1
|
Lapa T, Páscoa RNMJ, Coimbra F, Medeiros L, Gomes PS. Oral squamous cell carcinoma identification by FTIR spectroscopy of oral biofluids. Oral Dis 2025; 31:729-740. [PMID: 39286967 DOI: 10.1111/odi.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This case study evaluated the efficacy of mid-infrared spectroscopy on the identification of oral squamous cell carcinoma, following the assessment of unstimulated whole saliva. STUDY DESIGN AND METHODS The trial follows a matched case-control design. Saliva samples were characterized through mid-infrared spectroscopy, and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions that played a pivotal role in the successful identification of oral squamous cell carcinoma. RESULTS Mid-infrared spectroscopy was capable to discriminate between cancer patients and matched controls with 100% of correct predictions. Additionally, the spectral regions mostly contributing to the successful prediction were identified and found to be potentially associated with significant molecular changes crucial to the carcinogenic process. CONCLUSION The application of mid-infrared spectroscopy in saliva analysis may be regarded as an innovative, noninvasive, low cost, and sensitive technique contributing to the identification of oral squamous cell carcionma.
Collapse
Affiliation(s)
- Teresa Lapa
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Filipe Coimbra
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Luís Medeiros
- Department of Stomatology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro S Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
3
|
Alotaibi B, A El-Masry T, Elekhnawy E, Mokhtar FA, El-Seadawy HM, A Negm W. Studying the effects of secondary metabolites isolated from Cycas thouarsii R.Br. leaves on MDA-MB-231 breast cancer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:103-113. [PMID: 38279824 DOI: 10.1080/21691401.2024.2306529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
The various therapeutic drugs that are currently utilized for the management of cancer, especially breast cancer, are greatly challenged by the augmented resistance that is either acquired or de novo by the cancer cells owing to the long treatment periods. So, this study aimed at elucidating the possible anticancer potential of four compounds 7, 4', 7'', 4'''-tetra-O-methyl amentoflavone, hesperidin, ferulic acid, and chlorogenic acid that are isolated from Cycas thouarsii leaves n-butanol fraction for the first time. The MTT assay evaluated the cytotoxic action of four isolated compounds against MDA-MB-231 breast cancer cells and oral epithelial cells. Interestingly, ferulic acid revealed the lowest IC50 of 12.52 µg/mL against MDA-MB-231 cells and a high IC50 of 80.2 µg/mL against oral epithelial cells. Also, using an inverted microscope, the influence of ferulic acid was studied on the MDA-MB-231, which revealed the appearance of apoptosis characteristics like shrinkage of the cells and blebbing of the cell membrane. In addition, the flow cytometric analysis showed that the MDA-MB-231 cells stained with Annexin V/PI had a rise in the count of the cells in the early and late apoptosis stages. Moreover, gel electrophoresis detected DNA fragmentation in the ferulic acid-treated cells. Finally, the effect of the compound was tested at the molecular level by qRT-PCR. An upregulation of the pro-apoptotic genes (BAX and P53) and a downregulation of the anti-apoptotic gene (BCL-2) were observed. Consequently, our study demonstrated that these isolated compounds, especially ferulic acid, may be vital anticancer agents, particularly for breast cancer, through its induction of apoptosis through the P53-dependent pathway.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Tanta University, Tanta, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, El Saleheya El Gadida University, Sharkia, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. eLife 2024; 12:RP91988. [PMID: 39564985 PMCID: PMC11578588 DOI: 10.7554/elife.91988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
5
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560841. [PMID: 39131389 PMCID: PMC11312471 DOI: 10.1101/2023.10.04.560841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of and Physiology, NYU School of Medicine, 435 East 30 St, New York, NY
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Microbiology and Molecular Genetics, University of California, Irvine, 2011 Biological Sciences 3, Irvine, CA 92697-2300
| |
Collapse
|
6
|
