1
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
2
|
Jiang N, Xiao Y, Liu Y, Liu W, Liu S. Blood coagulation factor VIII D1241E polymorphism leads to a weak malectin interaction and reduction of factor VIII posttranslational modification and secretion. Exp Cell Res 2020; 397:112334. [PMID: 33144078 DOI: 10.1016/j.yexcr.2020.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
Blood coagulation factor VIII (FVIII) is a key cofactor in regulation of blood coagulation. This study investigated the mechanism by which FVIII is translated and transported into the endoplasmic reticulum (ER) and processed in the Golgi apparatus before secretion using an in vitro cell model. HEK-293T cells were transfected with vectors carrying wild-type (WT) FVIII or polymorphic FVIII D1241E for coexpression with ER lectins and treatment with tunicamycin (an N-linked glycosylation inhibitor), 1-deoxynojirimycin (an alpha-glucosidase inhibitor), endoglycosidase H, or MG132 (Cbz-Leu-Leu-leucinal; a proteasome inhibitor). The data showed that the minor allele of FVIII D1241E was able to reduce FVIII secretion into the conditioned medium but maintain a normal level of procoagulation ability, although both FVIII WT and the minor allele of FVIII D1241E showed similar levels of transcription and translation capacities. Functionally, the D1241E polymorphism led to a reduced level of FVIII in the Golgi apparatus because of its reduced association with malectin, which interacts with newly synthesized glycoproteins in the ER for FVIII folding and trafficking, leading to degradation of the minor allele of FVIII D1241E in the cytosol. This study demonstrated that malectin is important for regulation of the FVIII posttranslational process and that the minor allele of FVIII D1241E had a reduced association with malectin but an increased capacity for proteasomal FVIII degradation. These data imply the role of the ER quality control in future recombinant FVIII development.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weihua Liu
- Department of Pediatrics, Xi'an first people's Hospital, China
| | - Shanxi Liu
- Shaanxi Yida Haemophilia Institute, China
| |
Collapse
|
3
|
PERK-eIF2α-ATF4 signaling contributes to osteogenic differentiation of periodontal ligament stem cells. J Mol Histol 2020; 51:125-135. [PMID: 32124153 DOI: 10.1007/s10735-020-09863-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Protein kinase-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein located in the endoplasmic reticulum (ER). The PERK-eukaryotic initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway has been proved to be involved in osteoblast differentiation, but the involvement of the PERK-eIF2α-ATF4 signaling pathway in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) has remained unclear. Therefore, the aim of this study was to explore the role of PERK in osteogenic differentiation of hPDLSCs and to assess whether PERK-eIF2α-ATF4 contributes to the process of osteogenic differentiation in hPDLSCs. In our study, we constructed PERK-overexpressed and PERK-silenced hPDLSCs by lentiviral transduction. Furthermore, lentivirus-transfected cells were induced to differentiate into osteoblast cells for different days. Alkaline phosphatase (ALP) activity and Alizarin Red staining were used to evaluate the mineralization capacity, and the expression levels of related genes-ATF4, ALP, bone sialoprotein, runt-related transcription factor 2 (Runx2), and osteocalcin were measured to evaluate the osteogenic differentiation of hPDLSCs. The results showed that over-expression of PERK greatly increased ALP activity and the expression levels of related osteogenic genes, which displayed the strongest osteogenesis capacity. However, suppression of PERK caused decreased ALP activity and the weakest osteogenesis capacity, and the levels of ATF4 and p-eIF2α in PERK-silenced hPDLSCs were also decreased. Our results indicated that the PERK gene plays an important role in the differentiation of hPDLSCs to osteoblast-like cells. The PERK-eIF2α-ATF4 signaling pathway contributes to osteoblast differentiation of hPDLSCs.
Collapse
|
4
|
Zhu R, Li X, Xu J, Barrabi C, Kekulandara D, Woods J, Chen X, Liu M. Defective endoplasmic reticulum export causes proinsulin misfolding in pancreatic β cells. Mol Cell Endocrinol 2019; 493:110470. [PMID: 31158417 PMCID: PMC6613978 DOI: 10.1016/j.mce.2019.110470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for cell function. Increasing evidence indicates that, efficient protein ER export is important for ER homeostasis. However, the consequence of impaired ER export remains largely unknown. Herein, we found that defective ER protein transport caused by either Sar1 mutants or brefeldin A impaired proinsulin oxidative folding in the ER of β-cells. Misfolded proinsulin formed aberrant disulfide-linked dimers and high molecular weight proinsulin complexes, and induced ER stress. Limiting proinsulin load to the ER alleviated ER stress, indicating that misfolded proinsulin is a direct cause of ER stress. This study revealed significance of efficient ER export in maintaining ER protein homeostasis and native folding of proinsulin. Given the fact that proinsulin misfolding plays an important role in diabetes, this study suggests that enhancing ER export may be a potential therapeutic target to prevent/delay β-cell failure caused by proinsulin misfolding and ER stress.
