Alessio Toraldo
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Milan Centre for Neuroscience (NeuroMI), Milan, Italy
| | - Alice Giubergia
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | | | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
3
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
4
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
5
|
Gabel LA, Battison A, Truong DT, Lindström ER, Voss K, Yu YC, Roongruengratanakul S, Shyntassov K, Riebesell S, Toumanios N, Nielsen-Pheiffer CM, Paniagua S, Gruen JR. Orthographic Depth May Influence the Degree of Severity of Maze Learning Performance in Children at Risk for Reading Disorder. Dev Neurosci 2022; 44:651-670. [PMID: 36223729 PMCID: PMC9928771 DOI: 10.1159/000527480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reading disability (RD), which affects between 5 and 17% of the population worldwide, is the most prevalent form of learning disability, and is associated with underactivation of a universal reading network in children. However, recent research suggests there are differences in learning rates on cognitive predictors of reading performance, as well as differences in activation patterns within the reading neural network, based on orthographic depth (i.e., transparent/shallow vs. deep/opaque orthographies) in children with RD. Recently, we showed that native English-speaking children with RD exhibit impaired performance on a maze learning task that taps into the same neural networks that are activated during reading. In addition, we demonstrated that genetic risk for RD strengthens the relationship between reading impairment and maze learning performance. However, it is unclear whether the results from these studies can be broadly applied to children from other language orthographies. In this study, we examined whether low reading skill was associated with poor maze learning performance in native English-speaking and native German-speaking children, and the influence of genetic risk for RD on cognition and behavior. In addition, we investigated the link between genetic risk and performance on this task in an orthographically diverse sample of children attending an English-speaking international school in Germany. The results from our data suggest that children with low reading skill, or with a genetic risk for reading impairment, exhibit impaired performance on the maze learning task, regardless of orthographic depth. However, these data also suggest that orthographic depth influences the degree of impairment on this task. The maze learning task requires the involvement of various cognitive processes and neural networks that underlie reading, but is not influenced by potential differences in reading experience due to lack of text or oral reporting. As a fully automated tool, it does not require specialized training to administer, and current results suggest it may be a practicable screening tool for early identification of reading impairment across orthographies.
Collapse
Affiliation(s)
- Lisa A. Gabel
- Department of Psychology, Lafayette College, Easton, PA
- Program in Neuroscience, Lafayette College, Easton, PA
| | | | | | - Esther R. Lindström
- Department of Education and Human Services, Lehigh University, Bethlehem, PA
| | - Kelsey Voss
- Program in Neuroscience, Lafayette College, Easton, PA
| | - Yih-Choung Yu
- Department of Electrical & Computer Engineering, Lafayette College, Easton, PA
| | | | | | | | | | | | - Steven Paniagua
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Jeffrey R. Gruen
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Department of Pediatrics, Yale School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Gao Y, Felsky D, Reyes-Dumeyer D, Sariya S, Rentería MA, Ma Y, Klein HU, Cosentino S, De Jager PL, Bennett DA, Brickman AM, Schellenberg GD, Mayeux R, Barral S. Integration of GWAS and brain transcriptomic analyses in a multiethnic sample of 35,245 older adults identifies DCDC2 gene as predictor of episodic memory maintenance. Alzheimers Dement 2022; 18:1797-1811. [PMID: 34873813 PMCID: PMC9170841 DOI: 10.1002/alz.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023]
Abstract
Identifying genes underlying memory function will help characterize cognitively resilient and high-risk declining subpopulations contributing to precision medicine strategies. We estimated episodic memory trajectories in 35,245 ethnically diverse older adults representing eight independent cohorts. We conducted apolipoprotein E (APOE)-stratified genome-wide association study (GWAS) analyses and combined individual cohorts' results via meta-analysis. Three independent transcriptomics datasets were used to further interpret GWAS signals. We identified DCDC2 gene significantly associated with episodic memory (Pmeta = 3.3 x 10-8 ) among non-carriers of APOE ε4 (N = 24,941). Brain transcriptomics revealed an association between episodic memory maintenance and (1) increased dorsolateral prefrontal cortex DCDC2 expression (P = 3.8 x 10-4 ) and (2) lower burden of pathological Alzheimer's disease (AD) hallmarks (paired helical fragment tau P = .003, and amyloid beta load P = .008). Additional transcriptomics results comparing AD and cognitively healthy brain samples showed a downregulation of DCDC2 levels in superior temporal gyrus (P = .007) and inferior frontal gyrus (P = .013). Our work identified DCDC2 gene as a novel predictor of memory maintenance.