Kratochvilova A, Knopfova L, Gregorkova J, Gruber R, Janeckova E, Chai Y, Matalova E. FasL impacts Tgfb signaling in osteoblastic cells. Cells Dev 2024; 179:203929. [PMID: 38810946 DOI: 10.1016/j.cdev.2024.203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Fas ligand (FasL, CD178) belongs to classical apoptotic molecules, however, recent evidence expands the spectrum of FasL functions into non-apoptotic processes which also applies for the bone. Tgfb subfamily members (Tgfb1, Tgfb2, Tgfb3) represent major components in osteogenic pathways and extracellular matrix. Their possible association with FasL has not yet been investigated but can be postulated. To test such a hypothesis, FasL deficient (gld) calvaria-derived cells were examined with a focus on the expression of Tgfb receptor ligands. The qPCR analysis revealed significantly increased expression of Tgfb1, Tgfb2 and Tgfb3 in gld cells. To check the vice versa effect, the gld cells were stimulated by soluble FasL. As a consequence, a dramatic decrease in expression levels of all three ligands was observed. This phenomenon was also confirmed in IDG-SW3 (osteoblastic cells of endochondral origin). TFLink gateway identified Fosl2 as an exclusive candidate of FasL capable to impact expression of all three Tgfb ligands. However, Fosl2 siRNA did not cause any significant changes in expression of Tgfb ligands. Therefore, the upregulation of the three ligands is likely to occur separately. In this respect, we tested the only exclusive candidate transcription factor for Tgfb3, Prrx1. Additionally, an overlapping candidate for Tgfb1 and Tgfb2, Mef2c capable to modulate expression of sclerostin, was examined. Prrx1 as well as Mef2c were found upregulated in gld samples and their expression decreased after addition of FasL. The same effect of FasL treatment was observed in the IDG-SW3 model. Taken together, FasL deficiency causes an increase in the expression of Tgfb ligands and stimulation by FasL reduces Tgfb expression in osteoblastic cells. The candidates mediating the effect comprise Prrx1 for Tgfb3 and Mef2c for Tgfb1/2. These results indicate FasL as a novel cytokine interfering with Tgfb signaling and thus the complex osteogenic network. The emerging non-apoptotic functions of FasL in bone development and maintenance should also be considered in treatment strategies such as the anti-osteoporotic factor.
Collapse
Affiliation(s)
- Adela Kratochvilova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Janka Gregorkova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | | | - Yang Chai
- University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic; University of Veterinary Sciences, Brno, Czech Republic.
| |
Collapse
|
7
|
Kruschel RD, Barbosa MG, Almeida MJ, Xavier CPR, Vasconcelos MH, McCarthy FO. Discovery of Potent Isoquinolinequinone N-Oxides to Overcome Cancer Multidrug Resistance. J Med Chem 2024; 67:13909-13924. [PMID: 39093920 PMCID: PMC11345829 DOI: 10.1021/acs.jmedchem.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.
Collapse
Affiliation(s)
- Ryan D. Kruschel
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Mélanie
A. G. Barbosa
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Maria João Almeida
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - Cristina P. R. Xavier
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - M. Helena Vasconcelos
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Florence O. McCarthy
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
8
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
9
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Wang B, Long S, Lan J, Luo K, Zhang W, Li X, Pan W, Liu J. Derived from fangchinoline, LYY-35 exhibits an inhibiting effect on human NSCLC cancer A549 cells. J Cancer 2024; 15:4232-4243. [PMID: 38947387 PMCID: PMC11212078 DOI: 10.7150/jca.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Although fangchinoline has been widely used as an adjunct therapy for a variety of inflammatory and cancerous diseases, its mechanism of action on tumor cells remains unclear. Fangchinoline derivative LYY-35 reduced the number of A549 cells, deformed cell morphology and increased cell debris. Cell viability was significantly reduced, while the same concentration of LYY-35 had little effect on BEAS-2B viability of normal lung epithelial cells. In addition, LYY-35 can also reduce the migration, proliferation and invasion ability of A549 cells. Levels of β-catenin, ZO-1 and ZEB-1 proteins, biomarkers of cell adhesion and epithelial mesenchymal transformation, were significantly reduced. The levels of superoxide dismutase and lactate dehydrogenase decreased gradually, while the levels of glutathione, malondialdehyde and intracellular and extracellular ROS increased significantly. At the same time, LYY-35 induced increased apoptosis, increased expression of Bax, cleaved caspase3, cleaved PARP1, and decreased expression of Bcl-xl, which blocked the cell cycle to G0/G1 phase. The expressions of cell cycle checkpoint proteins Cyclin B1, Cyclin E1, CDK6, PCNA and PICH were significantly decreased. With the increase of LYY-35 concentration, the trailing phenomenon was more obvious in single cell gel electrophoresis. DNA damage repair proteins: BLM, BRCA-1 and PARP-1 expression decreased gradually.LYY-35 can inhibit the proliferation of non-small cell lung cancer A549 cells, block cell cycle, promote apoptosis, increase ROS production, cause DNA damage and interfere with DNA replication. LYY-35 is promising for the treatment of non-small cell lung cancer in the future.
