1
|
Hulke JM, Criscione CD. Comparing the hermaphroditic mating system of a parasitic flatworm between populations with an ancestral, three-host life cycle and a derived, facultative precocious life cycle. Evolution 2025; 79:724-736. [PMID: 39873435 DOI: 10.1093/evolut/qpaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Evolutionary changes in development and/or host number of parasite life cycles can have subsequent ecological and evolutionary consequences for parasites. One theoretical model based on the mating systems of hermaphroditic parasites assumes a life cycle with fewer hosts will result in more inbreeding, and predicts a truncated life cycle most likely evolves in the absence of inbreeding depression. Many populations of the hermaphroditic trematode Alloglossidium progeneticum maintain an ancestral obligate three-host life cycle where obligate sexual reproduction occurs among adults in catfish third hosts. However, some populations have evolved a facultative precocious life cycle, where sexual development can occur while encysted within crayfish second hosts, likely leading to high inbreeding as individuals are forced to self-mate while encysted. Whether selfing represents a derived state remains untested. We compared selfing rates of 5 precocious populations to that of 4 populations with an ancestral obligate three-host life cycle. We also compared demographic estimates to genetic estimates of selfing to test the prediction of no inbreeding depression in precocious populations. Results showed that while the ancestral obligate three-host life cycle is associated with high outcrossing rates, the facultative precocious populations are highly selfing and show little evidence for inbreeding depression.
Collapse
Affiliation(s)
- Jenna M Hulke
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Charles D Criscione
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Zhang Q, Lv W, Liu D, Xie X, Yang K, Tang Y, Solkner J. Distribution of runs of homozygosity in Lactuca species and its implications for plant breeding and evolutionary conservation. BMC Genomics 2025; 26:481. [PMID: 40369490 PMCID: PMC12076861 DOI: 10.1186/s12864-025-11674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Runs of homozygosity (ROH) have been extensively investigated to uncover the genomic inbred regions that reflect past population and breeding histories. In this study, we have explored the distribution and number of ROH in different Lactuca species including the cultivated lettuce varieties and their wild relatives. Next generation sequencing (NGS) technology provides the unique opportunity to study the genomes with resolution up to per-base-pair and we could compute ROH in the highest accuracy using NGS data. Our study reveals that Lactuca sativa has the longest average ROH length and fewest number of ROHs, while wild species show shorter, more numerous ROHs as expected. We found that these cultivated varieties exhibit relatively stable number of ROH and ROH lengths, with the largest median ROH count observed in Oilseed and the largest average ROH length in Crisphead. There is a significant proportion of medium-length ROHs (100 kb-1 Mb) enriched in L. sativa and L. serriola, with the highest number observed in L. serriola, while L. saligna has more short ROHs (< 10 KB), and the highest number of ROHs in the 10 KB-100 KB range were observed in Butterhead, with Stalk and Oilseed showing fewer and shorter ROHs overall. It suggests that Stalk and Oilseed were still in a process of breeding. The comparison between PLINK computation and our developed in-house algorithm shows that PLINK tends to detect longer ROH, whereas our algorithm adopts a more conservative approach, resulting in fewer and shorter ROH segments detected with higher precision more suitable for NGS data. We further analyze the distribution of ROH hotspots with a higher frequency occurred across cultivated species genomes, which has identified key genes such as DREB2B, NHL12, RPV1, and EIX2, which play crucial roles in plant stress tolerance and immune responses, enhancing adaptability to extreme environments and providing resistance to various diseases. These findings provide fresh scientific insights into lettuce breeding, germplasm conservation, and sustainable production, highlighting the importance of understanding and managing genetic diversity in global agricultural practices.
Collapse
Affiliation(s)
- Qianqian Zhang
- School of Chemical and Biological Engineering, University of Science and Technology, Beijing, China.
- Department of Agriculture, University of Natural Resources and Life Sciences Vienna BOKU, Vienna, Austria.
| | - Wenjun Lv
- School of Chemical and Biological Engineering, University of Science and Technology, Beijing, China
| | - Defu Liu
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xueying Xie
- School of Chemical and Biological Engineering, University of Science and Technology, Beijing, China
| | - Ke Yang
- School of Chemical and Biological Engineering, University of Science and Technology, Beijing, China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Johann Solkner
- Department of Agriculture, University of Natural Resources and Life Sciences Vienna BOKU, Vienna, Austria
| |
Collapse
|
3
|
Tessele A, González-Diéguez DO, Crossa J, Johnson BE, Morris GP, Fritz AK. Improving genomic selection in hexaploid wheat with sub-genome additive and epistatic models. G3 (BETHESDA, MD.) 2025; 15:jkaf031. [PMID: 39953963 PMCID: PMC12005151 DOI: 10.1093/g3journal/jkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/16/2024] [Indexed: 02/17/2025]
Abstract
The goal of wheat breeding is the development of superior cultivars tailored to specific environments, and the identification of promising crosses is crucial for the success of breeding programs. Although genomic estimated breeding values were developed to estimate additive effects of genotypes before testing as parents, application has focused on predicting performance of candidate lines, ignoring nonadditive genetic effects. However, nonadditive genetic effects are hypothesized to be especially important in allopolyploid species due to the interaction between homeologous genes. The objectives of this study were to model additive and additive-by-additive epistatic effects to better delineate the genetic architecture of grain yield in wheat and to improve the accuracy of genome-wide predictions. The data set utilized consisted of 3,740 F5:6 experimental lines tested in the K-State wheat breeding program across the years 2016 and 2018. Covariance matrices were calculated based on whole- and sub-genome marker data, and the natural and orthogonal interaction approach was used to estimate variance components for additive and additive-by-additive epistatic effects. Incorporating epistatic effects in additive models resulted in nonorthogonal partitioning of genetic effects but increased total genetic variance and reduced deviance information criteria. Estimation of sub-genome effects indicated that genotypes with the greatest whole-genome effects often combine sub-genomes with intermediate to high effects, suggesting potential for crossing parental lines that have complementary sub-genome effects. Modeling epistasis in either whole-genome or sub-genome models led to a marginal (3%) improvement in genomic prediction accuracy, which could result in significant genetic gains across multiple cycles of breeding.
Collapse
Affiliation(s)
- Augusto Tessele
- Department of Agronomy, Kansas State University, Manhattan, KS 66506-5500, USA
| | - David O González-Diéguez
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco CP 56237, Mexico
| | - José Crossa
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco CP 56237, Mexico
| | - Blaine E Johnson
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| | - Geoffrey P Morris
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1101, USA
| | - Allan K Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS 66506-5500, USA
| |
Collapse
|
4
|
Choi YJ, Rosa BA, Fernandez-Baca MV, Ore RA, Martin J, Ortiz P, Hoban C, Cabada MM, Mitreva M. Independent origins and non-parallel selection signatures of triclabendazole resistance in Fasciola hepatica. Nat Commun 2025; 16:2996. [PMID: 40148292 PMCID: PMC11950404 DOI: 10.1038/s41467-025-57796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Triclabendazole (TCBZ) is the primary treatment for fascioliasis, a global foodborne zoonosis caused by Fasciola hepatica. Widespread resistance to TCBZ (TCBZ-R) in livestock and a rapid rise in resistant human infections are significant concerns. To understand the genetic basis of TCBZ-R, we sequenced the genomes of 99 TCBZ-sensitive (TCBZ-S) and 210 TCBZ-R adult flukes from 146 bovine livers in Cusco, Peru. We identify genomic regions of high differentiation (FST outliers above the 99.9th percentile) that encod genes involved in the EGFR-PI3K-mTOR-S6K pathway and microtubule function. Transcript expression differences are observed in microtubule-related genes between TCBZ-S and -R flukes, both without drug treatment and in response to treatment. Using only 30 SNPs, it is possible to differentiate between TCBZ-S and -R parasites with ≥75% accuracy. Our outlier loci are distinct from the previously reported TCBZ-R-associated QTLs in the UK, suggesting an independent evolution of resistance alleles. Effective genetics-based TCBZ-R surveillance must consider the heterogeneity of loci under selection across diverse geographical populations.