Collapse
Affiliation(s)
- Yizhe Gao
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction
and Mental Health, Toronto, ON, Canada.,Department of Psychiatry & Institute of Medical
Science, University of Toronto, Toronto, ON, Canada
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Miguel Arce Rentería
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Yiyi Ma
- Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA.,Cell Circuits Program, Broad Institute, Cambridge, MA,
USA
| | - David A. Bennett
- Rush University Medical Center, Rush Alzheimer’s
Disease Center, Chicago, IL, USA.,Rush University Medical Center, Department of Neurological
Sciences, Chicago, IL, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sandra Barral
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | -
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2021; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
9
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
10
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
11
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2020; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 04/03/2024] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
12
|
Li M, Truong DT, DeMille M, Malins JG, Lovett MW, Bosson-Heenan J, Gruen JR, Frijters JC. Effect of READ1 on latent profiles of reading disorder and comorbid attention and language impairment subtypes. Child Neuropsychol 2020; 26:145-169. [PMID: 31411106 PMCID: PMC8163097 DOI: 10.1080/09297049.2019.1648642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Recent studies of co-occurring reading disorder (RD) and attention deficit/hyperactivity disorder (ADHD), and co-occurring RD and language impairment (LI), support a core disability plus co-occurrence model focused on language and attention. Genetic factors have been associated with poor reading performance. However, little is known about whether different genetic variants independently contribute to RD co-occurrence subtypes. We aimed to identify subgroups of struggling readers using a latent profile analysis (LPA) in a sample of 1,432 Hispanic American and African American youth. RD classes were then tested for association with variants of READ1, a regulatory element within the candidate RD risk gene, DCDC2. Six groups were identified in the LPA using RD designation as a known-class variable. The three RD classes identified groups of subjects with neurocognitive profiles representing RD+ADHD, specific phonological deficit RD, and RD+LI. Genetic associations across RD subtypes were investigated against functional groupings of READ1. The RU1-1 group of READ1 alleles was associated with RD cases that were marked by deficits in both processing speed and attention (RD+ADHD). The DCDC2 microdeletion that encompasses READ1 was associated with RD cases showing a phonological deficit RD profile. These findings provide evidence for differential genetic contribution to RD subtypes, and that previously implicated genetic variants for RD may share an underlying genetic architecture across population groups for reading disorder.
Collapse
Affiliation(s)
- Miao Li
- Department of Curriculum and Instruction, College of Education, University of Houston, Houston, TX, USA
| | - Dongnhu T. Truong
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mellissa DeMille
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeffrey G. Malins
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
- Haskins Laboratories, New Haven, CT, USA
| | - Maureen W. Lovett
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario,Canada
| | - Joan Bosson-Heenan
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeffrey R Gruen
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jan C. Frijters
- Department of Child and Youth Studies, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
13
|
Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12349. [PMID: 31844423 PMCID: PMC6913889 DOI: 10.1111/lnc3.12349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developmental disorders of spoken and written language are heterogeneous in nature with impairments observed across various linguistic, cognitive, and sensorimotor domains. These disorders are also associated with characteristic patterns of atypical neural structure and function that are observable early in development, often before formal schooling begins. Established patterns of heritability point toward genetic contributions, and molecular genetics approaches have identified genes that play a role in these disorders. Still, identified genes account for only a limited portion of phenotypic variance in complex developmental disorders, described as the problem of "missing heritability." The characterization of intermediate phenotypes at the neural level may fill gaps in our understanding of heritability patterns in complex disorders, and the emerging field of neuroimaging genetics offers a promising approach to accomplish this goal. The neuroimaging genetics approach is gaining prevalence in language- and reading-related research as it is well-suited to incorporate behavior, genetics, and neurobiology into coherent etiological models of complex developmental disorders. Here, we review research applying the neuroimaging genetics approach to the study of specific reading disability (SRD) and developmental language disorder (DLD), much of which links genes with known neurodevelopmental function to functional and structural abnormalities in the brain.
Collapse
Affiliation(s)
- Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| | - Meaghan Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| |
Collapse
|
14
|
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, Moll K, Becker J, Hoffmann P, Ludwig KU, Czamara D, St Pourcain B, Brandler W, Honbolygó F, Tóth D, Csépe V, Huguet G, Morris AP, Hulslander J, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Vaessen A, Maurer U, Lyytinen H, Peyrard-Janvid M, Leppänen PHT, Brandeis D, Bonte M, Stein JF, Talcott JB, Fauchereau F, Wilcke A, Francks C, Bourgeron T, Monaco AP, Ramus F, Landerl K, Kere J, Scerri TS, Paracchini S, Fisher SE, Schumacher J, Nöthen MM, Müller-Myhsok B, Schulte-Körne G. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl Psychiatry 2019; 9:77. [PMID: 30741946 PMCID: PMC6370792 DOI: 10.1038/s41398-019-0402-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - William Brandler
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Andrew P Morris
- Department of Biostatistics, Universiy of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline Hulslander
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shelley D Smith
- Developmental Neuroscience Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce F Pennington
- Developmental Neuropsychology Lab & Clinic, Department of Psychology, University of Denver, Denver, CO, USA
| | - Anniek Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Heikki Lyytinen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Paavo H T Leppänen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - John F Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fabien Fauchereau
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arndt Wilcke
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Tufts University, Medford, MA, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, CNRS, EHESS, PSL Research University, Paris, France
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Medicine Program, Biomedicum, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- School of Basic and Medical Biosciences, King's College London, London, UK
| | - Thomas S Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research & Melbourne University, Melbourne, Australia
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany.
