1
|
Boutroux M, Chiarelli A, Ferrari ML, Chesneau O, Clermont D, Betsou F. A Ranking Tool for "Category Killer" Microbial Biobanks. Biopreserv Biobank 2025; 23:127-136. [PMID: 38923919 DOI: 10.1089/bio.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Microbial biobanks preserve and provide microbial bioresources for research, training, and quality control purposes. They ensure the conservation of biodiversity, contribute to taxonomical research, and support scientific advancements. Microbial biobanks can cover a wide range of phylogenetic and metabolic diversity ("category killers") or focus on specific taxonomic, thematic, or disease areas. The strategic decisions about strain selection for certain applications or for the biobank culling necessitate a method to support prioritization and selection. Here, we propose an unbiased scoring approach based on objective parameters to assess, categorize, and assign priorities among samples in stock in a microbial biobank. We describe the concept of this ranking tool and its application to identify high-priority strains for whole genome sequencing with two main goals: (i) genomic characterization of quality control, reference, and type strains; (ii) genome mining for the discovery of natural products, bioactive and antimicrobial molecules, with focus on human diseases. The general concept of the tool can be useful to any biobank and for any ranking or culling needs.
Collapse
Affiliation(s)
- Martin Boutroux
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Adriana Chiarelli
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Mariana L Ferrari
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Collection de l'Institut Pasteur, Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Collection de l'Institut Pasteur, Paris, France
| | - Fay Betsou
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur - Project Management Office, Paris, France
| |
Collapse
|
2
|
Benison KC, Hallsworth JE, Zalar P, Glavina M, Gunde-Cimerman N. Extremophilic and common fungi in acid brines and their halite. Extremophiles 2025; 29:15. [PMID: 39934511 DOI: 10.1007/s00792-025-01382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Studies of microorganisms in extreme Mars-analog environments have generally overlooked fungi. Here, we document fungi in lake waters, slime, and halite of the acid-saline Lakes Magic and Gneiss in Western Australia with pH 1.4-3.5 and 7-32% total dissolved solids (TDS). Both extremotolerant fungi, including ascomycete Parengyodontium torokii, and relatively common fungi (mesophilic), including Penicillium breviocompactum and Trametes pubescens, were present. Our discovery of P. torokii in halite is among the first known fungal examples of such preservation, and we propose that it has the biological traits of a generalist species. Nine strains of the dominant P. torokii fungi were tested for growth on diverse salts. The presence of mesophilic fungal saprotrophs in these lakes, along with extremophilic fungi, algae, bacteria, and archaea, suggests transport of the former into indigenous lake populations. This reveals a distinction between habitability and preservation potential; not all biosignatures in lake waters or their halite represent organisms that were active in situ. Our results suggest that searches for biosignatures in extreme waters and salt minerals on Earth and Mars should include the possibility of fungi. Additionally, interpretations of microbial communities in both modern brines and the rock record should consider the likelihood of mixed indigenous and transported taxa.
Collapse
Affiliation(s)
- Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA.
| | - John E Hallsworth
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Polona Zalar
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Glavina
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
3
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 PMCID: PMC11576836 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
4
|
Boadella J, Butturini A, Doménech-Pascual A, Freixinos Z, Perujo N, Urmeneta J, Vidal A, Romaní AM. Microbial Life in Playa-Lake Sediments: Adapted Structure, Plastic Function to Extreme Water Activity Variations. MICROBIAL ECOLOGY 2024; 87:137. [PMID: 39520558 PMCID: PMC11550290 DOI: 10.1007/s00248-024-02454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Saline shallow lakes in arid and semi-arid regions frequently undergo drying episodes, leading to significant variations in salinity and water availability. Research on the impacts of salinity and drought on the structure and function of biofilms in hypersaline shallow lakes is limited. This study aimed to understand the potential changes of biofilms in playa-lake sediments during the drying process. Sediments were sampled at different depths (surface, subsurface) and hydrological periods (wet, retraction, and dry), which included a decrease in water activity (aw, the availability of water for microbial use) from 0.99 to 0.72. aw reduction caused a greater effect on functional variables compared to structural variables, indicating the high resistance of the studied biofilms to changes in salinity and water availability. Respiration and hydrolytic extracellular enzyme activities exhibited higher values under high aw, while phenol oxidase activity and prokaryote biomass increased at lower aw. This shift occurred at both depths but was more pronounced at the surface, possibly due to the more extreme conditions (up to 0.7 aw). The increased levels of extracellular polymeric substances and carotenoids developed at low aw may help protect microorganisms in high salinity and drought environments. However, these harsh conditions may interfere with the activity of hydrolytic enzymes and their producers, while promoting the growth of resistant prokaryotes and their capacity to obtain C and N sources from recalcitrant compounds. The resilience of biofilms in hypersaline lakes under extreme conditions is given by their resistant biochemichal structure and the adaptability of their microbial functioning.