Collapse
Affiliation(s)
- Bo Wang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, 550025, China
| | - Shan Long
- Oncology department, General Hospital of Hunan Medical College, Huaihua, 418000, China
| | - Junjie Lan
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Kaixiong Luo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaosong Li
- Department of Oncology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jielin Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| |
Collapse
|
11
|
Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: State of the art methods and biosensors. Semin Cell Dev Biol 2024; 156:58-65. [PMID: 37438211 DOI: 10.1016/j.semcdb.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Membrane structural integrity is essential for optimal mitochondrial function. These organelles produce the energy needed for all vital processes, provided their outer and inner membranes are intact. This prevents the release of mitochondrial apoptogenic factors into the cytosol and ensures intact mitochondrial membrane potential (ΔΨm) to sustain ATP production. Cell death by apoptosis is generally triggered by outer mitochondrial membrane permeabilization (MOMP), tightly coupled with loss of ΔΨ m. As these two processes are essential for both mitochondrial function and cell death, researchers have devised various techniques to assess them. Here, we discuss current methods and biosensors available for detecting MOMP and measuring ΔΨ m, focusing on their advantages and limitations and discuss what new imaging tools are needed to improve our knowledge of mitochondrial function.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France; Institut Universitaire de France (IUF), Paris, France
| | - Clara Gil
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Kevin Berthenet
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), Rennes, France.
| | - Gabriel Ichim
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France.
| |
Collapse
|
12
|
Cumming T, Levayer R. Toward a predictive understanding of epithelial cell death. Semin Cell Dev Biol 2024; 156:44-57. [PMID: 37400292 DOI: 10.1016/j.semcdb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.
Collapse
Affiliation(s)
- Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
13
|
Alossaimi MA, Riadi Y, Alnuwaybit GN, Md S, Alkreathy HM, Elekhnawy E, Geesi MH, Alqahtani SM, Afzal O. Design, synthesis, molecular docking, and in vitro studies of 2-mercaptoquinazolin-4(3 H)-ones as potential anti-breast cancer agents. Saudi Pharm J 2024; 32:101971. [PMID: 38357701 PMCID: PMC10864842 DOI: 10.1016/j.jsps.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.
