1
|
Paul K, Darzi S, O'Connell CD, Hennes DMZB, Rosamilia A, Gargett CE, Werkmeister JA, Mukherjee S. 3D Printed Mesh Geometry Modulates Immune Response and Interface Biology in Mouse and Sheep Model: Implications for Pelvic Floor Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405004. [PMID: 39297316 PMCID: PMC11923936 DOI: 10.1002/advs.202405004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Indexed: 03/21/2025]
Abstract
Pelvic organ prolapse (POP) is a highly prevalent yet neglected health burden for women. Strengthening the pelvic floor with bioactive tissue-engineered meshes is an emerging concept. This study investigates tissue regenerative design parameters, including degradability, porosity, and angulation, to develop alternative degradable melt electrowritten (MEW) constructs for surgical applications of POP. MEW constructs were fabricated in hierarchical geometries by two-way stacking of the fibers with three different inter layer angles of 90°, 45°, or 22.5°. Implants printed at 22.5° have higher tensile strength under dry conditions and show better vaginal fibroblast (VF) attachment in vitro. In vivo assessment using preclinical mouse and ovine models demonstrates more effective degradation and improved tissue integration in 22.5° angular meshes compared to 90° and 45° meshes, with evidence of neo-collagen deposition within implants at 6 weeks. The pattern and geometry of the layered MEW implants also influence the foreign body response, wherein the anti-inflammatory phenotype shows a greater ratio of anti-inflammatory CD206+ M2 macrophages/pro-inflammatory CCR7+ M1 macrophages. This presents an attractive strategy for improving the design and fabrication of next-generation vaginal implants for pelvic reconstructive surgery.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
| | - Saeedeh Darzi
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
| | - Cathal D. O'Connell
- Biofab3D@ACMDSt Vincent's HospitalMelbourneVIC3065Australia
- Discipline of Electrical and Biomedical EngineeringSchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - David M. Z. B. Hennes
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
- Pelvic Floor Disorders UnitMonash HealthClaytonVIC3168Australia
| | - Anna Rosamilia
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
- Pelvic Floor Disorders UnitMonash HealthClaytonVIC3168Australia
| | - Caroline E. Gargett
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
| | - Jerome A Werkmeister
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
| | - Shayanti Mukherjee
- The Ritchie CentreHudson Institute of Medical ResearchClayton3168Australia
- Department of Obstetrics and GynaecologyMonash UniversityClayton3168Australia
| |
Collapse
|
2
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025:1-23. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Ramírez-Ruiz F, Núñez-Tapia I, Piña-Barba MC, Alvarez-Pérez MA, Guarino V, Serrano-Bello J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications. Bioengineering (Basel) 2025; 12:46. [PMID: 39851320 PMCID: PMC11759179 DOI: 10.3390/bioengineering12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
In the last thirty years, tissue engineering (TI) has emerged as an alternative method to regenerate tissues and organs and restore their function by implanting specific lineage cells, growth factors, or biomolecules functionalizing a matrix scaffold. Recently, several pathologies have led to bone loss or damage, such as malformations, bone resorption associated with benign or malignant tumors, periodontal disease, traumas, and others in which a discontinuity in tissue integrity is observed. Bone tissue is characterized by different stiffness, mechanical traction, and compression resistance as a function of the different compartments, which can influence susceptibility to injury or destruction. For this reason, research into repairing bone defects began several years ago to find a scaffold to improve bone regeneration. Different techniques can be used to manufacture 3D scaffolds for bone tissue regeneration based on optimizing reproducible scaffolds with a controlled hierarchical porous structure like the extracellular matrix of bone. Additionally, the scaffolds synthesized can facilitate the inclusion of bone or mesenchymal stem cells with growth factors that improve bone osteogenesis, recruiting new cells for the neighborhood to generate an optimal environment for tissue regeneration. In this review, current state-of-the-art scaffold manufacturing based on the use of polycaprolactone (PCL) as a biomaterial for bone tissue regeneration will be described by reporting relevant studies focusing on processing techniques, from traditional-i.e., freeze casting, thermally induced phase separation, gas foaming, solvent casting, and particle leaching-to more recent approaches, such as 3D additive manufacturing (i.e., 3D printing/bioprinting, electrofluid dynamics/electrospinning), as well as integrated techniques. As a function of the used technique, this work aims to offer a comprehensive overview of the benefits/limitations of PCL-based scaffolds in order to establish a relationship between scaffold composition, namely integration of other biomaterial phases' structural properties (i.e., pore morphology and mechanical properties) and in vivo response.
Collapse
Affiliation(s)
- Fernanda Ramírez-Ruiz
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Israel Núñez-Tapia
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - María Cristina Piña-Barba
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - Marco Antonio Alvarez-Pérez
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad 20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| |
Collapse
|
4
|
Maiborodin IV, Mikheeva TV, Sheplev BV, Yarin GY, Onoprienko NV, Maiborodina VI. Morphological Changes in Tissue When Using Polypropylene Implants with Adsorbed Multipotent Stromal Cells in Experiment. Bull Exp Biol Med 2024:10.1007/s10517-024-06220-x. [PMID: 39266921 DOI: 10.1007/s10517-024-06220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 09/14/2024]
Abstract
The subcutaneous tissue of rats after implantation of polypropylene materials with adsorbed bone marrow-derived mesenchymal multipotent stromal cells (MMSCs) was studied using light microscopy. Inflammation in response to implantation was mild, and the foreign material was encapsulated into a thin strip of dense fibrous connective tissue with multinucleated macrophages. By 1 year after introduction of the monofilament and 6 and 12 months after implantation of the mesh product, some threads were deformed, broken, and had sharp edges. Small fragments of foreign material appeared in the adjacent tissues surrounded by their own relatively thick acellular capsule. As a result of preliminary adsorption of MMSCs on polypropylene, the thickness of the connective tissue capsule decreased, its vascularization increased, and the severity of inflammatory infiltration decreased. However, all effects of MMSCs adsorption in rats were transient and disappeared within 1 week.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - T V Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B V Sheplev
- Private Educational Institution of Higher Education "Novosibirsk Medical and Dental Institute Dentmaster", Novosibirsk, Russia
| | - G Yu Yarin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Onoprienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Maiborodina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Mesa-Restrepo A, Byers E, Brown JL, Ramirez J, Allain JP, Posada VM. Osteointegration of Ti Bone Implants: A Study on How Surface Parameters Control the Foreign Body Response. ACS Biomater Sci Eng 2024; 10:4662-4681. [PMID: 39078702 DOI: 10.1021/acsbiomaterials.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The integration of titanium (Ti)-based implants with bone is limited, resulting in implant failure. This lack of osteointegration is due to the foreign body response (FBR) that occurs after the implantation of biodevices. The process begins with protein adsorption, which is governed by implant surface properties, e.g., chemistry, charge, wettability, and/or topography. The distribution and composition of the protein layer in turn influence the recruitment, differentiation, and modulation of immune and bone cells. The subsequent events that occur at the bone-material interface will ultimately determine whether the implant is encapsulated or will integrate with bone. Despite the numerous studies evaluating the influence of surface properties in the various stages of the FBR, the factors that affect tissue-material interactions are often studied in isolation or in small correlations due to the technical challenges involved in assessing them in vitro or in vivo. Consequently, the influence of protein conformation on the Ti bone implant surface design remains an unresolved research question. The objective of this review is to comprehensively evaluate the existing literature on the effect of surface parameters of Ti and its alloys in the stages of FBR, with a particular focus on protein adsorption and osteoimmunomodulation. This evaluation aims to systematically describe these effects on bone formation.
