1
|
Spence-Jones HC, Scheibl C, Pein CM, Ionita M, Shama LNS. Do you remember? Within-generation and transgenerational heat stress memory of recurring marine heatwaves in threespine stickleback. Proc Biol Sci 2025; 292:20242913. [PMID: 39904388 PMCID: PMC11793969 DOI: 10.1098/rspb.2024.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Marine heatwaves can have major and lasting effects on organism physiology and species persistence. Such temperature extremes are increasing in frequency, with consecutive heatwave events already occurring within the lifetime of many organisms. Heat stress memory (thermal priming) by individuals is a potential within-generation response to cope with recurring marine heatwaves. However, whether this form of biological memory can be inherited across generations is not well known. We used a three-generation experiment to investigate individual and transgenerational effects of single and recurring marine heatwaves on fitness-related traits using stickleback (Gasterosteus aculeatus) as a model species. We exposed adults (both sexes) to heatwaves and assessed female reproductive output in both the parent and offspring generation, and offspring (both sexes) survival, growth and behaviour to establish a holistic picture of potential heatwave effects on ectothermic fish. Exposure to single, extreme heatwaves lowered reproductive output, decreased offspring exploratory behaviour, impeded capacity to respond to further thermal stress and reduced long-term survival. However, prior experience of heatwaves (heat stress memory) mitigated some of these effects at both an individual (growth) and transgenerational (fecundity) level, indicating that species experiencing increasing heatwave frequency as part of ongoing climate change may cope better than previously thought.
Collapse
Affiliation(s)
- Helen C. Spence-Jones
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, List25992, Germany
| | - Cassandra Scheibl
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, List25992, Germany
- Department of Animal Physiology, Universität Bayreuth, Universitätstrasse 30, Bayreuth95447, Germany
| | - Carla M. Pein
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, List25992, Germany
- Institute of Marine Ecosystem and Fishery Science, Universität Hamburg, Olbersweg 24, Hamburg22767, Germany
- Ecological Chemistry Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, am Handelshafen 12, Bremerhaven27570, Germany
| | - Monica Ionita
- Paleoclimate Dynamics Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, am Handelshafen 12, Bremerhaven27570, Germany
| | - Lisa N. S. Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, List25992, Germany
| |
Collapse
|
2
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. Proc Natl Acad Sci U S A 2025; 122:e2418199122. [PMID: 39772738 PMCID: PMC11745351 DOI: 10.1073/pnas.2418199122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in mosquito heat tolerance, and phenotypic trade-offs in tolerance to prolonged versus acute heat exposure. Further, we found genomic variation associated with prolonged heat tolerance was clustered in several regions of the genome, suggesting the presence of larger structural variants such as chromosomal inversions. A simple evolutionary model based on our data estimates that the maximum rate of evolutionary adaptation in mosquito heat tolerance will exceed the projected rate of climate warming, implying the potential for mosquitoes to track warming via genetic adaptation.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, Stanford, CA94305
- Division of Environmental Health Sciences, University of California, Berkeley, CA94704
| | | | - James A. Hemker
- Department of Biology, Stanford University, Stanford, CA94305
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Moi Exposito-Alonso
- Department of Integrative Biology, University of California, Berkeley, CA94704
- HHMI, Chevy Chase, MD20815
| | - Rachel B. Brem
- Department of Plant & Microbial Biology, University of California, Berkeley, CA94704
| | | | - Mark C. Bitter
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
3
|
Sasaki M, Finiguerra M, Dam HG. Seasonally variable thermal performance curves prevent adverse effects of heatwaves. J Anim Ecol 2024. [PMID: 39529241 DOI: 10.1111/1365-2656.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
1. Differential vulnerability to heatwaves may affect community dynamics in a changing climate. In temperate regions, this vulnerability to heatwaves depends on the interactions between seasonal temperature fluctuations and the capacity to rapidly shift thermal performance curves. 2. Here we investigate how these dynamics affect the vulnerability of two ecologically important copepod congeners, Acartia tonsa and A. hudsonica, to heatwaves of different durations. Using a combination of field observations and simulated laboratory heatwave experiments, we uncover strong seasonal variation in the performance curves of A. tonsa but not A. hudsonica. This translated to species-specific seasonal patterns of vulnerability to heatwaves, with increased vulnerability in A. hudsonica. 3. By reducing parental stress during simulated heatwaves, seasonal performance curve shifts likely reduced indirect, transgenerational effects of these events on offspring performance in A. tonsa. 4. Our results illustrate how different levels of seasonal variation in thermal performance curves will affect population persistence in a changing climate.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
- Biology Department, University of Vermont, Burlington, Vermont, USA
| | - Michael Finiguerra
- Ecology and Evolutionary Biology Department, University of Connecticut, Groton, Connecticut, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
4
|
Griffiths JS, Sasaki M, Neylan IP, Kelly MW. The Potential for Experimental Evolution to Uncover Trade-Offs Associated With Anthropogenic and Climate Change Adaptation. GLOBAL CHANGE BIOLOGY 2024; 30:e17584. [PMID: 39582252 DOI: 10.1111/gcb.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Evolutionary responses to climate change may incur trade-offs due to energetic constraints and mechanistic limitations, which are both influenced by environmental context. Adaptation to one stressor may result in life history trade-offs, canalization of phenotypic plasticity, and the inability to tolerate other stressors, among other potential costs. While trade-offs incurred during adaptation are difficult to detect in natural populations, experimental evolution can provide important insights by measuring correlated responses to selection as populations adapt to changing environments. However, studies testing for trade-offs have generally lagged behind the growth in the use of experimental evolution in climate change studies. We argue that the important insights generated by the few studies that have tested for trade-offs make a strong case for including these types of measurements in future studies of climate adaptation. For example, there is emerging consensus from experimental evolution studies that tolerance and tolerance plasticity trade-offs are an often-observed outcome of adaptation to anthropogenic change. In recent years, these types of studies have been strengthened by the use of sequencing of experimental populations, which provides promising new avenues for understanding the molecular mechanisms underlying observed phenotypic trade-offs.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Matthew Sasaki
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Isabelle P Neylan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Cicchino AS, Ghalambor CK, Forester BR, Dunham JD, Funk WC. Greater plasticity in CTmax with increased climate variability among populations of tailed frogs. Proc Biol Sci 2024; 291:20241628. [PMID: 39500377 PMCID: PMC11537758 DOI: 10.1098/rspb.2024.1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/09/2024] Open
Abstract
Temporally variable climates are expected to drive the evolution of thermal physiological traits that enable performance across a wider range of temperatures (i.e. climate variability hypothesis, CVH). Spatial thermal variability, however, may mediate this relationship by providing ectotherms with the opportunity to behaviourally select preferred temperatures (i.e. the Bogert effect). These antagonistic forces on thermal physiological traits may explain the mixed support for the CVH within species despite strong support among species at larger geographical scales. Here, we test the CVH as it relates to plasticity in physiological upper thermal limits (critical thermal maximum-CTmax) among populations of coastal tailed frogs (Ascaphus truei). We targeted populations that inhabit spatially homogeneous environments, reducing the potentially confounding effects of behavioural thermoregulation. We found that populations experiencing greater temporal thermal variability exhibited greater plasticity in CTmax, supporting the CVH. Interestingly, we identified only one site with spatial temperature variability and tadpoles from this site demonstrated greater plasticity than expected, suggesting the opportunity for behavioural thermoregulation can reduce support for the CVH. Overall, our results demonstrate one role of climate variability in shaping thermal plasticity among populations and provide a baseline understanding of the impact of the CVH in spatially homogeneous thermal landscapes.
