1
|
Bell DA, Carim KJ, Kovach R, Eby LA, Barfoot C, Painter S, Lodmell A, Amish SJ, Smith S, Rosenthal L, Larkin B, Ramsey P, Whiteley AR. Genomic Insights Into Inbreeding and Adaptive Divergence of Trout Populations to Inform Genetic Rescue. Evol Appl 2025; 18:e70090. [PMID: 40115660 PMCID: PMC11923392 DOI: 10.1111/eva.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Genetic rescue, specifically translocation to facilitate gene flow among populations and reduce the effects of inbreeding, is an increasingly used approach in conservation. However, this approach comes with trade-offs, wherein gene flow may reduce fitness when populations have adaptive differentiation (i.e., outbreeding depression). A better understanding of the interaction between isolation, inbreeding, and adaptive divergence in key traits, such as life history traits, will help to inform genetic rescue efforts. Stream-dwelling salmonids, such as the westslope cutthroat trout (Oncorhynchus lewisi; WCT), are well-suited for examining these trade-offs because they are increasingly isolated by habitat degradation, exhibit substantial variation in life history traits among populations, and include many species of conservation concern. However, few genomic studies have examined the potential trade-offs in inbreeding versus outbreeding depression in salmonids. We used > 150,000 SNPs to examine genomic variation and inbreeding coefficients in 565 individuals across 25 WCT populations that differed in their isolation status and demographic histories. Analyses of runs of homozygosity revealed that several isolated WCT populations had "flatlined" having extremely low genetic variation and high inbreeding coefficients. Additionally, we conducted genome scans to identify potential outlier loci that could explain life history differences among 10 isolated populations. Genome scans identified one candidate genomic region that influenced maximum length and age-1 to age-2 growth. However, the limited number of candidate loci suggests that the life history traits examined may be driven by many genes of small effect or phenotypic plasticity. Although adaptive differentiation should be considered, the high inbreeding coefficients in several populations suggest that genetic rescue may benefit the most genetically depauperate WCT populations.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program University of Montana Missoula Montana USA
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Kellie J Carim
- U.S.D.A. Forest Service, Rocky Mountain Research Station Aldo Leopold Wilderness Research Institute Missoula Montana USA
| | - Ryan Kovach
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Lisa A Eby
- Wildlife Biology Program University of Montana Missoula Montana USA
| | - Craig Barfoot
- Confederated Salish and Kootenai Tribes Pablo Montana USA
| | - Sally Painter
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Angela Lodmell
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Stephen J Amish
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Seth Smith
- Washington Department of Fish and Wildlife Seattle Washington USA
| | - Leo Rosenthal
- Montana Fish Wildlife and Parks Missoula Montana USA
| | | | | | | |
Collapse
|
2
|
Cummins D, Johnson MS, Tomkins JL, Kennington WJ. Multigenerational hybridisation results in heterosis and facilitates adaptive introgression, with no evidence of outbreeding depression in a pair of marine gastropods. Heredity (Edinb) 2025; 134:75-85. [PMID: 39617802 PMCID: PMC11724054 DOI: 10.1038/s41437-024-00736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Anthropogenic environmental changes continue to threaten species globally. For example, translocation of species has caused unintentional hybridisation, which has contributed to species declines. On the other hand, hybridisation can be used to increase the evolutionary potential of species vulnerable to rapid environmental change, although the benefits of mixing genetically divergent lineages do not come without risks to individual fitness and the long-term viability of populations. Here, we use a combination of genome-wide Single Nucleotide Polymorphism (SNP) markers, mitochondrial DNA sequencing and measurements of growth rate to determine the genetic consequences of hybridisation between two congeneric marine gastropods across 27 years (~18 generations). Multigeneration hybridisation resulted from the introduction of the intertidal periwinkle Bembicium vittatum (a direct developer) into the native range of its congener Bembicium auratum (a species with planktotrophic larval dispersal). Despite significant genetic divergence between the species, we found no direct evidence of outbreeding depression in the admixed population. Instead, we found evidence for heterosis, which dissipated over time. After an initial lag, the frequency of introduced B. vittatum alleles declined dramatically in the hybrid population. However, a few B. vittatum alleles (3.18%) increased significantly in frequency against the overall trend, providing evidence of adaptive introgression. In the context of hybridisation as a conservation management tool, our results provide some evidence of the potential benefits that can be gained, and suggest that the costs due to outbreeding depression can be small.
Collapse
Affiliation(s)
- Deanne Cummins
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.
| | - Michael S Johnson
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joseph L Tomkins
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - W Jason Kennington
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Kokkonen AL, Searle PC, Shiozawa DK, Evans RP. Using de novo transcriptomes to decipher the relationships in cutthroat trout subspecies ( Oncorhynchus clarkii). Evol Appl 2024; 17:e13735. [PMID: 39006004 PMCID: PMC11239772 DOI: 10.1111/eva.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
For almost 200 years, the taxonomy of cutthroat trout (Oncorhynchus clarkii), a salmonid native to Western North America, has been in flux as ichthyologists and fisheries biologists have tried to describe the diversity within these fishes. Starting in the 1950s, Robert Behnke reexamined the cutthroat trout and identified 14 subspecies based on morphological traits, Pleistocene events, and modern geographic ranges. His designations became instrumental in recognizing and preserving the remaining diversity of cutthroat trout. Over time, molecular techniques (i.e. karyotypes, allozymes, mitochondrial DNA, SNPs, and microsatellite arrays) have largely reinforced Behnke's phylogenies, but have also revealed that some relationships are consistently weakly supported. To further resolve these relationships, we generated de novo transcriptomes for nine cutthroat subspecies, as well as a Bear River Bonneville form and two Colorado River lineages (blue and green). We present phylogenies of these subspecies generated from multiple sets of orthologous genes extracted from our transcriptomes. We confirm many of the relationships identified in previous morphological and molecular studies, as well as discuss the importance of significant differences apparent in our phylogenies from these studies within a geological perspective. Specific findings include three distinct clades: (1) Bear River Bonneville form and Yellowstone cutthroat trout; (2) Bonneville cutthroat trout (n = 2); and (3) Greenback and Rio Grande cutthroat trout. We also identify potential gene transfer between Bonneville cutthroat trout and a population of Colorado River green lineage cutthroat trout. Using these findings, it appears that additional groups warrant species-level consideration if other recent species elevations are retained.