Collapse
Affiliation(s)
- Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ghaida N. Alnuwaybit
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohammed H. Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
14
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
15
|
Colon Plaza S, Su TT. Ionizing radiation induces cells with past caspase activity that contribute to the adult organ in Drosophila and show reduced Loss of Heterozygosity. Cell Death Discov 2024; 10:6. [PMID: 38182576 PMCID: PMC10770159 DOI: 10.1038/s41420-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
There is increasing recognition that cells may activate apoptotic caspases but not die, instead displaying various physiologically relevant consequences. Mechanisms that underlie the life-or-death decision in a cell that has activated apoptotic caspases, however, are incompletely understood. By optimizing a published reporter for past caspase activity, we were able to visualize cells that survived caspase activation specifically after exposure to ionizing radiation in Drosophila larval wing discs. We found that cells with X-ray-induced past active caspases (XPAC) did not arise at random but were born at specific locations within the developing wing imaginal discs of Drosophila larvae. Inhibiting key components of the apoptotic pathway decreased XPAC number, suggesting that apoptotic signaling is needed to induce XPAC cells. Yet, XPAC cells appeared in stereotypical patterns that did not follow the pattern of IR-induced apoptosis, suggesting additional controls at play. Functional testing identified the contribution of wingless (Drosophila Wnt1) and Ras signaling to the prevalence of XPAC cells. Furthermore, by following irradiated larvae into adulthood, we found that XPAC cells contribute to the adult wing. To address the relationship between XPAC and genome stability, we combined a reporter for past caspase activity with mwh, an adult marker for Loss of Heterozygosity (LOH). We found a lower incidence of LOH among XPAC compared to cells that did not activate the reporter for past caspase activity. In addition, at time points when wing disc cells are finishing DNA repair, XPAC cells show an anti-correlation with cells with unrepaired IR-induced double-stranded breaks. Our data suggest that non-lethal caspase activity safeguards the genome by facilitating DNA repair and reducing LOH after transient exposure to X-rays. These results identify a physiological role for non-lethal caspase activity during recovery from radiation damage.
Collapse
Affiliation(s)
- Sarah Colon Plaza
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309-0347, USA.
| |
Collapse
|
16
|
Hurník P, Režnarová J, Chyra Z, Motyka O, Putnová BM, Čermáková Z, Blažek T, Fománek M, Gaykalova D, Buchtová M, Ševčíková T, Štembírek J. Enhancing oral squamous cell carcinoma prediction: the prognostic power of the worst pattern of invasion and the limited impact of molecular resection margins. Front Oncol 2023; 13:1287650. [PMID: 38188288 PMCID: PMC10766711 DOI: 10.3389/fonc.2023.1287650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Oral squamous cell carcinoma (OSCC) originates from the mucosal lining of the oral cavity. Almost half of newly diagnosed cases are classified as advanced stage IV disease, which makes resection difficult. In this study, we investigated the pathological features and mutation profiles of tumor margins in OSCC. Methods We performed hierarchical clustering of principal components to identify distinct patterns of tumor growth and their association with patient prognosis. We also used next-generation sequencing to analyze somatic mutations in tumor and marginal tissue samples. Results Our analyses uncovered that the grade of worst pattern of invasion (WPOI) is strongly associated with depth of invasion and patient survival in multivariable analysis. Mutations were primarily detected in the DNA isolated from tumors, but several mutations were also identified in marginal tissue. In total, we uncovered 29 mutated genes, mainly tumor suppressor genes involved in DNA repair including BRCA genes; however none of these mutations significantly correlated with a higher chance of relapse in our medium-size cohort. Some resection margins that appeared histologically normal harbored tumorigenic mutations in TP53 and CDKN2A genes. Conclusion Even histologically normal margins may contain molecular alterations that are not detectable by conventional histopathological methods, but NCCN classification system still outperforms other methods in the prediction of the probability of disease relapse.