Collapse
Affiliation(s)
- Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Juan Ramirez
- Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Cra 64C nro 73-120, 050024 Medellin, Colombia
| | - Jean Paul Allain
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Anitasari S, Budi HS, Shen YK, Arina YMD. New Insight of Scaffold Based on Hydroxyapatite (HAp)/Bacteria's Nanocellulose (BN) for Dental Tissue Engineering. Eur J Dent 2024; 18:891-897. [PMID: 37995727 PMCID: PMC11290933 DOI: 10.1055/s-0043-1776123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Bacterial nanocellulose (BN), derived from Acetobacter xylinum ATCC 237672, is a polymer that offers several desirable characteristics for scaffolds applications. To further enhance the characteristic of the BN scaffold, hydroxyapatite (HAp) from Anadara granosa and Achatina fulica can be incorporated. Therefore, the aim of the study was to characterize the physical properties of a three-dimensional (3D) scaffold made of HAp and BN. MATERIALS AND METHODS The scaffold was developed using the cellulose immersion technique, where BN was soaked in HAp suspension for different duration (5, 10, 15, 20, and 25 hours). The physical properties that were evaluated included porosity, pore density, swelling ratio, and water retention. RESULTS The HAp/BN 3D scaffold, which is considered a hydrogel material, exhibited favorable physical properties that can support cell survival. The total porosity of the scaffolds was 100%. There was no significant difference porosity among the groups (p > 0.05). The swelling ratio increased on day 1 and then sharply decreased on day 2. There was a significant difference between the groups on both day 1 and day 2 (p < 0.05). The scaffolds immersed in the HAp for more than 15 hours exhibited higher water retention compared to the other groups, and there was a significant difference between the groups on day 2 and day 4 (p < 0.05). The scaffold immersed for more than 15 hours exhibited a higher pore density compared to those immersed for less than 15 hours, and there was no a significant difference between the groups (p > 0.05). CONCLUSION Our findings suggest that the HAp/BN 3D scaffold, especially when immersed in HAp for 15 hours, possesses promising physical properties that make it suitable for various applications in dental tissue engineering.
Collapse
Affiliation(s)
- Silvia Anitasari
- Department of Dental Material and Devices, Dentistry Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
- Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
| | - Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
7
|
Gao G, Li L, Li C, Liu D, Wang Y, Li C. Mesenchymal stem cells: Guardians of women's health. Regen Ther 2024; 26:1087-1098. [PMID: 39582803 PMCID: PMC11585475 DOI: 10.1016/j.reth.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted more and more attention because of their multidirectional differentiation potential, immune regulatory abilities and self-renewal capacity. In recent years, their use has become prominent in the domains of regenerative medicine and tissue engineering. MSCs have shown promise in therapeutic studies for a variety of diseases and have become a new source of innovative solutions for the treatment of some obstetric and gynecological diseases. This review systematically presents the latest research on the use of MSCs in the treatment of obstetrics- and gynecology-related diseases. Specifically, this review encompasses the latest findings related to the role of MSCs in premature ovarian failure, polycystic ovary syndrome, ovarian cancer, fallopian tube-related diseases, uterine adhesions, endometriosis, cesarean scar defects, postmenopausal osteoporosis, and pelvic floor dysfunction. The shortcomings and challenges of the future use of MSCs in disease treatment are also discussed, with the intent to motivate improvements in MSC applications in clinical therapy. It is believed that with further research, MSCs will play a more important role in the treatment of obstetrics- and gynecology-related diseases.
Collapse
Affiliation(s)
- Guanwen Gao
- Peking University Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, 518036, China
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Li Li
- Department of Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji Nan, 250000, China
| | - Changling Li
- Department of Obstetrics and Gynecology, Pingyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Degao Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Yunfei Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| |
Collapse
|
8
|
Bujda M, Klíma K. Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications. J Funct Biomater 2024; 15:150. [PMID: 38921524 PMCID: PMC11205119 DOI: 10.3390/jfb15060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
Collapse
Affiliation(s)
- Michele Bujda
- Department of Oral and Maxillofacial Surgery, 1st Faculty of Medicine and General University Hospital in Prague, Charles University, 12108 Prague, Czech Republic
| | | |
Collapse
|
9
|
Wu X, Zhang F, Mao X, Xu F, Ding X, Sun X, Wang J. The mechanism of adipose mesenchymal stem cells to stabilize the immune microenvironment of pelvic floor injury by regulating pyroptosis and promoting tissue repair. Mater Today Bio 2024; 24:100910. [PMID: 38204481 PMCID: PMC10776425 DOI: 10.1016/j.mtbio.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/19/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Pelvic organ prolapse (POP) has a high incidence rate among Chinese women. Repeated mechanical stimulation is an important factor causing POP, but the injury mechanism has not yet been elucidated. The purpose of this study is to explore the related mechanisms of pelvic floor supporting tissue damage caused by mechanical force and the application of stem cell therapy. First, we obtained vaginal wall and sacral ligament tissue samples from clinical patients for examination. Pelvic floor support tissues of POP patients displayed high expression of inflammation and immune disorders. Then, we constructed a rat model of childbirth injury. In vivo and in vitro experiments investigated the key mechanism of pelvic floor support tissue injury caused by mechanical force. We discovered that after mechanical force, a large number of reactive oxygen species (ROS) and macrophages rapidly accumulated in pelvic floor tissues. ROS stimulated macrophages to produce NLRP3 inflammatory complex, induced the release of interleukin (IL-1β) and pyroptosis and exacerbated the inflammatory state of damaged tissues, persisting chronic inflammation of fibroblasts in supporting tissues, thus causing the pelvic floor's extracellular matrix (ECM) collagen metabolic disorder. Resultingly impeding the repair process, thereby causing the onset and progression of the disease. Through their paracrine ability, we discovered that adipose mesenchymal stem cells (ADSCs) could inhibit this series of pathological processes and promote tissue repair, asserting a good therapeutic effect. Simultaneously, to overcome the low cell survival rate and poor therapeutic effect of directly injecting cells, we developed a ROS-responsive PVA@COLI hydrogel with ADSCs. The ROS-scavenging properties of the gel could reshape the site of inflammation injury, enhance cell survival, and play a role in subsequent treatment. The findings of this study could serve as a basis for early, targeted intervention therapy for POP and representing a promising approach.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, 100044, Beijing, China
| | - Xiaolin Mao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Fujian Xu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaokang Ding
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiuli Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| |
Collapse
|
10
|
Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol 2024; 11:1252636. [PMID: 38312510 PMCID: PMC10834686 DOI: 10.3389/fbioe.2023.1252636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.