Collapse
Affiliation(s)
- Ruimin Zhu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jialu Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cesar Barrabi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Dilini Kekulandara
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Woods
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xuequn Chen
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
5
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
6
|
Yang SY, Wei FL, Hu LH, Wang CL. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force. Cell Signal 2016; 28:880-6. [PMID: 27079961 DOI: 10.1016/j.cellsig.2016.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 02/03/2023]
Abstract
To prevent excess accumulation of unfolded proteins in endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are known as the endoplasmic reticulum stress (ERS) response. Protein kinase R like endoplasmic reticulum kinase (PERK) is a major transducer of the ERS response and it directly phosphorylate α-subunit of eukaryotic initiation factor 2 (eIF2α), resulting in translational attenuation. Phosphorylated eIF2α specifically promoted the translation of the activating transcription factor 4 (ATF4). ATF4 is a known important transcription factor which plays a pivotal role in osteoblast differentiation and bone formation. Furthermore, ATF4 is a downstream target of PERK. Studies have shown that PERK-eIF2α-ATF4 signal pathway mediated by ERS was involved in osteoblastic differentiation of osteoblasts. We have known that orthodontic tooth movement is a process of periodontal ligament cells (PDLCs) osteodifferentiation and alveolar bone remodeling under mechanical force. However, the involvement of PERK-eIF2α-ATF4 signal pathway mediated by ERS in osteogenic differentiation of PDLCs under mechanical force has not been unclear. In our study, we applied the cyclic mechanical force at 10% elongation with 0.5Hz to mimic occlusal force, and explored whether PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteogenic differentiation of PDLCs under mechanical force. Firstly, cyclic mechanical force will induce ERS and intensify several osteoblast marker genes (ATF4, OCN, and BSP). Next, we found that PERK overexpression increased eIF2α phosphorylation and expression of ATF4, furthermore induced BSP, OCN expression, thus it will promote osteodifferentiation of hPDLCs; mechanical force could promote this effect. However, PERK(-/-) cells showed the opposite changes, which will inhibit osteodifferentiation of hPDLCs. Taken together, our study proved that PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteoblast differentiation of PDLCs under cyclic mechanical force.
Collapse
Affiliation(s)
- Shuang-Yan Yang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Fu-Lan Wei
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Li-Hua Hu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | - Chun-Ling Wang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
7
|
Cosson P, Marchetti A, Ravazzola M, Orci L. Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS One 2012; 7:e46293. [PMID: 23029466 PMCID: PMC3460865 DOI: 10.1371/journal.pone.0046293] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Besides its role in controlling the morphology of mitochondria, mitofusin-2 has been proposed to tether mitochondria to the endoplasmic reticulum (ER), based largely on light microscopic analysis. In this study we have examined by electron microscopy the organization of ER and mitochondria in cells expressing or not mitofusin-2. Contrary to previous studies, we observed that loss of mitofusin-2 increased ER-mitochondria juxtaposition. These results suggest that mitofusin-2 does not play a critical role in the juxtapostion of ER and mitochondria, and highlight the essential role of ultrastructural analysis to visualize and measure contact between two intracellular compartments.
Collapse
Affiliation(s)
- Pierre Cosson
- Department for Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva Faculty of Medicine, Geneva, Switzerland.
| | | | | | | |
Collapse
|
8
|
Ulloa-Aguirre A, Michael Conn P. Pharmacoperones: a new therapeutic approach for diseases caused by misfolded G protein-coupled receptors. ACTA ACUST UNITED AC 2012; 5:13-24. [PMID: 22074574 DOI: 10.2174/187221411794351851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/13/2010] [Indexed: 01/10/2023]
Abstract
G Protein-coupled receptors (GPCRs) are cell membrane proteins that recognize specific chemical signals such as drugs and hormones and transduce these signals into cellular responses by activating G-proteins. As is the case for all newly synthesized proteins, GPCRs are subjected to conformational scrutiny at the endoplasmic reticulum prior to processing and trafficking to the cell surface membrane. Because of this stringent quality control screening mechanism, mutations that result in protein misfolding frequently lead to retention in the endoplasmic reticulum, aggregation or other misrouting and, eventually, to disease. This article reviews some patents and new therapeutic opportunities based on the misfolding and retention of otherwise functional GPCRs that represent promising approaches to correct conformational abnormalities leading to distinct disease states.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Av. Rio Magdalena 289, 60. piso, Col. Tizapan San Angel, C.P. 01090, Mexico D.F., Mexico.
| | | |
Collapse
|
9
|
Conn PM, Ulloa-Aguirre A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:109-41. [PMID: 21907908 DOI: 10.1016/b978-0-12-385952-5.00008-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural alterations provoked by mutations or genetic variations in the gene sequence of G protein-coupled receptors (GPCRs) may lead to abnormal function of the receptor molecule. Frequently, this leads to disease. While some mutations lead to changes in domains involved in agonist binding, receptor activation, or coupling to effectors, others may cause misfolding and lead to retention/degradation of the protein molecule by the quality control system of the cell. Several strategies, including genetic, chemical, and pharmacological approaches, have been shown to rescue function of trafficking-defective misfolded GPCRs. Among these, pharmacological strategies offer the most promising therapeutic tool to promote proper trafficking of misfolded proteins to the plasma membrane (PM). Pharmacological chaperones or "pharmacoperones" are small compounds that permeate the PM, enter cells, and bind selectively to misfolded proteins and correct folding allowing routing of the target protein to the PM, where the receptor may bind and respond to agonist stimulation. In this review, we describe new therapeutic opportunities based on mislocalization of otherwise functional human gonadotropin-releasing hormone receptors. This particular receptor is highly sensitive to single changes in chemical charge, and its intracellular traffic is delicately balanced between expression at the PM or retention/degradation in the endoplasmic reticulum; it is, therefore, a particularly instructive model to understand both the protein routing and the molecular mechanisms, whereby pharmacoperones rescue misfolded intermediates or conformationally defective receptors.