Collapse
Affiliation(s)
- Andrea L. Kokkonen
- Department of Microbiology and Molecular BiologyBrigham Young UniversityProvoUtahUSA
| | - Peter C. Searle
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | | | - R. Paul Evans
- Department of Microbiology and Molecular BiologyBrigham Young UniversityProvoUtahUSA
| |
Collapse
|
4
|
Nota A, Bertolino S, Tiralongo F, Santovito A. Adaptation to bioinvasions: When does it occur? GLOBAL CHANGE BIOLOGY 2024; 30:e17362. [PMID: 38822565 DOI: 10.1111/gcb.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.
Collapse
Affiliation(s)
- Alessandro Nota
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Francesco Tiralongo
- Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Catania, Italy
- National Research Council, Institute of Marine Biological Resources and Biotechnologies, Ancona, Italy
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Benavente JN, Véliz D, Quezada-Romegialli C, Gomez-Uchida D. Uniparental and biparental markers unravel invasion pathways, population admixture, and genetic structure in naturalized rainbow trout (Oncorhynchus mykiss). JOURNAL OF FISH BIOLOGY 2023; 103:1277-1288. [PMID: 37535430 DOI: 10.1111/jfb.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The present study combined uniparental mtDNA and biparental SNPs to illuminate the invasion and colonization pathways of rainbow trout, Oncorhynchus mykiss, one of the world's most widespread invasive fishes, that has been intensively propagated in Chile, South America. The specific aims of the study were (i) to evaluate potential donor populations, which could be either from the species' native range in North America or from introduced populations in Europe, by comparing mtDNA D-loop/control region haplotypes; and (ii) to assess the factors that have shaped genetic diversity and contemporary genetic structure of rainbow trout populations introduced to Chile through SNP genotyping. The authors comprehensively sampled 24 sites in 12 basins ranging from the High Andean Plateau (Altiplano, 18° S) to northern Patagonia (41° S). Results of the mtDNA data of naturalized trout populations from rivers in the Altiplano (northern Chile) differed from those collected in central and southern Chile, suggesting an origin from North American hatcheries. Naturalized trout populations in central and southern Chile, on the contrary, shared haplotypes with specimens found in European hatcheries. The southern and central Chile populations also contained rare haplotypes, possibly indicating potential spread through aquaculture escapes. Results of the SNP analysis revealed higher allelic richness for trout sampled in sites influenced by commercial aquaculture than sites without commercial aquaculture, likely due to increased admixture between aquaculture broodstock and naturalized trout. The analysis further uncovered some complex patterns of divergent trout populations with low genetic diversity as well as increased relatedness between individuals from isolated sites, suggesting possible local populations. A comprehensive characterization of genetic diversity and structure of rainbow trout should help identify management areas that may augment socioeconomic benefits while preventing the spread and further impacts on biodiversity.
Collapse
Affiliation(s)
- Javiera N Benavente
- Departmento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
- Genomics in Ecology, Evolution and Conservation Lab, Departmento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - David Véliz
- Departmento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
- Centro de Ecología y Manejo de Islas Oceánicas (ESMOI), Coquimbo, Chile
| | - Claudio Quezada-Romegialli
- Plataforma de Monitoreo Genómico y Ambiental (PGMA), Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Tarapacá, Chile
| | - Daniel Gomez-Uchida
- Genomics in Ecology, Evolution and Conservation Lab, Departmento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
6
|
Jossie E, Seaborn T, Baxter CV, Burnham M. Using social-ecological models to explore stream connectivity outcomes for stakeholders and Yellowstone cutthroat trout. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2915. [PMID: 37635644 DOI: 10.1002/eap.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Despite growing interest in conservation and re-establishment of ecological connectivity, few studies have explored its context-specific social-ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder-identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual-based ecological modeling, to explore social-ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual-based models suggested that the potential for a large, migratory life history form of YCT, in addition to self-preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly.
Collapse
Affiliation(s)
- Elizabeth Jossie
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Colden V Baxter
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Morey Burnham
- Department of Sociology, Social Work, and Criminology, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
7
|
Graham BA, Szabo I, Cicero C, Strickland D, Woods J, Coneybeare H, Dohms KM, Burg TM. Habitat and climate influence hybridization among three genetically distinct Canada jay (Perisoreus canadensis) morphotypes in an avian hybrid zone complex. Heredity (Edinb) 2023; 131:361-373. [PMID: 37813941 PMCID: PMC10674025 DOI: 10.1038/s41437-023-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Examining the frequency and distribution of hybrids across contact zones provide insights into the factors mediating hybridization. In this study, we examined the effect of habitat and climate on hybridization patterns for three phenotypically, genetically, and ecologically distinct groups of the Canada jay (Perisoreus canadensis) in a secondary contact zone in western North America. Additionally, we tested whether the frequency of hybridization involving the three groups (referred to as Boreal, Pacific and Rocky Mountain morphotypes) is similar across the hybrid zones or whether some pairs have hybridized more frequently than others. We reanalyzed microsatellite, mtDNA and plumage data, and new microsatellite and plumage data for 526 individuals to identify putative genetic and phenotypic hybrids. The genetically and phenotypically distinct groups are associated with different habitats and occupy distinct climate niches across the contact zone. Most putative genetic hybrids (86%) had Rocky Mountain ancestry. Hybrids were observed most commonly in intermediate climate niches and in habitats where Engelmann spruce (Picea engelmannii) overlaps broadly with boreal and subalpine tree species. Our finding that hybrids occupy intermediate climate niches relative to parental morphotypes matches patterns for other plant and animal species found in this region. This study demonstrates how habitat and climate influence hybridization patterns in areas of secondary contact and adds to the growing body of research on tri-species hybrid zones.