Collapse
Affiliation(s)
- Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Sima Yaghoubian
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Laboratory for Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
11
|
Darzi S, Alappadan J, Paul K, Mazdumder P, Rosamilia A, Truong YB, Gargett C, Werkmeister J, Mukherjee S. Immunobiology of foreign body response to composite PLACL/gelatin electrospun nanofiber meshes with mesenchymal stem/stromal cells in a mouse model: Implications in pelvic floor tissue engineering and regeneration. BIOMATERIALS ADVANCES 2023; 155:213669. [PMID: 37980818 DOI: 10.1016/j.bioadv.2023.213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
Pelvic Organ Prolapse (POP) is a common gynaecological disorder where pelvic organs protrude into the vagina. While transvaginal mesh surgery using non-degradable polymers was a commonly accepted treatment for POP, it has been associated with high rates of adverse events such as mesh erosion, exposure and inflammation due to serious foreign body response and therefore banned from clinical use after regulatory mandates. This study proposes a tissue engineering strategy using uterine endometrium-derived mesenchymal stem/stromal cells (eMSC) delivered with degradable poly L-lactic acid-co-poly ε-caprolactone (PLACL) and gelatin (G) in form of a composite electrospun nanofibrous mesh (P + G nanomesh) and evaluates the immunomodulatory mechanism at the material interfaces. The study highlights the critical acute and chronic inflammatory markers along with remodelling factors that determine the mesh surgery outcome. We hypothesise that such a bioengineered construct enhances mesh integration and mitigates the Foreign Body Response (FBR) at the host interface associated with mesh complications. Our results show that eMSC-based nanomesh significantly increased 7 genes associated with ECM synthesis and cell adhesion including, Itgb1, Itgb2, Vcam1, Cd44, Cdh2, Tgfb1, Tgfbr1, 6 genes related to angiogenesis including Ang1, Ang2, Vegfa, Pdgfa, Serpin1, Cxcl12, and 5 genes associated with collagen remodelling Col1a1, Col3a1, Col6a1, Col6a2, Col4a5 at six weeks post-implantation. Our findings suggest that cell-based tissue-engineered constructs potentially mitigate the FBR response elicited by biomaterial implants. From a clinical perspective, this construct provides an alternative to current inadequacies in surgical outcomes by modulating the immune response, inducing angiogenesis and ECM synthesis during the acute and chronic phases of the FBR.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Janet Alappadan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Permita Mazdumder
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | | | - Caroline Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Jerome Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
12
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
13
|
Miller B, Wolfe W, Gentry JL, Grewal MG, Highley CB, De Vita R, Vaughan MH, Caliari SR. Supramolecular Fibrous Hydrogel Augmentation of Uterosacral Ligament Suspension for Treatment of Pelvic Organ Prolapse. Adv Healthc Mater 2023; 12:e2300086. [PMID: 37220996 PMCID: PMC11468651 DOI: 10.1002/adhm.202300086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Uterosacral ligament suspension (USLS) is a common surgical treatment for pelvic organ prolapse (POP). However, the relatively high failure rate of up to 40% underscores a strong clinical need for complementary treatment strategies, such as biomaterial augmentation. Herein, the first hydrogel biomaterial augmentation of USLS in a recently established rat model is described using an injectable fibrous hydrogel composite. Supramolecularly-assembled hyaluronic acid (HA) hydrogel nanofibers encapsulated in a matrix metalloproteinase (MMP)-degradable HA hydrogel create an injectable scaffold showing excellent biocompatibility and hemocompatibility. The hydrogel can be successfully delivered and localized to the suture sites of the USLS procedure, where it gradually degrades over six weeks. In situ mechanical testing 24 weeks post-operative in the multiparous USLS rat model shows the ultimate load (load at failure) to be 1.70 ± 0.36 N for the intact uterosacral ligament (USL), 0.89 ± 0.28 N for the USLS repair, and 1.37 ± 0.31 N for the USLS + hydrogel (USLS+H) repair (n = 8). These results indicate that the hydrogel composite significantly improves load required for tissue failure compared to the standard USLS, even after the hydrogel degrades, and that this hydrogel-based approach can potentially reduce the high failure rate associated with USLS procedures.
Collapse
Affiliation(s)
- Beverly Miller
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22903USA
| | - Wiley Wolfe
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoLa JollaCA92 093USA
| | - James L. Gentry
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA22 903USA
| | - M. Gregory Grewal
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22903USA
| | - Christopher B. Highley
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22903USA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA22 903USA
| | - Raffaella De Vita
- Stretch LabDepartment of Biomedical Engineering and MechanicsVirginia TechBlacksburgVA24 061USA
| | - Monique H. Vaughan
- Department of Obstetrics and GynecologyUniversity of VirginiaCharlottesvilleVA22 903USA
| | - Steven R. Caliari
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22903USA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA22 903USA
| |
Collapse
|
14
|
Zhang G, Dai Y, Lang J. Preliminary study on mesenchymal stem cells in repairing nerve injury in pelvic floor denervation. Front Bioeng Biotechnol 2023; 11:1190068. [PMID: 37425357 PMCID: PMC10325727 DOI: 10.3389/fbioe.2023.1190068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Nerve injury is considered one of the causes of pelvic floor dysfunction. Mesenchymal stem cells (MSCs) transplantation provides new possibilities for refractory degenerative diseases. This study aimed to explore the possibility and strategy of mesenchymal stem cells in treating pelvic floor dysfunction nerve injury. Methods: MSCs were isolated from human adipose tissue and cultured. A MSCs suspension (40 µL at 5 × 107/mL) was loaded on a gelatin scaffold. A rat model of anterior vaginal wall nerve injury was established by bilateral pudendal nerve denervation. The nerve tissue repair effect of mesenchymal stem cells transplanted into the anterior vaginal wall of a rat model was explored and compared in the following three groups: blank gelatin scaffold group (GS group), mesenchymal stem cell injection group (MSC group), and mesenchymal stem cells loaded on the gelatin scaffold group (MSC-GS group). Nerve fiber counting under a microscope and mRNA expression of neural markers were tested. Moreover, mesenchymal stem cells were induced into neural stem cells in vitro, and their therapeutic effect was explored. Results: Rat models of anterior vaginal wall nerve injury induced by bilateral pudendal nerve denervation showed a decreased number of nerve fibers in the anterior vaginal wall. qRT-PCR revealed that the content of neurons and nerve fibers in the rat model began to decrease 1 week after the operation and this could continue for 3 months. In vivo experiments showed that MSC transplantation improved the nerve content, and MSCs loaded on the gelatin scaffold had an even better effect. mRNA expression analysis demonstrated that MSCs loaded on gelatin scaffolds induced a higher and earlier gene expression of neuron-related markers. Induced neural stem cell transplantation was superior in improving the nerve content and upregulating the mRNA expression of neuron-related markers in the early stage. Conclusion: MSCs transplantation showed a promising repair capacity for nerve damage in the pelvic floor. The supporting role of gelatin scaffolds might promote and strengthen the nerve repair ability at an early stage. Preinduction schemes could provide an improved regenerative medicine strategy for innervation recovery and functional restoration in pelvic floor disorders in the future.