Collapse
Affiliation(s)
- P Michael Conn
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
10
|
Elbaz B, Valitsky M, Davidov G, Rahamimoff H. Cyclophilin A Is Involved in Functional Expression of the Na+−Ca2+ Exchanger NCX1. Biochemistry 2010; 49:7634-42. [DOI: 10.1021/bi1008722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benayahu Elbaz
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Michael Valitsky
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Geula Davidov
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Hannah Rahamimoff
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Schallus T, Fehér K, Sternberg U, Rybin V, Muhle-Goll C. Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 2010; 20:1010-20. [DOI: 10.1093/glycob/cwq059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Abstract
This study illustrates the utility of tetraplex stable isotope coded tags in mass spectrometric glycomics using three carbohydrate classes. The teteraplex tags allow for the direct comparison of glycan compositions within four samples using capillary scale hydrophilic interaction chromatography with online mass spectrometry. In addition, the ability to discern glycan structural isomers is shown based on the tandem mass spectra of each composition using nanospray ionization. Results are shown for chondroitin sulfate proteoglycans, low molecular weight heparins, full length heparins, and N-glycans from alpha-1-acid glycoproteins from four mammalian species. The data demonstrate the value of the tetraplex stable isotope tagging approach for producing high-quality glycomics compositional profiling and fine structural analysis.
Collapse
Affiliation(s)
- Michael J. Bowman
- Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston, MA 02118
| | - Joseph Zaia
- Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston, MA 02118
| |
Collapse
|
13
|
Murray AR, Fliesler SJ, Al-Ubaidi MR. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Ophthalmic Genet 2010; 30:109-20. [PMID: 19941415 DOI: 10.1080/13816810902962405] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Rhodopsin, the G-protein coupled receptor in retinal rod photoreceptors, is a highly conserved protein that undergoes several types of post-translational modifications. These modifications are essential to maintain the protein's structure as well as its proper function in the visual transduction cycle. Rhodopsin is N-glycosylated at Asn-2 and Asn-15 in its extracellular N-terminal domain. Mutations within the glycosylation consensus sequences of rhodopsin cause autosomal dominant retinitis pigmentosa, a disease that leads to blindness. Several groups have studied the role of rhodopsin's N-linked glycan chains in protein structure and function using a variety of approaches. These include the generation of a transgenic mouse model, study of a naturally occurring mutant animal model, in vivo pharmacological inhibition of glycosylation, and in vitro analyses using transfected COS-1 cells. These studies have provided insights into the possible role of rhodopsin glycosylation, but have yielded conflicting results.
Collapse
Affiliation(s)
- Anne R Murray
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
14
|
Wild-type and missense mutants of retinoschisin co-assemble resulting in either intracellular retention or incorrect assembly of the functionally active octamer. Biochem J 2009; 425:275-83. [PMID: 19849666 DOI: 10.1042/bj20091179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The X-linked disease retinoschisis is caused by mutations in the RS1 gene encoding retinoschisin, most commonly missense mutations leading to a lack of secretion of functional protein. One potential approach to treat this disease would be the introduction of the wild-type protein by gene therapy in affected individuals. Retinoschisin normally forms homo-octamers, so co-expression of the wild-type protein with the mutant could result in their co-assembly. In the present study, we show that retinoschisin assembles into an octamer before transport from the endoplasmic reticulum and that co-assembly of wild-type and mutant protein can occur when they are co-expressed in the same cell. This co-assembly results in the retention of some, but not all, expressed wild-type retinoschisin. Moreover, when the wild-type protein is expressed with a missense mutant that is normally secreted, co-assembly occurs resulting in the secretion of a heterogeneous mixture of oligomers. Missense mutations of retinoschisin which cause intracellular retention also lead to an unfolded protein response. However, this is not sufficient to decrease cell viability suggesting that the pathology of the disease is not likely to be linked to programmed cell death.
Collapse
|
15
|
Lu D, Liu Z. Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation. J Phys Chem B 2009; 112:15127-33. [PMID: 18959394 DOI: 10.1021/jp804649g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One challenge in protein refolding is to dissociate the non-native disulfide bonds and promote the formation of native ones. In this study, we present a coarse-grained off-lattice model protein containing disulfide bonds and simulate disulfide bond shuffling during the folding of this model protein. Introduction of disulfide bonds in the model protein led to enhanced conformational stability but reduced foldability in comparison to counterpart protein without disulfide bonds. The folding trajectory suggested that the model protein retained the two-step folding mechanism in terms of hydrophobic collapse and structural rearrangement. The disulfide bonds located in the hydrophobic core were formed before the collapsing step, while the bonds located on the protein surface were formed during the rearrangement step. While a reductive environment at the initial stage of folding favored the formation of native disulfide bonds in the hydrophobic core, an oxidative environment at a later stage of folding was required for the formation of disulfide bonds at protein surface. Appling a dynamic redox environment, that is, one that changes from reductive to oxidative, intensified disulfide bond shuffling and thus resulted in improved recovery of the native conformation. The above-mentioned simulation was experimentally validated by refolding hen-egg lysozyme at different urea concentrations and oxidized glutathione/reduced glutathione (GSSG/GSH) ratios, and an optimal redox environment, in terms of the GSSG to GSH ratio, was identified. The implementation of a dynamic redox environment by tuning the GSSG/GSH ratio further improved the refolding yield of lysozyme, as predicted by molecular simulation.