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
15
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2018; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 01/26/2024] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
16
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2018; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
17
|
The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia 2018; 130:52-58. [PMID: 29803723 DOI: 10.1016/j.neuropsychologia.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental heritable disorder. Among DD candidate genes, DCDC2 is one of the most replicated, with rs793862, READ1 and rs793842 likely contribute to phenotypic variability in reading (dis)ability. In this study, we tested the effects of these genetic variants on DD as a categorical trait and on quantitative reading-related measures in a sample of 555 Italian nuclear families with 930 offspring, of which 687 were diagnosed with DD. We conducted both single-marker and haplotype analyses, finding that the READ1-deletion was significantly associated with reading, whereas no significant haplotype associations were found. Our findings add further evidence to support the hypothesis of a DCDC2 contribution to inter-individual variation in distinct indicators of reading (dis)ability in transparent languages (i.e., reading accuracy and speed), suggesting a potential pleiotropic effect.
Collapse
|
18
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis. Wellcome Open Res 2018; 3:10. [PMID: 29744390 PMCID: PMC5904730 DOI: 10.12688/wellcomeopenres.13828.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects.
Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria,
CNTNAP2 and
NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples.
Collapse
Affiliation(s)
- Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, OX3 0BP, UK
| | - Nuala H Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Paul A Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| |
Collapse
|
19
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis. Wellcome Open Res 2018; 3:10. [PMID: 29744390 PMCID: PMC5904730 DOI: 10.12688/wellcomeopenres.13828.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 02/28/2025] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria, CNTNAP2 and NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, OX1 3UD, UK
| |
Collapse
|
20
|
Rendall AR, Perrino PA, LoTurco JJ, Fitch RH. Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. GENES BRAIN AND BEHAVIOR 2018; 18:e12450. [PMID: 29232042 DOI: 10.1111/gbb.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
Abstract
Developmental dyslexia is a heritable disability characterized by difficulties in learning to read and write. The neurobiological and genetic mechanisms underlying dyslexia remain poorly understood; however, several dyslexia candidate risk genes have been identified. One of these candidate risk genes-doublecortin domain containing 2 (DCDC2)-has been shown to play a role in neuronal migration and cilia function. At a behavioral level, variants of DCDC2 have been associated with impairments in phonological processing, working memory and reading speed. Additionally, a specific mutation in DCDC2 has been strongly linked to deficits in motion perception-a skill subserving reading abilities. To further explore the relationship between DCDC2 and dyslexia, a genetic knockout (KO) of the rodent homolog of DCDC2 (Dcdc2) was created. Initial studies showed that Dcdc2 KOs display deficits in auditory processing and working memory. The current study was designed to evaluate the association between DCDC2 and motion perception, as these skills have not yet been assessed in the Dcdc2 KO mouse model. We developed a novel motion perception task, utilizing touchscreen technology and operant conditioning. Dcdc2 KOs displayed deficits on the Pairwise Discrimination task specifically as motion was added to visual stimuli. Following behavioral assessment, brains were histologically prepared for neuroanatomical analysis of the lateral geniculate nucleus (LGN). The cumulative distribution showed that Dcdc2 KOs exhibited more small neurons and fewer larger neurons in the LGN. Results compliment findings that DCDC2 genetic alteration results in anomalies in visual motion pathways in a subpopulation of dyslexic patients.
Collapse
Affiliation(s)
- A R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - P A Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - J J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - R H Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
21
|
Waye MMY, Poo LK, Ho CSH. Study of Genetic Association With DCDC2 and Developmental Dyslexia in Hong Kong Chinese Children. Clin Pract Epidemiol Ment Health 2017; 13:104-114. [PMID: 29081827 PMCID: PMC5633722 DOI: 10.2174/1745017901713010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022]
Abstract
Background: Doublecortin domain-containing 2 (DCDC2) is a doublecortin domain-containing gene family member and the doublecortin domain has been demonstrated to bind to tubulin and enhance microtubule polymerization. It has been associated with developmental dyslexia and this protein family member is thought to function in neuronal migration where it may affect the signaling of primary cilia. Objectives: The objective of the study is to find out if there is any association of genetic variants of DCDC2 with developmental dyslexia in Chinese children from Hong Kong. Methods: The dyslexic children were diagnosed as developmental dyslexia (DD) using the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD) by the Department of Health, Hong Kong. Saliva specimens were collected and their genotypes of DCDC2 were studied by DNA sequencing or TaqMan Real Time PCR Assays. Results: The most significant marker is rs6940827 which is associated with DD with nominal p-value (0.011). However, this marker did not remain significant after multiple testing corrections and the adjusted p-value from permutation test was 0.1329. Using sliding window haplotype analysis, several haplotypes were found to be nominally associated with DD. The smallest nominal p values was 0.0036 (rs2996452-rs1318700, C-A). However, none of the p values could withstand the multiple testing corrections. Conclusion: Despite early findings that DCDC2 is a strong candidate for developmental dyslexia and that some of the genetic variants have been linked to brain structure and functions, our findings showed that DCDC2 is not strongly associated with dyslexia.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | - Lim K Poo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Connie S-H Ho
- Department of Psychology, The University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Becker N, Vasconcelos M, Oliveira V, Santos FCD, Bizarro L, Almeida RMMD, Salles JFD, Carvalho MRS. Genetic and environmental risk factors for developmental dyslexia in children: systematic review of the last decade. Dev Neuropsychol 2017; 42:423-445. [PMID: 29068706 DOI: 10.1080/87565641.2017.1374960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advances in the characterization of developmental dyslexia (DD), several questions regarding the interplay between DD-susceptibility genes and environmental risk factors remain open. This systematic review aimed at answering the following questions: What has been the impact of new resources on the knowledge about DD? Which questions remain open? What is the investigative agenda for the short term? Forty-six studies were analyzed. Despite the growing literature on DD candidate genes, most studies have not been replicated. We found large effects on causative genes and smaller environmental contributions, involving maternal smoking during pregnancy, SES and the DYX1C1-1259C/G marker. Implications are discussed.