Collapse
Affiliation(s)
- Amanda S. Cicchino
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| | - Cameron K. Ghalambor
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), TrondheimN‐7491, Norway
| | - Brenna R. Forester
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| | - Jason D. Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR97331, USA
| | - W. Chris Funk
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| |
Collapse
|
6
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609454. [PMID: 39229052 PMCID: PMC11370604 DOI: 10.1101/2024.08.23.609454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, facilitating expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in acute heat tolerance, which phenotypically trades off with tolerance to prolonged heat exposure. A simple evolutionary model based on our data shows that the estimated maximum rate of evolutionary adaptation in mosquito heat tolerance typically exceeds that of projected climate warming under idealized conditions. Our findings indicate that natural mosquito populations may have the potential to track projected warming via genetic adaptation. Prior climate-based projections may thus underestimate the range of mosquito and mosquito-borne disease distributions under future climate conditions.
Collapse
Affiliation(s)
- Lisa I Couper
- Stanford University, Department of Biology
- University of California, Berkeley, Division of Environmental Health Sciences
| | | | | | | | - Moi Exposito-Alonso
- University of California, Berkeley, Department of Integrative Biology
- Howard Hughes Medical Institute
| | - Rachel B Brem
- University of California, Berkeley, Department of Plant & Microbial Biology
| | | | | |
Collapse
|
7
|
Stocker CW, Bamford SM, Jahn M, Mazué GPF, Pettersen AK, Ritchie D, Rubin AM, Noble DWA, Seebacher F. The Effect of Temperature Variability on Biological Responses of Ectothermic Animals-A Meta-Analysis. Ecol Lett 2024; 27:e14511. [PMID: 39354891 DOI: 10.1111/ele.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased 'gene expression' in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.
Collapse
Affiliation(s)
- Clayton W Stocker
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie M Bamford
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey P F Mazué
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Amanda K Pettersen
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel Ritchie
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M Rubin
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Mizsei E, Radovics D, Rák G, Budai M, Bancsik B, Szabolcs M, Sos T, Lengyel S. Alpine viper in changing climate: thermal ecology and prospects of a cold-adapted reptile in the warming Mediterranean. Sci Rep 2024; 14:18988. [PMID: 39152146 PMCID: PMC11329715 DOI: 10.1038/s41598-024-69378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
In a rapidly changing thermal environment, reptiles are primarily dependent on in situ adaptation because of their limited ability to disperse and the restricted opportunity to shift their ranges. However, the rapid pace of climate change may surpass these adaptation capabilities or elevate energy expenditures. Therefore, understanding the variability in thermal traits at both individual and population scales is crucial, offering insights into reptiles' vulnerability to climate change. We studied the thermal ecology of the endangered Greek meadow viper (Vipera graeca), an endemic venomous snake of fragmented alpine-subalpine meadows above 1600 m of the Pindos mountain range in Greece and Albania, to assess its susceptibility to anticipated changes in the alpine thermal environment. We measured preferred body temperature in artificial thermal gradient, field body temperatures of 74 individuals in five populations encompassing the entire geographic range of the species, and collected data on the available of temperatures for thermoregulation. We found that the preferred body temperature (Tp) differed only between the northernmost and the southernmost populations and increased with female body size but did not depend on sex or the gravidity status of females. Tp increased with latitude but was unaffected by the phylogenetic position of the populations. We also found high accuracy of thermoregulation in V. graeca populations and variation in the thermal quality of habitats throughout the range. The overall effectiveness of thermoregulation was high, indicating that V. graeca successfully achieves its target temperatures and exploits the thermal landscape. Current climatic conditions limit the activity period by an estimated 1278 h per year, which is expected to increase considerably under future climate scenarios. Restricted time available for thermoregulation, foraging and reproduction will represent a serious threat to the fitness of individuals and the persistence of populations in addition to habitat loss due to mining, tourism or skiing and habitat degradation due to overgrazing in the shrinking mountaintop habitats of V. graeca.
Collapse
Affiliation(s)
- Edvárd Mizsei
- Conservation Ecology Research Group, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary.
- Kiskunság National Park Directorate, Kecskemét, Hungary.