Collapse
Affiliation(s)
- Pavel Hurník
- Institute of Clinical and Molecular Pathology, University Hospital Ostrava, Ostrava, Czechia
- Institute of Clinical and Molecular Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Režnarová
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Department of Craniofacial Surgery, Faculty of Medicine, Ostrava University, Ostrava, Ostrava, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Oldřich Motyka
- Department of Environmental Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Barbora Moldovan Putnová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Zuzana Čermáková
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tomáš Blažek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
| | - Martin Fománek
- Department of Otorhinolaryngology, University Hospital Ostrava, Ostrava, Czechia
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Department of Craniofacial Surgery, Faculty of Medicine, Ostrava University, Ostrava, Ostrava, Czechia
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
17
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
18
|
Proteome integral solubility alteration high-throughput proteomics assay identifies Collectin-12 as a non-apoptotic microglial caspase-3 substrate. Cell Death Dis 2023; 14:192. [PMID: 36906641 PMCID: PMC10008626 DOI: 10.1038/s41419-023-05714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Caspases are a family of proteins mostly known for their role in the activation of the apoptotic pathway leading to cell death. In the last decade, caspases have been found to fulfill other tasks regulating the cell phenotype independently to cell death. Microglia are the immune cells of the brain responsible for the maintenance of physiological brain functions but can also be involved in disease progression when overactivated. We have previously described non-apoptotic roles of caspase-3 (CASP3) in the regulation of the inflammatory phenotype of microglial cells or pro-tumoral activation in the context of brain tumors. CASP3 can regulate protein functions by cleavage of their target and therefore could have multiple substrates. So far, identification of CASP3 substrates has been performed mostly in apoptotic conditions where CASP3 activity is highly upregulated and these approaches do not have the capacity to uncover CASP3 substrates at the physiological level. In our study, we aim at discovering novel substrates of CASP3 involved in the normal regulation of the cell. We used an unconventional approach by chemically reducing the basal level CASP3-like activity (by DEVD-fmk treatment) coupled to a Mass Spectrometry screen (PISA) to identify proteins with different soluble amounts, and consequently, non-cleaved proteins in microglia cells. PISA assay identified several proteins with significant change in their solubility after DEVD-fmk treatment, including a few already known CASP3 substrates which validated our approach. Among them, we focused on the Collectin-12 (COLEC12 or CL-P1) transmembrane receptor and uncovered a potential role for CASP3 cleavage of COLEC12 in the regulation of the phagocytic capacity of microglial cells. Taken together, these findings suggest a new way to uncover non-apoptotic substrates of CASP3 important for the modulation of microglia cell physiology.
Collapse
|
19
|
Pelliccia A, Capradossi F, Corsi F, Tarquini GD, Bruni E, Reichle A, Torino F, Ghibelli L. Androgen Deprivation Freezes Hormone-Sensitive Prostate Cancer Cells in a Reversible, Genetically Unstable Quasi-Apoptotic State, Bursting into Full Apoptosis upon Poly(ADP-ribose) Polymerase Inhibition. Int J Mol Sci 2023; 24:ijms24032040. [PMID: 36768364 PMCID: PMC9917232 DOI: 10.3390/ijms24032040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Androgen deprivation therapy (ADT) is a powerful treatment for metastatic hormone-sensitive prostate cancer (mHSPC) patients, but eventually and inevitably, cancer relapses, progressing to the fatal castration-resistant (CR)PC stage. Progression implies the emergence of cells proliferating in the absence of androgen through still elusive mechanisms. We show here for the first time that ADT induces LNCaP mHSPC cells to collectively enter a metastable quasi-apoptotic state (QUAPS) consisting of partial mitochondrial permeabilization, limited BAX and caspase activation, and moderate induction of caspase-dependent dsDNA breaks; despite this, cells maintain full viability. QUAPS is destabilized by poly(ADP)-polymerase inhibition (PARPi), breaking off toward overt intrinsic apoptosis and culture extinction. Instead, QUAPS is rapidly and efficiently reverted upon androgen restoration, with mitochondria rapidly recovering integrity and cells collectively resuming normal proliferation. Notably, replication restarts before DNA repair is completed, and implies an increased micronuclei frequency, indicating that ADT promotes genetic instability. The recovered cells re-acquire insensitivity to PARPi (as untreated LNCaP), pointing to specific, context-dependent vulnerability of mHSPC cells to PARPi during ADT. Summarizing, QUAPS is an unstable, pro-mutagenic state developing as a pro-survival pathway stabilized by PARP, and constitutes a novel viewpoint explaining how ADT-treated mHSPC may progress to CRPC, indicating possible preventive countermeasures.