Collapse
Affiliation(s)
- Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Martha V Fernandez-Baca
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Rodrigo A Ore
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Miguel M Cabada
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru.
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Ma J, Bechsgaard J, Aagaard A, Villesen P, Bilde T, Schierup MH. The genomic consequences and persistence of sociality in spiders. Genome Res 2025; 35:499-511. [PMID: 39978820 PMCID: PMC11960701 DOI: 10.1101/gr.279503.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
In cooperatively breeding social animals, a few individuals account for all reproduction. In some taxa, sociality is accompanied by a transition from outcrossing to inbreeding. In concert, these traits reduce effective population size, potentially rendering transitions to sociality "evolutionarily dead-ends." We addressed this hypothesis in a comparative genomic study in spiders, in which sociality has evolved independently at least 23 times, but social branches are recent and short. We present genomic evidence for the evolutionary dead-end hypothesis in a spider genus with three independent transitions to sociality. We assembled and annotated high-quality, chromosome-level reference genomes from three pairs of closely related social and subsocial Stegodyphus species. We timed the divergence between the social and subsocial species pairs to be from 1.3 million to 1.8 million years. Social evolution in spiders involves a shift from outcrossing to inbreeding and from an equal to a female-biased sex ratio, causing severe reductions in effective population size and decreased efficacy of selection. We show that transitions to sociality only had full effect on purifying selection at 119, 260, and 279 kya, respectively, and follow similar convergent trajectories of progressive loss of diversity and shifts to an increasingly female-biased sex ratio. This almost deterministic genomic response to sociality may explain why social spider lineages do not persist. What causes species extinction is not clear, but either could be selfish meiotic drive eliminating the production of males or could be an inability to retain genome integrity in the face of extremely reduced efficacy of selection.
Collapse
Affiliation(s)
- Jilong Ma
- Bioinformatics Research Center, Aarhus University, Aarhus C, DK-8000, Denmark;
- Department of Biology, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Jesper Bechsgaard
- Department of Biology, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Anne Aagaard
- Department of Biology, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Palle Villesen
- Bioinformatics Research Center, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus C, DK-8000, Denmark;
- Center for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, United Kingdom
| | | |
Collapse
|
6
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Clo J, Abu Awad D, Bilde T, Bocedi G, Haag CR, Pannell J, Hartfield M. Perspectives on mating-system evolution: comparing concepts in plants and animals. J Evol Biol 2025:voaf009. [PMID: 40036782 DOI: 10.1093/jeb/voaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/28/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
The study of mating systems, defined as the distribution of who mates with whom and how often in a sexually reproducing population, forms a core pillar of evolution research due to their effects on many evolutionary phenomena. Historically, the "mating system" has either been used to refer to the rate of self-fertilization or to the formation of mating pairs between individuals of distinct sexes. Consequently, these two types of mating systems have tended to be studied separately rather than jointly. This separation often means that mating systems are not necessarily researched in a coherent manner that might apply to different types of organisms (e.g., plants versus animals, or hermaphrodites versus dioecious species), even if similar mechanisms may drive the evolution of self-fertilization and mating pair formation. Here, we review the evolution of both plant and animal mating systems, highlighting where similar concepts underlie both these fields and also where differing mechanisms are at play. We particularly focus on the effects of inbreeding, but also discuss the influence of spatial dynamics on mating-system evolution. We end with a synthesis of these different ideas and propose ideas for which concepts can be considered together to move towards a more cohesive approach to studying mating-system evolution.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague Benátská 2, Prague, Czech Republic
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Diala Abu Awad
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - John Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Reutemann AV, Schedler M, Hojsgaard DH, Brugnoli EA, Zilli AL, Acuña CA, Honfi AI, Martínez EJ. The Role of Reproductive Modes in Shaping Genetic Diversity in Polyploids: A Comparative Study of Selfing, Outcrossing, and Apomictic Paspalum Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:476. [PMID: 39943038 PMCID: PMC11820972 DOI: 10.3390/plants14030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Exploring the genetic diversity and reproductive strategies of Paspalum species is essential for advancing forage grass improvement. We compared morpho-phenological, molecular, and genotypic variation in five tetraploid Paspalum species with contrasting mating systems and reproductive modes. Contrary to previous findings, selfing (Paspalum regnellii and P. urvillei) and outcrossing (P. durifolium and P. ionanthum) species exhibited similar phenotypic diversity patterns, with low intrapopulation variability and no morphological differentiation among populations. The apomictic species (P. intermedium) exhibited low intrapopulation phenotypic variation but high population differentiation, indicative of genetic drift and local adaptation. Outcrossing species showed greater intrapopulation genotypic variation than selfing species, which displayed a high population structure due to restricted pollen migration. The apomictic species exhibited the lowest intrapopulation molecular diversity, forming uniclonal populations with high interpopulation differentiation, highlighting the fixation of distinct gene pools via apomixis. This is the first report about genetic diversity in populations of sexual allopolyploid species of Paspalum. Population structure in these allotetraploid Paspalum species is primarily shaped by how reproductive modes, mating systems, and geographic distribution influence gene flow via pollen and seeds. Our findings contribute significantly to the conservation and genetic improvement of forage grasses, particularly for developing cultivars with enhanced adaptability and productivity.
Collapse
Affiliation(s)
- A. Verena Reutemann
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Mara Schedler
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria (INTA), Posadas 3300, Argentina;
| | - Diego H. Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany;
| | - Elsa A. Brugnoli
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Alex L. Zilli
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Carlos A. Acuña
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Ana I. Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Posadas 3300, Argentina;
| | - Eric J. Martínez
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| |
Collapse
|
9
|
Thomas A, Sylvain F, Normandeau E, Leroux N, Holland A, Val AL, Derome N. Low Genetic Diversity and Complex Population Structure in Black Piranha ( Serrasalmus rhombeus), a Key Amazonian Predator. Ecol Evol 2025; 15:e70824. [PMID: 39963508 PMCID: PMC11831006 DOI: 10.1002/ece3.70824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/20/2025] Open
Abstract
The black piranha (Serrasalmus rhombeus), a widely spread species in the rivers of the Amazon basin, plays a vital role as both key predator and important prey. Despite its essential contribution to ecosystem stability, there is a lack of information regarding its genetic diversity and population dynamics in the central Amazon region. As the Amazon continues to undergo environmental changes in the context of growing anthropogenic threats, such knowledge is fundamental for assist in the conservation of this species. This study is the first to analyze the genetic diversity and population structure of S. rhombeus in the central Amazon region using high-resolution genomic data. We employed a Genotyping-by-Sequencing approach with 248 samples across 14 study sites from various tributaries, encompassing diverse water types (black, white, and clear water) and characterized by 34 physiochemical parameters. The data reveals low diversity accompanied by pronounced signs of inbreeding in half of the sites and robust genetic differentiation and variation among sites and within-sites. Surprisingly, we also found evidence of higher dispersal capacity than previously recognized. Our analysis exposed a complex and high population structure with genetic groups exclusive to some sites. Gene flow was low and some groups presented ambiguous genealogical divergence index (gdi) signals, suggesting the occurrence of potential cryptic species. Moreover, our results suggest that the population structure of black piranha appears more influenced by historical events than contemporary factors. These results underscore the need to give greater attention to this keystone species, for which no regulatory framework or conservation strategies is presently in effect.