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary.
| | - Dávid Radovics
- Kiskunság National Park Directorate, Kecskemét, Hungary
- Department of Ecology, University of Debrecen, Debrecen, Hungary
| | - Gergő Rák
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Mátyás Budai
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Bancsik
- Department of Ecology, University of Veterinary Medicine, Budapest, Hungary
| | - Márton Szabolcs
- Conservation Ecology Research Group, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Tibor Sos
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Milvus Group Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Szabolcs Lengyel
- Conservation Ecology Research Group, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
- Biodiversity, Climate Change and Water Management Coordination Research Centre, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Spence-Jones HC, Pein CM, Shama LNS. Intergenerational effects of ocean temperature variation: Early life benefits are short-lived in threespine stickleback. PLoS One 2024; 19:e0307030. [PMID: 39093894 PMCID: PMC11296643 DOI: 10.1371/journal.pone.0307030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Current climate change models predict an increase in temperature variability and extreme events such as heatwaves, and organisms need to cope with consequent changes to environmental variation. Non-genetic inheritance mechanisms can enable parental generations to prime their offspring's abilities to acclimate to environmental change-but they may also be deleterious. When parents are exposed to predictable environments, intergenerational plasticity can lead to better offspring trait performance in matching environments. Alternatively, parents exposed to variable or unpredictable environments may use plastic bet-hedging strategies to adjust the phenotypic variance among offspring. Here, we used a model species, the threespine stickleback (Gasterosteus aculeatus), to test whether putatively adaptive intergenerational effects can occur in response to shifts in environmental variation as well as to shifts in environmental mean, and whether parents employ plastic bet-hedging strategies in response to increasing environmental variation. We used a full-factorial, split-clutch experiment with parents and offspring exposed to three temperature regimes: constant, natural variation, and increased variation. We show that within-generation exposure to increased temperature variation reduces growth of offspring, but having parents that were exposed to natural temperature variation during gametogenesis may offset some early-life negative growth effects. However, these mitigating intergenerational effects do not appear to persist later in life. We found no indication that stickleback mothers plastically altered offspring phenotypic variance (egg size or clutch size) in response to temperature variation. However, lower inter-individual variance of juvenile fish morphology in offspring of increased variation parents may imply the presence of conservative bet-hedging strategies in natural populations. Overall, in our experiment, parental exposure to temperature variation had limited effects on offspring fitness-related traits. Natural levels of environmental variation promoted a potentially adaptive intergenerational response in early life development, but under more challenging conditions associated with increased environmental variation, the effect was lost.
Collapse
Affiliation(s)
- Helen Clare Spence-Jones
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Carla M. Pein
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Lisa N. S. Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| |
Collapse
|
10
|
Giacometti D, Palaoro AV, Leal LC, de Barros FC. How seasonality influences the thermal biology of lizards with different thermoregulatory strategies: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:409-429. [PMID: 37872698 DOI: 10.1111/brv.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Ectotherms that maintain thermal balance in the face of varying climates should be able to colonise a wide range of habitats. In lizards, thermoregulation usually appears as a variety of behaviours that buffer external influences over physiology. Basking species rely on solar radiation to raise body temperatures and usually show high thermoregulatory precision. By contrast, species that do not bask are often constrained by climatic conditions in their habitats, thus having lower thermoregulatory precision. While much focus has been given to the effects of mean habitat temperatures, relatively less is known about how seasonality affects the thermal biology of lizards on a macroecological scale. Considering the current climate crisis, assessing how lizards cope with temporal variations in environmental temperature is essential to understand better how these organisms will fare under climate change. Activity body temperatures (Tb ) represent the internal temperature of an animal measured in nature during its active period (i.e. realised thermal niche), and preferred body temperatures (Tpref ) are those selected by an animal in a laboratory thermal gradient that lacks thermoregulatory costs (i.e. fundamental thermal niche). Both traits form the bulk of thermal ecology research and are often studied in the context of seasonality. In this study, we used a meta-analysis to test how environmental temperature seasonality influences the seasonal variation in the Tb and Tpref of lizards that differ in thermoregulatory strategy (basking versus non-basking). Based on 333 effect sizes from 137 species, we found that Tb varied over a greater magnitude than Tpref across seasons. Variations in Tb were not influenced by environmental temperature seasonality; however, body size and thermoregulatory strategy mediated Tb responses. Specifically, larger species were subjected to greater seasonal variations in Tb , and basking species endured greater seasonal variations in Tb compared to non-basking species. On the other hand, the seasonal variation in Tpref increased with environmental temperature seasonality regardless of body size. Thermoregulatory strategy also influenced Tpref , suggesting that behaviour has an important role in mediating Tpref responses to seasonal variations in the thermal landscape. After controlling for phylogenetic effects, we showed that Tb and Tpref varied significantly across lizard families. Taken together, our results support the notion that the relationship between thermal biology responses and climatic parameters can be taxon and trait dependent. Our results also showcase the importance of considering ecological and behavioural aspects in macroecological studies. We further highlight current systematic, geographical, and knowledge gaps in thermal ecology research. Our work should benefit those who aim to understand more fully how seasonality shapes thermal biology in lizards, ultimately contributing to the goal of elucidating the evolution of temperature-sensitive traits in ectotherms.
Collapse
Affiliation(s)
- Danilo Giacometti
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S3A1, Canada
| | - Alexandre V Palaoro
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Department of Material Sciences and Engineering, 490 Sirrine Hall, Clemson University, 515 Calhoun Dr, Clemson, SC, 29634, USA
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão Trav. 14, São Paulo, 05508-090, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, Paraná, 82590-300, Brasil
| | - Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
| | - Fábio C de Barros
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Departamento de Biociências, Universidade do Estado de Minas Gerais, Avenida Juca Stockler 1130, Passos, Minas Gerais, 37900-106, Brasil
| |
Collapse
|
11
|
Bonzi LC, Donelson JM, Spinks RK, Munday PL, Ravasi T, Schunter C. Matching maternal and paternal experiences underpin molecular thermal acclimation. Mol Ecol 2024:e17328. [PMID: 38520127 DOI: 10.1111/mec.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
The environment experienced by one generation has the potential to affect the subsequent one through non-genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle the maternal and paternal contributions to transgenerational thermal acclimation in a reef fish, Acanthochromis polyacanthus, by exposing two generations to elevated temperature (+1.5°C) in a fully factorial design and analysing the F2 hepatic gene expression. Paternal and maternal effects showed not only common but also parent-specific components, with the father having the largest influence in shaping the offspring's transcriptomic profile. Fathers contributed to transcriptional transgenerational response to warming through transfer of epigenetically controlled stress-response mechanisms while mothers influenced increased gene expression associated with lipid metabolism regulation. However, the key to acclimation potential was matching thermal experiences of the parents. When both parents were exposed to the same condition, offspring showed increased expression of genes related to structural RNA production and transcriptional regulation, whereas environmental mismatch in parents resulted in maladaptive parental condition transfer, revealed by translation suppression and endoplasmic reticulum stress. Interestingly, the offspring's own environmental experience had the smallest influence on their hepatic transcription profiles. Taken together, our results show the complex nature of the interplay among paternal, maternal and offspring cue integration, and reveal that acclimation potential to ocean warming might depend not only on maternal and paternal contributions but importantly on congruent parental thermal experiences.