Collapse
Affiliation(s)
- Judit Boadella
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain.
| | - Andrea Butturini
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Anna Doménech-Pascual
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zeus Freixinos
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Núria Perujo
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
- Biodiversity Research Institute, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Ariadna Vidal
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Av. Mª Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
5
|
Martínez-Espinosa RM. Halocins and C 50 Carotenoids from Haloarchaea: Potential Natural Tools against Cancer. Mar Drugs 2024; 22:448. [PMID: 39452856 PMCID: PMC11509114 DOI: 10.3390/md22100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Haloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats. They cope with those stresses thanks to several molecular and metabolic adaptations. Thus, some of the molecules produced by haloarchaea show significantly different biological activities and physicochemical properties compared to their bacterial counterparts. Recent studies have revealed promising applications in biotechnology and medicine for these biomolecules. Among haloarchaeal biomolecules, rare natural pigments (C50 carotenoids) and small peptides called halocins and microhalocins have attracted attention worldwide due to their effects on animal and human commercial tumoral cells, apart from the role as antibiotics described for halocins or the immunomodulatory activity reported from C50 carotenoids like bacterioruberin. This review summarizes recent knowledge on these two types of biomolecules in connection with cancer to shed new light on the design of drugs and new therapies based on natural compounds.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965-903-400 (ext. 8841)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
6
|
Liang L, Deng Y, Wang W, Zhou S, Zhang L. Influences of lower pH on phytoplankton growth in alkaline lakes after water transfer: Insights from a coupled hydrodynamic-algal ecological model and experimental analysis. ENVIRONMENTAL RESEARCH 2024; 257:119201. [PMID: 38782337 DOI: 10.1016/j.envres.2024.119201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Alkaline lakes with high pH and unique ecological communities often face water-level drawdown and ecological degradation problems due to climatic and hydrologic factors. Water transfer is becoming a popular method for solving these problems. However, a high pH is often considered the key to maintaining the stability of alkaliphilic algal communities, and a lower pH induced by water transfer from a neutral-pH river may threaten ecosystems in alkaline lakes. To explore the response characteristics of phytoplankton in alkaline lakes to pH changes, we conducted cultivation experiments on one species of dominant Cyanobacteria and one species of dominant Chlorophyta from alkaline lakes under different pH conditions. Subsequently, we constructed a coupled hydrodynamic and algal mathematical model considering the effect of pH to predict the dynamic changes in phytoplankton in a typical alkaline lake under water-transfer conditions. Both species are basophilic, and pH has a "low-inhibition and high-promotion" effect on their growth. A lower pH is detrimental to cyanobacterial growth and competitiveness, which may cause Cyanobacteria to lose their dominance in weakly alkaline environments with a pH < 8.5; additionally, water transfer causes a decrease in the total biomass and proportion of Cyanobacteria in Lake Chenghai, with decreases induced by pH changes accounting for 13.4% and 70.1%, respectively. The decrease in pH is the main reason for the decrease in dominance of Cyanobacteria after water transfer. These results provide a basic summary of the effects of pH changes on the algal growth in alkaline lakes and are a useful for formulating ecological water-transfer strategies for alkaline lakes.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Yun Deng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wanfa Wang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Sijia Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Linglei Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Amadeu CAA, Conti AC, Oliveira CAF, Martelli SM, Vanin FM. Safflower cake as an ingredient for a composite flour development towards a circular economy: extrusion versus conventional mixing. Food Res Int 2024; 191:114609. [PMID: 39059893 DOI: 10.1016/j.foodres.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
Food waste is responsible for the loss of 1.3 billion tons of food, some of which are related to by-products with great nutritional and energy potential that are still underexplored, such as safflower cake derived from the oil extraction industry. Therefore, the aim of this study was to evaluate the effects of incorporating safflower cake (Carthamus tinctorius) and the mixing method used to produce composite wheat-based flour in order to develop a new ingredient. The results were analyzed using ANOVA, and the Tukey test was applied at a significance level of 5 %. The composite flours obtained by the conventional mixing method showed, when compared to wheat flour, a higher concentration of proteins (+5g 100 g-1), minerals (+86 mg kg-1 of Fe, +30 mg kg-1 of Zn), phenolic compounds (15 mg GAE g-1), flavonoids (0.3 mg QE g-1), and lower oil absorption (-0.5 g oil g sample-1), making them suitable for hot flour-based sauces, salad dressings, frozen desserts, cookies and fried products. While extruded composite flours presented better homogenization, reduction of moisture (1 g 100 g-1), lipids (3 g 100 g-1), and mycotoxin concentrations, increased antioxidant activity (DPPH -0.07 IC50 mg/L and ORAC +9 µmol Trolox Eq/g), water absorption and solubility indexes, and oil absorption index, making it suitable for bakery products, meat, and dairy sausages. The developed composite flour proved to be a good nutritional ingredient; thus, its consumption can represent an important nutritional strategy with low production costs, as well as a sustainable solution, reducing food waste and, therefore, toward the concepts of the circular economy.