Collapse
Affiliation(s)
- Alizée Thomas
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| | - François‐Étienne Sylvain
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
- Fisheries and OceansGulf Fisheries CenterMonctonNew BrunswickCanada
| | - Eric Normandeau
- Plateforme de Bio‐Informatique de l'IBIS (Institut de Biologie Intégrative et Des Systèmes)Université LavalQuébecCanada
| | - Nicolas Leroux
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution, School of Life ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução MolecularInstituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| |
Collapse
|
10
|
Patova A, Ribeiro PA, Murillo FJ, Riesgo A, Taboada S, Pomponi SA, Rapp HT, Kenchington E, Xavier JR. Population genomics and connectivity of Vazella pourtalesii sponge grounds of the northwest Atlantic with conservation implications of deep sea vulnerable marine ecosystems. Sci Rep 2025; 15:1540. [PMID: 39788986 PMCID: PMC11718047 DOI: 10.1038/s41598-024-82462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools. Here, the genetic diversity, structure, and connectivity of the deep-sea glass sponge, Vazella pourtalesii (Schmidt, 1870), was investigated using 1,102 neutral SNPs obtained in RADseq. This species is distributed across the northwest Atlantic from Florida, USA to Nova Scotia, Canada and we sequenced samples covering this full distribution and provided evidence of strong genetic structure with two distinct clusters: Florida together with the Carolina Shelves and the Scotian Shelf. We estimated moderate levels of diversity with low migration across large distances (> 1000 kms) and high connectivity at smaller scales (< 300 kms). Further, fishing pressure on genetic diversity was evaluated, within two Sponge Conservation Areas (SCAs) on the Scotian Shelf. Those areas have different disturbance histories, and cumulative fishing pressure. Slightly lower levels of genetic diversity were found inside the SCAs, and yet they encompassed a high proportion of the diversity observed within the Scotian Shelf. We provide baseline data for future monitoring of the SCAs, discussing our findings in the light of existing area-based management tools.
Collapse
Affiliation(s)
- Anna Patova
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Pedro A Ribeiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francisco J Murillo
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Ana Riesgo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Calle de José Gutiérrez Abascal, Madrid, Spain
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Sergi Taboada
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Calle de José Gutiérrez Abascal, Madrid, Spain
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias, Universidad Complutense de Madrid, 28049, Madrid, Spain
- Marine Biodiversity Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ellen Kenchington
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Joana R Xavier
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208, Matosinhos, Portugal
| |
Collapse
|
11
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
12
|
Liu M, Wang X, Wang H, Li G, Pei M, Liu G, Wang M. Genome-Wide Development and Characterization of Microsatellite Markers in the Great Web-Spinning Sawfly Acantholyda posticalis. Ecol Evol 2024; 14:e70500. [PMID: 39498198 PMCID: PMC11534431 DOI: 10.1002/ece3.70500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
The great web-spinning sawfly Acantholyda posticalis is notorious for damaging Pinus forests across the Palearctic region. At present, uncertainties persist regarding its intraspecies variation and presumed subspecies. To use as tools for future studies, herein we developed genome-wide microsatellite markers for A. posticalis. Through searching, rigorous manual screening, and amplification trial, 56 microsatellite markers were obtained from the genome sequences. We characterized these markers across two populations from Shandong province (SD) and Heilongjiang province (HLJ) in China, and carried out cross-amplification in three related species. Out of the 56 markers tested, 10, 31, and 15 were categorized into high, moderate, and low polymorphic levels, respectively, based on their polymorphic information content (PIC) values. Meanwhile, 28, 19, and 4 microsatellite loci were successfully cross-amplified in Cephalcia yanqingensis, C. chuxiongica, and C. infumata, respectively, which could serve as potential molecular markers for their further studies. STRUCTURE and PCoA analyses revealed two distinct clusters corresponding to SD and HLJ, respectively, indicating a high resolution of these markers. Therefore,the 56 microsatellite markers identified here have the potential to serve as efficient tools for unraveling intraspecies variation and evolutionary history of A. posticalis.
Collapse
Affiliation(s)
- Mengfei Liu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Xiaoyi Wang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Hongbin Wang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Guohong Li
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Mingyang Pei
- Chaoyang Natural Resources Affairs Service CenterLiaoningChina
| | - Gege Liu
- State‐Owned Lingbao City Chuankou Forest FarmHenanChina
| | - Mei Wang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
13
|
Campos M, Pérez-Collazos E, Díaz-Pérez A, López-Alvarez D, Oumouloud A, Mur LAJ, Vogel JP, Catalán P. Repeated migration, interbreeding and bottlenecking shaped the phylogeography of the selfing grass Brachypodium stacei. Mol Ecol 2024; 33:e17513. [PMID: 39188107 DOI: 10.1111/mec.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Brachypodium stacei is the most ancestral lineage in the genus Brachypodium, a model system for grass functional genomics. B. stacei shows striking and sometimes contradictory biological and evolutionary features, including a high selfing rate yet extensive admixture, an ancient Miocene origin yet with recent evolutionary radiation, and adaptation to different dry climate conditions in its narrow distribution range. Therefore, it constitutes an ideal system to study these life history traits. We studied the phylogeography of 17 native circum-Mediterranean B. stacei populations (39 individuals) using genome-wide RADseq SNP data and complete plastome sequences. Nuclear SNP data revealed the existence of six distinct genetic clusters, low levels of intra-population genetic diversity and high selfing rates, albeit with signatures of admixture. Coalescence-based dating analysis detected a recent split between crown lineages in the Late Quaternary. Plastome sequences showed incongruent evolutionary relationships with those recovered by the nuclear data, suggesting interbreeding and chloroplast capture events between genetically distant populations. Demographic and population dispersal coalescent models identified an ancestral origin of B. stacei in the western-central Mediterranean islands, followed by an early colonization of the Canary Islands and two independent colonization events of the eastern Mediterranean region through long-distance dispersal and bottleneck events as the most likely evolutionary history. Climate niche data identified three arid niches of B. stacei in the southern Mediterranean region. Our findings indicate that the phylogeography of B. stacei populations was shaped by recent radiations, frequent extinctions, long-distance dispersal events, occasional interbreeding, and adaptation to local climates.
Collapse
Affiliation(s)
- Miguel Campos
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Antonio Díaz-Pérez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- GESPLAN S.A. C, Las Palmas de Gran Canaria, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Venezuela
| | - Diana López-Alvarez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Facultad de Ciencias Agropecuarias, Departamento de Ciencias Biológicas, Universidad Nacional de Colombia, Palmira, Colombia
| | - Ali Oumouloud
- Institute Agronomique et Vétérinaire Hassan II, Agadir, Morocco
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - John P Vogel
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
14
|
Katsuhara KR, Ushimaru A, Miyazaki Y. Does a coexisting congener of a mixed mating species affect the genetic structure and selfing rate via reproductive interference? Oecologia 2024; 206:37-45. [PMID: 39174734 PMCID: PMC11489367 DOI: 10.1007/s00442-024-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Reproductive interference is defined as an interspecific interaction that reduces fitness via mating processes. Although its ecological and evolutionary consequences have attracted much attention, how reproductive interference affects the population genetic structures of interacting species is still unclear. In flowering plants, recent studies found that self-pollination can mitigate the negative effects of reproductive interference. Selfing-biased seed production is expected to increase population-level inbreeding and the selfing rate, and limits gene flow via pollinator outcrossing among populations. We examined the population genetics of the mixed-mating annual herb Commelina communis f. ciliata, focusing on reproductive interference by the sympatric competing congener C. communis using microsatellite markers. First, we found that almost all C. c. f. ciliata populations had relatively high inbreeding coefficients. Then, comparing sympatric and allopatric populations, we found evidence that reproductive interference from a competing congener increased the inbreeding coefficient and selfing rate. Allopatric populations exhibit varied selfing rates while almost all sympatric populations exhibit extremely high selfing rates, suggesting that population selfing rates were also influenced by unexamined factors, such as pollinator limitation. Besides, our findings revealed that reproductive interference from a competing congener did not limit gene flow among populations. We present the first report on how reproductive interference affects the genetic aspects of populations. Our results suggested that the high selfing rate of C. c. f. ciliata promotes its sympatric distribution with C. communis, even in the presence of reproductive interference, although it is not clear whether reproductive interference directly causes the high selfing rate.