Collapse
Affiliation(s)
- L C Bonzi
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - J M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - R K Spinks
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Blue Carbon Section, Australian Government Department of Climate Change, Energy, the Environment and Water, Canberra, Australian Capital Territory, Australia
| | - P L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - T Ravasi
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
12
|
Rivera-Rincón N, Altindag UH, Amin R, Graze RM, Appel AG, Stevison LS. "A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes". JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104616. [PMID: 38278288 PMCID: PMC11048572 DOI: 10.1016/j.jinsphys.2024.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermalmaximum (CTmax), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, Drosophila melanogaster (25 vs. 29.5 °C) and Drosophila pseudoobscura (20.5 vs. 25 °C). The fecundity of D. melanogaster was more affected by high temperatures when exposed during egg through adult development, while D. pseudoobscura was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, D. melanogaster males exhibited a decrease of CTmax under high temperatures, while females showed an increase of CTmax when exposed to high temperatures during egg through adult development. while D. pseudoobscura females and males showed an increased CTmax only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.
Collapse
Affiliation(s)
- N Rivera-Rincón
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - U H Altindag
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R Amin
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - A G Appel
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - L S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL USA.
| |
Collapse
|
13
|
Usui T, Angert AL. Range expansion is both slower and more variable with rapid evolution across a spatial gradient in temperature. Ecol Lett 2024; 27:e14406. [PMID: 38491734 DOI: 10.1111/ele.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Rapid evolution in colonising populations can alter our ability to predict future range expansions. Recent theory suggests that the dynamics of replicate range expansions are less variable, and hence more predictable, with increased selection at the expanding range front. Here, we test whether selection from environmental gradients across space produces more consistent range expansion speeds, using the experimental evolution of replicate duckweed populations colonising landscapes with and without a temperature gradient. We found that the range expansion across a temperature gradient was slower on average, with range-front populations displaying higher population densities, and genetic signatures and trait changes consistent with directional selection. Despite this, we found that with a spatial gradient range expansion speed became more variable and less consistent among replicates over time. Our results therefore challenge current theory, highlighting that chance can still shape the genetic response to selection to influence our ability to predict range expansion speeds.
Collapse
Affiliation(s)
- Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Gonzalez VH, Herbison N, Robles Perez G, Panganiban T, Haefner L, Tscheulin T, Petanidou T, Hranitz J. Bees display limited acclimation capacity for heat tolerance. Biol Open 2024; 13:bio060179. [PMID: 38427330 PMCID: PMC10979511 DOI: 10.1242/bio.060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees' acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Natalie Herbison
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Trisha Panganiban
- Department of Biological Sciences, California State University, Los Angeles, CA, 35229, USA
| | - Laura Haefner
- Biology Department, Waynesburg University, PA, 47243, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - John Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, 17815 PA, USA
| |
Collapse
|
15
|
van Heerwaarden B, Sgrò C, Kellermann VM. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc Biol Sci 2024; 291:20232700. [PMID: 38320612 PMCID: PMC10846935 DOI: 10.1098/rspb.2023.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.
Collapse
Affiliation(s)
| | - Carla Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Vanessa M. Kellermann
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
16
|
Jones LJ, Miller DA, Schilder RJ, López‐Uribe MM. Body mass, temperature, and pathogen intensity differentially affect critical thermal maxima and their population-level variation in a solitary bee. Ecol Evol 2024; 14:e10945. [PMID: 38362170 PMCID: PMC10867875 DOI: 10.1002/ece3.10945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Climate change presents a major threat to species distribution and persistence. Understanding what abiotic or biotic factors influence the thermal tolerances of natural populations is critical to assessing their vulnerability under rapidly changing thermal regimes. This study evaluates how body mass, local climate, and pathogen intensity influence heat tolerance and its population-level variation (SD) among individuals of the solitary bee Xenoglossa pruinosa. We assess the sex-specific relationships between these factors and heat tolerance given the differences in size between sexes and the ground-nesting behavior of the females. We collected X. pruinosa individuals from 14 sites across Pennsylvania, USA, that varied in mean temperature, precipitation, and soil texture. We measured the critical thermal maxima (CTmax) of X. pruinosa individuals as our proxy for heat tolerance and used quantitative PCR to determine relative intensities of three parasite groups-trypanosomes, Spiroplasma apis (mollicute bacteria), and Vairimorpha apis (microsporidian). While there was no difference in CTmax between the sexes, we found that CTmax increased significantly with body mass and that this relationship was stronger for males than for females. Air temperature, precipitation, and soil texture did not predict mean CTmax for either sex. However, population-level variation in CTmax was strongly and negatively correlated with air temperature, which suggests that temperature is acting as an environmental filter. Of the parasites screened, only trypanosome intensity correlated with heat tolerance. Specifically, trypanosome intensity negatively correlated with the CTmax of female X. pruinosa but not males. Our results highlight the importance of considering size, sex, and infection status when evaluating thermal tolerance traits. Importantly, this study reveals the need to evaluate trends in the variation of heat tolerance within and between populations and consider implications of reduced variation in heat tolerance for the persistence of ectotherms in future climate conditions.
Collapse
Affiliation(s)
- Laura J. Jones
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Douglas A. Miller
- Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf J. Schilder
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Margarita M. López‐Uribe
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
17
|
Ashlock L, Darwin C, Crooker J, deMayo J, Dam HG, Pespeni M. Developmental temperature, more than long-term evolution, defines thermal tolerance in an estuarine copepod. Ecol Evol 2024; 14:e10995. [PMID: 38380068 PMCID: PMC10877657 DOI: 10.1002/ece3.10995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short-term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short- or long-term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near-shore and estuarine copepod, Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation-old temperature-adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming.