Collapse
Affiliation(s)
- Carolina A Antunes Amadeu
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Ana Carolina Conti
- Department of Food Engineering and Technology, São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São José do Rio Preto, São Paulo, Brazil
| | - Carlos Augusto Fernandes Oliveira
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Silvia Maria Martelli
- Food Science and Technology Post Graduate Program, Food Engineering Department, Great Dourados Federal University, Faculty of Engineering, (FAEN/UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
8
|
Yin J, Liu Y, He D, Li P, Qiao M, Luo H, Qu X, Mei S, Wu Y, Sun Y, Gan F, Tang B, Tang XF. A TrmBL2-like transcription factor mediates the growth phase-dependent expression of halolysin SptA in a concentration-dependent manner in Natrinema gari J7-2. Appl Environ Microbiol 2024; 90:e0074124. [PMID: 38953660 PMCID: PMC11267917 DOI: 10.1128/aem.00741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA. IMPORTANCE Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.
Collapse
Affiliation(s)
- Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengting Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yiqi Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| |
Collapse
|
9
|
Shoemaker A, Maritan A, Cosar S, Nupp S, Menchaca A, Jackson T, Dang A, Baxter BK, Colman DR, Dunham EC, Boyd ES. Wood-Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah. FEMS Microbiol Ecol 2024; 100:fiae105. [PMID: 39054286 PMCID: PMC11287216 DOI: 10.1093/femsec/fiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Little is known of primary production in dark hypersaline ecosystems despite the prevalence of such environments on Earth today and throughout its geologic history. Here, we generated and analyzed metagenome-assembled genomes (MAGs) organized as operational taxonomic units (OTUs) from three depth intervals along a 30-cm sediment core from the north arm of Great Salt Lake, Utah. The sediments and associated porewaters were saturated with NaCl, exhibited redox gradients with depth, and harbored nitrogen-depleted organic carbon. Metabolic predictions of MAGs representing 36 total OTUs recovered from the core indicated that communities transitioned from aerobic and heterotrophic at the surface to anaerobic and autotrophic at depth. Dark CO2 fixation was detected in sediments and the primary mode of autotrophy was predicted to be via the Wood-Ljungdahl pathway. This included novel hydrogenotrophic acetogens affiliated with the bacterial class Candidatus Bipolaricaulia. Minor populations were dependent on the Calvin cycle and the reverse tricarboxylic acid cycle, including in a novel Thermoplasmatota MAG. These results are interpreted to reflect the favorability of and selectability for populations that operate the lowest energy requiring CO2-fixation pathway known, the Wood-Ljungdahl pathway, in anoxic and hypersaline conditions that together impart a higher energy demand on cells.
Collapse
Affiliation(s)
- Anna Shoemaker
- Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717, United States
| | - Andrew Maritan
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Su Cosar
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Sylvia Nupp
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Ana Menchaca
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Thomas Jackson
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Aria Dang
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster University, 1840 South 1300 East, Salt Lake City, UT 84105, United States
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| |
Collapse
|
10
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
11
|
Charoo NA, Akanji O, Rahman Z, Khan AA, Badshah A. Risk-Based Approach for Defining Retest Dates for Active Pharmaceutical Ingredients and Excipients. Pharmaceuticals (Basel) 2024; 17:903. [PMID: 39065753 PMCID: PMC11280389 DOI: 10.3390/ph17070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Drug substances and excipients must be stored in recommended storage conditions and should comply with their specifications during the retest period for their use in the manufacture of drug products. The ICH (International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use) and WHO (World Health Organization) regulatory guidelines mandate that after the retest period, the drug substances must be retested for compliance with the specification and then used immediately in the manufacture of the finished product. Although these substances can be retested multiple times, an emphasis is placed on immediate use following a retest and compliance with standards. The phrase "used immediately" is ambiguous and is left for interpretation. In this article, we will look at the various processes that must be completed to determine the retest date. In addition, we present a risk-based method for establishing retest dates and the time during which material can be used.