Collapse
Affiliation(s)
- Koki R Katsuhara
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-Naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Kobe, 657-8501, Japan.
| | - Atushi Ushimaru
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Kobe, 657-8501, Japan
| | - Yuko Miyazaki
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-Naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
15
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
16
|
Mirza A, Ali Qadri MM, Zeshan B, Hafiz K, Abbas S, Ahmad N, Iqbal M. HLA class-I polymorphisms among the Punjabi population of Pakistan: A comparative analysis with country's other ethnic groups. Hum Immunol 2024; 85:111083. [PMID: 39111186 DOI: 10.1016/j.humimm.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
The Punjabi population, constituting over 45 % of the country's total population, holds the highest prevalence in Pakistan. To understand their HLA genetics, we genotyped 389 Punjabi subjects for major Class-I loci using the PCR-SSO Luminex® method. Our study identified a total of 162 alleles, including 41 different HLA-A, 72 HLA-B, and 49 HLA-C alleles. The most common alleles included A*11:01 (14.6 %), A*01:01 (11.8 %), A*24:02 (11.3 %); B*40:06 (13.3 %), B*08:01 (10.9 %), B*51:01 (8.7 %); C*15:02 (15.5 %), C*07:02 (15.3 %), and C*04:01 (10.8 %). However, only locus B showed a significant deviation from HWE. The dominant Class I haplotype was A*24:02-B*40:06-C*15:02, followed by A*11:01-B*40:06-C*15:02, while significant LD was observed between all pairs of HLA loci. A distinct genetic makeup was observed in the Pakistani Punjabis as compared to Indian Punjabis, emphasizing the impact of the Indo-Pak partition and religious choices for marriage. In comparison to country's other ethnic groups, the Pakistani population exhibited 76 different alleles at a low field-resolution, with the Punjabi population having highest polymorphism. Phylogenetic analysis revealed that the Punjabi population is most closely related to the Sindhi population, while both populations sharing ancient connections with the Burusho population. These findings have significant implications for transplantation procedures, personalized medicine, disease susceptibility, and evolutionary studies.
Collapse
Affiliation(s)
- Aliza Mirza
- School of Medical Lab Technology, Minhaj University Lahore, Main Campus, 45770 Lahore, Pakistan
| | - Mian Mubeen Ali Qadri
- School of Medical Lab Technology, Minhaj University Lahore, Main Campus, 45770 Lahore, Pakistan.
| | - Basit Zeshan
- Faculty of Sustainable Agriculture, University Malaysia Sabah (Sandakan Campus), 9000 Sabah, Malaysia.
| | - Kashif Hafiz
- School of Medical Lab Technology, Minhaj University Lahore, Main Campus, 45770 Lahore, Pakistan
| | - Saba Abbas
- School of Medical Lab Technology, Minhaj University Lahore, Main Campus, 45770 Lahore, Pakistan
| | - Nabeel Ahmad
- Pakistan Kidney and Liver Institute (PKLI) and Research Center, One PKLI Avenue, Opposite DHA Phase 6, 54792 Lahore, Pakistan
| | - Maryam Iqbal
- School of Medical Lab Technology, Riphah International University, Gulberg III Campus, 25 Raza Saeed Rd, 54660 Lahore, Pakistan
| |
Collapse
|
17
|
Marsh JI, Johri P. Biases in ARG-Based Inference of Historical Population Size in Populations Experiencing Selection. Mol Biol Evol 2024; 41:msae118. [PMID: 38874402 PMCID: PMC11245712 DOI: 10.1093/molbev/msae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Inferring the demographic history of populations provides fundamental insights into species dynamics and is essential for developing a null model to accurately study selective processes. However, background selection and selective sweeps can produce genomic signatures at linked sites that mimic or mask signals associated with historical population size change. While the theoretical biases introduced by the linked effects of selection have been well established, it is unclear whether ancestral recombination graph (ARG)-based approaches to demographic inference in typical empirical analyses are susceptible to misinference due to these effects. To address this, we developed highly realistic forward simulations of human and Drosophila melanogaster populations, including empirically estimated variability of gene density, mutation rates, recombination rates, purifying, and positive selection, across different historical demographic scenarios, to broadly assess the impact of selection on demographic inference using a genealogy-based approach. Our results indicate that the linked effects of selection minimally impact demographic inference for human populations, although it could cause misinference in populations with similar genome architecture and population parameters experiencing more frequent recurrent sweeps. We found that accurate demographic inference of D. melanogaster populations by ARG-based methods is compromised by the presence of pervasive background selection alone, leading to spurious inferences of recent population expansion, which may be further worsened by recurrent sweeps, depending on the proportion and strength of beneficial mutations. Caution and additional testing with species-specific simulations are needed when inferring population history with non-human populations using ARG-based approaches to avoid misinference due to the linked effects of selection.
Collapse
Affiliation(s)
- Jacob I Marsh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Cohen DH, Fant JB, Skogen KA. Conservation genomics assessment of Tharp's bluestar ( Amsonia tharpii) with comparisons to widespread ( A. longilora) and narrowly endemic ( A. fugatei) congeners. Evol Appl 2024; 17:e13736. [PMID: 38903246 PMCID: PMC11186748 DOI: 10.1111/eva.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Land-use change and habitat fragmentation are threats to biodiversity. The decrease in available habitat, increase in isolation, and mating within populations can lead to elevated inbreeding, lower genetic diversity, and poor fitness. Here we investigate the genetics of two rare and threatened plant species, Amsonia tharpii and A. fugatei, and we compare them to a widespread congener A. longiflora. We also report the first phylogenetic study of the genus Amsonia (Apocynaceae), including 10 of the 17 taxa and multiple sampling locations, to understand species relationships. We used a double digest restriction-site associated DNA sequencing (ddRADseq) approach to investigate the genetic diversity and gene flow of each species and to create a maximum likelihood phylogeny. The ddRADseq data was mapped to a reference genome to separate out the chloroplast and nuclear markers for population genetic analysis. Our results show that genetic diversity and inbreeding were low across all three species. The chloroplast and nuclear dataset in A. tharpii were highly structured, whereas they showed no structure for A. fugatei, while A. longiflora lacked structure for nuclear data but not chloroplast. Phylogenetic results revealed that A. tharpii is distinct and sister to A. fugatei, and together they are distantly related to A. longiflora. Our results demonstrated that evolutionary history and contemporary ecological processes largely influences genetic diversity within Amsonia. Interestingly, we show that in A. tharpii there was significant structure despite being pollinated by large, bodied hawkmoths that are known to be able to carry pollen long distances, suggesting that other factors are contributing to the structure observed among A. tharpii populations. Conservation efforts should focus on protecting all of the A. tharpii populations, as they contain unique genetic diversity, and a protection plan for A. fugatei needs to be established due to its limited distribution.
Collapse
Affiliation(s)
- Dylan H. Cohen
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Jeremie B. Fant
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Krissa A. Skogen
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
20
|
Keller B, Alther B, Jiménez A, Koutroumpa K, Mora-Carrera E, Conti E. Island plants with newly discovered reproductive traits have higher capacity for uniparental reproduction, supporting Baker's law. Sci Rep 2024; 14:11392. [PMID: 38762587 PMCID: PMC11102434 DOI: 10.1038/s41598-024-62065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| | - Barbara Alther
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Ares Jiménez
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Botanischer Garten und Botanisches Museum Berlin (BGBM), Freie Universität Berlin, Berlin, Germany
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Martínez Villar M, Bechsgaard J, Bilde T, Albo MJ, Tomasco IH. Impact of pre-copulatory sexual cannibalism on genetic diversity and efficacy of selection. Biol Lett 2024; 20:20230505. [PMID: 38746981 PMCID: PMC11285751 DOI: 10.1098/rsbl.2023.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 07/31/2024] Open
Abstract
Factors that increase reproductive variance among individuals act to reduce effective population size (Ne), which accelerates the loss of genetic diversity and decreases the efficacy of purifying selection. These factors include sexual cannibalism, offspring investment and mating system. Pre-copulatory sexual cannibalism, where the female consumes the male prior to mating, exacerbates this effect. We performed comparative transcriptomics in two spider species, the cannibalistic Trechaleoides biocellata and the non-cannibalistic T. keyserlingi, to generate genomic evidence to support these predictions. First, we estimated heterozygosity and found that genetic diversity is relatively lower in the cannibalistic species. Second, we calculated dN/dS ratios as a measure of purifying selection; a higher dN/dS ratio indicated relaxed purifying selection in the cannibalistic species. These results are consistent with the hypothesis that sexual cannibalism impacts operational sex ratio and demographic processes, which interact with evolutionary forces to shape the genetic structure of populations. However, other factors such as the mating system and life-history traits contribute to shaping Ne. Comparative analyses across multiple contrasting species pairs would be required to disentangle these effects. Our study highlights that extreme behaviours such as pre-copulatory cannibalism may have profound eco-evolutionary effects.