Collapse
Affiliation(s)
- B A Graham
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada.
| | - I Szabo
- Beaty Biodiversity Museum, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - C Cicero
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA
| | - D Strickland
- 1063 Oxtongue Lake Road, Dwight, ON, P0A 1H0, Canada
| | - J Woods
- 1221 23rd Avenue SW, Salmon Arm, BC, V1E 0A9, Canada
| | - H Coneybeare
- 5210 Frederick Road, Armstrong, BC, V0E 1B4, Canada
| | - K M Dohms
- Canadian Wildlife Services, Environment and Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - T M Burg
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
8
|
Bourret SL, Kovach RP, Cline TJ, Strait JT, Muhlfeld CC. High dispersal rates in hybrids drive expansion of maladaptive hybridization. Proc Biol Sci 2022; 289:20221813. [PMID: 36350203 PMCID: PMC9653238 DOI: 10.1098/rspb.2022.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2023] Open
Abstract
Hybridization between native and invasive species, a major cause of biodiversity loss, can spread rapidly even when hybrids have reduced fitness. This paradox suggests that hybrids have greater dispersal rates than non-hybridized individuals, yet this mechanism has not been empirically tested in animal populations. Here, we test if non-native genetic introgression increases reproductive dispersal using a human-mediated hybrid zone between native cutthroat trout (<i>Oncorhynchus clarkii</i>) and invasive rainbow trout (<i>Oncorhynchus mykiss</i>) in a large and connected river system. We quantified the propensity for individuals to migrate from natal rearing habitats (migrate), reproduce in non-natal habitats (stray), and the joint probability of dispersal as a function of genetic ancestry. Hybrid trout with predominantly non-native rainbow trout ancestry were more likely to migrate as juveniles and to stray as adults. Overall, hybrids with greater than 50% rainbow trout ancestry were 5.7 times more likely to disperse than native or hybrid trout with small amounts of rainbow trout ancestry. Our results show a genetic basis for increased dispersal in hybrids that is likely contributing to the rapid expansion of invasive hybridization between these species. Management actions that decrease the probability of hybrid dispersal may mitigate the harmful effects of invasive hybridization on native biodiversity.
Collapse
Affiliation(s)
- Samuel L. Bourret
- Montana Fish, Wildlife & Parks, 490 N. Meridian Rd. Kalispell, MT 59901, USA
| | - Ryan P. Kovach
- Montana Fish, Wildlife & Parks, University of Montana, Fish Conservation Genetics Lab, Missoula, MT 59812, USA
| | - Timothy J. Cline
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 38 Mather Dr., West Glacier, MT 59936, USA
| | - Jeffrey T. Strait
- Idaho Department of Fish and Game, 2885 W. Kathleen Ave., Coeur d'Alene, ID 83815, USA
| | - Clint C. Muhlfeld
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 38 Mather Dr., West Glacier, MT 59936, USA
| |
Collapse
|
9
|
Cooke BJ. Forest Landscape Effects on Dispersal of Spruce Budworm Choristoneura fumiferana (Clemens, 1865) (Lepidoptera, Tortricidae) and Forest Tent Caterpillar Malacosoma disstria Hübner, 1820 (Lepidoptera, Lasiocampidae) Female Moths in Alberta, Canada. INSECTS 2022; 13:1013. [PMID: 36354835 PMCID: PMC9698417 DOI: 10.3390/insects13111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Leaf-rollers and tent caterpillars, the families Torticidae and Lasiocampidae, represent a significant component of the Lepidoptera, and are well-represented in the forest insect pest literature of North America. Two species in particular-spruce budworm (Choristoneura fumiferana (Clem.)) and forest tent caterpillar (Malacosoma disstria Hbn.)-are the most significant pests of the Pinaceae and Salicacae, respectively, in the boreal forest of Canada, each exhibiting periodic outbreaks of tremendous extent. Dispersal is thought to play a critical role in the triggering of population eruptions and in the synchronization of outbreak cycling, but formal studies of dispersal, in particular studies of long-range dispersal by egg-bearing adult females, are rare. Here, it is shown in two independent studies that adult females of both species tend to disperse away from sparse or defoliated forest, and toward intact or undefoliated forest, suggesting that long-range dispersal during an outbreak peak is adaptive to the species and an important factor in their population dynamics, and hence their evolutionary biology.
Collapse
Affiliation(s)
- Barry J Cooke
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, ON P6A2E5, Canada
| |
Collapse
|
10
|
Rosenthal WC, Fennell JM, Mandeville EG, Burckhardt JC, Walters AW, Wagner CE. Hybridization decreases native cutthroat trout reproductive fitness. Mol Ecol 2022; 31:4224-4241. [PMID: 35751487 DOI: 10.1111/mec.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Examining natural selection in wild populations is challenging, but crucial to understanding many ecological and evolutionary processes. Additionally, in hybridizing populations, natural selection may be an important determinant of the eventual outcome of hybridization. We characterized several components of relative fitness in hybridizing populations of Yellowstone cutthroat trout and rainbow trout in an effort to better understand the prolonged persistence of both parental species despite predictions of extirpation. Thousands of genomic loci enabled precise quantification of hybrid status in adult and subsequent juvenile generations; a subset of those data also identified parent-offspring relationships. We used linear models and simulations to assess the effects of ancestry on reproductive output and mate choice decisions. We found a relatively low number of late-stage (F3+) hybrids and an excess of F2 juveniles relative to the adult generation in one location, which suggests the presence of hybrid breakdown decreasing the fitness of F2+ hybrids later in life. Assessments of reproductive output showed that Yellowstone cutthroat trout are more likely to successfully reproduce and produce slightly more offspring than their rainbow trout and hybrid counterparts. Mate choice appeared to be largely random, though we did find statistical support for slight female preference for males of similar ancestry. Together, these results show that native Yellowstone cutthroat trout are able to outperform rainbow trout in terms of reproduction and suggests that management action to exclude rainbow trout from spawning locations may bolster the now-rare Yellowstone cutthroat trout.