Collapse
Affiliation(s)
- Naseem A. Charoo
- Aramed, 216, Laboratory Complex, Dubai Science Park, Dubai P.O. Box 478861, United Arab Emirates;
| | - Omotayo Akanji
- Katchey Laboratories, 26, Adeniyi, Adeniyi Jones Ave, Ogba, Ikeja 101233, Nigeria;
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Aqeel A. Khan
- Adcan Pharma LLC, ICAD, Abu Dhabi P.O. Box 9824, United Arab Emirates; (A.A.K.); (A.B.)
| | - Aqal Badshah
- Adcan Pharma LLC, ICAD, Abu Dhabi P.O. Box 9824, United Arab Emirates; (A.A.K.); (A.B.)
| |
Collapse
|
12
|
Al-Daghistani HI, Zein S, Abbas MA. Microbial communities in the Dead Sea and their potential biotechnological applications. Commun Integr Biol 2024; 17:2369782. [PMID: 38919836 PMCID: PMC11197920 DOI: 10.1080/19420889.2024.2369782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.
Collapse
Affiliation(s)
- Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sima Zein
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A. Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
13
|
Çelekli A, Zariç ÖE. Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:181-190. [PMID: 38670646 DOI: 10.1016/j.lssr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
The Martian environment, characterized by extreme aridity, frigid temperatures, and a lack of atmospheric oxygen, presents a formidable challenge for potential terraforming endeavors. This review article synthesizes current research on utilizing algae as biocatalysts in the proposed terraforming of Mars, assessing their capacity to facilitate Martian atmospheric conditions through photosynthetic bioengineering. We analyze the physiological and genetic traits of extremophile algae that equip them for survival in extreme habitats on Earth, which serve as analogs for Martian surface conditions. The potential for these organisms to mediate atmospheric change on Mars is evaluated, specifically their role in biogenic oxygen production and carbon dioxide sequestration. We discuss strategies for enhancing algal strains' resilience and metabolic efficiency, including genetic modification and the development of bioreactors for controlled growth in extraterrestrial environments. The integration of algal systems with existing mechanical and chemical terraforming proposals is also examined, proposing a synergistic approach for establishing a nascent Martian biosphere. Ethical and ecological considerations concerning introducing terrestrial life to extra-planetary bodies are critically appraised. This appraisal includes an examination of potential ecological feedback loops and inherent risks associated with biological terraforming. Biological terraforming is the theoretical process of deliberately altering a planet's atmosphere, temperature, and ecosystem to render it suitable for Earth-like life. The feasibility of a phased introduction of life, starting with microbial taxa and progressing to multicellular organisms, fosters a supportive atmosphere on Mars. By extending the frontier of biotechnological innovation into space, this work contributes to the foundational understanding necessary for one of humanity's most audacious goals-the terraforming of another planet.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Gaziantep University, Faculty of Art and Science, Department of Biology, Gaziantep, Turkey; Gaziantep University, Environmental Research Center (GÜÇAMER), Gaziantep, Turkey.
| | - Özgür Eren Zariç
- Gaziantep University, Faculty of Art and Science, Department of Biology, Gaziantep, Turkey; Gaziantep University, Environmental Research Center (GÜÇAMER), Gaziantep, Turkey
| |
Collapse
|
14
|
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, Zolotov M. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team. ASTROBIOLOGY 2024; 24:443-488. [PMID: 38768433 DOI: 10.1089/ast.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Mark A Sephton
- Imperial College London, Earth Science and Engineering, South Kensington Campus, London, UK
| | - Kate Freeman
- The Pennsylvania State University, Geosciences, University Park, Pennsylvania, USA
| | - Lindsay Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Fiona Thiessen
- European Space Research and Technology Centre, Noordwijk, South Holland, Netherlands
| | - Kathleen Benison
- West Virginia University, Department of Geology and Geography, Morgantown, West Virginia, USA
| | - Brandi Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Astrochemistry, Greenbelt, Maryland, USA
| | - Mihaela Glamoclija
- Rutgers University Newark College of Arts and Sciences, Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Raina Gough
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado, USA
| | - Silvano Onofri
- University of Tuscia, Department of Ecological and Biological Sciences, Largo dell'Università snc Viterbo, Italy
| | | | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Sara Russell
- Natural History Museum, Department of Earth Sciences, London, UK
| | - Eva E Stüeken
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, Fife, UK
| | - Michael Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Mikhail Zolotov
- Arizona State University, School of Earth and Space Exploration, Tempe, Arizona, USA
| |
Collapse
|
15
|
Luo H, Qu X, Deng X, He L, Wu Y, Liu Y, He D, Yin J, Wang B, Gan F, Tang B, Tang XF. HtrAs are essential for the survival of the haloarchaeon Natrinema gari J7-2 in response to heat, high salinity, and toxic substances. Appl Environ Microbiol 2024; 90:e0204823. [PMID: 38289131 PMCID: PMC10880668 DOI: 10.1128/aem.02048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.