Collapse
Affiliation(s)
- Mauro Martínez Villar
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | | | - Trine Bilde
- Departament of Biology, Aarhus University, Aarhus8000, Denmark
| | - Maria Jose Albo
- Departament of Biology, Aarhus University, Aarhus8000, Denmark
- Laboratory of Ethology, Ecology and Evolution, Clemente Estable Biological Research Institute, Montevideo, 11600, Uruguay
| | - Ivanna H. Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| |
Collapse
|
22
|
Mullett MS, Harris AR, Scanu B, Van Poucke K, LeBoldus J, Stamm E, Bourret TB, Christova PK, Oliva J, Redondo MA, Talgø V, Corcobado T, Milenković I, Jung MH, Webber J, Heungens K, Jung T. Phylogeography, origin and population structure of the self-fertile emerging plant pathogen Phytophthora pseudosyringae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13450. [PMID: 38590129 PMCID: PMC11002350 DOI: 10.1111/mpp.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
Collapse
Affiliation(s)
- Martin S. Mullett
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Bruno Scanu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Kris Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Jared LeBoldus
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
- Department of Forest Engineering, Resources, and ManagementOregon State UniversityCorvallisOregonUSA
| | - Elizabeth Stamm
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Tyler B. Bourret
- USDA‐ARS Mycology and Nematology Genetic Diversity and Biology LaboratoryBeltsvilleMarylandUSA
- Department of Plant PathologyUC DavisDavisCaliforniaUSA
| | | | - Jonás Oliva
- Department of Agricultural and Forest Sciences and EngineeringUniversity of LleidaLleidaSpain
- Joint Research Unit CTFC–AGROTECNIO–CERCALleidaSpain
| | - Miguel A. Redondo
- National Bioinformatics Infrastructure Sweden, Science for Life LaboratorySweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Venche Talgø
- Division of Biotechnology and Plant HealthNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Tamara Corcobado
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Ivan Milenković
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Kurt Heungens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Thomas Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| |
Collapse
|
23
|
Blackmon H, Jonika MM, Alfieri JM, Fardoun L, Demuth JP. Drift drives the evolution of chromosome number I: The impact of trait transitions on genome evolution in Coleoptera. J Hered 2024; 115:173-182. [PMID: 38181226 PMCID: PMC10936555 DOI: 10.1093/jhered/esae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
Chromosomal mutations such as fusions and fissions are often thought to be deleterious, especially in heterozygotes (underdominant), and consequently are unlikely to become fixed. Yet, many models of chromosomal speciation ascribe an important role to chromosomal mutations. When the effective population size (Ne) is small, the efficacy of selection is weakened, and the likelihood of fixing underdominant mutations by genetic drift is greater. Thus, it is possible that ecological and phenotypic transitions that modulate Ne facilitate the fixation of chromosome changes, increasing the rate of karyotype evolution. We synthesize all available chromosome number data in Coleoptera and estimate the impact of traits expected to change Ne on the rate of karyotype evolution in the family Carabidae and 12 disparate clades from across Coleoptera. Our analysis indicates that in Carabidae, wingless clades have faster rates of chromosome number increase. Additionally, our analysis indicates clades exhibiting multiple traits expected to reduce Ne, including strict inbreeding, oligophagy, winglessness, and island endemism, have high rates of karyotype evolution. Our results suggest that chromosome number changes are likely fixed by genetic drift despite an initial fitness cost and that chromosomal speciation models may be important to consider in clades with very small Ne.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Leen Fardoun
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
24
|
Reutemann AV, Honfi AI, Karunarathne P, Eckers F, Hojsgaard DH, Martínez EJ. Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems. PLANT REPRODUCTION 2024; 37:15-32. [PMID: 37566236 DOI: 10.1007/s00497-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
Collapse
Affiliation(s)
- A Verena Reutemann
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina
| | - Ana I Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Piyal Karunarathne
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-Von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
- Institute for Population Genetics, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Fabiana Eckers
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Diego H Hojsgaard
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Eric J Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina.
| |
Collapse
|
25
|
Patterson C, Pilakouta N. Effects of Parental Care on the Magnitude of Inbreeding Depression: A Meta-Analysis in Fishes. Am Nat 2024; 203:E50-E62. [PMID: 38306289 DOI: 10.1086/728001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractInbreeding results from matings between relatives and often leads to a reduction in the fitness of inbred offspring, known as inbreeding depression. There is substantial variation in the magnitude of inbreeding depression among and within species, driven by differences in the biotic and abiotic environment. Recent studies in three species found that parental care has the potential to buffer against inbreeding depression in the offspring, but the generality of this pattern is still unknown. Here, we performed a meta-analysis to test whether variation in the magnitude of inbreeding depression is related to among-species differences in parental care in fishes. We synthesized 536 effect sizes across 56 studies and 18 species, spanning 47 years of research. We found that inbred offspring suffer a smaller reduction in fitness in species that provide biparental care than in species with uniparental or no care. By using a comparative approach, this study provides novel insights into the capacity of parental care to moderate inbreeding depression and suggests that these effects may currently be underappreciated. Considering the potential effects of parental care on inbreeding depression can help us understand why some species avoid inbreeding, whereas others tolerate or even prefer inbreeding, which has important implications for the maintenance of genetic variation within populations.
Collapse
|
26
|
Mu W, Li K, Yang Y, Breiman A, Lou S, Yang J, Wu Y, Wu S, Liu J, Nevo E, Catalan P. Scattered differentiation of unlinked loci across the genome underlines ecological divergence of the selfing grass Brachypodium stacei. Proc Natl Acad Sci U S A 2023; 120:e2304848120. [PMID: 37903254 PMCID: PMC10636366 DOI: 10.1073/pnas.2304848120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Adina Breiman
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, University of Tel-Aviv, Tel-Aviv6997801, Israel
| | - Shangling Lou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Shuang Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Mount Carmel, Haifa3498838, Israel
| | - Pilar Catalan
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| |
Collapse
|
27
|
Ju X, Wang Z, Cai D, Bello SF, Nie Q. DNA methylation in poultry: a review. J Anim Sci Biotechnol 2023; 14:138. [PMID: 37925454 PMCID: PMC10625706 DOI: 10.1186/s40104-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023] Open
Abstract
As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.
Collapse
Affiliation(s)
- Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Zhijun Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Road, Lin'an, 311300, China
| | - Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Semiu Folaniyi Bello
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
28
|
Arana A, Esteves J, Ramírez R, Galetti PM, Pérez Z J, Ramirez JL. Population genomics reveals how 5 ka of human occupancy led the Lima leaf-toed gecko (Phyllodactylus sentosus) to the brink of extinction. Sci Rep 2023; 13:18465. [PMID: 37891335 PMCID: PMC10611785 DOI: 10.1038/s41598-023-45715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
Small species with high home fidelity, high ecological specialization or low vagility are particularly prone to suffer from habitat modification and fragmentation. The Lima leaf-toed gecko (Phyllodactylus sentosus) is a critically endangered Peruvian species that shelters mostly in pre-Incan archeological areas called huacas, where the original environmental conditions are maintained. We used genotyping by sequencing to understand the population genomic history of P. sentosus. We found low genetic diversity (He 0.0406-0.134 and nucleotide diversity 0.0812-0.145) and deviations of the observed heterozygosity relative to the expected heterozygosity in some populations (Fis - 0.0202 to 0.0187). In all analyses, a clear population structuring was observed that cannot be explained by isolation by distance alone. Also, low levels of historical gene flow were observed between most populations, which decreased as shown in contemporary migration rate analysis. Demographic inference suggests these populations experienced bottleneck events during the last 5 ka. These results indicate that habitat modification since pre-Incan civilizations severely affected these populations, which currently face even more drastic urbanization threats. Finally, our predictions show that this species could become extinct in a decade without further intervention, which calls for urgent conservation actions being undertaken.