Collapse
Affiliation(s)
- William C Rosenthal
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA
| | - John M Fennell
- Department of Zoology and Physiology, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA.,Department of Integrative Biology, University of Guelph, Canada
| | | | - Annika W Walters
- Program in Ecology and Evolution, University of Wyoming, USA.,Department of Zoology and Physiology, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA.,U.S. Geological Survey, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA.,Biodiversity Institute, University of Wyoming, USA
| |
Collapse
|
11
|
Flesch E, Graves T, Thomson J, Proffitt K, Garrott R. Average kinship within bighorn sheep populations is associated with connectivity, augmentation, and bottlenecks. Ecosphere 2022. [DOI: 10.1002/ecs2.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elizabeth Flesch
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| | - Tabitha Graves
- Glacier Field Station U.S. Geological Survey West Glacier Montana USA
| | - Jennifer Thomson
- Animal and Range Sciences Department Montana State University Bozeman Montana USA
| | | | - Robert Garrott
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| |
Collapse
|
12
|
Fukui S, Kasugai K, Sawada A, Koizumi I. Evidence for Introgressive Hybridization between Native Dolly Varden ( Salvelinus curilus (syn. Salvelinus malma)) and Introduced Brook Trout ( Salvelinus fontinalis) in the Nishibetsu River of Hokkaido, Japan. Zoolog Sci 2021; 38:247-251. [PMID: 34057349 DOI: 10.2108/zs200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Hybridization is one of the negative outcomes for the introduction of non-native species, which can lead to rapid displacement and genetic extinction of native species. Salmonid fishes have been widely introduced outside of their native ranges for food supply and recreational fishing. Here, we investigate the occurrence of introgressive hybridization among native Dolly Varden (Salvelinus curilus (syn. Salvelinus malma)), white-spotted charr (Salvelinus leucomaenis), and introduced brook trout (Salvelinus fontinalis), in streams of the Nishibetsu River, Hokkaido, Japan. Microsatellite DNA analysis detected five hybrids between native Dolly Varden and introduced brook trout. This is the first evidence for hybridization between native Dolly Varden and introduced brook trout, while the latter has been known to hybridize with many other salmonids. Furthermore, incongruence between mitochondrial DNA and microsatellite DNA analyses suggested introgression among the three Salvelinus species. Further studies to estimate the hybrid fitness are necessary to understand how hybridization among the three species affects the native species.
Collapse
Affiliation(s)
- Sho Fukui
- Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan,
| | - Kiyoshi Kasugai
- Doto Research Branch, Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Nakashibetsu, Hokkaido 086-1164, Japan
| | - Ayaka Sawada
- Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan
| | - Itsuro Koizumi
- Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan
| |
Collapse
|
13
|
Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes. Biol Invasions 2021; 23:3351-3368. [PMID: 34054333 PMCID: PMC8149140 DOI: 10.1007/s10530-021-02577-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/13/2021] [Indexed: 12/02/2022]
Abstract
Genetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410–460 mm in hybrids versus 340–360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81 %) had the largest trophic niche and a substantially lower trophic position than the other populations through its exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can result in substantial ecological consequences, including the potential for cascading effects.
Collapse
|
14
|
Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. The ecological causes and consequences of hard and soft selection. Ecol Lett 2021; 24:1505-1521. [PMID: 33931936 DOI: 10.1111/ele.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Zachary L Robinson
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
15
|
Strait JT, Eby LA, Kovach RP, Muhlfeld CC, Boyer MC, Amish SJ, Smith S, Lowe WH, Luikart G. Hybridization alters growth and migratory life-history expression of native trout. Evol Appl 2021; 14:821-833. [PMID: 33767755 PMCID: PMC7980306 DOI: 10.1111/eva.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Human-mediated hybridization threatens many native species, but the effects of introgressive hybridization on life-history expression are rarely quantified, especially in vertebrates. We quantified the effects of non-native rainbow trout admixture on important life-history traits including growth and partial migration behavior in three populations of westslope cutthroat trout over five years. Rainbow trout admixture was associated with increased summer growth rates in all populations and decreased spring growth rates in two populations with cooler spring temperatures. These results indicate that non-native admixture may increase growth under warmer conditions, but cutthroat trout have higher growth rates during cooler periods. Non-native admixture consistently increased expression of migratory behavior, suggesting that there is a genomic basis for life-history differences between these species. Our results show that effects of interspecific hybridization on fitness traits can be the product of genotype-by-environment interactions even when there are minor differences in environmental optima between hybridizing species. These results also indicate that while environmentally mediated traits like growth may play a role in population-level consequences of admixture, strong genetic influences on migratory life-history differences between these species likely explains the continued spread of non-native hybridization at the landscape-level, despite selection against hybrids at the population-level.