Collapse
Affiliation(s)
- Lauren Ashlock
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Chelsea Darwin
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Jessica Crooker
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - James deMayo
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
| | - Hans G. Dam
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
| | - Melissa Pespeni
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
18
|
Major HL, Rivers JE, Carvey QB, Diamond AW. The incredible shrinking puffin: Decreasing size and increasing proportional bill size of Atlantic puffins nesting at Machias Seal Island. PLoS One 2024; 19:e0295946. [PMID: 38232078 DOI: 10.1371/journal.pone.0295946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Climate change imposes physiological constraints on organisms particularly through changing thermoregulatory requirements. Bergmann's and Allen's rules suggest that body size and the size of thermoregulatory structures differ between warm and cold locations, where body size decreases with temperature and thermoregulatory structures increase. However, phenotypic plastic responses to malnutrition during development can result in the same patterns while lacking fitness benefits. The Gulf of Maine (GOM), located at the southern end of the Labrador current, is warming faster than most of the world's oceans, and many of the marine species that occupy these waters exist at the southern edge of their distributions including Atlantic puffins (Fratercula arctica; hereafter "puffin"). Monitoring of puffins in the GOM, at Machias Seal Island (MSI), has continued annually since 1995. We asked whether changes in adult puffin body size and the proportional size of bill to body have changed with observed rapid ocean warming. We found that the size of fledgling puffins is negatively related to sea surface temperature anomalies (warm conditions = small fledgers), adult puffin size is related to fledgling size (small fledgers = small adults), and adult puffins have decreased in size in recent years in response to malnutrition during development. We found an increase in the proportional size of bill to wing chord, likely in response to some mix of malnutrition during development and increasing air temperatures. Although studies have assessed clinal variation in seabird morphology with temperature, this is the first study addressing changes in seabird morphology in relation to ocean warming. Our results suggest that puffins nesting in the GOM have morphological plasticity that may help them acclimate to ocean warming.
Collapse
Affiliation(s)
- Heather L Major
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Joy E Rivers
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Quinn B Carvey
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Antony W Diamond
- Atlantic Laboratory for Avian Research, University of New Brunswick, Fredericton NB, Canada
| |
Collapse
|
19
|
Carrillo-Longoria JA, Gaylord G, Andrews L, Powell M. Effect of temperature on growth, survival, and chronic stress responses of Arctic Grayling juveniles. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY 2024; 153:3-22. [PMID: 38854661 PMCID: PMC11156260 DOI: 10.1002/tafs.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
Arctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8 to 18 °C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses. Over a 144-day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8-26 °C to measure the effects on growth, survival, gene expression and antioxidant enzyme activity. Fish growth increased with increasing water temperature up to 18 °C, beyond which survival was reduced. Fish did not survive at temperatures above 22 °C. In response to temperatures above 16 °C, a 3-fold and 1.5-fold increase in gene expression was observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the ratio of Heat Shock Protein 70 (HSP70) and heat shock protein 90 (HSP90) expression. Enzyme activities of SOD and GPx also rose at temperatures above 16 °C, indicating heightened oxidative stress. Catalase (CAT) gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase of Thiobarbituric acid reactive substances (TBARS) was also recorded, which corresponded with rising temperatures. Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise survival of Arctic Grayling in the Big Hole River.
Collapse
Affiliation(s)
- Javier-Alonso Carrillo-Longoria
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| | - Gibson Gaylord
- U.S. Fish and Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, USA
| | - Lukas Andrews
- Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209
| | - Madison Powell
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| |
Collapse
|
20
|
Beaty F, Gehman ALM, Brownlee G, Harley CDG. Not just range limits: Warming rate and thermal sensitivity shape climate change vulnerability in a species range center. Ecology 2023; 104:e4183. [PMID: 37786322 DOI: 10.1002/ecy.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Climate change manifests unevenly across space and time and produces complex patterns of stress for ecological systems. Species can also show substantial among-population variability in response to environmental change across their geographic range due to evolutionary processes. Explanatory factors or their proxies, such as temperature and latitude, help parse these sources of environmental and intraspecific variability; however, overemphasizing latitudinal trends can obscure the role of local environmental conditions in shaping population vulnerability to climate change. Focusing on the geographic center of a species range to disentangle latitude, we test the hypothesis that populations from warmer regions of a species range are more vulnerable to ocean warming. We conducted a mesocosm experiment and field reciprocal transplant with four populations of a marine snail, Nucella lamellosa, from two regions in British Columbia, Canada, that differ in thermal characteristics: the Central Coast, a cool region, and the Strait of Georgia, one of the warmest regions of this species' range and one that is warming faster than the Central Coast. Populations from the Strait of Georgia experienced growth reductions at contemporary summertime seawater temperatures in the laboratory and showed stark reductions in survival and growth under future seawater conditions and when outplanted at their native transplant sites. This indicates a high vulnerability to ocean warming, especially given the faster rate of ocean warming in this region. In contrast, populations from the cooler Central Coast demonstrated high performance at contemporary seawater temperatures and high growth and survival in projected future seawater temperatures and at their native outplant sites. Given their position within the geographic center of N. lamellosa's range, extirpation events in the vulnerable Strait of Georgia populations could compromise connectivity within the metapopulation and lead to gaps across this species' range. Overall, our study supports predictions that populations from warm regions of species ranges are more vulnerable to environmental warming, suggests that the Strait of Georgia and other inland or coastal seas could be focal points for climate change effects and ecological transformation, and emphasizes the importance of analyzing climate change vulnerability in the context of regional environmental data and throughout a species' range.