Collapse
Affiliation(s)
- Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liping He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingxue Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| |
Collapse
|
16
|
Gregory SP, Mackie JRM, Barnett MJ. Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. FEMS Microbiol Rev 2024; 48:fuae001. [PMID: 38216518 PMCID: PMC10853057 DOI: 10.1093/femsre/fuae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024] Open
Abstract
The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.
Collapse
Affiliation(s)
- Simon P Gregory
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Jessica R M Mackie
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Megan J Barnett
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| |
Collapse
|
17
|
Paris ER, Arandia-Gorostidi N, Klempay B, Bowman JS, Pontefract A, Elbon CE, Glass JB, Ingall ED, Doran PT, Som SM, Schmidt BE, Dekas AE. Single-cell analysis in hypersaline brines predicts a water-activity limit of microbial anabolic activity. SCIENCE ADVANCES 2023; 9:eadj3594. [PMID: 38134283 PMCID: PMC10745694 DOI: 10.1126/sciadv.adj3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Hypersaline brines provide excellent opportunities to study extreme microbial life. Here, we investigated anabolic activity in nearly 6000 individual cells from solar saltern sites with water activities (aw) ranging from 0.982 to 0.409 (seawater to extreme brine). Average anabolic activity decreased exponentially with aw, with nuanced trends evident at the single-cell level: The proportion of active cells remained high (>50%) even after NaCl saturation, and subsets of cells spiked in activity as aw decreased. Intracommunity heterogeneity in activity increased as seawater transitioned to brine, suggesting increased phenotypic heterogeneity with increased physiological stress. No microbial activity was detected in the 0.409-aw brine (an MgCl2-dominated site) despite the presence of cell-like structures. Extrapolating our data, we predict an aw limit for detectable anabolic activity of 0.540, which is beyond the currently accepted limit of life based on cell division. This work demonstrates the utility of single-cell, metabolism-based techniques for detecting active life and expands the potential habitable space on Earth and beyond.
Collapse
Affiliation(s)
- Emily R. Paris
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | | | - Claire E. Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellery D. Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter T. Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sanjoy M. Som
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Britney E. Schmidt
- Departments of Astronomy and Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Sieme D, Rezaei-Ghaleh N. Water dynamics in eutectic solutions of sodium chloride and magnesium sulfate: implications for life in Europa's subsurface ocean and ice shell. Phys Chem Chem Phys 2023; 26:105-115. [PMID: 38054803 DOI: 10.1039/d3cp03455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Liquid water is essential for life as we know it and the coupling between water and biomolecular dynamics is crucial for life processes. Jupiter's moon Europa is a good candidate for searching for extraterrestrial life in our outer solar system, mainly because a liquid water salty ocean in contact with a rocky seafloor underlies its ice shell. Little, however, is known about the chemical composition of the subglacial ocean of Europa or the brine pockets within its ice shell and their impacts on water dynamics. Here, we employ 1H, 17O, 23Na and 35Cl NMR spectroscopy, especially NMR spin relaxation and diffusion methods, and investigate the mobility of water molecules and ions in eutectic solutions of magnesium sulfate and sodium chloride, two salts ubiquitously present on the surface of Europa, over a range of temperatures and pressures pertinent to Europa's subglacial ocean. The NMR data demonstrate the more pronounced effect of magnesium sulfate compared with sodium chloride on the mobility of water molecules. Even at its much lower eutectic temperature, the sodium chloride solution retains a relatively large level of water mobility. Our results highlight the higher potential of a sodium chloride-rich than magnesium sulfate-rich Europa's ocean to accommodate life and support life origination within the eutectic melts of Europa's ice shell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University (HHU) Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| |
Collapse
|
19
|
Martin Del Campo M, Gómez-Secundino O, Camacho-Ruíz RM, Mateos Díaz JC, Müller-Santos M, Rodríguez JA. Effects of kosmotropic, chaotropic, and neutral salts on Candida antarctica B lipase: An analysis of the secondary structure and its hydrolytic activity on triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159380. [PMID: 37591327 DOI: 10.1016/j.bbalip.2023.159380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
The effects of different concentrations of Hofmeister salts on the hydrolytic activity on triglycerides and the secondary structure of lipase B from Candida antarctica (CALB) were investigated. Structural changes after short- and long-time incubation at high salt concentrations were determined using circular dichroism (CD), fluorescence, and RMSD-RMSF simulations. At 5.2 M NaCl, the hydrolytic activity of CALB on tributyrin (TC4) and trioctanoin (TC8) was enhanced by 1.5 (from 817 ± 3.9 to 1228 ± 4.3 U/mg)- and 8.7 (from 25 ± 0.3 to 218 ± 2.3 U/mg)-folds compared with 0.15 M NaCl, respectively at pH 7.0 and 40 °C. An activity activation was seen with other salts tested; however, long-time incubation (24 h) did not result in retention of the activation effect for any of the salts tested. Secondary structure CD and fluorescence spectra showed that long-time incubation with NaCl, KCl, and CsCl provokes a compact structure without loss of native conformation, whereas chaotropic LiCl and CaCl2 induced an increase in the α-helical content, and kosmotropic Na2SO4 provoked a molten globule state with rich β-sheet content. The RMSD-RMSF simulation agreed with the CD analysis, highlighting a principal salt-induced effect at the α-helix 5 region, promoting two different conformational states (open and closed) depending on the type and concentration of salt. Lastly, an increase in the interfacial tension occurred when high salt concentrations were added to the reaction media, affecting the catalytic properties. The results indicate that high-salt environments, such as 2-5.2 M NaCl, can be used to increase the lipolytic activity of CALB on TC4 and TC8.