Collapse
Affiliation(s)
- Jeffrey T. Strait
- Wildlife Biology Program, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMTUSA
- Flathead Lake Biological Station, Fish and Wildlife Genomics GroupDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| | - Lisa A. Eby
- Wildlife Biology Program, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMTUSA
| | - Ryan P. Kovach
- Montana Fish, Wildlife, and ParksUniversity of Montana Fish Conservation Genetics LabMissoulaMTUSA
| | - Clint C. Muhlfeld
- Flathead Lake Biological Station, Fish and Wildlife Genomics GroupDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
- U.S. Geological SurveyNorthern Rocky Mountain Science CenterGlacier National ParkWest GlacierMTUSA
| | | | - Stephen J. Amish
- Flathead Lake Biological Station, Fish and Wildlife Genomics GroupDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| | - Seth Smith
- Flathead Lake Biological Station, Fish and Wildlife Genomics GroupDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| | - Winsor H. Lowe
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - Gordon Luikart
- Flathead Lake Biological Station, Fish and Wildlife Genomics GroupDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| |
Collapse
|
16
|
Torson AS, Dong YW, Sinclair BJ. Help, there are ‘omics’ in my comparative physiology! J Exp Biol 2020; 223:223/24/jeb191262. [DOI: 10.1242/jeb.191262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
‘Omics’ methods, such as transcriptomics, proteomics, lipidomics or metabolomics, yield simultaneous measurements of many related molecules in a sample. These approaches have opened new opportunities to generate and test hypotheses about the mechanisms underlying biochemical and physiological phenotypes. In this Commentary, we discuss general approaches and considerations for successfully integrating omics into comparative physiology. The choice of omics approach will be guided by the availability of existing resources and the time scale of the process being studied. We discuss the use of whole-organism extracts (common in omics experiments on small invertebrates) because such an approach may mask underlying physiological mechanisms, and we consider the advantages and disadvantages of pooling samples within biological replicates. These methods can bring analytical challenges, so we describe the most easily analyzed omics experimental designs. We address the propensity of omics studies to digress into ‘fishing expeditions’ and show how omics can be used within the hypothetico-deductive framework. With this Commentary, we hope to provide a roadmap that will help newcomers approach omics in comparative physiology while avoiding some of the potential pitfalls, which include ambiguous experiments, long lists of candidate molecules and vague conclusions.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yun-wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
17
|
Day CC, Landguth EL, Simmons RK, Baker WP, Whiteley AR, Lukacs PM, Bearlin A. Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Casey C. Day
- Computational Ecology Lab University of Montana Missoula MT USA
| | | | - Ryan K. Simmons
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| | | | - Andrew R. Whiteley
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Paul M. Lukacs
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Andrew Bearlin
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| |
Collapse
|
18
|
Gervais JA, Kovach R, Sepulveda A, Al-Chokhachy R, Joseph Giersch J, Muhlfeld CC. Climate-induced expansions of invasive species in the Pacific Northwest, North America: a synthesis of observations and projections. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02244-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
The influence of the invasive process on behaviours in an intentionally introduced hybrid, Xiphophorus helleri–maculatus. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lennox RJ, Paukert CP, Aarestrup K, Auger-Méthé M, Baumgartner L, Birnie-Gauvin K, Bøe K, Brink K, Brownscombe JW, Chen Y, Davidsen JG, Eliason EJ, Filous A, Gillanders BM, Helland IP, Horodysky AZ, Januchowski-Hartley SR, Lowerre-Barbieri SK, Lucas MC, Martins EG, Murchie KJ, Pompeu PS, Power M, Raghavan R, Rahel FJ, Secor D, Thiem JD, Thorstad EB, Ueda H, Whoriskey FG, Cooke SJ. One Hundred Pressing Questions on the Future of Global Fish Migration Science, Conservation, and Policy. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00286] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Mandeville EG, Walters AW, Nordberg BJ, Higgins KH, Burckhardt JC, Wagner CE. Variable hybridization outcomes in trout are predicted by historical fish stocking and environmental context. Mol Ecol 2019; 28:3738-3755. [PMID: 31294488 DOI: 10.1111/mec.15175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co-occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first-generation hybrids. Later-generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual-based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
Collapse
Affiliation(s)
- Elizabeth G Mandeville
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Brittany J Nordberg
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Karly H Higgins
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
22
|
Lowe WH, Addis BR. Matching habitat choice and plasticity contribute to phenotype–environment covariation in a stream salamander. Ecology 2019; 100:e02661. [DOI: 10.1002/ecy.2661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Winsor H. Lowe
- Division of Biological Sciences University of Montana Missoula Montana 59812 USA
| | - Brett R. Addis
- Division of Biological Sciences University of Montana Missoula Montana 59812 USA
| |
Collapse
|
23
|
Littrell KA, Ellis D, Gephard SR, MacDonald AD, Palkovacs EP, Scranton K, Post DM. Evaluating the potential for prezygotic isolation and hybridization between landlocked and anadromous alewife ( Alosa pseudoharengus) following secondary contact. Evol Appl 2018; 11:1554-1566. [PMID: 30344627 PMCID: PMC6183454 DOI: 10.1111/eva.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022] Open
Abstract
The recent increase in river restoration projects is altering habitat connectivity for many aquatic species, increasing the chance that previously isolated populations will come into secondary contact. Anadromous and landlocked alewife (Alosa pseudoharengus) are currently undergoing secondary contact as a result of a fishway installation at Rogers Lake in Old Lyme, Connecticut. To determine the degree of prezygotic isolation and potential for hybridization between alewife life history forms, we constructed spawning time distributions for two anadromous and three landlocked alewife populations using otolith-derived age estimates. In addition, we analyzed long-term data from anadromous alewife migratory spawning runs to look for trends in arrival date and spawning time. Our results indicated that anadromous alewife spawned earlier and over a shorter duration than landlocked alewife, but 3%-13% of landlocked alewife spawning overlapped with the anadromous alewife spawning period. The degree of spawning time overlap was primarily driven by annual and population-level variation in the timing of spawning by landlocked alewife, whereas the timing and duration of spawning for anadromous alewife were found to be relatively invariant among years in our study system. For alewife and many other anadromous fish species, the increase in fish passage river restoration projects in the coming decades will re-establish habitat connectivity and may bring isolated populations into contact. Hybridization between life history forms may occur when prezygotic isolating mechanisms are minimal, leading to potentially rapid ecological and evolutionary changes in restored habitats.