Collapse
Affiliation(s)
| | - Yuxin Dai
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
15
|
Li FC, Kishen A. 3D Organoids for Regenerative Endodontics. Biomolecules 2023; 13:900. [PMID: 37371480 DOI: 10.3390/biom13060900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Apical periodontitis is the inflammation and destruction of periradicular tissues, mediated by microbial factors originating from the infected pulp space. This bacteria-mediated inflammatory disease is known to interfere with root development in immature permanent teeth. Current research on interventions in immature teeth has been dedicated to facilitating the continuation of root development as well as regenerating the dentin-pulp complex, but the fundamental knowledge on the cellular interactions and the role of periapical mediators in apical periodontitis in immature roots that govern the disease process and post-treatment healing is limited. The limitations in 2D monolayer cell culture have a substantial role in the existing limitations of understanding cell-to-cell interactions in the pulpal and periapical tissues. Three-dimensional (3D) tissue constructs with two or more different cell populations are a better physiological representation of in vivo environment. These systems allow the high-throughput testing of multi-cell interactions and can be applied to study the interactions between stem cells and immune cells, including the role of mediators/cytokines in simulated environments. Well-designed 3D models are critical for understanding cellular functions and interactions in disease and healing processes for future therapeutic optimization in regenerative endodontics. This narrative review covers the fundamentals of (1) the disease process of apical periodontitis; (2) the influence and challenges of regeneration in immature roots; (3) the introduction of and crosstalk between mesenchymal stem cells and macrophages; (4) 3D cell culture techniques and their applications for studying cellular interactions in the pulpal and periapical tissues; (5) current investigations on cellular interactions in regenerative endodontics; and, lastly, (6) the dental-pulp organoid developed for regenerative endodontics.
Collapse
Affiliation(s)
- Fang-Chi Li
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
16
|
Antmen E, Muller CB, Calligaro C, Dupret-Bories A, Barthes J, Lavalle P, Vrana NE. In vitro two-step granuloma formation model for testing innate immune response to implants and coatings. BIOMATERIALS ADVANCES 2022; 138:212872. [PMID: 35913252 DOI: 10.1016/j.bioadv.2022.212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Celine B Muller
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Cynthia Calligaro
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Agnes Dupret-Bories
- Surgery Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, Toulouse 31052, France
| | - Julien Barthes
- INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Philippe Lavalle
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France.
| |
Collapse
|
17
|
Chen CY, Tsai PH, Lin YH, Huang CY, Chung JHY, Chen GY. Controllable graphene oxide-based biocompatible hybrid interface as an anti-fibrotic coating for metallic implants. Mater Today Bio 2022; 15:100326. [PMID: 35761844 PMCID: PMC9233272 DOI: 10.1016/j.mtbio.2022.100326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
In tissue engineering, foreign body reactions (FBRs) that may occur after the insertion of medical implants are a considerable challenge. Materials currently used in implants are mainly metals that are non-organic, and the lack of biocompatibility and absence of immune regulations may lead to fibrosis after long periods of implantation. Here, we introduce a highly biocompatible hybrid interface of graphene oxide (GO) and collagen type I (COL-I), where the topological nanostructure can effectively inhibit the differentiation of fibroblasts into myofibroblasts. The structure and roughness of this coating interface can be easily adjusted at the nanoscale level through changes in the GO concentration, thereby effectively inducing the polarization of macrophages to the M1 state without producing excessive amounts of pro-inflammatory factors. Compared to nanomaterials or the extracellular matrix as an anti-fibrotic interface, this hybrid bio-interface has superior mechanical strength, physical structures, and high inflammation. Evidenced by inorganic materials such as glass, titanium, and nitinol, GO-COL shows great potential for use in medical implants and cell-material interfaces.
Collapse
Affiliation(s)
- Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pei-Hsuan Tsai
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Ya-Hui Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H Y Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
18
|
Li FC, Hussein H, Magalhaes M, Selvaganapathy PR, Kishen A. Deciphering Stem Cell from Apical Papilla - Macrophage Choreography using a Novel 3D Organoid System. J Endod 2022; 48:1063-1072.e7. [PMID: 35513088 DOI: 10.1016/j.joen.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Immune cell - mesenchymal stem cell crosstalk modulates the process of repair and regeneration. In this study, a novel heterogenous cell containing matrix based three-dimensional (3D) tissue-construct was employed to study the interactions between stem cells from apical papilla (SCAP) and macrophage for a comprehensive understanding on the cellular signalling mechanisms guiding inflammation and repair. METHODS SCAP and macrophages were seeded with collagen in 3D printed molds to generate self-assembled tissue-constructs, which were exposed to three conditions: no stimulation, lipopolysaccharide (LPS), and interleukin-4 (IL-4) from 0 to 14 days. Specimens from each group were evaluated for cellular interactions, inflammatory mediators (IL-1β, TNF-α, MDC, MIP-1β, MCP-1, IL-6, IL-8, TGF-β1, IL-1RA, IL-10), expression of surface markers (CD80, 206), transcription factors (pSTAT1, pSTAT6) and SCAP differentiation markers (DSPP, DMP-1, and alizarin red) using confocal laser scanning microscopy and multiplex cytokine profiling from 2 to 14 days. RESULTS SCAP and macrophages displayed a cytokine-mediated interaction and differentiation characteristics. The increased pro-inflammatory cytokines/chemokines: IL-1β, TNF-α, MDC and MIP-1β in the earlier phase followed by the higher ratio of pSTAT6/pSTAT1 and decreased CD206 (p<0.05), indicated a distinct polarization behavior in macrophages during repair in LPS group. Conversely, the equal ratio of pSTAT6/pSTAT1, late increase in CD206 and amplified secretion of IL-1RA, IL-10 and TGF-β1 (p<0.05) in the anti-inflammatory environment, directed alternative macrophage polarization, promoting SCAP differentiation and tissue modeling in IL-4 group. CONCLUSIONS The novel 3D organoid system developed in this study allowed a comprehensive analysis of the SCAP-macrophage interactions during inflammation and healing, providing a deeper insight on the periapical dynamics of immature tooth.
Collapse
Affiliation(s)
- Fang-Chi Li
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hebatullah Hussein
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Faculty of Dentistry, Ain Shams University, Endodontics Department, Cairo, Egypt
| | - Marco Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
21
|
Fernandez-Yague MA, Hymel LA, Olingy CE, McClain C, Ogle ME, García JR, Minshew D, Vyshnya S, Lim HS, Qiu P, García AJ, Botchwey EA. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. SCIENCE ADVANCES 2022; 8:eabd8056. [PMID: 35213226 PMCID: PMC8880784 DOI: 10.1126/sciadv.abd8056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Understanding the immune response to hydrogel implantation is critical for the design of immunomodulatory biomaterials. To study the progression of inflammation around poly(ethylene glycol) hydrogels presenting Arg-Gly-Asp (RGD) peptides and vascular endothelial growth factor, we used temporal analysis of high-dimensional flow cytometry data paired with intravital imaging, immunohistochemistry, and multiplexed proteomic profiling. RGD-presenting hydrogels created a reparative microenvironment promoting CD206+ cellular infiltration and revascularization in wounded dorsal skin tissue. Unbiased clustering algorithms (SPADE) revealed significant phenotypic transition shifts as a function of the cell-adhesion hydrogel properties. SPADE identified an intermediate macrophage subset functionally regulating in vivo cytokine secretion that was preferentially recruited for RGD-presenting hydrogels, whereas dendritic cell subsets were preferentially recruited to RDG-presenting hydrogels. Last, RGD-presenting hydrogels controlled macrophage functional cytokine secretion to direct polarization and vascularization. Our studies show that unbiased clustering of single-cell data provides unbiased insights into the underlying immune response to engineered materials.