Collapse
Affiliation(s)
- Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 10084, China.
| | | |
Collapse
|
16
|
Abstract
The ubiquitin-proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons that are subject to signalling-dependent modification with those that are controlled by protein folding or assembly, as frequently occurs during protein quality control.
Collapse
Affiliation(s)
- Tommer Ravid
- Department of Biological Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
17
|
Meng J, Parroche P, Golenbock DT, McKnight CJ. The Differential Impact of Disulfide Bonds and N-Linked Glycosylation on the Stability and Function of CD14. J Biol Chem 2008; 283:3376-3384. [DOI: 10.1074/jbc.m707640200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
N-Glycosylation sites of plant purple acid phosphatases important for protein expression and secretion in insect cells. Arch Biochem Biophys 2007; 461:247-54. [DOI: 10.1016/j.abb.2007.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/05/2007] [Accepted: 02/07/2007] [Indexed: 11/20/2022]
|
19
|
Yang H, Zhong X, Ballar P, Luo S, Shen Y, Rubinsztein DC, Monteiro MJ, Fang S. Ubiquitin ligase Hrd1 enhances the degradation and suppresses the toxicity of polyglutamine-expanded huntingtin. Exp Cell Res 2007; 313:538-50. [PMID: 17141218 DOI: 10.1016/j.yexcr.2006.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
E3 ubiquitin ligases catalyze the conjugation of ubiquitin onto proteins, which acts as a signal for targeting proteins for degradation by the proteasome. Hrd1 is an endoplasmic reticulum (ER) membrane-spanning E3 with its catalytic active RING finger facing the cytosol. We speculated that this topology might allow Hrd1 to ubiquitinate misfolded proteins in the cytosol. We tested this idea by using polyglutamine (polyQ)-containing huntingtin (htt) protein as a model substrate. We found that the protein levels of Hrd1 were increased in cells overexpressing the N-terminal fragment of htt containig an expanded polyQ tract (httN). Forced expression of Hrd1 enhanced the degradation of httN in a RING finger-dependent manner, whereas silencing of endogenous Hrd1 expression by RNA interference stabilized httN. Degradation of httN was found to be p97/VCP-dependent, but independent of Ufd1 and Npl4, all of which are thought to form a complex with Hrd1 during ER-associated degradation. Consistent with its role as an E3 for httN, we demonstrate that Hrd1 interacts with and ubiquitinates httN. Subcellular fractionation and confocal microscopy revealed that Hrd1recruits HttN to the ER and co-localizes with juxtanuclear aggregates of httN in cells. Interaction of Hrd1 with httN was found to be independent of the length of the polyglutamine tract. However, httN with expanded polyglutamine tracts appeared to be a preferred substrate for Hrd1. Functionally, we found that Hrd1 protects cells against the httN-induced cell death. These results suggest that Hrd1 is a novel htt-interacting protein that can target pathogenic httN for degradation and is able to protect cells against httN-induced cell death.
Collapse
Affiliation(s)
- Hui Yang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wain R, Smith LJ, Dobson CM. Oxidative refolding of amyloidogenic variants of human lysozyme. J Mol Biol 2005; 351:662-71. [PMID: 16023673 DOI: 10.1016/j.jmb.2005.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/13/2005] [Accepted: 06/15/2005] [Indexed: 11/22/2022]
Abstract
The oxidative refolding of human lysozyme and its two best characterised amyloidogenic variants, Ile56Thr and Asp67His, has been investigated in vitro by means of the concerted application of a range of biophysical techniques. The results show that in each case the ensemble of reduced denatured conformers initially collapses into a large number of unstructured intermediates with one or two disulphide bonds, the majority of which then fold to form the native-like three-disulphide intermediate, des-[77-95]. The slow step in the overall folding reaction involves the rearrangement of the latter to the fully oxidised native protein containing four disulphide bonds. The Ile56Thr and Asp67His variants were found to fold faster than the wild-type protein by a factor of 2 and 3 respectively, an observation that can be attributed primarily to the reduction in the barriers to conformational rearrangements that results from both the mutations. The efficient folding of these variants despite their enhanced propensities to aggregate when compared to the wild-type protein is consistent with their ability to be secreted in sufficient quantities to give rise to the systemic amyloidoses with which they are associated.
Collapse
Affiliation(s)
- Rachel Wain
- Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | |
Collapse
|
21
|
Frank CG, Aebi M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 2005; 15:1156-63. [PMID: 15987956 DOI: 10.1093/glycob/cwj002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different alpha-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO.
Collapse
Affiliation(s)
- Christian G Frank
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zürich, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
22
|
Chubykin AA, Liu X, Comoletti D, Tsigelny I, Taylor P, Südhof TC. Dissection of Synapse Induction by Neuroligins. J Biol Chem 2005; 280:22365-74. [PMID: 15797875 DOI: 10.1074/jbc.m410723200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study synapse formation by neuroligins, we co-cultured hippocampal neurons with COS cells expressing wild type and mutant neuroligins. The large size of COS cells makes it possible to test the effect of neuroligins presented over an extended surface area. We found that a uniform lawn of wild type neuroligins displayed on the cell surface triggers the formation of hundreds of uniformly sized, individual synaptic contacts that are labeled with neurexin antibodies. Electron microscopy revealed that these artificial synapses contain a presynaptic active zone with docked vesicles and often feature a postsynaptic density. Neuroligins 1, 2, and 3 were active in this assay. Mutations in two surface loops of neuroligin 1 abolished neuroligin binding to neurexin 1beta, a presumptive presynaptic binding partner for postsynaptic neuroligins, and blocked synapse formation. An analysis of mutant neuroligins with an amino acid substitution that corresponds to a mutation described in patients with an autistic syndrome confirmed previous reports that these mutant neuroligins have a compromised capacity to be transported to the cell surface. Nevertheless, the small percentage of mutant neuroligins that reached the cell surface still induced synapse formation. Viewed together, our data suggest that neuroligins generally promote artificial synapse formation in a manner that is associated with beta-neurexin binding and results in morphologically well differentiated synapses and that a neuroligin mutation found in autism spectrum disorders impairs cell-surface transport but does not completely abolish synapse formation activity.