Collapse
Affiliation(s)
- Andrea Pelliccia
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (A.P.); (L.G.); Tel.: +39-06-7259-4095 (A.P.); +39-06-7259-4218 (L.G.)
| | | | - Francesca Corsi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Emanuele Bruni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (A.P.); (L.G.); Tel.: +39-06-7259-4095 (A.P.); +39-06-7259-4218 (L.G.)
| |
Collapse
|
20
|
Yang P, Li X, Wen Q, Zhao X. Quercetin attenuates the proliferation of arsenic-related lung cancer cells via a caspase-dependent DNA damage signaling. Mol Carcinog 2022; 61:655-663. [PMID: 35436022 DOI: 10.1002/mc.23408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
Abstract
Exposure to arsenic (As) mainly through contaminated drinking water enhances the lung tumor progression, invasion, and metastasis. The carcinogenic effect of As is due to the generation of reactive oxygen species (ROS) and DNA damage, and interference with DNA repair machinery. Herein, we investigated the potential therapeutic function of quercetin on As-treated lung cancer cells. Quercetin is a natural product with antioxidative, anti-inflammatory, and antiproliferative properties. We showed that quercetin induced cell death in the As-exposed lung cancer cells in a dose-dependent manner. Quercetin was able to significantly inhibit the proliferation of the As-treated cells over a period of 5 weeks. In addition, quercetin induced ROS-mediated DNA double-strand breaks in the As-treated lung cancer cells. We also showed that ROS generation induced by quercetin activated caspase-3 to a sufficient level to induce DNA damage but insufficient to induce death in As-treated lung cancer cells. Moreover, transient activation of caspase-2 was detected in quercetin- and As-cotreated cells. The flow cytometry-based cell cycle analysis showed that the antiproliferative function of quercetin was mediated by S-phase cell cycle arrest, which was associated with upregulation of the Ataxia Telangiectasia-mutated (ATM), but not ATM and RAD3-related. In conclusion, quercetin synergized the As-driven ROS generation and DNA damage, and induced the S-phase arrest, thus inhibiting the proliferation of As-exposed lung cancer cells. This data suggested that quercetin is an alternative reagent to chemo-drugs to prevent the growth of As-exposed lung cancer cells.
Collapse
Affiliation(s)
- Pan Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Qinghui Wen
- Department of Clinical Laboratory, Dongguan People's Hospital, Dongguan, China
| | - Xiaan Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
21
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
22
|
Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031562. [PMID: 35163485 PMCID: PMC8836072 DOI: 10.3390/ijms23031562] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is the most common form of head and neck squamous cell carcinoma (HNSCC) and most frequently presents as oral squamous cell carcinoma (OSCC), which is associated with an alarmingly high mortality rate. Internationally, a plethora of research to further our understanding of the molecular pathways related to oral cancer is performed. This research is of value for early diagnosis, prognosis, and the investigation of new drugs that can ameliorate the harmful effects of oral cancer and provide optimal patient outcomes with minimal long-term complications. Two pathways on which the progression of OSCC depends on are those of proliferation and apoptosis, which overlap at many junctions. Herein, we aim to review these pathways and factors related to OSCC progression. Publicly available search engines, PubMed and Google Scholar, were used with the following keywords to identify relevant literature: oral cancer, proliferation, proliferation factors, genes, mutations, and tumor suppressor. We anticipate that the use of information provided through this review will further progress translational cancer research work in the field of oral cancer.
Collapse
|
23
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol 2022; 157:403-413. [PMID: 34999953 DOI: 10.1007/s00418-021-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.
Collapse
Affiliation(s)
- A Ramesova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - B Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - E Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic. .,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic.
| | - H Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - E Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| |
Collapse
|
24
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
25
|
Klemm J, Stinchfield MJ, Harris RE. Necrosis-induced apoptosis promotes regeneration in Drosophila wing imaginal discs. Genetics 2021; 219:6365941. [PMID: 34740246 PMCID: PMC8570793 DOI: 10.1093/genetics/iyab144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Abstract
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.
Collapse
Affiliation(s)
- Jacob Klemm
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| | | | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| |
Collapse
|