Collapse
Affiliation(s)
- Alejandra Arana
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Juan Esteves
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Rina Ramírez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - José Pérez Z
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jorge L Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| |
Collapse
|
29
|
Luna LW, Williams LM, Duren K, Tyl R, Toews DPL, Avery JD. Whole genome assessment of a declining game bird reveals cryptic genetic structure and insights for population management. Mol Ecol 2023; 32:5498-5513. [PMID: 37688483 DOI: 10.1111/mec.17129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Population genomics applied to game species conservation can help delineate management units, ensure appropriate harvest levels and identify populations needing genetic rescue to safeguard their adaptive potential. The ruffed grouse (Bonasa umbellus) is rapidly declining in much of the eastern USA due to a combination of forest maturation and habitat fragmentation. More recently, mortality from West Nile Virus may have affected connectivity of local populations; however, genetic approaches have never explicitly investigated this issue. In this study, we sequenced 54 individual low-coverage (~5X) grouse genomes to characterize population structure, assess migration rates across the landscape to detect potential barriers to gene flow and identify genomic regions with high differentiation. We identified two genomic clusters with no clear geographic correlation, with large blocks of genomic differentiation associated with chromosomes 4 and 20, likely due to chromosomal inversions. After excluding these putative inversions from the data set, we found weak but nonsignificant signals of population subdivision. Estimated gene flow revealed reduced rates of migration in areas with extensive habitat fragmentation and increased genetic connectivity in areas with less habitat fragmentation. Our findings provide a benchmark for wildlife managers to compare and scale the genetic diversity and structure of ruffed grouse populations in Pennsylvania and across the eastern USA, and we also reveal structural variation in the grouse genome that requires further study to understand its possible effects on individual fitness and population distribution.
Collapse
Affiliation(s)
- Leilton W Luna
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | - Lisa M Williams
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Kenneth Duren
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Reina Tyl
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - David P L Toews
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
| | - Julian D Avery
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
30
|
Hudson DW, McKinley TJ, Benton CH, Delahay R, McDonald RA, Hodgson DJ. Multi-locus homozygosity promotes actuarial senescence in a wild mammal. J Anim Ecol 2023; 92:1881-1892. [PMID: 37427855 DOI: 10.1111/1365-2656.13979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Genome-wide homozygosity, caused for example by inbreeding, is expected to have deleterious effects on survival and/or reproduction. Evolutionary theory predicts that any fitness costs are likely to be detected in late life because natural selection will filter out negative impacts on younger individuals with greater reproductive value. Here we infer associations between multi-locus homozygosity (MLH), sex, disease and age-dependent mortality risks using Bayesian analysis of the life histories of wild European badgers Meles meles in a population naturally infected with Mycobacterium bovis (the causative agent of bovine tuberculosis [bTB]). We find important effects of MLH on all parameters of the Gompertz-Makeham mortality hazard function, but particularly in later life. Our findings confirm the predicted association between genomic homozygosity and actuarial senescence. Increased homozygosity is particularly associated with an earlier onset, and greater rates of actuarial senescence, regardless of sex. The association between homozygosity and actuarial senescence is further amplified among badgers putatively infected with bTB. These results recommend further investigation into the ecological and behavioural processes that result in genome-wide homozygosity, and focused work on whether homozygosity is harmful or beneficial during early life-stages.
Collapse
Affiliation(s)
- Dave W Hudson
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Clare H Benton
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Richard Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Dave J Hodgson
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
31
|
Charlesworth B. The effects of inversion polymorphisms on patterns of neutral genetic diversity. Genetics 2023; 224:iyad116. [PMID: 37348059 PMCID: PMC10411593 DOI: 10.1093/genetics/iyad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/23/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
The strong reduction in the frequency of recombination in heterozygotes for an inversion and a standard gene arrangement causes the arrangements to become partially isolated genetically, resulting in sequence divergence between them and changes in the levels of neutral variability at nucleotide sites within each arrangement class. Previous theoretical studies on the effects of inversions on neutral variability have assumed either that the population is panmictic or that it is divided into 2 populations subject to divergent selection. Here, the theory is extended to a model of an arbitrary number of demes connected by migration, using a finite island model with the inversion present at the same frequency in all demes. Recursion relations for mean pairwise coalescent times are used to obtain simple approximate expressions for diversity and divergence statistics for an inversion polymorphism at equilibrium under recombination and drift, and for the approach to equilibrium following the sweep of an inversion to a stable intermediate frequency. The effects of an inversion polymorphism on patterns of linkage disequilibrium are also examined. The reduction in effective recombination rate caused by population subdivision can have significant effects on these statistics. The theoretical results are discussed in relation to population genomic data on inversion polymorphisms, with an emphasis on Drosophila melanogaster. Methods are proposed for testing whether or not inversions are close to recombination-drift equilibrium, and for estimating the rate of recombinational exchange in heterozygotes for inversions; difficulties involved in estimating the ages of inversions are also discussed.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
32
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
33
|
Melkikh AV. Mutations, sex, and genetic diversity: New arguments for partially directed evolution. Biosystems 2023; 229:104928. [PMID: 37172758 DOI: 10.1016/j.biosystems.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A review of the theories of the existence of sexes, genetic diversity, and the distribution of mutations among organisms shows that all these concepts are not a product of random evolution and cannot be explained within the framework of Darwinism. Most mutations are the result of the genome acting on itself. This is an organized process that is implemented very differently in different species, in different places in the genome. Because of the fact that it is not random, this process must be directed and regulated, albeit with complex and not fully understood laws. This means that an additional reason must be included in order to model such mutations during evolution. The assumption of directionality must not only be explicitly included in evolutionary theory but must also occupy a central place in it. In this study an updated model of partially directed evolution is constructed, which is capable of qualitatively explaining the indicated features of evolution. Experiments are described that can confirm or disprove the proposed model.
Collapse
|
34
|
Horne JB, Frey A, Gaos AR, Martin S, Dutton PH. Non-random mating within an Island rookery of Hawaiian hawksbill turtles: demographic discontinuity at a small coastline scale. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221547. [PMID: 37206959 PMCID: PMC10189603 DOI: 10.1098/rsos.221547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small and genetically isolated population, consisting of only a few tens of individuals breeding annually. Most females nest on the island of Hawai'i, but little is known about the demographics of this rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to determine breeding sex-ratios, estimate female nesting frequency and assess relationships between individuals nesting on different beaches. Samples were collected during the 2017 nesting season and final data included 13 nesting females and 1002 unhatched embryos, salvaged from 41 nests, of which 13 had no observed mother. Results show that most females used a single nesting beach laying 1-5 nests each. From female and offspring alleles, the paternal genotypes of 12 breeding males were reconstructed and many showed high relatedness to their mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggested a 1 : 1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate that turtles from different nesting areas do not regularly interbreed, suggesting that strong natal homing tendencies in both sexes result in non-random mating across the study area. Complexes of nearby nesting beaches also showed unique patterns of inbreeding across loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous nesting populations separated by only tens of km.
Collapse
Affiliation(s)
- John B. Horne
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Amy Frey
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Alexander R. Gaos
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Summer Martin
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Peter H. Dutton
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| |
Collapse
|
35
|
Zimmer EA, Berg JA, Dudash MR. Genetic diversity and population structure among native, naturalized, and invasive populations of the common yellow monkeyflower, Mimulus guttatus (Phrymaceae). Ecol Evol 2023; 13:e9596. [PMID: 37038527 PMCID: PMC10082173 DOI: 10.1002/ece3.9596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 04/12/2023] Open
Abstract
An ongoing controversy in invasion biology is the prevalence of colonizing plant populations that are able to establish and spread, while maintaining limited amounts of genetic variation. Invasive populations can be established through several routes including from a single source or from multiple introductions. The aim of this study was to examine genetic diversity in populations of Mimulus guttatus in the United Kingdom, where the species is considered invasive, and compare this diversity to that in native populations on the west coast of North America. Additionally, we looked at diversity in non-native populations that have not yet become invasive (naturalized populations) in eastern North America. We investigated population structure among populations in these three regions and attempted to uncover the sources for populations that have established in the naturalized and invasive regions. We found that genetic diversity was, on average, relatively high in populations from the invasive UK region and comparable to native populations. Contrastingly, two naturalized M. guttatus populations were low in both genetic and genotypic diversity, indicating a history of asexual reproduction and self-fertilization. A third naturalized population was found to be a polyploid Mimulus hybrid of unknown origin. Our results demonstrate that M. guttatus has likely achieved colonization success outside of its native western North America distribution by a variety of establishment pathways, including those with genetic and demographic benefits resulting from multiple introductions in the UK, reproductive assurance through selfing, and asexual reproduction in eastern North America, and possible polyploidization in one Canadian population.