Collapse
Affiliation(s)
- Fiona Beaty
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| | - Alyssa-Lois M Gehman
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Hakai Institute, Quadra Island, British Columbia, Canada
| | - Graham Brownlee
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| | - Christopher D G Harley
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Joly LJ, Boersma M, Giraldo C, Mazurais D, Madec L, Collet S, Zambonino-Infante JL, Meunier CL. Smaller herring larval size-at-stage in response to environmental changes is associated with ontogenic processes and stress response. CONSERVATION PHYSIOLOGY 2023; 11:coad072. [PMID: 37711582 PMCID: PMC10498416 DOI: 10.1093/conphys/coad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11°C*pH 8.0) and a scenario predicted for 2100 (14°C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14°C and 60 dph at 11°C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
Collapse
Affiliation(s)
- Léa J Joly
- English Channel and North Sea Research Unit, Ifremer, 150 Quai Gambetta, 62200 Boulogne-sur-Mer, France
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Maarten Boersma
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
- FB2, University of Bremen, Leobener Str, 28359 Bremen, Germany
| | - Carolina Giraldo
- English Channel and North Sea Research Unit, Ifremer, 150 Quai Gambetta, 62200 Boulogne-sur-Mer, France
| | - David Mazurais
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Lauriane Madec
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Sophie Collet
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - José-Luis Zambonino-Infante
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Cédric L Meunier
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
| |
Collapse
|
22
|
Szukala A, Bertel C, Frajman B, Schönswetter P, Paun O. Parallel adaptation to lower altitudes is associated with enhanced plasticity in Heliosperma pusillum (Caryophyllaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1619-1632. [PMID: 37277969 PMCID: PMC10952512 DOI: 10.1111/tpj.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
High levels of phenotypic plasticity are thought to be inherently costly in stable or extreme environments, but enhanced plasticity may evolve as a response to new environments and foster novel phenotypes. Heliosperma pusillum forms glabrous alpine and pubescent montane ecotypes that diverged recurrently and polytopically (parallel evolution) and can serve as evolutionary replicates. The specific alpine and montane localities are characterized by distinct temperature conditions, available moisture, and light. Noteworthy, the ecotypes show a home-site fitness advantage in reciprocal transplantations. To disentangle the relative contribution of constitutive versus plastic gene expression to altitudinal divergence, we analyze the transcriptomic profiles of two parallely evolved ecotype pairs, grown in reciprocal transplantations at native altitudinal sites. In this incipient stage of divergence, only a minor proportion of genes appear constitutively differentially expressed between the ecotypes in both pairs, regardless of the growing environment. Both derived, montane populations bear comparatively higher plasticity of gene expression than the alpine populations. Genes that change expression plastically or constitutively underlie similar ecologically relevant pathways, related to response to drought and trichome formation. Other relevant processes, such as photosynthesis, rely mainly on plastic changes. The enhanced plasticity consistently observed in the montane ecotype likely evolved as a response to the newly colonized, drier, and warmer niche. We report a striking parallelism of directional changes in gene expression plasticity. Thus, plasticity appears to be a key mechanism shaping the initial stages of phenotypic evolution, likely fostering adaptation to novel environments.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Austrian Federal Research Centre for Forests (BFW)Unit of Ecological GeneticsSeckendorff‐Gudent‐Weg 8A‐1131ViennaAustria
| | - Clara Bertel
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
23
|
Gunderson AR. Trade-offs between baseline thermal tolerance and thermal tolerance plasticity are much less common than it appears. GLOBAL CHANGE BIOLOGY 2023; 29:3519-3524. [PMID: 37272873 DOI: 10.1111/gcb.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/06/2023]
Abstract
Thermal tolerance plasticity is a core mechanism by which organisms can mitigate the effects of climate change. As a result, there is a need to understand how variation in tolerance plasticity arises. The baseline tolerance/plasticity trade-off hypothesis (hereafter referred to as the trade-off hypothesis, TOH) has recently emerged as a potentially powerful explanation. The TOH posits that organisms with high baseline thermal tolerance have reduced thermal tolerance plasticity relative to those with low baseline tolerance. Many studies have found support for the TOH. However, this support must be regarded cautiously because the most common means of testing the TOH can yield spurious "trade-offs" due to regression to the mean. I acquired data for 25 previously published analyses that supported the TOH at the intraspecific level and reanalyzed them after applying a method that adjusts plasticity estimates for regression to the mean. Only six of the 25 analyses remained statistically significant after adjustment, and effect size and variance explained decreased in all cases. The few data sets in which support for the TOH was maintained after adjustment point to areas of future study, but are too few to make generalizations at this point. In sum, regression to the mean has led to a substantial overestimation of support for the TOH and must be accounted for in future tests of the hypothesis.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
24
|
Linck EB, Williamson JL, Bautista E, Beckman EJ, Benham PM, DuBay SG, Flores LM, Gadek CR, Johnson AB, Jones MR, Núñez-Zapata J, Quiñonez A, Schmitt CJ, Susanibar D, Tiravanti C J, Verde-Guerra K, Wright NA, Valqui T, Storz JF, Witt CC. Blood Variation Implicates Respiratory Limits on Elevational Ranges of Andean Birds. Am Nat 2023; 201:741-754. [PMID: 37130238 DOI: 10.1086/723222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hot spot. Along Andean elevational gradients, we measured traits that affect blood oxygen-carrying capacity-total and cellular hemoglobin concentration and hematocrit, the volume percentage of red blood cells-for 2,355 individuals of 136 bird species. We used these data to evaluate the influence of hematological traits on elevational ranges. First, we asked whether the sensitivity of hematological traits to changes in elevation is predictive of elevational range breadth. Second, we asked whether variance in hematological traits changed as a function of distance to the nearest elevational range limit. We found that birds showing greater hematological sensitivity had broader elevational ranges, consistent with the idea that a greater acclimatization capacity facilitates elevational range expansion. We further found reduced variation in hematological traits in birds sampled near their elevational range limits and at high absolute elevations, patterns consistent with intensified natural selection, reduced effective population size, or compensatory changes in other cardiorespiratory traits. Our findings suggest that constraints on hematological sensitivity and local genetic adaptation to oxygen availability promote the evolution of the narrow elevational ranges that underpin tropical montane biodiversity.