Collapse
Affiliation(s)
- Natalia Becker
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Mailton Vasconcelos
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Vanessa Oliveira
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Fernanda Caroline Dos Santos
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| | - Lisiane Bizarro
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Rosa M M De Almeida
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Jerusa Fumagalli De Salles
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Maria Raquel Santos Carvalho
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
23
|
Mascheretti S, Gori S, Trezzi V, Ruffino M, Facoetti A, Marino C. Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. GENES BRAIN AND BEHAVIOR 2017; 17:70-81. [PMID: 28834383 DOI: 10.1111/gbb.12409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well-established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co-segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co-segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.
Collapse
Affiliation(s)
- S. Mascheretti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - S. Gori
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Department of Human and Social Sciences; University of Bergamo; Bergamo Italy
| | - V. Trezzi
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - M. Ruffino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - A. Facoetti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Developmental Cognitive Neuroscience Lab, Department of General Psychology; University of Padua; Padua Italy
| | - C. Marino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Centre for Addiction and Mental Health; University of Toronto; ON Canada
| |
Collapse
|
24
|
Yamamoto R, Obbineni JM, Alford LM, Ide T, Owa M, Hwang J, Kon T, Inaba K, James N, King SM, Ishikawa T, Sale WS, Dutcher SK. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet 2017; 13:e1006996. [PMID: 28892495 PMCID: PMC5608425 DOI: 10.1371/journal.pgen.1006996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA) as well as a fraction of the outer dynein arms (ODA). A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly. Most animal cells have antenna-like organelles called “cilia”. These organelles have various important functions both in motility and sensing the environment. Motile cilia are essential for moving cells as well as moving fluids across a surface. The waveform of motile cilia requires large macromolecular motors; these are the ciliary dyneins. These dynein complexes are assembled in the cytoplasm in a pathway called preassembly, and then transported into cilia. Defects in this process cause a heterogeneous human disease called primary ciliary dyskinesia that results, for example, in the disruption of the motility of respiratory tract cilia, sperm and nodal cilia during development. The mechanisms of the preassembly pathway are not fully understood. In this study, we use a mutation in the well-conserved DYX1C1/PF23 gene of the green alga, Chlamydomonas reinhardtii. Loss of a conserved domain (DYX) reveals a failure to assemble most ciliary dyneins. Preassembly of inner arm dyneins is particularly affected. We find that if dynein arms are not assembled, dynein subunits in the cytoplasm are unstable. We suggest that DYX1C1 may play a role as a scaffold for other preassembly factors and the dynein subunits.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jagan M. Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, Georgia, United States of America
| | - Takahiro Ide
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Mikito Owa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Noliyanda James
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- * E-mail: (TI); (WSS); (SKD)
| | - Winfield S. Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (TI); (WSS); (SKD)
| | - Susan K. Dutcher
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TI); (WSS); (SKD)
| |
Collapse
|
25
|
The role of READ1 and KIAA0319 genetic variations in developmental dyslexia: testing main and interactive effects. J Hum Genet 2017; 62:949-955. [DOI: 10.1038/jhg.2017.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/23/2022]
|
26
|
The DCDC2 deletion is not a risk factor for dyslexia. Transl Psychiatry 2017; 7:e1182. [PMID: 28742079 PMCID: PMC5538127 DOI: 10.1038/tp.2017.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/09/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dyslexia is a specific impairment in learning to read and has strong heritability. An intronic deletion within the DCDC2 gene, with ~8% frequency in European populations, is increasingly used as a marker for dyslexia in neuroimaging and behavioral studies. At a mechanistic level, this deletion has been proposed to influence sensory processing capacity, and in particular sensitivity to visual coherent motion. Our re-assessment of the literature, however, did not reveal strong support for a role of this specific deletion in dyslexia. We also analyzed data from five distinct cohorts, enriched for individuals with dyslexia, and did not identify any signal indicative of associations for the DCDC2 deletion with reading-related measures, including in a combined sample analysis (N=526). We believe we conducted the first replication analysis for a proposed deletion effect on visual motion perception and found no association (N=445 siblings). We also report that the DCDC2 deletion has a frequency of 37.6% in a cohort representative of the general population recruited in Hong Kong (N=220). This figure, together with a lack of association between the deletion and reading abilities in this cohort, indicates the low likelihood of a direct deletion effect on reading skills. Therefore, on the basis of multiple strands of evidence, we conclude that the DCDC2 deletion is not a strong risk factor for dyslexia. Our analyses and literature re-evaluation are important for interpreting current developments within multidisciplinary studies of dyslexia and, more generally, contribute to current discussions about the importance of reproducibility in science.
Collapse
|
27
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
28
|
Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams. J Neurosci 2017; 36:4895-906. [PMID: 27122044 DOI: 10.1523/jneurosci.4202-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.