Collapse
Affiliation(s)
| | - David Ellis
- Fisheries DivisionConnecticut Department of Energy and Environmental ProtectionOld LymeConnecticut
| | - Stephen R. Gephard
- Fisheries DivisionConnecticut Department of Energy and Environmental ProtectionOld LymeConnecticut
| | - Andrew D. MacDonald
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Eric P. Palkovacs
- Long Marine LaboratoryUniversity of California Santa CruzSanta CruzCalifornia
| | | | - David M. Post
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| |
Collapse
|
24
|
Diedericks G, Henriques R, von der Heyden S, Weyl OLF, Hui C. Sleeping with the enemy: introgressive hybridization in two invasive centrarchids. JOURNAL OF FISH BIOLOGY 2018; 93:405-410. [PMID: 29959774 DOI: 10.1111/jfb.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 06/15/2018] [Indexed: 05/25/2023]
Abstract
Introgressive hybridization between Micropterus dolomieu and Micropterus salmoides was assessed in their invaded South African range using nine microsatellite markers and two mtDNA gene regions. Although M. dolomieu and M. salmoides are distantly related, indicated by the large uncorrected pairwise distances observed between the two species, mitochondrial introgression and unidirectional admixture was detected.
Collapse
Affiliation(s)
- Genevieve Diedericks
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, Stellenbosch, South Africa
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Romina Henriques
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Olaf L F Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
- Centre for Invasion Biology, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, Stellenbosch, South Africa
- Mathematical Biosciences Group, African Institute for Mathematical Sciences, Cape Town, South Africa
| |
Collapse
|
25
|
Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population Genomics Provides Key Insights in Ecology and Evolution. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc Biol Sci 2017; 283:rspb.2016.1380. [PMID: 27881749 DOI: 10.1098/rspb.2016.1380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.
Collapse
Affiliation(s)
- Ryan P Kovach
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA
| | - Brian K Hand
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Ted F Cosart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Clint C Muhlfeld
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA.,Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Stephen J Amish
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Kellie Carim
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Shawn R Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID 83332, USA
| | - Winsor H Lowe
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Fred W Allendorf
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
27
|
Kovach RP, Muhlfeld CC, Al-Chokhachy R, Amish SJ, Kershner JL, Leary RF, Lowe WH, Luikart G, Matson P, Schmetterling DA, Shepard BB, Westley PAH, Whited D, Whiteley A, Allendorf FW. No evidence for ecological segregation protecting native trout from invasive hybridization. GLOBAL CHANGE BIOLOGY 2017; 23:e11-e12. [PMID: 28741850 DOI: 10.1111/gcb.13825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Ryan P Kovach
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
| | - Clint C Muhlfeld
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Robert Al-Chokhachy
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA
| | - Stephen J Amish
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Jeffrey L Kershner
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA
| | - Robb F Leary
- Montana, Fish, Wildlife and Parks, Missoula, MT, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Phil Matson
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | | | | | - Peter A H Westley
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Diane Whited
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Andrew Whiteley
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
28
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
29
|
Introgressive replacement of natives by invading Arion pest slugs. Sci Rep 2017; 7:14908. [PMID: 29097725 PMCID: PMC5668256 DOI: 10.1038/s41598-017-14619-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022] Open
Abstract
Hybridization with invasive species is one of the major threats to the phenotypic and genetic persistence of native organisms worldwide. Arion vulgaris (syn. lusitanicus) is a major agricultural pest slug that successfully invaded many European countries in recent decades, but its impact on closely related native species remains unclear. Here, we hypothesized that the regional decline of native A. rufus is connected with the spread of invasive A. vulgaris, and tested whether this can be linked to hybridization between the two species by analyzing 625 Arion sp. along altitudinal transects in three regions in Switzerland. In each region, we observed clear evidence of different degrees of genetic admixture, suggesting recurrent hybridization beyond the first generation. We found spatial differences in admixture patterns that might reflect distinct invasion histories among the regions. Our analyses provide a landscape level perspective for the genetic interactions between invasive and native animals during the invasion. We predict that without specific management action, A. vulgaris will further expand its range, which might lead to local extinction of A. rufus and other native slugs in the near future. Similar processes are likely occurring in other regions currently invaded by A. vulgaris.
Collapse
|
30
|
Muhlfeld CC, Kovach RP, Al-Chokhachy R, Amish SJ, Kershner JL, Leary RF, Lowe WH, Luikart G, Matson P, Schmetterling DA, Shepard BB, Westley PAH, Whited D, Whiteley A, Allendorf FW. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. GLOBAL CHANGE BIOLOGY 2017; 23:4663-4674. [PMID: 28374524 DOI: 10.1111/gcb.13681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.
Collapse
Affiliation(s)
- Clint C Muhlfeld
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Ryan P Kovach
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
| | - Robert Al-Chokhachy
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA
| | - Stephen J Amish
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Jeffrey L Kershner
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA
| | - Robb F Leary
- Montana Fish, Wildlife and Parks, Missoula, MT, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Phil Matson
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | | | | | - Peter A H Westley
- School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Diane Whited
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Andrew Whiteley
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
31
|
Lind-Riehl JF, Mayer AL, Wellstead AM, Gailing O. Hybridization, agency discretion, and implementation of the U.S. Endangered Species Act. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:1288-1296. [PMID: 27113272 DOI: 10.1111/cobi.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
The U.S. Endangered Species Act (ESA) requires that the "best available scientific and commercial data" be used to protect imperiled species from extinction and preserve biodiversity. However, it does not provide specific guidance on how to apply this mandate. Scientific data can be uncertain and controversial, particularly regarding species delineation and hybridization issues. The U.S. Fish and Wildlife Service (FWS) had an evolving hybrid policy to guide protection decisions for individuals of hybrid origin. Currently, this policy is in limbo because it resulted in several controversial conservation decisions in the past. Biologists from FWS must interpret and apply the best available science to their recommendations and likely use considerable discretion in making recommendations for what species to list, how to define those species, and how to recover them. We used semistructured interviews to collect data on FWS biologists' use of discretion to make recommendations for listed species with hybridization issues. These biologists had a large amount of discretion to determine the best available science and how to interpret it but generally deferred to the scientific consensus on the taxonomic status of an organism. Respondents viewed hybridization primarily as a problem in the context of the ESA, although biologists who had experience with hybridization issues were more likely to describe it in more nuanced terms. Many interviewees expressed a desire to continue the current case-by-case approach for handling hybridization issues, but some wanted more guidance on procedures (i.e., a "flexible" hybrid policy). Field-level information can provide critical insight into which policies are working (or not working) and why. The FWS biologists' we interviewed had a high level of discretion, which greatly influenced ESA implementation, particularly in the context of hybridization.