Collapse
|
25
|
Dallas J, Warne RW. Heat hardening of a larval amphibian is dependent on acclimation period and temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:339-345. [PMID: 36811331 DOI: 10.1002/jez.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Plasticity in heat tolerance provides ectotherms the ability to reduce overheating risk during thermal extremes. However, the tolerance-plasticity trade-off hypothesis states that individuals acclimated to warmer environments have a reduced plastic response, including hardening, limiting their ability to further adjust their thermal tolerance. Heat hardening describes the short-term increase in heat tolerance following a heat shock that remains understudied in larval amphibians. We sought to examine the potential trade-off between basal heat tolerance and hardening plasticity of a larval amphibian, Lithobates sylvaticus, in response to differing acclimation temperatures and periods. Lab-reared larvae were exposed to one of two acclimation temperatures (15°C and 25°C) for either 3 or 7 days, at which time heat tolerance was measured as critical thermal maximum (CTmax ). A hardening treatment (sub-critical temperature exposure) was applied 2 h before the CTmax assay for comparison to control groups. We found that heat-hardening effects were most pronounced in 15°C acclimated larvae, particularly after 7 days of acclimation. By contrast, larvae acclimated to 25°C exhibited only minor hardening responses, while basal heat tolerance was significantly increased as shown by elevated CTmax temperatures. These results are in line with the tolerance-plasticity trade-off hypothesis. Specifically, while exposure to elevated temperatures induces acclimation in basal heat tolerance, shifts towards upper thermal tolerance limits constrain the capacity for ectotherms to further respond to acute thermal stress.
Collapse
Affiliation(s)
- Jason Dallas
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Robin W Warne
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
26
|
Donham EM, Flores I, Hooper A, O’Brien E, Vylet K, Takeshita Y, Freiwald J, Kroeker KJ. Population-specific vulnerability to ocean change in a multistressor environment. SCIENCE ADVANCES 2023; 9:eade2365. [PMID: 36662849 PMCID: PMC9858493 DOI: 10.1126/sciadv.ade2365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Variation in environmental conditions across a species' range can alter their responses to environmental change through local adaptation and acclimation. Evolutionary responses, however, may be challenged in ecosystems with tightly coupled environmental conditions, where changes in the covariance of environmental factors may make it more difficult for species to adapt to global change. Here, we conduct a 3-month-long mesocosm experiment and find evidence for local adaptation/acclimation in populations of red sea urchins, Mesocentrotus franciscanus, to multiple environmental drivers. Moreover, populations differ in their response to projected concurrent changes in pH, temperature, and dissolved oxygen. Our results highlight the potential for local adaptation/acclimation to multivariate environmental regimes but suggest that thresholds in responses to a single environmental variable, such as temperature, may be more important than changes to environmental covariance. Therefore, identifying physiological thresholds in key environmental drivers may be particularly useful for preserving biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Emily M. Donham
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Iris Flores
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alexis Hooper
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Evan O’Brien
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kate Vylet
- Reef Check Foundation, Marina del Rey, CA 90929, USA
| | | | - Jan Freiwald
- Reef Check Foundation, Marina del Rey, CA 90929, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kristy J. Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
28
|
Aguilera VM, Bednaršek N. Variations in phenotypic plasticity in a cosmopolitan copepod species across latitudinal hydrographic gradients. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.925648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies assessing latitudinal variations in habitat conditions and phenotypic plasticity among populations yield evidence of the mechanisms governing differentiation in the potential to adapt to current/future habitat changes. The cosmopolitan copepod species Acartia tonsa thrives across ocean clines delimiting Seasonal (30–40° S) and Permanent (10–30° S) Upwelling coastal provinces established during the middle–late Pliocene (3.6–1.8 Ma) alongshore the South East Pacific (SEP), nowadays exhibiting contrasting variability features related to several ocean drivers (temperature, salinity, pH, and food availability). Latitudinal variation across the range of environmental conditions of the coastal provinces can contribute toward shaping divergent A. tonsa’s phenotypes, for example, through specific patterns of phenotypic plasticity in morphological and physiological traits and tolerance to environmental drivers. With the aim of contributing to the understanding of these adaptive processes in a relatively little studied oceanic region, here we compared the expression of parental (i.e., adult size, egg production, and ingestion rate) and offspring (i.e., egg size) traits in relation to variation in environmental habitat conditions across different cohorts of two distant (> 15° latitude) A. tonsa populations inhabiting estuarine and upwelling habitats located in the Seasonal and Permanent Upwelling province, respectively. Mean conditions and ranges of variability in the habitat conditions and phenotypic plasticity of parental and offspring traits within and among cohorts of A. tonsa populations varied significantly across the different examined regions (i.e., Seasonal vs. Permanent). We also found significant differences in the coupling of habitat variability and trait expression, suggesting that the differences in trait expressions might be related to habitat variability. The phenotypic divergence was translated to cohort-related patterns of trait trade-offs regulating reproduction and tolerance of egg production efficiency that can jointly determine the level of plasticity, genetic structure, or local adaptation. The current findings provide novel evidence of how divergent phenotypes might sustain A. tonsa populations across variable coastal provinces of the SEP.
Collapse
|
29
|
Lucey N, Aube C, Herwig A, Collin R. Compound Extreme Events Induce Rapid Mortality in a Tropical Sea Urchin. THE BIOLOGICAL BULLETIN 2022; 243:239-254. [PMID: 36548978 DOI: 10.1086/722283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractThe frequency, magnitude, and duration of marine heatwaves and deoxygenation events are increasing globally. Recent research suggests that their co-occurrence is more common than previously thought and that their combination can have rapid, dire biological impacts. We used the sea urchin Echinometra lucunter to determine whether mortality occurs faster when deoxygenation events are combined with extreme heating (compound events), compared to deoxygenation events alone. We also tested whether prior exposure to local heatwave conditions accentuates the impacts of compound events. Animals were first exposed for five days to either ambient temperature (28 °C) or a warmer temperature that met the minimum criteria for a local heatwave (30.5 °C). Animals were then exposed to hypoxia, defined as oxygen levels 35% below their average critical oxygen limit, combined with ambient or extreme field temperatures (28 °C, 32 °C). Subsets of animals were removed from the hypoxic treatments every 3 hours for 24 hours to determine how long they could survive. Prior exposure to heatwave conditions did not help or hinder survival under hypoxic conditions, and animals exposed to hypoxia under ambient temperatures experienced little mortality. However, when hypoxia was coupled with extreme temperatures (32 °C), 55% of the animals died within 24 hours. On the reefs at our Panama study site, we found that extreme hypoxic conditions only ever occurred during marine heatwave events, with four compound events occurring in 2018. These results show that short durations (∼1 day) of compound events can be catastrophic and that increases in their duration will severely threaten sea urchin populations.