Collapse
Affiliation(s)
- Marc A. Fernandez-Yague
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lauren A. Hymel
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Claire E. Olingy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Claire McClain
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Molly E. Ogle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - José R. García
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dustin Minshew
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hong Seo Lim
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Peng Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
22
|
Asami J, Hausen MA, Komatsu D, Ferreira LM, Silva GBG, da Silva LCSC, Baldo DA, Oliveira Junior JM, Motta AC, Duek EAR. Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) 3D printed scaffold cultivated with mesenchymal stem cells directed to bone reconstruction: In vitro and in vivo studies. J Biomater Appl 2022; 36:1550-1566. [PMID: 35130780 DOI: 10.1177/08853282211066246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent and quite promising technique for bone tissue engineering is the 3D printing, peculiarly regarding the production of high-quality scaffolds. The 3D printed scaffold strictly provides suitable characteristics for living cells, in order to induce treatment, reconstruction and substitution of injured tissue. The purpose of this work was to evaluate the behavior of the 3D scaffold based on Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) (PLDLA-TMC), which was designed in Solidworks™ software, projected in 3D Slicer™, 3D printed in filament extrusion, cultured with mesenchymal stem cells (MSCs) and tested in vitro and in vivo models. For in vitro study, the MSCs were seeded in a PLDLA-TMC 3D scaffold with 600 μm pore size and submitted to proliferation and osteogenic differentiation. The in vivo assays implanted the PLDLA-TMC scaffolds with or without MSCs in the calvaria of Wistar rats submitted to 8 mm cranial bone defect, in periods of 8-12 weeks. The results showed that PLDLA-TMC 3D scaffolds favored adherence and cell growth, and suggests an osteoinductive activity, which means that the material itself augmented cellular differentiation. The implanted PLDLA-TMC containing MSCs, showed better results after 12 weeks prior grafting, due the absence of inflammatory processes, enlarged regeneration of bone tissue and facilitated angiogenesis. Notwithstanding, the 3D PLDLA-TMC itself implanted enriched tissue repair; the addition of cells known to upregulate tissue healing reinforce the perspectives for the PLDLA-TMC applications in the field of bone tissue engineering in clinical trials.
Collapse
Affiliation(s)
- Jessica Asami
- Post-Graduation Program in Biotechnology and Environmental Monitoring (PPGBMA), 67780Federal University of Sao Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Moema A Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.,Sorocaba's Technology Park Alexandre Beldi Netto, 28104Sorocaba, SP, Brazil
| | - Lucas M Ferreira
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Guilherme B G Silva
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Lucas C S C da Silva
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Denicezar A Baldo
- Laboratory of Applied Nuclear Physics, 28104University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - José M Oliveira Junior
- Laboratory of Applied Nuclear Physics, 28104University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Adriana C Motta
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana A R Duek
- Post-Graduation Program in Biotechnology and Environmental Monitoring (PPGBMA), 67780Federal University of Sao Carlos (UFSCar), Sorocaba, SP, Brazil.,Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.,Sorocaba's Technology Park Alexandre Beldi Netto, 28104Sorocaba, SP, Brazil.,Mechanical Engineering Faculty (FEM), 130242State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
23
|
Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater 2021; 133:114-125. [PMID: 33857693 DOI: 10.1016/j.actbio.2021.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have gained immense attention over the past two decades due to their multipotent differentiation potential and pro-regenerative and immunomodulatory cytokine secretory profiles. Their ability to modulate the host immune system and promote tolerance has prompted several allogeneic and autologous hMSC-based clinical trials for the treatment of graft-versus-host disease and several other immune-induced disorders. However, clinical success beyond safety is still controversial and highly variable, with inconclusive therapeutic benefits and little mechanistic explanation. This clinical variability has been broadly attributed to inconsistent MSC sourcing, phenotypic characterization, variable potency, and non-standard isolation protocols, leading to functional heterogeneity among administered MSCs. Homogeneous MSC populations are proposed to yield more predictable, reliable biological responses and clinically meaningful properties relevant to cell-based therapies. Limited comparisons of heterogeneous MSCs with homogenous MSCs are reported. This review addresses this gap in the literature with a critical analysis of strategies aimed at decreasing MSC heterogeneity concerning their reported immunomodulatory profiles. STATEMENT OF SIGNIFICANCE: This review collates, summarizes, and critically analyzes published strategies that seek to improve homogeneity in immunomodulatory functioning MSC populations intended as cell therapies to treat immune-based disorders, such as graft-vs-host-disease. No such review for MSC therapies, immunomodulatory profiles and cell heterogeneity analysis is published. Since MSCs represent the most clinically studied experimental cell therapy platform globally for which there remains no US domestic marketing approval, insights into MSC challenges in therapeutic product development are imperative to providing solutions for immunomodulatory variabilities.
Collapse
|
24
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
26
|
Hennes DMZB, Rosamilia A, Werkmeister JA, Gargett CE, Mukherjee S. Endometrial SUSD2 + Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. J Pers Med 2021; 11:jpm11090840. [PMID: 34575617 PMCID: PMC8471527 DOI: 10.3390/jpm11090840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is an emerging field in clinical and personalised medicine. Many adult mesenchymal stem/progenitor cells (MSC) or pluripotent derivatives are being assessed simultaneously in preclinical trials for their potential treatment applications in chronic and degenerative human diseases. Endometrial mesenchymal stem/progenitor cells (eMSC) have been identified as clonogenic cells that exist in unique perivascular niches within the uterine endometrium. Compared with MSC isolated from other tissue sources, such as bone marrow and adipose tissue, eMSC can be extracted through less invasive methods of tissue sampling, and they exhibit improvements in potency, proliferative capacity, and control of culture-induced differentiation. In this review, we summarize the potential cell therapy and tissue engineering applications of eMSC in pelvic organ prolapse (POP), emphasising their ability to exert angiogenic and strong immunomodulatory responses that improve tissue integration of novel surgical constructs for POP and promote vaginal tissue healing.
Collapse
Affiliation(s)
- David M. Z. B. Hennes
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| |
Collapse
|
27
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
28
|
Zhang Y, Ma Y, Chen J, Wang M, Cao Y, Li L, Yang H, Liu X, Li Y, Zhu L. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Res Ther 2021; 12:406. [PMID: 34266489 PMCID: PMC8281669 DOI: 10.1186/s13287-021-02488-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/02/2021] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Current surgical therapies for pelvic organ prolapse (POP) do not repair weak vaginal tissue and just provide support; these therapies may trigger severe complications. Stem cell-based regenerative therapy, due to its ability to reconstruct damaged tissue, may be a promising therapeutic strategy for POP. The objective of this study is to evaluate whether mesenchymal stem cell (MSC) therapy can repair weak vaginal tissue in an ovariectomized rhesus macaque model. METHODS A bilateral ovariectomy model was established in rhesus macaques to induce menopause-related vaginal injury. Ten bilaterally ovariectomized rhesus macaques were divided into two groups (n=5/group): the saline group and the MSC group. Three months after ovariectomy, saline or MSCs were injected in situ into the injured vaginal wall. The vaginal tissue was harvested 12 weeks after injection for histological and biochemical analyses to evaluate changes of extracellular matrix, microvascular density, and smooth muscle in the vaginal tissue. Biomechanical properties of the vaginal tissue were assessed by uniaxial tensile testing. Data analysis was performed with unpaired Student's t test or Mann-Whitney. RESULTS Twelve weeks after MSC transplantation, histological and biochemical analyses revealed that the content of collagen I, elastin, and microvascular density in the lamina propria of the vagina increased significantly in the MSC group compared with the saline group. And the fraction of smooth muscle in the muscularis of vagina increased significantly in the MSC group. In addition, MSC transplantation improved the biomechanical properties of the vagina by enhancing the elastic modulus. CONCLUSION Vaginal MSC transplantation could repair the weak vaginal tissue by promoting extracellular matrix ingrowth, neovascularization, and smooth muscle formation and improve the biomechanical properties of the vagina, providing a new prospective treatment for POP.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yidi Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology, Beijing Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaqian Li
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Xing Y, Varghese B, Ling Z, Kar AS, Reinoso Jacome E, Ren X. Extracellular Matrix by Design: Native Biomaterial Fabrication and Functionalization to Boost Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00210-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
32
|
Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, Gao C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. RESEARCH 2021; 2021:4189516. [PMID: 33623917 PMCID: PMC7879376 DOI: 10.34133/2021/4189516] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.