Collapse
Affiliation(s)
- Jennifer F Lind-Riehl
- Department of Social Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A..
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A..
| | - Audrey L Mayer
- Department of Social Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A
| | - Adam M Wellstead
- Department of Social Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A
| | - Oliver Gailing
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, U.S.A
| |
Collapse
|
32
|
Young MK, Isaak DJ, McKelvey KS, Wilcox TM, Pilgrim KL, Carim KJ, Campbell MR, Corsi MP, Horan DL, Nagel DE, Schwartz MK. Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams. PLoS One 2016; 11:e0163563. [PMID: 27828980 PMCID: PMC5102351 DOI: 10.1371/journal.pone.0163563] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/11/2016] [Indexed: 11/19/2022] Open
Abstract
Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78–0.86; classification success, 72–82%; 10-fold cross validation, 70–82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5–74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.
Collapse
Affiliation(s)
- Michael K. Young
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
- * E-mail:
| | - Daniel J. Isaak
- Rocky Mountain Research Station, USDA Forest Service, Boise, Idaho, United States of America
| | - Kevin S. McKelvey
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
| | - Taylor M. Wilcox
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Kristine L. Pilgrim
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
| | - Kellie J. Carim
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
| | - Matthew R. Campbell
- Eagle Fish Genetics Laboratory, Idaho Department of Fish and Game, Eagle, Idaho, United States of America
| | - Matthew P. Corsi
- Idaho Department of Fish and Game, Coeur d'Alene, Idaho, United States of America
| | - Dona L. Horan
- Rocky Mountain Research Station, USDA Forest Service, Boise, Idaho, United States of America
| | - David E. Nagel
- Rocky Mountain Research Station, USDA Forest Service, Boise, Idaho, United States of America
| | - Michael K. Schwartz
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, United States of America
| |
Collapse
|
33
|
Farkas TE, Mononen T, Comeault AA, Nosil P. Observational evidence that maladaptive gene flow reduces patch occupancy in a wild insect metapopulation. Evolution 2016; 70:2879-2888. [PMID: 27683197 DOI: 10.1111/evo.13076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 08/25/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
Theory predicts that dispersal throughout metapopulations has a variety of consequences for the abundance and distribution of species. Immigration is predicted to increase abundance and habitat patch occupancy, but gene flow can have both positive and negative demographic consequences. Here, we address the eco-evolutionary effects of dispersal in a wild metapopulation of the stick insect Timema cristinae, which exhibits variable degrees of local adaptation throughout a heterogeneous habitat patch network of two host-plant species. To disentangle the ecological and evolutionary contributions of dispersal to habitat patch occupancy and abundance, we contrasted the effects of connectivity to populations inhabiting conspecific host plants and those inhabiting the alternate host plant. Both types of connectivity should increase patch occupancy and abundance through increased immigration and sharing of beneficial alleles through gene flow. However, connectivity to populations inhabiting the alternate host-plant species may uniquely cause maladaptive gene flow that counters the positive demographic effects of immigration. Supporting these predictions, we find the relationship between patch occupancy and alternate-host connectivity to be significantly smaller in slope than the relationship between patch occupancy and conspecific-host connectivity. Our findings illustrate the ecological and evolutionary roles of dispersal in driving the distribution and abundance of species.
Collapse
Affiliation(s)
- Timothy E Farkas
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269
| | - Tommi Mononen
- Metapopulation Research Centre, Biosciences, University of Helsinki, Helsinki, 00014, Finland.,Neuroscience and Biomedical Engineering, Aalto University, Aalto, FI-00076, Finland
| | - Aaron A Comeault
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Biology, University of North Carolina, Durham, North Carolina, 27599
| | - Patrik Nosil
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
34
|
The Tangled Evolutionary Legacies of Range Expansion and Hybridization. Trends Ecol Evol 2016; 31:677-688. [DOI: 10.1016/j.tree.2016.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
|
35
|
Hauer FR, Locke H, Dreitz VJ, Hebblewhite M, Lowe WH, Muhlfeld CC, Nelson CR, Proctor MF, Rood SB. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. SCIENCE ADVANCES 2016; 2:e1600026. [PMID: 27386570 PMCID: PMC4928937 DOI: 10.1126/sciadv.1600026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/27/2016] [Indexed: 05/10/2023]
Abstract
Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
Collapse
Affiliation(s)
- F. Richard Hauer
- Center for Integrated Research on the Environment, University of Montana, Missoula, MT 59812, USA
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
- Corresponding author.
| | - Harvey Locke
- Yellowstone to Yukon Conservation Initiative, Box 4887, Banff, Alberta T1L 1G1, Canada
| | - Victoria J. Dreitz
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
- Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
| | - Winsor H. Lowe
- Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Clint C. Muhlfeld
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, MT 59936, USA
| | - Cara R. Nelson
- Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
| | - Michael F. Proctor
- Birchdale Ecological, PO Box 606, Kaslo, British Columbia V0G 1M0, Canada
| | - Stewart B. Rood
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 6T5, Canada
| |
Collapse
|
36
|
Hulsey CD, Bell KL, García-de-León FJ, Nice CC, Meyer A. Do relaxed selection and habitat temperature facilitate biased mitogenomic introgression in a narrowly endemic fish? Ecol Evol 2016; 6:3684-3698. [PMID: 27186367 PMCID: PMC4853310 DOI: 10.1002/ece3.2121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Introgression might be exceptionally common during the evolution of narrowly endemic species. For instance, in the springs of the small and isolated Cuatro Ciénegas Valley, the mitogenome of the cichlid fish Herichthys cyanoguttatus could be rapidly introgressing into populations of the trophically polymorphic H. minckleyi. We used a combination of genetic and environmental data to examine the factors associated with this mitochondrial introgression. A reduced representation library of over 6220 single nucleotide polymorphisms (SNPs) from the nuclear genome showed that mitochondrial introgression into H. minckleyi is biased relative to the amount of nuclear introgression. SNP assignment probabilities also indicated that cichlids with more hybrid ancestry are not more commonly female providing no support for asymmetric backcrossing or hybrid‐induced sex‐ratio distortion in generating the bias in mitochondrial introgression. Smaller effective population size in H. minckleyi inferred from the SNPs coupled with sequences of all 13 mitochondrial proteins suggests that relaxed selection on the mitogenome could be facilitating the introgression of “H. cyanoguttatus” haplotypes. Additionally, we showed that springs with colder temperatures had greater amounts of mitochondrial introgression from H. cyanoguttatus. Relaxed selection in H. minckleyi coupled with temperature‐related molecular adaptation could be facilitating mitogenomic introgression into H. minckleyi.