Collapse
|
30
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Weaving H, Terblanche JS, Pottier P, English S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat Commun 2022; 13:5292. [PMID: 36075913 PMCID: PMC9458737 DOI: 10.1038/s41467-022-32953-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Extreme temperature events are increasing in frequency and intensity due to climate change. Such events threaten insects, including pollinators, pests and disease vectors. Insect critical thermal limits can be enhanced through acclimation, yet evidence that plasticity aids survival at extreme temperatures is limited. Here, using meta-analyses across 1374 effect sizes, 74 studies and 102 species, we show that thermal limit plasticity is pervasive but generally weak: per 1 °C rise in acclimation temperature, critical thermal maximum increases by 0.09 °C; and per 1 °C decline, critical thermal minimum decreases by 0.15 °C. Moreover, small but significant publication bias suggests that the magnitude of plasticity is marginally overestimated. We find juvenile insects are more plastic than adults, highlighting that physiological responses of insects vary through ontogeny. Overall, we show critical thermal limit plasticity is likely of limited benefit to insects during extreme climatic events, yet we need more studies in under-represented taxa and geographic regions. The ability of organisms to acclimate to high temperatures is increasingly put to test by climate change. This global meta-analysis shows that plasticity of thermal limits in insects is widespread but unlikely to keep pace with climate change.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Patrice Pottier
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Gunderson AR, Revell LJ. Testing for genetic assimilation with phylogenetic comparative analysis: Conceptual, methodological, and statistical considerations. Evolution 2022; 76:1942-1952. [PMID: 35851667 DOI: 10.1111/evo.14570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Genetic assimilation is a process that leads to reduced phenotypic plasticity during adaptation to novel conditions, a potentially important phenomenon under global environmental change. Null expectations when testing for genetic assimilation, however, are not always clear. For instance, the statistical artifact of regression to the mean could bias us toward detecting genetic assimilation when it has not occurred. Likewise, the specific mechanism underlying plasticity expression may affect null expectations under neutral evolution. We used macroevolutionary numerical simulations to examine both of these important issues and their interaction, varying whether plasticity evolves, the evolutionary mechanism, trait measurement error, and experimental design. We also modified an existing reaction norm correction method to account for phylogenetic nonindependence. We found (1) regression to the mean is pervasive and can generate spurious support for genetic assimilation; (2) experimental design and post hoc correction can minimize this spurious effect; and (3) neutral evolution can produce patterns consistent with genetic assimilation without constraint or selection, depending on the mechanism of plasticity expression. Additionally, we reanalyzed published macroevolutionary data supporting genetic assimilation, and found that support was reduced after proper correction. Considerable caution is thus required whenever investigating genetic assimilation and reaction norm evolution at macroevolutionary scales.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, 70118
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125.,Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
33
|
Affiliation(s)
- Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Molly Albecker
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Geoffrey C. Trussell
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| |
Collapse
|
34
|
Machekano H, Zidana C, Gotcha N, Nyamukondiwa C. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Sci Rep 2021; 11:22192. [PMID: 34772933 PMCID: PMC8590042 DOI: 10.1038/s41598-021-01478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023] Open
Abstract
Tropical organisms are more vulnerable to climate change and associated heat stress as they live close to their upper thermal limits (UTLs). UTLs do not only vary little across tropical species according to the basal versus plasticity ‘trade-off’ theory but may also be further constrained by low genetic variation. We tested this hypothesis, and its effects on ecosystem function using a diurnally active dung rolling beetle (telecoprid), Allogymnopleurus thalassinus (Klug, 1855) that inhabits arid environments. Specifically, (i) we tested basal heat tolerance (critical thermal maxima [CTmax] and heat knockdown time [HKDT]), and (ii) ecological functioning (dung removal) efficiency following dynamic chronic acclimation temperatures of variable high (VT-H) (28–45 °C) and variable low (VT-L) (28–16 °C). Results showed that A. thalassinus had extremely high basal heat tolerance (> 50 °C CTmax and high HKDT). Effects of acclimation were significant for heat tolerance, significantly increasing and reducing CTmax values for variable temperature high and variable temperature low respectively. Similarly, effects of acclimation on HKDT were significant, with variable temperature high significantly increasing HKDT, while variable temperature low reduced HKDT. Effects of acclimation on ecological traits showed that beetles acclimated to variable high temperatures were ecologically more efficient in their ecosystem function (dung removal) compared to those acclimated at variable low temperatures. Allogymnopleurus thalassinus nevertheless, had low acclimation response ratios, signifying limited scope for complete plasticity for UTLs tested here. This result supports the ‘trade-off’ theory, and that observed limited plasticity may unlikely buffer A. thalassinus against effects of climate change, and by extension, albeit with caveats to other tropical ecological service providing insect species. This work provides insights on the survival mechanisms of tropical species against heat and provides a framework for the conservation of these natural capital species that inhabit arid environments under rapidly changing environmental climate.
Collapse
Affiliation(s)
- Honest Machekano
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.,Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Chipo Zidana
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Nonofo Gotcha
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
35
|
Xuereb A, Rougemont Q, Tiffin P, Xue H, Phifer-Rixey M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc Biol Sci 2021; 288:20212006. [PMID: 34753353 PMCID: PMC8580472 DOI: 10.1098/rspb.2021.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023] Open
Abstract
As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.
Collapse
Affiliation(s)
- Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, 3050 Avenue de la Médecine, Québec, Quebec, Canada G1 V 0A6
| | - Quentin Rougemont
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Huijie Xue
- School of Marine Sciences, University of Maine, 5706 Aubert Hall, Orono, ME 04469-5706, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, 400 Cedar Avenue, West Long Branch, NJ, USA
| |
Collapse
|