Collapse
Affiliation(s)
- Rani Mata
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Darzi S, Paul K, Leitan S, Werkmeister JA, Mukherjee S. Immunobiology and Application of Aloe Vera-Based Scaffolds in Tissue Engineering. Int J Mol Sci 2021; 22:1708. [PMID: 33567756 PMCID: PMC7915752 DOI: 10.3390/ijms22041708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aloe vera (AV), a succulent plant belonging to the Liliaceae family, has been widely used for biomedical and pharmaceutical application. Its popularity stems from several of its bioactive components that have anti-oxidant, anti-microbial, anti-inflammatory and even immunomodulatory effects. Given such unique multi-modal biological impact, AV has been considered as a biomaterial for regenerative medicine and tissue engineering applications, where tissue repair and neo-angiogenesis are vital. This review outlines the growing scientific evidence that demonstrates the advantage of AV as tissue engineering scaffolds. We particularly highlight the recent advances in the application of AV-based scaffolds. From a tissue engineering perspective, it is pivotal that the implanted scaffolds strike an appropriate foreign body response to be well-accepted in the body without complications. Herein, we highlight the key cellular processes that regulate the foreign body response to implanted scaffolds and underline the immunomodulatory effects incurred by AV on the innate and adaptive system. Given that AV has several beneficial components, we discuss the importance of delving deeper into uncovering its action mechanism and thereby improving material design strategies for better tissue engineering constructs for biomedical applications.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shanilka Leitan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
34
|
Liang Z, Huang D, Nong W, Mo J, Zhu D, Wang M, Chen M, Wei C, Li H. Advanced-platelet-rich fibrin extract promotes adipogenic and osteogenic differentiation of human adipose-derived stem cells in a dose-dependent manner in vitro. Tissue Cell 2021; 71:101506. [PMID: 33607525 DOI: 10.1016/j.tice.2021.101506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhijie Liang
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China; Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Donglin Huang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Wenhai Nong
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Jinping Mo
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Dandan Zhu
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Mengxin Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maojian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongmian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
35
|
Mukherjee S, Agarwal M, Bakshi A, Sawant S, Thomas L, Fujii N, Nair P, Kode J. Chemokine SDF1 Mediated Bone Regeneration Using Biodegradable Poly(D,L-lactide- co-glycolide) 3D Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells: Implication for the Development of an "Off-the-Shelf" Pharmacologically Active Construct. Biomacromolecules 2020; 21:4888-4903. [PMID: 33136384 DOI: 10.1021/acs.biomac.0c01134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is an increasing need for bone substitutes for reconstructive orthopedic surgery following removal of bone tumors. Despite the advances in bone regeneration, the use of autologous mesenchymal stem cells (MSC) presents a significant challenge, particularly for the treatment of large bone defects in cancer patients. This study aims at developing new chemokine-based technology to generate biodegradable scaffolds that bind pharmacologically active proteins for regeneration/repair of target injured tissues in patients. Primary MSC were cultured from the uninvolved bone marrow (BM) of cancer patients and further characterized for "stemness". Their ability to differentiate into an osteogenic lineage was studied in 2D cultures as well as on 3D macroporous PLGA scaffolds incorporated with biomacromolecules bFGF and homing factor chemokine stromal-cell derived factor-1 (SDF1). MSC from the uninvolved BM of cancer patients exhibited properties similar to that reported for MSC from BM of healthy individuals. Macroporous PLGA discs were prepared and characterized for pore size, architecture, functional groups, thermostability, and cytocompatibility by ESEM, FTIR, DSC, and CCK-8 dye proliferation assay, respectively. It was observed that the MSC+PLGA+bFGF+SDF1 construct cultured for 14 days supported significant cell growth, osteo-lineage differentiation with increased osteocalcin expression, alkaline phosphatase secretion, calcium mineralization, bone volume, and soluble IL6 compared to unseeded PLGA and PLGA+MSC, as analyzed by confocal microscopy, biochemistry, ESEM, microCT imaging, flow cytometry, and EDS. Thus, chemotactic biomacromolecule SDF1-guided tissue repair/regeneration ability of MSC from cancer patients opens up the avenues for development of "off-the-shelf" pharmacologically active construct for optimal repair of the target injured tissue in postsurgery cancer patients, bone defects, damaged bladder tissue, and radiation-induced skin/mucosal lesions.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- Tumor Immunology and Immunotherapy Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC Australia 3168
| | - Manish Agarwal
- Department of Orthopaedic Oncology, Tata Memorial Hospital, TMC, Parel, Mumbai 400012, India
- Department of Orthopedic Oncology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Ashish Bakshi
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- Department of Bone Marrow Transplantation, Department of Medical Oncology, Hiranandani Hospital, Powai, Mumbai 400076, India
| | - Sharada Sawant
- Electron Microscopy Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Lynda Thomas
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Poojappura, Trivandrum, India
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Prabha Nair
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Poojappura, Trivandrum, India
| | - Jyoti Kode
- Tumor Immunology and Immunotherapy Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
36
|
Aghaei-Ghareh-Bolagh B, Mukherjee S, Lockley KM, Mithieux SM, Wang Z, Emmerson S, Darzi S, Gargett CE, Weiss AS. A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Mater Today Bio 2020; 8:100081. [PMID: 33210083 PMCID: PMC7658716 DOI: 10.1016/j.mtbio.2020.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022] Open
Abstract
Pelvic organ prolapse is a common condition that affects 1 in 4 women across all age groups. It is mainly caused by vaginal birth injury and can be exacerbated by obesity and increased age. Until recently, treatment strategies often used non-degradable synthetic meshes for reconstructive surgery. However, owing to their frequent, unacceptable rate of adverse events such as mesh erosion, transvaginal meshes have been banned in many countries. Recent reports have highlighted the urgent need for biocompatible design of meshes for a safe and effective treatment in the long term. This study reports the design and evaluation of a novel, elastin based degradable mesh using an ovine model of POP as a potential surgical treatment. Elastin is a protein component of the ECM and provides elasticity to tissues throughout the body. Tropoelastin, the monomer subunit of elastin, has been used with success in electrospun constructs as it is a naturally cell interactive polymer. Biomaterials that incorporate tropoelastin support cell attachment and proliferation, and have been proven to encourage elastogenesis and angiogenesis in vitro and in vivo. The biological properties of tropoelastin were combined with the physical properties of PCL, a degradable synthetic polymer, with the aim of producing, characterizing and assessing the performance of continuous tropoelastin:PCL electrospun yarns. Using a modified spinneret electrospinning system and adjusting settings based on relative humidity, four blends of tropoelastin:PCL yarns were fabricated with concentration ratios of 75:25, 50:50, 25:75 and 0:100. Yarns were assessed for ease of manufacture, fibrous architecture, protein/polymer content, yarn stability - including initial tropoelastin release, mechanical strength, and ability to support cell growth. Based on overall favorable properties, a mesh woven from the 50:50 tropoelastin:PCL yarn was implanted into the vagina of a parous ewe with vaginal wall weakness as a model of pelvic organ prolapse. This mesh showed excellent integration with new collagen deposition by SEM and a predominant M2 macrophage response with few pro-inflammatory M1 macrophages after 30 days. The woven tropoelastin:PCL electrospun mesh shows potential as an alternative to non-degradable, synthetic pelvic organ prolapse mesh products.