Collapse
Affiliation(s)
- Elizabeth A. Zimmer
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Jason A. Berg
- Department of Biological SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Michele R. Dudash
- Department of Biological SciencesUniversity of MarylandCollege ParkMarylandUSA
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
36
|
Lu CT, Yang MJ, Luo MX, Wang JC. Aspidistradaibuensis var. longkiauensis, a new variety of Aspidistra (Asparagaceae) from Taiwan, identified through morphological and genetic analyses. PHYTOKEYS 2023; 222:129-151. [PMID: 37215050 PMCID: PMC10194778 DOI: 10.3897/phytokeys.222.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/12/2023] [Indexed: 05/24/2023]
Abstract
Aspidistra Ker Gawl. is one of the the most diverse and fastest-growing genera of angiosperm. Most Aspidistra species have been discovered in a limited area or a single site through morphological comparison. Because of the lack of population studies, morphological variation within species and the boundaries of some species remain unclear. In recent years, combining genetic and morphological markers has become a powerful approach for species delimitation. In this study, we performed population sampling and integrated morphometrics and microsatellite genetic diversity analyses to determine the species diversity of Aspidistra in Taiwan. We identified three species, namely Aspidistraattenuata Hayata; A.daibuensisHayatavar.daibuensis; A.mushaensisHayatavar.mushaensis; and reduced A.longiconnectiva C.T.Lu, K.C.Chuang & J.C.Wang to the variety level, and described a new variety, A.daibuensisHayatavar.longkiauensis. The description, diagnosis, distribution, and photographs of this new variety as well as a key to the known Taiwanese Aspidistra are provided.
Collapse
Affiliation(s)
- Chang-Tse Lu
- Department of Biological Resources, National Chiayi University, 300 Syuefu Rd., Chiayi City 60004, TaiwanNational Chiayi UniversityChiayiTaiwan
| | - Ming-Jen Yang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec 4, Wenshan, Taipei City 11677, TaiwanNational Taiwan Normal UniversityTaipeiTaiwan
| | - Min-Xin Luo
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec 4, Wenshan, Taipei City 11677, TaiwanNational Taiwan Normal UniversityTaipeiTaiwan
| | - Jenn-Che Wang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec 4, Wenshan, Taipei City 11677, TaiwanNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
37
|
Lu-Irving P, Bragg JG, Rossetto M, King K, O’Brien M, van der Merwe MM. Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:522. [PMID: 36771606 PMCID: PMC9921034 DOI: 10.3390/plants12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of Hakea (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between H. sericea and H. teretifolia was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, H. sericea was found to be habitually selfing, while H. teretifolia more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Jason G. Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Kit King
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Mitchell O’Brien
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Innovation Quarter Westmead, Level 3, East Tower, 158-164 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | - Marlien M. van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| |
Collapse
|
38
|
Keeney DB, Cobb SA, Jadin RC, Orlofske SA. Atypical life cycle does not lead to inbreeding or selfing in parasites despite clonemate accumulation in intermediate hosts. Mol Ecol 2022; 32:1777-1790. [PMID: 36579456 DOI: 10.1111/mec.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Many parasites utilize asexual and sexual reproduction and multiple hosts to complete their life cycles. How these taxa avoid inbreeding is an essential question for understanding parasite evolution and ecology. Aquatic trematodes that require multiple host species may benefit from diverse genetic parasite assemblages accumulating within second intermediate hosts prior to sexual reproduction in definitive hosts. However, Cotylurus species are able to utilize the same snail species as first and second intermediate hosts, potentially resulting in the accumulation of genetically identical clones (clonemates) prior to sexual reproduction. In this study, we developed and analysed novel microsatellite loci to determine if clones are accumulating within snail hosts prior to ingestion by bird hosts and the effects this could have on parasite inbreeding. Contrary to previous studies of aquatic trematodes, significantly large numbers of clonemates were present within snails, but full-sibs were not. Genetic structure was present over a relatively small geographical scale despite the use of vagile definitive hosts. Phylogenetic analysis identified the Cotylurus sp. clones as belonging to a single species. Despite the presence of clones within snails, mating between clones/selfing was not common and heterozygosity is maintained within individuals. Potential issues with clones mating may be mitigated by the presence of snails with numerous clones, the consumption of many snails by bird hosts and parasite clone recognition/avoidance. Use of the same host species for multiple life stages may have advantages when parasites are able to avoid inbreeding and the required hosts are common.
Collapse
Affiliation(s)
- Devon B Keeney
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA
| | - Sarah A Cobb
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert C Jadin
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| | - Sarah A Orlofske
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
39
|
Zhang Z, Kryvokhyzha D, Orsucci M, Glémin S, Milesi P, Lascoux M. How broad is the selfing syndrome? Insights from convergent evolution of gene expression across species and tissues in the Capsella genus. THE NEW PHYTOLOGIST 2022; 236:2344-2357. [PMID: 36089898 PMCID: PMC9828073 DOI: 10.1111/nph.18477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The shift from outcrossing to selfing is one of the main evolutionary transitions in plants. It is accompanied by profound effects on reproductive traits, the so-called selfing syndrome. Because the transition to selfing also implies deep genomic and ecological changes, one also expects to observe a genomic selfing syndrome. We took advantage of the three independent transitions from outcrossing to selfing in the Capsella genus to characterize the overall impact of mating system change on RNA expression, in flowers but also in leaves and roots. We quantified the extent of both selfing and genomic syndromes, and tested whether changes in expression corresponded to adaptation to selfing or to relaxed selection on traits that were constrained in outcrossers. Mating system change affected gene expression in all three tissues but more so in flowers than in roots and leaves. Gene expression in selfing species tended to converge in flowers but diverged in the two other tissues. Hence, convergent adaptation to selfing dominates in flowers, whereas genetic drift plays a more important role in leaves and roots. The effect of mating system transition is not limited to reproductive tissues and corresponds to both adaptation to selfing and relaxed selection on previously constrained traits.
Collapse
Affiliation(s)
- Zebin Zhang
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
| | - Dmytro Kryvokhyzha
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Department of Clinical SciencesLund University Diabetes Centre214 28MalmöSweden
| | - Marion Orsucci
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Department of Plant BiologySwedish University of Agricultural Sciences, Uppsala BioCenter750 07UppsalaSweden
| | - Sylvain Glémin
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) – Unité Mixte de Recherche (UMR) 6553F‐35042RennesFrance
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Science For Life Laboratory (SciLifeLab)752 37UppsalaSweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
| |
Collapse
|
40
|
Escobar S, Vigouroux Y, Karubian J, Zekraoui L, Balslev H, Montúfar R. Limited seed dispersal shapes fine‐scale spatial genetic structure in a Neotropical dioecious large‐seeded palm. Biotropica 2022. [DOI: 10.1111/btp.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sebastián Escobar
- Ecoinformatics and Biodiversity, Department of Biology Aarhus University Aarhus Denmark
- Grupo de Investigación en Biodiversidad, Medio Ambiente, y Salud Universidad de Las Américas Quito Ecuador
| | - Yves Vigouroux
- Diversité, Adaptation, Développement des Plantes Institut de Recherche pour le Développement, University of Montpellier Montpellier France
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology Tulane University New Orleans USA
| | - Leila Zekraoui
- Diversité, Adaptation, Développement des Plantes Institut de Recherche pour le Développement, University of Montpellier Montpellier France
| | - Henrik Balslev
- Ecoinformatics and Biodiversity, Department of Biology Aarhus University Aarhus Denmark
| | - Rommel Montúfar
- Facultad de Ciencias Exactas y Naturales Pontificia Universidad Católica del Ecuador Quito Ecuador
| |
Collapse
|
41
|
Turghan MA, Jiang Z, Niu Z. An Update on Status and Conservation of the Przewalski's Horse ( Equus ferus przewalskii): Captive Breeding and Reintroduction Projects. Animals (Basel) 2022; 12:ani12223158. [PMID: 36428386 PMCID: PMC9686875 DOI: 10.3390/ani12223158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
This review summarizes studies on Przewalski's horse since its extinction in the wild in the 1960s, with a focus on the reintroduction projects in Mongolia and China, with current population status. Historical and present distribution, population trends, ecology and habitats, genetics, behaviors, conservation measures, actual and potential threats are also reviewed. Captive breeding and reintroduction projects have already been implemented, but many others are still under considerations. The review may help to understand the complexity of problem and show the directions for effective practice in the future.