Collapse
|
29
|
Hancock R, Pugh KR, Hoeft F. Neural Noise Hypothesis of Developmental Dyslexia. Trends Cogn Sci 2017; 21:434-448. [PMID: 28400089 PMCID: PMC5489551 DOI: 10.1016/j.tics.2017.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA.
| | - Kenneth R Pugh
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Linguistics, Yale University, 370 Temple Street, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale University, 330 Cedar Street, New Haven, CT 06520, USA; Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Dyslexia Center, UCSF, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017; 8:genes8020048. [PMID: 28125008 PMCID: PMC5333037 DOI: 10.3390/genes8020048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Collapse
Affiliation(s)
- Andrey Trulioff
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
| | - Alexander Ermakov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| |
Collapse
|
31
|
Mascheretti S, Trezzi V, Giorda R, Boivin M, Plourde V, Vitaro F, Brendgen M, Dionne G, Marino C. Complex effects of dyslexia risk factors account for ADHD traits: evidence from two independent samples. J Child Psychol Psychiatry 2017; 58:75-82. [PMID: 27501527 DOI: 10.1111/jcpp.12612] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are among the most common neurodevelopmental disorders, whose etiology involves multiple risk factors. DD and ADHD co-occur in the same individuals much more often than would be expected by chance. Several studies have found significant bivariate heritability, and specific genes associated with either DD or ADHD have been investigated for association in the other disorder. Moreover, there are likely to be gene-by-gene and gene-by-environment interaction effects (G × G and G × E, respectively) underlying the comorbidity between DD and ADHD. We investigated the pleiotropic effects of 19 SNPs spanning five DD genes (DYX1C1, DCDC2, KIAA0319, ROBO1, and GRIN2B) and seven DD environmental factors (smoke, miscarriage, birth weight, breastfeeding, parental age, socioeconomic status, and parental education) for main, either (a) genetic or (b) environmental, (c) G × G, and (d) G × E upon inattention and hyperactivity/impulsivity. We then attempted replication of these findings in an independent twin cohort. METHODS Marker-trait association was analyzed by implementing the Quantitative Transmission Disequilibrium Test (QTDT). Environmental associations were tested by partial correlations. G × G were investigated by a general linear model equation and a family-based association test. G × E were analyzed through a general test for G × E in sib pair-based association analysis of quantitative traits. RESULTS DCDC2-rs793862 was associated with hyperactivity/impulsivity via G × G (KIAA0319) and G × E (miscarriage). Smoke was significantly correlated with hyperactivity/impulsivity. We replicated the DCDC2 × KIAA0319 interaction upon hyperactivity/impulsivity in the twin cohort. CONCLUSIONS DD genetic (DCDC2) and environmental factors (smoke and miscarriage) underlie ADHD traits supporting a potential pleiotropic effect.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Michel Boivin
- Research Unit on Children's Psychosocial Maladjustment, Montréal, QC, Canada.,Ecole de Psychologie, Laval University, Québec, QC, Canada.,Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| | - Vickie Plourde
- Research Unit on Children's Psychosocial Maladjustment, Montréal, QC, Canada.,Ecole de Psychologie, Laval University, Québec, QC, Canada
| | - Frank Vitaro
- Research Unit on Children's Psychosocial Maladjustment, Montréal, QC, Canada.,Department of Psycho-Education, GRIP, University of Montreal, Montreal, QC, Canada
| | - Mara Brendgen
- Research Unit on Children's Psychosocial Maladjustment, Montréal, QC, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Ginette Dionne
- Research Unit on Children's Psychosocial Maladjustment, Montréal, QC, Canada.,Ecole de Psychologie, Laval University, Québec, QC, Canada
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.,Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Chen Y, Zhao H, Zhang YX, Zuo PX. DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. Neural Regen Res 2017; 12:259-266. [PMID: 28400808 PMCID: PMC5361510 DOI: 10.4103/1673-5374.200809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Developmental dyslexia is a complex reading and writing disorder with strong genetic components. In previous genetic studies about dyslexia, a number of candidate genes have been identified. These include DCDC2, which has repeatedly been associated with developmental dyslexia in various European and American populations. However, data regarding this relationship are varied according to population. The Uyghur people of China represent a Eurasian population with an interesting genetic profile. Thus, this group may provide useful information about the association between DCDC2 gene polymorphisms and dyslexia. In the current study, we examined genetic data from 392 Uyghur children aged 8–12 years old from the Xinjiang Uyghur Autonomous Region of China. Participants included 196 children with dyslexia and 196 grade-, age-, and gender-matched controls. DNA was isolated from oral mucosal cell samples and fourteen single nucleotide polymorphisms (rs6456593, rs1419228, rs34647318, rs9467075, rs793862, rs9295619, rs807701, rs807724, rs2274305, rs7765678, rs4599626, rs6922023, rs3765502, and rs1087266) in DCDC2 were screened via the SNPscan method. We compared SNP frequencies in five models (Codominant, Dominant, Recessive, Heterozygote advantage, and Allele) between the two groups by means of the chi-squared test. A single-locus analysis indicated that, with regard to the allele frequency of these polymorphisms, three SNPs (rs807724, rs2274305, and rs4599626) were associated with dyslexia. rs9467075 and rs2274305 displayed significant associations with developmental dyslexia under the dominant model. rs6456593 and rs6922023 were significantly associated with developmental dyslexia under the dominant model and in the heterozygous genotype. Additionally, we discovered that the T-G-C-T of the four-marker haplotype (rs9295619-rs807701-rs807724-rs2274305) and the T-A of the two-marker haplotype (rs3765502-1087266) were significantly different between cases and controls. Thus, we conclude that DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children.