Collapse
Affiliation(s)
- Martha Martin Del Campo
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico; Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, 46200 Colotlán, Jalisco, Mexico.
| | - Osvaldo Gómez-Secundino
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Rosa M Camacho-Ruíz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Juan C Mateos Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Marcelo Müller-Santos
- Departamento de Bioquímica e Biología Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil.
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino el arenero 1227, El Bajío del arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
20
|
Moors H, De Craen M, Smolders C, Provoost A, Leys N. The waterbodies of the halo-volcanic Dallol complex: earth analogs to guide us, where to look for life in the universe. Front Microbiol 2023; 14:1134760. [PMID: 37520359 PMCID: PMC10382021 DOI: 10.3389/fmicb.2023.1134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Microbes are the Earth life forms that have the highest degree of adaptability to survive, live, or even proliferate in very hostile environments. It is even stated that microbes can cope with any extreme physico-chemical condition and are, therefore, omnipresent all over the Earth: on all the continents, inside its crust and in all its waterbodies. However, our study suggests that there exists areas and even water rich environments on Earth where no life is possible. To support the fact that water rich environments can be lifeless, we performed an extensive survey of 10 different hyper extreme waterbodies of the halo-volcanic Dallol complex (Danakil depression, Ethiopia, Horn of Africa). In our study, we combined physico-chemical analyses, mineralogical investigations, XRD and SEM-EDX analyses, ATP measurements, 16S rDNA microbial community determinations, and microbial culturing techniques. According to our findings, we suggest that the individual physico-chemical parameters, water activity, and kosmo-chaotropicity, are the two most important factors that determine whether an environment is lifeless or capable of hosting specific extreme lifeforms. Besides, waterbodies that contained saturated levels of sodium chloride but at the same time possessed extreme low pH values, appeared to be poly-extreme environments in which no life could be detected. However, we clearly discovered a low diversity microbial community in waterbodies that were fully saturated with sodium chloride and only mildly acidic. Our results can be beneficial to more precisely classify whole or certain areas of planetary bodies, including water rich environments, as either potentially habitable or factual uninhabitable environments.
Collapse
Affiliation(s)
- Hugo Moors
- Microbiology Unit, Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications Institute (NMA), Mol, Belgium
| | - Mieke De Craen
- Research and Development Disposal, Belgian Nuclear Research Center (SCK CEN), Waste and Disposal (W&D), Mol, Belgium
- European Underground Research Infrastructure for Disposal of Nuclear Waste in Clay Environment, EIG EURIDICE, Mol, Belgium
| | - Carla Smolders
- Microbiology Unit, Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications Institute (NMA), Mol, Belgium
| | - Ann Provoost
- Microbiology Unit, Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications Institute (NMA), Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Center (SCK CEN), Nuclear Medical Applications Institute (NMA), Mol, Belgium
| |
Collapse
|
21
|
Gonzalez JM, Santana MM, Gomez EJ, Delgado JA. Soil Thermophiles and Their Extracellular Enzymes: A Set of Capabilities Able to Provide Significant Services and Risks. Microorganisms 2023; 11:1650. [PMID: 37512823 PMCID: PMC10386326 DOI: 10.3390/microorganisms11071650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During this century, a number of reports have described the potential roles of thermophiles in the upper soil layers during high-temperature periods. This study evaluates the capabilities of these microorganisms and proposes some potential consequences and risks associated with the activity of soil thermophiles. They are active in organic matter mineralization, releasing inorganic nutrients (C, S, N, P) that otherwise remain trapped in the organic complexity of soil. To process complex organic compounds in soils, these thermophiles require extracellular enzymes to break down large polymers into simple compounds, which can be incorporated into the cells and processed. Soil thermophiles are able to adapt their extracellular enzyme activities to environmental conditions. These enzymes can present optimum activity under high temperatures and reduced water content. Consequently, these microorganisms have been shown to actively process and decompose substances (including pollutants) under extreme conditions (i.e., desiccation and heat) in soils. While nutrient cycling is a highly beneficial process to maintain soil service quality, progressive warming can lead to excessive activity of soil thermophiles and their extracellular enzymes. If this activity is too high, it may lead to reduction in soil organic matter, nutrient impoverishment and to an increased risk of aridity. This is a clear example of a potential effect of future predicted climate warming directly caused by soil microorganisms with major consequences for our understanding of ecosystem functioning, soil health and the risk of soil aridity.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, Avda. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Margarida M Santana