Collapse
Affiliation(s)
- Alexander A Chubykin
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390-9111, USA
| | | | | | | | | | | |
Collapse
|
23
|
Shepshelovich J, Goldstein-Magal L, Globerson A, Yen PM, Rotman-Pikielny P, Hirschberg K. Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J Cell Sci 2005; 118:1577-86. [PMID: 15784681 DOI: 10.1242/jcs.02294] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An outcome of overloading of the endoplasmic reticulum (ER) folding machinery is a perturbation in ER function and the formation of intracellular aggregates. The latter is a key pathogenic factor in numerous diseases known as ER storage diseases. Here, we report that heterologous overexpression of the green fluorescent protein-tagged iodide transporter pendrin (GFP-PDS) perturbs folding and degradation processes in the ER. Pendrin (PDS) is a chloride-iodide transporter found in thyroid cells. Mutations in PDS can cause its retention in the ER and are associated with Pendred syndrome. Biochemical and live-cell analyses demonstrated that wild-type GFP-PDS is predominantly retained in perinuclear aggregates and in ER membranes, causing their collapse and vesiculation. Inhibition of protein synthesis by cycloheximide (CHX) or puromycin caused dissociation of the GFP-PDS aggregates and returned the ER to its normal reticular morphology. Blocking protein synthesis promoted folding and export of ER-retained GFP-PDS, as demonstrated by surface-biotinylation analysis and by CHX- or puromycin-induced accumulation of YFP-PDS in the Golgi apparatus during a 20°C temperature-block experiment. The chemical chaperone trimethylamine-N-oxide (TMAO) also reversed the GFP-PDS-mediated ER collapse and vesiculation, suggesting that exposed hydrophobic stretches of misfolded or aggregated GFP-PDS may contribute to ER retention. These data suggest that GFP-PDS is a slow-folding protein with a propensity to form aggregates when overexpressed. Thus, we describe a system for the reversible induction of ER stress that is based entirely on the heterologous overexpression of GFP-PDS.
Collapse
Affiliation(s)
- Jeanne Shepshelovich
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 2005; 5:821-37. [PMID: 15479448 DOI: 10.1111/j.1600-0854.2004.00232.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The process of quality control in the endoplasmic reticulum involves a variety of mechanisms which ensure that only correctly folded proteins enter the secretory pathway. Among these are conformation-screening mechanisms performed by molecular chaperones that assist in protein folding and prevent non-native (or misfolded) proteins from interacting with other misfolded proteins. Chaperones play a central role in the triage of newly formed proteins prior to their entry into the secretion, retention, and degradation pathways. Despite this stringent quality control mechanism, gain- or loss-of-function mutations that affect protein folding in the endoplasmic reticulum can manifest themselves as profound effects on the health of an organism. Understanding the molecular, cellular, and energetic mechanisms of protein routing could prevent or correct the structural abnormalities associated with disease-causing misfolded proteins. Rescue of misfolded, "trafficking-defective", but otherwise functional, proteins is achieved by a variety of physical, chemical, genetic, and pharmacological approaches. Pharmacologic chaperones (or "pharmacoperones") are template molecules that may potentially arrest or reverse diseases by inducing mutant proteins to adopt native-type-like conformations instead of improperly folded ones. Such restructuring leads to a normal pattern of cellular localization and function. This review focuses on protein misfolding and misrouting related to various disease states and describes promising approaches to overcoming such defects. Special attention is paid to the gonadotropin-releasing hormone receptor, since there is a great deal of information about this receptor, which has recently emerged as a particularly instructive model.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|
25
|
Dannies P. Manipulating the reversible aggregation of protein hormones in secretory granules: potential impact on biopharmaceutical development. BioDrugs 2004; 17:315-24. [PMID: 14498762 DOI: 10.2165/00063030-200317050-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuroendocrine cells and other secretory cell types are able to store secretory proteins in a concentrated form for extended periods until the release of large quantities of protein is triggered. The proteins are stored in dense core secretory granules. The dense cores of these granules are made up of large, insoluble aggregates that form by self-association. These aggregates solubilise rapidly into monomeric proteins in their native conformations when released from the cells by exocytosis of secretory granules. Formation of aggregates is an early event in secretory granule formation in at least some cell types. The function of secretory granules containing protein aggregates varies, depending upon the contents. This may occur because recognition of an aspect, such as a surface motif, of the aggregate facilitates correct assembly of the membrane proteins necessary for transport and exocytosis of the granules. Understanding the principles necessary for aggregation of protein hormones may help in the formulation of proteins for clinical use. Formation of aggregates of human prolactin has been investigated both in cells and in solution. In cells, the aggregation of human prolactin requires a mildly acidic pH, and is slowed in the presence of a membrane-permeable chelator of zinc. In solution, the aggregation of human prolactin at mildly acidic pH and physiological concentrations of Zn(2+) resembles that which occurs in cells if the reaction is performed with macromolecular crowding, which will mimic the conditions in cells. The factors causing protein aggregation and the extent to which aggregation plays a role in secretory granule formation are likely to vary with the protein and cell type. Further understanding of the principles involved in forming these aggregates that readily disassociate may enhance the ability to formulate protein preparations. Knowledge of the exact residues involved in the protein : protein interfaces in the aggregates of secretory granule proteins may lead to the ability to use small molecules to interfere with self-association and to regulate the storage of secretory granule proteins.