Collapse
Affiliation(s)
- Yun Chen
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| | - Hua Zhao
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| | - Yi-Xin Zhang
- Special Clinic Department, the 12 Hospital of People's Liberation Army, Kashgar, Xinjiang Uyghur Autonomous Region, China
| | - Peng-Xiang Zuo
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| |
Collapse
|
33
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
34
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
35
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085 DOI: 10.7499/j.issn.1008-8830.2016.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
36
|
Ozernov-Palchik O, Yu X, Wang Y, Gaab N. Lessons to be learned: how a comprehensive neurobiological framework of atypical reading development can inform educational practice. Curr Opin Behav Sci 2016; 10:45-58. [PMID: 27766284 DOI: 10.1016/j.cobeha.2016.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dyslexia is a heritable reading disorder with an estimated prevalence of 5-17%. A multiple deficit model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal interactions along a developmental timeline. Current and potential implications of neuroscientific findings for contemporary challenges in the field of dyslexia, as well as for reading development and education in general, are then discussed.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Center for Reading and Language Research, Tufts University, Medford, MA 02155, United States
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Graduate School of Education, Cambridge, MA 02138, United States
| |
Collapse
|
37
|
Powers NR, Eicher JD, Miller LL, Kong Y, Smith SD, Pennington BF, Willcutt EG, Olson RK, Ring SM, Gruen JR. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. J Med Genet 2015; 53:163-71. [PMID: 26660103 PMCID: PMC4789805 DOI: 10.1136/jmedgenet-2015-103418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
Background Reading disability (RD) and language impairment (LI) are heritable learning disabilities that obstruct acquisition and use of written and spoken language, respectively. We previously reported that two risk haplotypes, each in strong linkage disequilibrium (LD) with an allele of READ1, a polymorphic compound short tandem repeat within intron 2 of risk gene DCDC2, are associated with RD and LI. Additionally, we showed a non-additive genetic interaction between READ1 and KIAHap, a previously reported risk haplotype in risk gene KIAA0319, and that READ1 binds the transcriptional regulator ETV6. Objective To examine the hypothesis that READ1 is a transcriptional regulator of KIAA0319. Methods We characterised associations between READ1 alleles and RD and LI in a large European cohort, and also assessed interactions between READ1 and KIAHap and their effect on performance on measures of reading, language and IQ. We also used family-based data to characterise the genetic interaction, and chromatin conformation capture (3C) to investigate the possibility of a physical interaction between READ1 and KIAHap. Results and conclusions READ1 and KIAHap show interdependence—READ1 risk alleles synergise with KIAHap, whereas READ1 protective alleles act epistatically to negate the effects of KIAHap. The family data suggest that these variants interact in trans genetically, while the 3C results show that a region of DCDC2 containing READ1 interacts physically with the region upstream of KIAA0319. These data support a model in which READ1 regulates KIAA0319 expression through KIAHap and in which the additive effects of READ1 and KIAHap alleles are responsible for the trans genetic interaction.
Collapse
Affiliation(s)
- Natalie R Powers
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - John D Eicher
- Investigate Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura L Miller
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA
| | - Shelley D Smith
- Departments of Pediatrics and Developmental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Susan M Ring
- School of Social and Community Medicine, University of Bristol, Bristol, UK MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jeffrey R Gruen
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA Department of Investigative Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
39
|
Abstract
Dyslexia is a specific impairment in reading that affects 1 in 10 people. Previous studies have failed to isolate a single cause of the disorder, but several candidate genes have been reported. We measured motion perception in two groups of dyslexics, with and without a deletion within the DCDC2 gene, a risk gene for dyslexia. We found impairment for motion particularly strong at high spatial frequencies in the population carrying the deletion. The data suggest that deficits in motion processing occur in a specific genotype, rather than the entire dyslexia population, contributing to the large variability in impairment of motion thresholds in dyslexia reported in the literature.
Collapse
|
40
|
Che A, Truong DT, Fitch RH, LoTurco JJ. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex. Cereb Cortex 2015; 26:3705-3718. [PMID: 26250775 DOI: 10.1093/cercor/bhv168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology.,Current address: Weill Cornell Medical College, Brain & Mind Research Institute, New York, NY 10021, USA
| | - Dongnhu T Truong
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.,Current address: Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
41
|
Männel C, Meyer L, Wilcke A, Boltze J, Kirsten H, Friederici AD. Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype. Cortex 2015; 71:291-305. [PMID: 26283516 DOI: 10.1016/j.cortex.2015.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype.