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Enrique J Gomez
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, Avda. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - José A Delgado
- Department of Engineering, University of Loyola, Avda. de las Universidades, E-41704 Dos Hermanas, Spain
| |
Collapse
|
22
|
Najjari A, Boussetta A, Youssef N, Linares-Pastén JA, Mahjoubi M, Belloum R, Sghaier H, Cherif A, Ouzari HI. Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert. Genetica 2023; 151:133-152. [PMID: 36795306 PMCID: PMC9995536 DOI: 10.1007/s10709-023-00182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Ayoub Boussetta
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Javier A Linares-Pastén
- Department of Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, P. O. Box 124, 22100, Lund, Sweden.
| | - Mouna Mahjoubi
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Rahma Belloum
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Haitham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Ariana, Tunisia
| | - Ameur Cherif
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| |
Collapse
|
23
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
24
|
Wu Y, Gao Y, Zheng X, Yu T, Yan F. Enhancement of biocontrol efficacy of Kluyveromyces marxianus induced by N-acetylglucosamine against Penicillium expansum. Food Chem 2023; 404:134658. [DOI: 10.1016/j.foodchem.2022.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
25
|
Cassaro A, Pacelli C, Onofri S. Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol 2022; 13:992077. [PMID: 36523839 PMCID: PMC9744811 DOI: 10.3389/fmicb.2022.992077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
Evidence from recent Mars landers identified the presence of perchlorates salts at 1 wt % in regolith and their widespread distribution on the Martian surface that has been hypothesized as a critical chemical hazard for putative life forms. However, the hypersaline environment may also potentially preserve life and its biomolecules over geological timescales. The high concentration of natural perchlorates is scarcely reported on Earth. The presence of perchlorates in soil and ice has been recorded in some extreme environments including the McMurdo Dry Valleys in Antarctica, one of the best terrestrial analogues for Mars. In the frame of "Life in space" Italian astrobiology project, the polyextremophilic black fungus Cryomyces antarcticus, a eukaryotic test organism isolated from the Antarctic cryptoendolithic communities, has been tested for its resistance, when grown on different hypersaline substrata. In addition, C. antarcticus was grown on Martian relevant perchlorate medium (0.4 wt% of Mg(ClO4)2 and 0.6 wt% of Ca(ClO4)2) to investigate the possibility for the fungus to survive in Martian environment. Here, the results indicate a good survivability and metabolic activity recovery of the black fungus when grown on four Martian relevant perchlorates. A low percentage of damaged cellular membranes have been found, confirming the ultrastructural investigation.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| |
Collapse
|
26
|
Wang H, Shen J, Ma K, Zhu C, Fang M, Hou X, Zhang S, Wang W, Xue T. Transcriptome analysis revealed the role of capsular polysaccharides in desiccation tolerance of foodborne Staphylococcus aureus. Food Res Int 2022; 159:111602. [DOI: 10.1016/j.foodres.2022.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
27
|
Wolfenbarger NS, Buffo JJ, Soderlund KM, Blankenship DD. Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. ASTROBIOLOGY 2022; 22:937-961. [PMID: 35787145 DOI: 10.1089/ast.2021.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accreted ice retains and preserves traces of the ocean from which it formed. In this work, we study two classes of accreted ice found on Earth-frazil ice, which forms through crystallization within a supercooled water column, and congelation ice, which forms through directional freezing at an existing interface-and discuss where each might be found in the ice shells of ocean worlds. We focus our study on terrestrial ice formed in low temperature gradient environments (e.g., beneath ice shelves), consistent with conditions expected at the ice-ocean interfaces of Europa and Enceladus, and we highlight the juxtaposition of compositional trends in relation to ice formed in higher temperature gradient environments (e.g., at the ocean surface). Observations from Antarctic sub-ice-shelf congelation ice and marine ice show that the purity of frazil ice can be nearly two orders of magnitude higher than congelation ice formed in the same low temperature gradient environment (∼0.1% vs. ∼10% of the ocean salinity). In addition, where congelation ice can maintain a planar ice-water interface on a microstructural scale, the efficiency of salt rejection is enhanced (∼1% of the ocean salinity) and lattice soluble impurities such as chloride are preferentially incorporated. We conclude that an ice shell that forms by gradual thickening as its interior cools would be composed of congelation ice, whereas frazil ice will accumulate where the ice shell thins on local (rifts and basal fractures) or regional (latitudinal gradients) scales through the operation of an "ice pump."