Collapse
Affiliation(s)
| | - Katherine L Bell
- Department of Biology Texas State University, San Marcos 601 University Drive 78666 San Marcos Texas
| | - Francisco J García-de-León
- Laboratorio de Genética para la Conservación Centro de Investigaciones Biológicas del Noroeste PO Box 128 La Paz B.C.S. Mexico
| | - Chris C Nice
- Department of Biology Texas State University, San Marcos 601 University Drive 78666 San Marcos Texas
| | - Axel Meyer
- Department of Biology University of Konstanz Universitätstraße 10 78457 Konstanz Germany
| |
Collapse
|
37
|
Kovach RP, Luikart G, Lowe WH, Boyer MC, Muhlfeld CC. Risk and efficacy of human-enabled interspecific hybridization for climate-change adaptation: response to Hamilton and Miller (2016). CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:428-430. [PMID: 26918487 DOI: 10.1111/cobi.12678] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Ryan P Kovach
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park West Glacier, MT, 59936, U.S.A
| | - Gordon Luikart
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, U.S.A
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, U.S.A
| | | | - Clint C Muhlfeld
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park West Glacier, MT, 59936, U.S.A
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, U.S.A
| |
Collapse
|
38
|
McKelvey KS, Young MK, Wilcox TM, Bingham DM, Pilgrim KL, Schwartz MK. Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecol Evol 2016; 6:688-706. [PMID: 26865958 PMCID: PMC4739558 DOI: 10.1002/ece3.1887] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
Introgressive hybridization between native and introduced species is a growing conservation concern. For native cutthroat trout and introduced rainbow trout in western North America, this process is thought to lead to the formation of hybrid swarms and the loss of monophyletic evolutionary lineages. Previous studies of this phenomenon, however, indicated that hybrid swarms were rare except when native and introduced forms of cutthroat trout co‐occurred. We used a panel of 86 diagnostic, single nucleotide polymorphisms to evaluate the genetic composition of 3865 fish captured in 188 locations on 129 streams distributed across western Montana and northern Idaho. Although introgression was common and only 37% of the sites were occupied solely by parental westslope cutthroat trout, levels of hybridization were generally low. Of the 188 sites sampled, 73% contained ≤5% rainbow trout alleles and 58% had ≤1% rainbow trout alleles. Overall, 72% of specimens were nonadmixed westslope cutthroat trout, and an additional 3.5% were nonadmixed rainbow trout. Samples from seven sites met our criteria for hybrid swarms, that is, an absence of nonadmixed individuals and a random distribution of alleles within the sample; most (6/7) were associated with introgression by Yellowstone cutthroat trout. In streams with multiple sites, upstream locations exhibited less introgression than downstream locations. We conclude that although the widespread introduction of nonnative trout within the historical range of westslope cutthroat trout has increased the incidence of introgression, sites containing nonadmixed populations of this taxon are common and broadly distributed.
Collapse
Affiliation(s)
- Kevin S McKelvey
- USDA Forest Service Rocky Mountain Research Station National Genomics Center for Wildlife and Fish Conservation 800 East Beckwith Avenue Missoula Montana 59801
| | - Michael K Young
- USDA Forest Service Rocky Mountain Research Station National Genomics Center for Wildlife and Fish Conservation 800 East Beckwith Avenue Missoula Montana 59801
| | - Taylor M Wilcox
- USDA Forest Service Rocky Mountain Research Station National Genomics Center for Wildlife and Fish Conservation 800 East Beckwith Avenue Missoula Montana 59801; Division of Biological Sciences University of Montana Missoula Montana 59812
| | - Daniel M Bingham
- Rogue Biological Consultants 215 NW 22nd Pl Suite 207 Portland OR 97217
| | - Kristine L Pilgrim
- USDA Forest Service Rocky Mountain Research Station National Genomics Center for Wildlife and Fish Conservation 800 East Beckwith Avenue Missoula Montana 59801
| | - Michael K Schwartz
- USDA Forest Service Rocky Mountain Research Station National Genomics Center for Wildlife and Fish Conservation 800 East Beckwith Avenue Missoula Montana 59801
| |
Collapse
|
39
|
Ostberg CO, Chase DM, Hauser L. Hybridization between Yellowstone Cutthroat Trout and Rainbow Trout Alters the Expression of Muscle Growth-Related Genes and Their Relationships with Growth Patterns. PLoS One 2015; 10:e0141373. [PMID: 26485525 PMCID: PMC4612777 DOI: 10.1371/journal.pone.0141373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/06/2015] [Indexed: 11/24/2022] Open
Abstract
Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.
Collapse
Affiliation(s)
- Carl O Ostberg
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, United States of America
| | - Dorothy M Chase
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, United States of America
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Manifest Density: A Reply to Phillips and Baird. Trends Ecol Evol 2015; 30:565-566. [DOI: 10.1016/j.tree.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/17/2022]
|
41
|
Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol 2015; 30:161-8. [DOI: 10.1016/j.tree.2015.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|