Collapse
Affiliation(s)
- Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
42
|
An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Hum Genet 2015; 134:749-60. [DOI: 10.1007/s00439-015-1555-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
|
43
|
The role of DCDC2 genetic variants and low socioeconomic status in vulnerability to attention problems. Eur Child Adolesc Psychiatry 2015; 24:309-18. [PMID: 25012462 DOI: 10.1007/s00787-014-0580-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Both genetic and socio-demographic factors influence the risk for behavioral problems in the developmental age. Genetic studies indicate that shared genetic factors partially contribute to behavioral and learning problems, in particular reading disabilities (RD). For the first time, we explore the conjoint role of DCDC2 gene, an identified RD candidate gene, and socioeconomic status (SES) upon behavioral phenotypes in a general population of Italian children. Two of the most replicated DCDC2 markers [i.e., regulatory element associated with dyslexia 1 (READ1), rs793862] were genotyped in 631 children (boys = 314; girls = 317) aged 11-14 years belonging to a community-based sample. Main and interactive effects were tested by MANOVA for each combination of DCDC2 genotypes and socioeconomic status upon emotional and behavioral phenotypes, assessed by Child Behavior Check-List/6-18. The two-way MANOVA (Bonferroni corrected p value = 0.01) revealed a trend toward significance of READ1(4) effect (F = 2.39; p = 0.016), a significant main effect of SES (F = 3.01; p = 0.003) and interactive effect of READ1(4) × SES (F = 2.65; p = 0.007) upon behavioral measures, showing higher attention problems scores among subjects 'READ1(4+) and low SES' compared to all other groups (p values range 0.00003-0.0004). ANOVAs stratified by gender confirmed main and interactive effects among girls, but not boys. Among children exposed to low socioeconomic level, READ1 genetic variant targets the worst outcome in children's attention.
Collapse
|
44
|
Mascheretti S, Marino C, Simone D, Quadrelli E, Riva V, Cellino MR, Maziade M, Brombin C, Battaglia M. Putative risk factors in developmental dyslexia: a case-control study of Italian children. JOURNAL OF LEARNING DISABILITIES 2015; 48:120-129. [PMID: 23757350 DOI: 10.1177/0022219413492853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted a case-control study of 403 Italian children, 155 with dyslexia, by implementing a stepwise logistic regression applied to the entire sample, and then to boys and girls separately. Younger parental age at child's birth, lower parental education, and risk of miscarriage significantly increased the odds of belonging to the dyslexia group (19.5% of the variation). These associations were confirmed in the analyses conducted separately by sex, except for parental education, which significantly affected only males. These findings support reading disabilities as a multifactorial disorder and may bear some importance for the prevention and/or early detection of children at heightened risk for dyslexia.
Collapse
Affiliation(s)
| | - Cecilia Marino
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada Université Laval, Québec, Canada
| | - Daniela Simone
- Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | | | | | - Maria Rosaria Cellino
- Centro Regionale di Riferimento per i Disturbi dell'Apprendimento - CRRDA, ULSS 20, Verona, Italy
| | - Michel Maziade
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada Université Laval, Québec, Canada
| | | | - Marco Battaglia
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada Université Laval, Québec, Canada
| |
Collapse
|
45
|
Sun Y, Gao Y, Zhou Y, Chen H, Wang G, Xu J, Xia J, Huen MSY, Siok WT, Jiang Y, Tan LH. Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:627-34. [PMID: 25230923 DOI: 10.1002/ajmg.b.32267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/21/2014] [Indexed: 11/05/2022]
Abstract
Developmental dyslexia (DD) is characterized by difficulties in reading and spelling independent of intelligence, educational backgrounds and neurological injuries. Increasing evidences supported DD as a complex genetic disorder and identified four DD candidate genes namely DYX1C1, DCDC2, KIAA0319 and ROBO1. As such, DCDC2 and KIAA0319 are located in DYX2, one of the most studied DD susceptibility loci. However, association of these two genes with DD was inconclusive across different populations. Given the linguistic and genetic differences between Chinese and other populations, it is worthwhile to investigate association of DCDC2 and KIAA0319 with Chinese dyslexic children. Here, we selected 60 tag SNPs covering DCDC2 and KIAA0319 followed by high density genotyping in a large unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. Several SNPs (Pmin = 0.0192) of DCDC2 and KIAA0319 as well as a four-maker haplotype (Padjusted = 0.0289, Odds Ratio (OR) = 1.3400) of KIAA0319 showed nominal association with DD. However, none of these results survived Bonferroni correction for multiple comparisons. Thus, the association of DCDC2 and KIAA0319 with DD in Chinese population should be further validated and their contribution to DD etiology and pathology should be interpreted with caution.
Collapse
Affiliation(s)
- Yimin Sun
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, China; CapitalBio Corporation, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gori S, Mascheretti S, Giora E, Ronconi L, Ruffino M, Quadrelli E, Facoetti A, Marino C. The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. Cereb Cortex 2014; 25:1685-95. [PMID: 25270309 DOI: 10.1093/cercor/bhu234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simone Gori
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Enrico Giora
- Faculty of Psychology, "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Luca Ronconi
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Milena Ruffino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Ermanno Quadrelli
- Department of Psychology, University of Milan-Bicocca, 20126 Milan, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3 Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
47
|
Truong DT, Che A, Rendall AR, Szalkowski CE, LoTurco JJ, Galaburda AM, Holly Fitch R. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. GENES BRAIN AND BEHAVIOR 2014; 13:802-11. [PMID: 25130614 DOI: 10.1111/gbb.12170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability.