Collapse
Affiliation(s)
- Priscilla Dannies
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| |
Collapse
|
26
|
Suzuki T, Kwofie MA, Lennarz WJ. Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: expression, genomic organization, and chromosomal mapping. Biochem Biophys Res Commun 2003; 304:326-32. [PMID: 12711318 DOI: 10.1016/s0006-291x(03)00600-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In species as diverse as yeast and mammals, peptide:N-glycanase (PNG1 in yeast; Ngly1 in mouse) is believed to play a key role in the degradation of misfolded glycoproteins by the proteasome. In this study, we report the genomic organization and mRNA distribution of the mouse Ngly1. Mouse Ngly1 spans 61kb and is composed of 12 exons, the organization of which is conserved throughout vertebrates. Comparison of the mouse and human genomic sequence identifies a conserved gene structure with significant sequence similarity extending into introns. A 2.6kb Ngly1 message was detected in all mouse tissues examined, with the highest abundance in the testis. In addition, a lower molecular weight transcript of 2.4kb was detected in the testis. From analysis of dbESTs the alternative transcript of Ngly1 is predicted to be present in the human placenta. Given the key role Ngly1 plays in glycoprotein degradation, we predict that Ngly1 may be a contributing factor in "disease" susceptibility. To begin to address this question, we used radiation hybrid mapping to localize mouse Ngly1 to chromosome 14 and the human orthologue to chromosome 3 with a strong link with known genes.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
27
|
Janovick JA, Goulet M, Bush E, Greer J, Wettlaufer DG, Conn PM. Structure-activity relations of successful pharmacologic chaperones for rescue of naturally occurring and manufactured mutants of the gonadotropin-releasing hormone receptor. J Pharmacol Exp Ther 2003; 305:608-14. [PMID: 12606630 DOI: 10.1124/jpet.102.048454] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We expressed a test system of wild-type (WT) rat (r) and human (h) gonadotropin-releasing hormone (GnRH) receptors (GnRHRs), including naturally occurring (13) and manufactured (five) "loss-of-function" mutants of the GnRHR. These were used to assess the ability of different GnRH peptidomimetics to rescue defective GnRHR mutants and determine their effect on the level of membrane expression of the WT receptors. Among the manufactured mutants were the shortest rGnRHR C-terminal truncation mutant that resulted in receptor loss-of-function (des(325-327)-rGnRHR), two nonfunctional deletion mutants (des(237-241)-rGnRHR and des(260-265)-rGnRHR), two nonfunctional Cys mutants (C(229)A-rGnRHR and C(278)A-rGnRHR); the naturally occurring mutants included all 13 full-length GnRHR point mutations reported to date that result in full or partial human hypogonadotropic hypogonadism. The 10 peptidomimetics assessed as potential rescue molecules ("pharmacoperones") are from three differing chemical pedigrees (indoles, quinolones, and erythromycin-derived macrolides) and were originally developed as GnRH peptidomimetic antagonists. These structures were selected for this study because of their predicted ability to permeate the cell membrane and interact with a defined affinity with the GnRH receptor. All peptidomimetics studied with an IC(50) value (for hGnRHR)
Collapse
Affiliation(s)
- Jo Ann Janovick
- Oregon Health and Science University/Oregon National Primate Research Center, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ulloa-Aguirre A, Janovick JA, Leaños-Miranda A, Conn PM. Misrouted cell surface receptors as a novel disease aetiology and potential therapeutic target: the case of hypogonadotropic hypogonadism due to gonadotropin-releasing hormone resistance. Expert Opin Ther Targets 2003; 7:175-85. [PMID: 12667096 DOI: 10.1517/14728222.7.2.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecules that are incorrectly folded or defectively assembled are recognised by cellular quality control mechanisms. This leads such conformationally abnormal molecules to intracellular retention and eventual degradation. A number of diseases caused by mutations that interfere with proper processing and intracellular trafficking of key cell surface proteins have been described. These include a particular variant of hypogonadotropic hypogonadism, which results from mislocalisation of the gonadotropin-releasing hormone (GnRH) receptor. It has been shown recently that membrane expression and function of misfolded GnRH receptor mutants can be rescued by a peptidomimetic antagonist of GnRH (IN3) that permeates into the cell and reaches the abnormally manufactured nascent receptor, stabilising a conformation compatible with cell-surface transport and reversing intracellular retention. This approach seems applicable for the development of defined therapeutic strategies for an array of diseases caused by incorrectly routed cell surface or secreted proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cell Membrane/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/drug effects
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Drug Design
- Drug Resistance
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Genes, Recessive
- Genetic Diseases, Inborn/drug therapy
- Genetic Diseases, Inborn/metabolism
- Gonadotropin-Releasing Hormone/physiology
- Humans
- Hypogonadism/drug therapy
- Hypogonadism/etiology
- Hypogonadism/genetics
- Hypogonadism/physiopathology
- Models, Molecular
- Molecular Chaperones/physiology
- Molecular Sequence Data
- Mutation, Missense
- Point Mutation
- Protein Conformation
- Protein Folding
- Protein Transport/drug effects
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, LHRH/chemistry
- Receptors, LHRH/drug effects
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Rhodopsin/genetics
- Rhodopsin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Instituto Mexicano del Seguro Social, México DF
| | | | | | | |
Collapse
|
29
|
Taylor SC, Thibault P, Tessier DC, Bergeron JJ, Thomas DY. Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep 2003; 4:405-11. [PMID: 12671684 PMCID: PMC1319153 DOI: 10.1038/sj.embor.embor797] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/09/2022] Open
Abstract
Secretory and membrane N-linked glycoproteins undergo folding and oligomeric assembly in the endoplasmic reticulum with the aid of a folding mechanism known as the calnexin cycle. UDP-glucose glycoprotein:glucosyltransferase (UGGT) is the sensor component of the calnexin cycle, which recognizes these glycoproteins when they are incompletely folded, and transfers a glucose residue from UDP-glucose to N-linked Man9-GlcNAc2 glycans. To determine how UGGT recognizes incompletely folded glycoproteins, we used purified enzyme to glucosylate a set of Man9-GlcNAc2 glycopeptide substrates in vitro, and determined quantitatively the glucose incorporation into each glycan by mass spectrometry. A ranked order of glycopeptide specificity was found that provides the criteria for the recognition of substrates by UGGT. The preference for amino-acid residues close to N-linked glycans provides criteria for the recognition of glycopeptide substrates by UGGT.