Collapse
Affiliation(s)
- Mardan Aghabey Turghan
- State Key Laboratory of Oasis and Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (M.A.T.); (Z.J.)
| | - Zhigang Jiang
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (M.A.T.); (Z.J.)
| | - Zhongze Niu
- College of Biology and Geography Sciences, Yili Normal University, Yining 835000, China
| |
Collapse
|
42
|
Saghir K, Abdelwahd R, Iraqi D, Lebkiri N, Gaboun F, El Goumi Y, Ibrahimi M, Abbas Y, Diria G. Assessment of genetic diversity among wild rose in Morocco using ISSR and DAMD markers. J Genet Eng Biotechnol 2022; 20:150. [DOI: 10.1186/s43141-022-00425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Morocco is considered one of the main biodiversity hotspots in the Mediterranean region and contains various plant species including wild and domestic Rosa. This genus is the most important among cultivated ornamental plants in the world, with a high economic value in cosmetics, pharmaceutical industries, and floriculture. In the present study, genetic diversity among the collected accessions of wild Rosa species in Morocco was assessed using Inter-Simple Sequence Repeat (ISSR) and Directed Amplification of Minisatellites DNA (DAMD) markers.
Results
Results confirmed that both markers used have a good efficiency to assess genetic diversity in wild roses. Ten ISSR and eight DAMD primers amplified 276 and 203 loci, with an average of 27.4 and 25 polymorphic alleles per primer, respectively. The polymorphic information content (PIC) values were 0.34 with ISSR and 0.31 with DAMD. Analysis of molecular variance (AMOVA) showed that genetic variation in wild rose occurs mainly within populations (86%) rather than between populations (14%). The region of Azrou (Middle Atlas of Morocco) is the area that registered the highest genetic diversity in the present study with He = 0.21. The 39 rose accessions were divided into three main groups with among-group similarity of 30%. Principal component analysis and the hierarchical classification were consistent with genetic relationships derived by structure analysis.
Conclusion
The findings revealed that the patterns of grouping are weakly correlated with geographical origin. ISSR and DAMD markers showed that the accessions have a good genetic diversity.
Collapse
|
43
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
44
|
Kusuma YWC, Matsuo A, Suyama Y, Wanke S, Isagi Y. Conservation genetics of three Rafflesia species in Java Island, Indonesia using SNP markers obtained from MIG-seq. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Du S, Hu X, Yang X, Yu W, Wang Z. Genetic diversity and population dynamic of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow in Central China. Ecol Evol 2022; 12:e9101. [PMID: 35898427 PMCID: PMC9309028 DOI: 10.1002/ece3.9101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single-copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long-distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction-expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high-latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiaoyan Hu
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiuyun Yang
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Wendong Yu
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
46
|
Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques. Cells 2022; 11:cells11121953. [PMID: 35741082 PMCID: PMC9221937 DOI: 10.3390/cells11121953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.
Collapse
|
47
|
Burgin G, Hopkins R. A missing link: Connecting plant and pollinator population structure. AMERICAN JOURNAL OF BOTANY 2022; 109:668-671. [PMID: 35421258 DOI: 10.1002/ajb2.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Grace Burgin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
48
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Toro JE, Oyarzún PA, Toledo FE, Navarro JM, Illesca AF, Gardner JPA. Genetic structure and diversity of the Chilean flat oyster Ostrea chilensis (Bivalvia: Ostreidae) along its natural distribution from natural beds subject to different fishing histories. Genet Mol Biol 2022; 45:e20210214. [PMID: 35266950 PMCID: PMC8908350 DOI: 10.1590/1678-4685-gmb-2021-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Ostrea chilensis (Küster, 1844), the flat oyster, is native to
Chile and New Zealand. In Chile, it occurs in a few natural beds, from the
northern part of Chiloé Island (41 ºS) to the Guaitecas Archipelago (45 ºS).
This bivalve is slow growing, broods its young, and has very limited dispersal
potential. The Ostrea chilensis fishery has been over-exploited
for a number of decades such that in some locations oysters no longer exist. The
aim of this study was to study the genetic diversity of the Chilean flat oyster
along its natural distribution to quantify the possible impact of the dredge
fishery on wild populations. The genetic structure and diversity of
Ostrea chilensis from six natural beds with different
histories of fishing activity were estimated. Based on mitochondrial (Cytb) and
nuclear (ITS1) DNA sequence variation, our results provide evidence that genetic
diversity is different among populations with recent history of wild dredge
fishery efforts. We discuss the possible causes of these results. Ultimately,
such new information may be used to develop and apply new management measures to
promote the sustainable use of this valuable marine resource.
Collapse
Affiliation(s)
- Jorge E Toro
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Pablo A Oyarzún
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Quintay, Chile
| | - Felipe E Toledo
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Jorge M Navarro
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile.,Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Alex F Illesca
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Jonathan P A Gardner
- Victoria University of Wellington, School of Biological Sciences, Wellington, New Zealand
| |
Collapse
|
50
|
Amorim PF, Katz AM, Ottoni FP, de Bragança PHN. Genetic Structure of the Mangrove Killifish Kryptolebias hermaphroditus Costa, 2011 (Cyprinodontiformes: Aplocheiloidei) Supports A Wide Connection among its Populations. Zool Stud 2022; 60:e4. [PMID: 35774256 PMCID: PMC9168499 DOI: 10.6620/zs.2022.61-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/19/2021] [Indexed: 06/15/2023]
Abstract
The Kryptolebias marmoratus species group is composed of the only three vertebrate species that lack females. These species present only males and simultaneously hermaphroditic individuals; that are able to reproduce by allogamy, with males, or by autogamy, performing self-fertilization and generating clones of themselves. The proportion of males is variable among those species and even among their populations. Kryptolebias hermaphroditus has the smallest proportion of males. Indeed, no males have been recorded in most known populations. This is a mainly autogamous species, with small populations having a disjunct distribution along the eastern and northern coast of Brazil. Species presenting such adaptations would be expected to have an elevated rate of genetic population structure, reflecting any barriers that obstruct gene flow between populations. Partial sequences of the mitochondrial cytochrome c oxidase I (COI) gene from 335 individuals were sampled to perform a population analysis. Only a single haplotype of COI, widely distributed throughout all the sampled populations, was recovered for K. hermaphroditus. Here we hypothesize that the high degree of communication within populations is probably the main biological feature leading to this pattern.
Collapse
Affiliation(s)
- Pedro F Amorim
- Laboratory of Systematics and Evolution of Teleost Fishes, Genetic Graduation Program, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil. E-mail: (Amorim)
| | - Axel Makay Katz
- Laboratory of Systematics and Evolution of Teleost Fishes, Biodiversity and Evolutionary Biology Graduation Program, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil. E-mail: (Katz)
| | - Felipe Polivanov Ottoni
- Laboratory of Systematics and Ecology of Aquatic Organisms, Center for Agricultural and Environmental Sciences, Federal University of Maranhão, CEP 65500-000, BR-222, KM 04, Boa Vista, Chapadinha, MA, Brasil. E-mail: (Ottoni)
| | | |
Collapse
|