Collapse
Affiliation(s)
- B Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - K M Lockley
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S M Mithieux
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - Z Wang
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Emmerson
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - A S Weiss
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
37
|
Abstract
Mesenchymal stem cells (MSCs), also referred to as multipotent stromal cells or mesenchymal stromal cells, are present in multiple tissues and capable of differentiating into diverse cell lineages, holding a great promise in developing cell-based therapy for a wide range of conditions. Pelvic floor disorders (PFDs) is a common degenerative disease in women and may diminish a woman's quality of life at any age. Since the treatments for this disease are limited by the high rates of recurrence and surgical complications, seeking an ideal therapy in the restoration of pelvic floor function is an urgent issue at present. Herein, we summarize the cell sources of MSCs used for PFDs and discuss the potential mechanisms of MSCs in treating PFDs. Specifically, we also provide a comprehensive review of current preclinical and clinical trials dedicated to investigating MSC-based therapy for PFDs. The novel therapy has presented promising therapeutic effects which include relieving the symptoms of urinary or fecal incontinence, improving the biological properties of implanted meshes and promoting the injured tissue repair. Nevertheless, MSC-based therapies for PFDs are still experimental and the unstated issues on their safety and efficacy should be carefully addressed before their clinical applications.
Collapse
|
38
|
Lucciola R, Vrljicak P, Gurung S, Filby C, Darzi S, Muter J, Ott S, Brosens JJ, Gargett CE. Impact of Sustained Transforming Growth Factor-β Receptor Inhibition on Chromatin Accessibility and Gene Expression in Cultured Human Endometrial MSC. Front Cell Dev Biol 2020; 8:567610. [PMID: 32984350 PMCID: PMC7490520 DOI: 10.3389/fcell.2020.567610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture.
Collapse
Affiliation(s)
- Raffaella Lucciola
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Caitlin Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Front Cell Dev Biol 2020; 8:497. [PMID: 32742977 PMCID: PMC7364758 DOI: 10.3389/fcell.2020.00497] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Shohreh Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobitechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
41
|
Liu C, Sun J. Modulation of the secretion of mesenchymal stem cell immunoregulatory factors by hydrolyzed fish collagen. Exp Ther Med 2020; 20:375-384. [PMID: 32509014 PMCID: PMC7271731 DOI: 10.3892/etm.2020.8674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the possible immunomodulatory effects of osteogenically differentiated bone marrow mesenchymal stem cells induced by hydrolyzed fish collagen. Marine biomaterials have attracted significant attention for their environmental friendliness and renewability. Hydrolyzed fish collagen (HFC) has been discovered to induce the osteoblastic differentiation of stem cells, which underlies the foundation for its application in tissue engineering. Stem cells and their biomaterial carriers face acute immune rejection mediated by host macrophages. A potential strategy for combatting rejection in stem cell therapy is to modify the polarization of macrophages. However, whether HFC-induced mesenchymal stem cells maintain their immunomodulatory ability remains to be determined. To understand this phenomenon, a co-culture model of direct contact was established between bone marrow mesenchymal stem cells (BMSCs) and RAW264.7 macrophages, where the secretion of nitrous oxide from macrophages was measured using Griess colorimetric assay. ELISAs were performed to measure the secretion of interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β and IL-10, whilst reverse transcription-quantitative PCR was used to assess the expression levels of IL-1β, IL-6, CD206, resistin-like molecule α (FIZZ1) and prostaglandin E2 receptor 4 (EP4). In addition, the expression levels of relevant proteins in the phosphorylated-cyclic AMP-responsive element-binding protein-CCAAT/enhancer-binding protein β (EBPβ) pathway were investigated using western blotting. HFC-induced BMSCs were found to suppress the expression levels of IL-1β and IL-6, whilst increasing the expression levels of CD206 and FIZZ1 in RAW264.7 macrophages. HFC-induced BMSCs also inhibited the secretion of IL-1β and IL-6, whilst promoting the secretion of TGF-β and IL-10 secretion from RAW264.7 macrophages. Mechanistic studies using western blotting discovered that HFC stimulated the secretion of prostaglandin E2 from BMSCs, which subsequently increased the expression of EP4 on the macrophages. EP4 then increased the expression levels of C/EBPβ and arginase 1 further. In conclusion, results from the present study suggested that following induction with HFC, BMSCs maintain their immunomodulatory activity.
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, P.R. China
| | - Jiao Sun
- Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, P.R. China
| |
Collapse
|
42
|
Paul K, Darzi S, Werkmeister JA, Gargett CE, Mukherjee S. Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1120. [PMID: 32517067 PMCID: PMC7353440 DOI: 10.3390/nano10061120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Pelvic organ prolapse (POP) is a hidden women's health disorder that impacts 1 in 4 women across all age groups. Surgical intervention has been the only treatment option, often involving non-degradable meshes, with variable results. However, recent reports have highlighted the adverse effects of meshes in the long term, which involve unacceptable rates of erosion, chronic infection and severe pain related to mesh shrinkage. Therefore, there is an urgent unmet need to fabricate of new class of biocompatible meshes for the treatment of POP. This review focuses on the causes for the downfall of commercial meshes, and discusses the use of emerging technologies such as electrospinning and 3D printing to design new meshes. Furthermore, we discuss the impact and advantage of nano-/microstructured alternative meshes over commercial meshes with respect to their tissue integration performance. Considering the key challenges of current meshes, we discuss the potential of cell-based tissue engineering strategies to augment the new class of meshes to improve biocompatibility and immunomodulation. Finally, this review highlights the future direction in designing the new class of mesh to overcome the hurdles of foreign body rejection faced by the traditional meshes, in order to have safe and effective treatment for women in the long term.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
43
|
Mohammadi M, Luong JC, Rodriguez SM, Cao R, Wheeler AE, Lau H, Li S, Shabestari SK, Chadarevian JP, Alexander M, de Vos P, Zhao W, Lakey JRT. Controlled Release of Stem Cell Secretome Attenuates Inflammatory Response against Implanted Biomaterials. Adv Healthc Mater 2020; 9:e1901874. [PMID: 32419390 DOI: 10.1002/adhm.201901874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/25/2020] [Indexed: 01/04/2023]
Abstract
Inflammatory response against implanted biomaterials impairs their functional integration and induces medical complications in the host's body. To suppress such immune responses, one approach is the administration of multiple drugs to halt inflammatory pathways. This challenges patient's adherence and can cause additional complications such as infection. Alternatively, biologics that regulate multiple inflammatory pathways are attractive agents in addressing the implants immune complications. Secretome of mesenchymal stromal cells (MSCs) is a multipotent biologic, regulating the homeostasis of lymphocytes and leukocytes. Here, it is reported that alginate microcapsules loaded with processed conditioned media (pCM-Alg) reduces the infiltration and/or expression of CD68+ macrophages likely through the controlled release of pCM. In vitro cultures revealed that alginate can dose dependently induce macrophages to secrete TNFα, IL-6, IL-1β, and GM-CSF. Addition of pCM to the cultures attenuates the secretion of TNFα (p = 0.023) and IL-6 (p < 0.0001) by alginate or lipopolysaccharide (LPS) stimulations. Mechanistically, pCM suppressed the NfκB pathway activation of macrophages in response to LPS (p < 0.0001) in vitro and cathepsin activity (p = 0.005) in response to alginate in vivo. These observations suggest the efficacy of using MSC-derived secretome to prevent or delay the host rejection of implants.