Collapse
Affiliation(s)
- Sean C. Taylor
- Biochemistry Department, Faculty of Medicine, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - Pierre Thibault
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Daniel C. Tessier
- Biochemistry Department, Faculty of Medicine, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - John J.M. Bergeron
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - David Y. Thomas
- Biochemistry Department, Faculty of Medicine, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
- Tel: +514 398 2973; Fax: +514 398 7384;
| |
Collapse
|
30
|
Suzuki T, Lennarz WJ. Hypothesis: a glycoprotein-degradation complex formed by protein-protein interaction involves cytoplasmic peptide:N-glycanase. Biochem Biophys Res Commun 2003; 302:1-5. [PMID: 12593838 DOI: 10.1016/s0006-291x(03)00052-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins that are exported from the endoplasmic reticulum to the cytosol. Recently, the gene encoding this enzyme (Png1p) was identified in yeast and shown to bind to the 26S proteasome through its interaction with a component of the DNA repair system, Rad23p. Moreover, a mouse homologue of Png1p (mPng1p), which has an extended N-terminal domain, was found to bind not only to the Rad23 protein, but also to various proteins related to the ubiquitin/proteasome pathway. An extended N-terminus of mPng1p, which is not found in yeast, contains a potential site of protein-protein interaction called the PUB/PUG domain. The PUB/PUG domain is predicted to be helix-rich and is found in various proteins that may be involved in the ubiquitin/proteasome-related pathway. This review will discuss the consequence of the deglycosylation reaction by peptide:N-glycanase in cellular processes. In addition, the potential importance of the PUB/PUG domain for the formation of a putative "glycoprotein-degradation complex" will be discussed.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Undergraduate Program for Bioinformatics and Systems Biology, Graduate School of Science, University of Tokyo and PRESTO, Japan Science and Technology Corporation (JST), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
31
|
Schwaller M, Wilkinson B, Gilbert HF. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J Biol Chem 2003; 278:7154-9. [PMID: 12486139 DOI: 10.1074/jbc.m211036200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding. This process can be error-prone in its early stages, and any incorrect disulfides that form must be rearranged to their native configuration. When the second cysteine (CGHC) in the PDI active site is mutated to Ser, the isomerase activity drops by 7-8-fold, and a covalent intermediate with the substrate accumulates. This led to the proposal that the second active site cysteine provides an escape mechanism, preventing PDI from becoming trapped with substrates that isomerize slowly (Walker, K. W., and Gilbert, H. F. (1997) J. Biol. Chem. 272, 8845-8848). Escape also reduces the substrate, and if it is invoked frequently, disulfide isomerization will involve cycles of reduction and reoxidation in preference to intramolecular isomerization of the PDI-bound substrate. Using a gel-shift assay that adds a polyethylene glycol-conjugated maleimide of 5 kDa for each sulfhydryl group, we find that PDI reduction and oxidation are kinetically competent and essential for isomerization. Oxidants inhibit isomerization and oxidize PDI when a redox buffer is not present to maintain the PDI redox state. Reductants also inhibit isomerization as they deplete oxidized PDI. These rapid cycles of PDI oxidation and reduction suggest that PDI catalyzes isomerization by trial and error, reducing disulfides and oxidizing them in a different configuration. Disulfide reduction-reoxidation may set up critical folding intermediates for intramolecular isomerization, or it may serve as the only isomerization mechanism. In the absence of a redox buffer, these steady-state reduction-oxidation cycles can balance the redox state of PDI and support effective catalysis of disulfide isomerization.
Collapse
Affiliation(s)
- Melissa Schwaller
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
32
|
Moremen KW. Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:225-35. [PMID: 12417404 DOI: 10.1016/s0304-4165(02)00388-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes "locoism", a phenocopy of the lysosomal storage disease, alpha-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.
Collapse
Affiliation(s)
- Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
33
|
Zhu YL, Conway-Campbell B, Waters MJ, Dannies PS. Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II. Endocrinology 2002; 143:4243-8. [PMID: 12399418 DOI: 10.1210/en.2002-220575] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wild-type and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mM BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wild-type hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.