Collapse
Affiliation(s)
- D T Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, CT
| | | | | | | | | | | | | |
Collapse
|
48
|
Davis OSP, Band G, Pirinen M, Haworth CMA, Meaburn EL, Kovas Y, Harlaar N, Docherty SJ, Hanscombe KB, Trzaskowski M, Curtis CJC, Strange A, Freeman C, Bellenguez C, Su Z, Pearson R, Vukcevic D, Langford C, Deloukas P, Hunt S, Gray E, Dronov S, Potter SC, Tashakkori-Ghanbaria A, Edkins S, Bumpstead SJ, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Duncanson A, Jankowski JAZ, Markus HS, Mathew CG, Palmer CNA, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Barroso I, Peltonen L, Dale PS, Petrill SA, Schalkwyk LS, Craig IW, Lewis CM, Price TS. The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nat Commun 2014; 5:4204. [PMID: 25003214 PMCID: PMC4102107 DOI: 10.1038/ncomms5204] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/23/2014] [Indexed: 01/23/2023] Open
Abstract
Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.
Collapse
Collaborators
Peter Donnelly, Ines Barroso, Jenefer M Blackwell, Elvira Bramon, Matthew A Brown, Juan P Casas, Aiden Corvin, Panos Deloukas, Audrey Duncanson, Janusz Jankowski, Hugh S Markus, Christopher G Mathew, Colin N A Palmer, Robert Plomin, Anna Rautanen, Stephen J Sawcer, Richard C Trembath, Ananth C Viswanathan, Nicholas W Wood, Chris C A Spencer, Gavin Band, Céline Bellenguez, Colin Freeman, Garrett Hellenthal, Eleni Giannoulatou, Matti Pirinen, Richard Pearson, Amy Strange, Zhan Su, Damjan Vukcevic, Peter Donnell, Cordelia Langford, Sarah E Hunt, Sarah Edkins, Rhian Gwilliam, Hannah Blackburn, Suzannah J Bumpstead, Serge Dronov, Matthew Gillman, Emma Gray, Naomi Hammond, Alagurevathi Jayakumar, Owen T McCann, Jennifer Liddle, Simon C Potter, Radhi Ravindrarajah, Michelle Ricketts, Matthew Waller, Paul Weston, Sara Widaa, Pamela Whittaker, Ines Barroso, Panos Deloukas, Christopher G Mathew, Jenefer M Blackwell, Matthew A Brown, Aiden Corvin, Chris C A Spencer,
Collapse
|
49
|
Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision Res 2014; 99:78-87. [DOI: 10.1016/j.visres.2013.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/18/2013] [Accepted: 11/30/2013] [Indexed: 11/20/2022]
|
50
|
Marino C, Scifo P, Della Rosa PA, Mascheretti S, Facoetti A, Lorusso ML, Giorda R, Consonni M, Falini A, Molteni M, Gruen JR, Perani D. The DCDC2/intron 2 deletion and white matter disorganization: focus on developmental dyslexia. Cortex 2014; 57:227-43. [PMID: 24926531 DOI: 10.1016/j.cortex.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/20/2014] [Accepted: 04/25/2014] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The DCDC2 gene is involved in neuronal migration. Heterotopias have been found within the white matter of DCDC2-knockdown rats. A deletion in DCDC2/intron 2 (DCDC2d), which encompasses a regulatory region named 'regulatory element associated with dyslexia 1' (READ1), increases the risk for dyslexia. We hypothesized that DCDC2d can be associated to alterations of the white matter structure in general and in dyslexic brains. METHODS Based on a full-factorial analysis of covariance (ANCOVA) model, we investigated voxel-based diffusion tensor imaging (VB-DTI) data of four groups of subjects: dyslexia with/without DCDC2d, and normal readers with/without DCDC2d. We also tested DCDC2d effects upon correlation patterns between fractional anisotropy (FA) and reading scores. RESULTS We found that FA was reduced in the left arcuate fasciculus and splenium of the corpus callosum in subjects with versus without DCDC2d, irrespective of dyslexia. Subjects with dyslexia and DCDC2d showed reduced FA, mainly in the left hemisphere and in the corpus callosum; their counterpart without DCDC2d showed similar FA alterations. Noteworthy, a conjunction analysis in impaired readers revealed common regions with lower FA mainly in the left hemisphere. When we compared subjects with dyslexia with versus without DCDC2d, we found lower FA in the inferior longitudinal fasciculus and genu of the corpus callosum, bilaterally. Normal readers with versus without DCDC2d had FA increases and decreases in both the right and left hemisphere. DISCUSSION The major contribution of our study was to provide evidence relating genes, brain and behaviour. Overall, our findings support the hypothesis that DCDC2d is associated with altered FA. In normal readers, DCDC2-related anatomical patterns may mark some developmental cognitive vulnerability to learning disabilities. In subjects with dyslexia, DCDC2d accounted for both common - mainly located in the left hemisphere - and unique - a more severe and extended pattern - alterations of white matter fibre tracts.
Collapse
Affiliation(s)
- Cecilia Marino
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Paola Scifo
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy; Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy
| | - Pasquale A Della Rosa
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy
| | - Sara Mascheretti
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Andrea Facoetti
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy; Department of General Psychology and Center for Cognitive Science, University of Padova, Padova, Italy
| | - Maria L Lorusso
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Monica Consonni
- Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy
| | - Andrea Falini
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy
| | - Massimo Molteni
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Jeffrey R Gruen
- Department of Pediatrics & Genetics, Yale Child Health Research Center, Yale School of Medicine, New Haven, USA
| | - Daniela Perani
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy; Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|