Collapse
Affiliation(s)
- Mohammadreza Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, 92617, USA
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | - Jennifer Cam Luong
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Rui Cao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Hien Lau
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Shiri Li
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Jean Paul Chadarevian
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Michael Alexander
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Weian Zhao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jonathan Robert Tod Lakey
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| |
Collapse
|
44
|
Mukherjee S, Darzi S, Paul K, Cousins FL, Werkmeister JA, Gargett CE. Electrospun Nanofiber Meshes With Endometrial MSCs Modulate Foreign Body Response by Increased Angiogenesis, Matrix Synthesis, and Anti-Inflammatory Gene Expression in Mice: Implication in Pelvic Floor. Front Pharmacol 2020; 11:353. [PMID: 32265721 PMCID: PMC7107042 DOI: 10.3389/fphar.2020.00353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Transvaginal meshes for the treatment of Pelvic Organ Prolapse (POP) have been associated with severe adverse events and have been banned for clinical use in many countries. We recently reported the design of degradable poly L-lactic acid-co-poly ε-caprolactone nanofibrous mesh (P nanomesh) bioengineered with endometrial mesenchymal stem/stromal cells (eMSC) for POP repair. We showed that such bioengineered meshes had high tissue integration as well as immunomodulatory effects in vivo. This study aimed to determine the key molecular players enabling eMSC-based foreign body response modulation. Methods SUSD2+ eMSC were purified from single cell suspensions obtained from endometrial biopsies from cycling women by magnetic bead sorting. Electrospun P nanomeshes with and without eMSC were implanted in a NSG mouse skin wound repair model for 1 and 6 weeks. Quantitative PCR was used to assess the expression of extracellular matrix (ECM), cell adhesion, angiogenesis and inflammation genes as log2 fold changes compared to sham controls. Histology and immunostaining were used to visualize the ECM, blood vessels, and multinucleated foreign body giant cells around implants. Results Bioengineered P nanomesh/eMSC constructs explanted after 6 weeks showed significant increase in 35 genes associated with ECM, ECM regulation, cell adhesion angiogenesis, and immune response in comparison to P nanomesh alone. In the absence of eMSC, acute inflammatory genes were significantly elevated at 1 week. However, in the presence of eMSC, there was an increased expression of anti-inflammatory genes including Mrc1 and Arg1 by 6 weeks. There was formation of multinucleated foreign body giant cells around both implants at 6 weeks that expressed CD206, a M2 macrophage marker. Conclusion This study reveals that eMSC modulate the foreign body response to degradable P nanomeshes in vivo by altering the expression profile of mouse genes. eMSC reduce acute inflammatory and increase ECM synthesis, angiogenesis and anti-inflammatory gene expression at 6 weeks while forming newly synthesized collagen within the nanomeshes and neo-vasculature in close proximity. From a tissue engineering perspective, this is a hallmark of a highly successful implant, suggesting significant potential as alternative surgical constructs for the treatment of POP.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
45
|
Welch NG, Mukherjee S, Hossain MA, Praveen P, Werkmeister JA, Wade JD, Bathgate RAD, Winkler DA, Thissen H. Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45511-45519. [PMID: 31713411 DOI: 10.1021/acsami.9b17859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of antifibrotic materials and coatings that can resist the foreign body response (FBR) continues to present a major hurdle in the advancement of current and next-generation implantable medical devices, biosensors, and cell therapies. From an implant perspective, the most important issue associated with the FBR is the prolonged inflammatory response leading to a collagenous capsule that ultimately blocks mass transport and communication between the implant and the surrounding tissue. Up to now, most attempts to reduce the capsule thickness have focused on providing surface coatings that reduce protein fouling and cell attachment. Here, we present an approach that is based on the sustained release of a peptide drug interfering with the FBR. In this study, the biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) was used as a coating releasing the relaxin peptide analogue B7-33, which has been demonstrated to reduce organ fibrosis in animal models. While in vitro protein quantification was used to demonstrate controlled release of the antifibrotic peptide B7-33 from PLGA coatings, an in vitro reporter cell assay was used to demonstrate that B7-33 retains activity against the relaxin family peptide receptor 1 (RXFP1). Subcutaneous implantation of PLGA-coated polypropylene samples in mice with and without the peptide demonstrated a marked reduction in capsule thickness (49.2%) over a 6 week period. It is expected that this novel approach will open the door to a range of new and improved implantable medical devices.
Collapse
Affiliation(s)
- Nicholas G Welch
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
| | - Shayanti Mukherjee
- The Ritchie Centre , Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
| | - Mohammed A Hossain
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Praveen Praveen
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Jerome A Werkmeister
- The Ritchie Centre , Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - David A Winkler
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
- La Trobe Institute for Molecular Science , La Trobe University , Kingsbury Drive , Bundoora , VIC 3083 , Australia
- Monash Institute of Pharmaceutical Sciences , Royal Parade , Parkville , VIC 3052 , Australia
- School of Pharmacy , The University of Nottingham , Nottingham NG7 2RD , U.K
| | - Helmut Thissen
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
| |
Collapse
|
46
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
47
|
Paul K, Darzi S, McPhee G, Del Borgo MP, Werkmeister JA, Gargett CE, Mukherjee S. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomater 2019; 97:162-176. [PMID: 31386931 DOI: 10.1016/j.actbio.2019.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. STATEMENT OF SIGNIFICANCE: This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Gordon McPhee
- Monash Health Translation Precinct, Cell Therapies and Regenerative Medicine Platform, Australia
| | - Mark P Del Borgo
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia.
| |
Collapse
|
48
|
Abstract
This theme issue of
Interface Focus
is the first of two sets of articles on the topic of bioengineering in women's health. Although there is a long history of collaboration between engineers and medical professionals in orthopaedics and cardiovascular medicine, there has been growing interest in the last decade for interdisciplinary collaborations in other areas of medical science. This growth is particularly true in the case of women's health, a traditionally underserved area of research in the scientific community where fundamental knowledge of female physiology is still needed. Women's health is a broad category encompassing reproduction, fertility, maternal health, normal and abnormal pregnancy and the sequelae associated with a difficult childbirth. Women's health also includes sex-associated pathology associated with cancer, pain, cardiac disease, osteoporosis and other diseases. This list is not exhaustive with new scientific frontiers developing based on the evolving discourse of medicine for all. This first issue in the series focuses on bioengineering advances in the study of the non-pregnant woman, and the articles highlight important developments in pelvic floor disorders, biomedical devices, fertility, breast implant failure and breast cancer. The second issue in the series focuses on pregnancy.
Collapse
Affiliation(s)
- Kristin S. Miller
- Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| | - Kristin Myers
- Mechanical Engineering, Columbia University, New York, NY 10025, USA
| | - Michelle Oyen
- Department of Engineering, East Carolina University, Greenville, NC, USA
| |
Collapse
|
49
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|