Collapse
Affiliation(s)
- Yong Lian Zhu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
34
|
Failer BU, Braun N, Zimmermann H. Cloning, expression, and functional characterization of a Ca(2+)-dependent endoplasmic reticulum nucleoside diphosphatase. J Biol Chem 2002; 277:36978-86. [PMID: 12167635 DOI: 10.1074/jbc.m201656200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated and characterized the cDNA encoding a Ca(2+)-dependent nucleoside diphosphatase (EC ) related to two secreted ATP- and ADP-hydrolyzing apyrases of the bloodsucking insects, Cimex lectularius and Phlebotomus papatasi. The rat brain-derived cDNA has an open reading frame of 1209 bp encoding a protein of 403 amino acids and a calculated molecular mass of 45.7 kDa. The mRNA was expressed in all tissues investigated, revealing two major transcripts with varying preponderance. The immunohistochemical analysis of the Myc-His-tagged enzyme expressed in Chinese hamster ovary cells revealed its association with the endoplasmic reticulum and also with pre-Golgi intermediates. Ca(2+)-dependent nucleoside diphosphatase is a membrane protein with its catalytic site facing the organelle lumen. It hydrolyzes nucleoside 5'-diphosphates in the order UDP >GDP = IDP >>>CDP but not ADP. Nucleoside 5'-triphosphates were hydrolyzed to a minor extent, and no hydrolysis of nucleoside 5'-monophosphates was observed. The enzyme was strongly activated by Ca(2+), insensitive to Mg(2+), and had a K(m) for UDP of 216 microm. Ca(2+)-dependent nucleoside diphosphatase may support glycosylation reactions related to quality control in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Bernd U Failer
- Arbeitskreis Neurochemie, Biozentrum der J. W. Goethe-Universitaet, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
35
|
Sargsyan E, Baryshev M, Szekely L, Sharipo A, Mkrtchian S. Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J Biol Chem 2002; 277:17009-15. [PMID: 11884402 DOI: 10.1074/jbc.m200539200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Folding and post-translational modification of the thyroid hormone precursor, thyroglobulin (Tg), in the endoplasmic reticulum (ER) of the thyroid epithelial cells is facilitated by several molecular chaperones and folding enzymes, such as BiP, GRP94, calnexin, protein disulfide isomerase, ERp72, and others. They have been shown to associate simultaneously and/or sequentially with Tg in the course of its maturation, thus forming large heterocomplexes in the ER of thyrocytes. Here we present evidence that such complexes include a novel member, an ER-resident lumenal protein, ERp29, which is present in all mammalian tissues with exceptionally high levels of expression in the secretory cells. ERp29 was induced upon treatment of FRTL-5 rat thyrocytes with the thyroid-stimulating hormone, which is essential for the maintenance of thyroid cells and Tg biosynthesis. Chemical cross-linking followed by the cell lysis and immunoprecipitation of ERp29 or Tg revealed association of these proteins and additionally, immunocomplexes that also included major ER chaperones, BiP and GRP94. Sucrose density gradient analysis indicated co-localization of ERp29 with Tg and BiP in the fractions containing large macromolecular complexes. This was supported by immunofluorescent microscopy showing co-localization of ERp29 with Tg in the putative transport vesicular structures. Affinity chromatography using Tg as an affinity ligand demonstrated that ERp29 might be selectively isolated from the FRTL-5 cell lysate or purified lumenal fraction of rat liver microsomes along with the other ER chaperones. Preferential association with the urea-denatured Tg-Sepharose was indicative of either direct or circuitous ERp29/Tg interactions in a chaperone-like manner. Despite the presence of the C-terminal ER-retrieval signal, significant amounts of ERp29 were also recovered from the culture medium of stimulated thyrocytes, indicating ERp29 secretion. Based on these data, we suggest that the function of ERp29 in thyroid cells is connected with folding and/or secretion of Tg.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Gelman MS, Kannegaard ES, Kopito RR. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002; 277:11709-14. [PMID: 11812794 DOI: 10.1074/jbc.m111958200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated degradation of misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein is known to involve the ubiquitin-proteasome system. In addition, an ATP-independent proteolytic system has been suggested to operate in parallel with this pathway and become up-regulated when proteasomes are inhibited (Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Cell 83, 129-135). In this study, we use two independent techniques, pulse-chase labeling and a noninvasive fluorescence cell-based assay, to investigate the proteolytic pathways underlying the degradation of misfolded CFTR. Here we report that only inhibitors of the proteasome have a significant effect on preventing the degradation of CFTR, whereas cell-permeable inhibitors of lysosomal degradation, autophagy, and several classes of protease had no measurable effect on CFTR degradation, when used either alone or in combination with the specific proteasome inhibitor carbobenzoxy-l-leucyl-leucyl-l-leucinal (MG132). Our results suggest that ubiquitin-proteasome-mediated degradation is the dominant pathway for disposal of misfolded CFTR in mammalian cells and provide new mechanistic insight into endoplasmic reticulum-associated degradation.
Collapse
Affiliation(s)
- Marina S Gelman
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
37
|
Ma D, Zerangue N, Raab-Graham K, Fried SR, Jan YN, Jan LY. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 2002; 33:715-29. [PMID: 11879649 DOI: 10.1016/s0896-6273(02)00614-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1--Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.
Collapse
Affiliation(s)
- Dzwokai Ma
- Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|