Collapse
Affiliation(s)
| | - Jacob J Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Krista M Soderlund
- Institute for Geophysics, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
28
|
Fernandes KE, Frost EA, Remnant EJ, Schell KR, Cokcetin NN, Carter DA. The role of honey in the ecology of the hive: Nutrition, detoxification, longevity, and protection against hive pathogens. Front Nutr 2022; 9:954170. [PMID: 35958247 PMCID: PMC9359632 DOI: 10.3389/fnut.2022.954170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Honey is the source of energy for the European honey bee, Apis mellifera. Beyond simple nutrition and a hedge against the seasonal, geographic, and chemical unpredictability of nectar, honey has properties that protect the hive against various stresses. Enzyme-mediated detoxification during honey ripening neutralizes potentially toxic phytochemicals, and bees that consume honey have enhanced tolerance to other ingested toxins. Catalase and antioxidant phenolics protect honey bees from oxidative damage caused by reactive oxygen species, promoting their longevity. Phytochemical components of honey and microRNAs have the potential to influence developmental pathways, with diet playing a large role in honey bee caste determination. Components of honey mediate stress response and promote cold tolerance during overwintering. Honey has a suite of antimicrobial mechanisms including osmotic pressure, low water activity, low pH, hydrogen peroxide, and plant-, honey bee-, and microbiota-derived compounds such as phytochemicals and antimicrobial peptides. Certain types of honey, particularly polyfloral honeys, have been shown to inhibit important honey bee pathogens including the bacteria responsible for American and European Foulbrood, the microsporidian Nosema ceranae, and the fungi responsible for Stonebrood. Understanding the diverse functional properties of honey has far-ranging implications for honey bee and hive health and management by beekeepers.
Collapse
Affiliation(s)
- Kenya E. Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Elizabeth A. Frost
- Animal Genetics & Breeding Unit (ABGU), A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, NSW, Australia
- NSW Department of Primary Industries, Paterson, NSW, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Kathleen R. Schell
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, NSW, Australia
| | - Nural N. Cokcetin
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, NSW, Australia
| | - Dee A. Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
30
|
The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7. Genes (Basel) 2022; 13:genes13060939. [PMID: 35741701 PMCID: PMC9222508 DOI: 10.3390/genes13060939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The main osmoadaptive mechanisms of extremely halophilic archaea include the “salt-in” strategy and the “compatible solutes” strategy. Here we report the osmoadaptive mechanism of an extremely halophilic archaea H. kocurii 2020YC7, isolated from a high salt environment sample. Genomic data revealed that strain 2020YC7 harbors genes trkA, trkH, kch for K+ uptake, kefB for K+ output, treS for trehalose production from polysaccharide, and betaine/carnitine/choline transporter family gene for glycine betaine uptake. Strain 2020YC7 could accumulate 8.17 to 28.67 μmol/mg protein K+ in a defined medium, with its content increasing along with the increasing salinity from 100 to 200 g/L. When exogenous glycine betaine was added, glycine betaine functioned as the primary osmotic solute between 200 and 250 g/L NaCl, which was accumulated up to 15.27 mg/mg protein in 2020YC7 cells. RT-qPCR results completely confirmed these results. Notably, the concentrations of intracellular trehalose decreased from 5.26 to 2.61 mg/mg protein as the NaCl increased from 50 to 250 g/L. In combination with this result, the transcript level of gene treS, which catalyzes the production of trehalose from polysaccharide, was significantly up-regulated at 50–100 g/L NaCl. Therefore, trehalose does not act as an osmotic solute at high NaCl concentrations (more than 100 g/L) but at relatively low NaCl concentrations (50–100 g/L). And we propose that the degradation of cell wall polysaccharide, as a source of trehalose in a low-salt environment, may be one of the reasons for the obligate halophilic characteristics of strain 2020YC7.
Collapse
|
31
|
Skin Barrier Enhancing Alternative Preservation Strategy of O/W Emulsions by Water Activity Reduction with Natural Multifunctional Ingredients. COSMETICS 2022. [DOI: 10.3390/cosmetics9030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water activity (aw) as an important parameter for self-preservation can help to control microbial growth in cosmetic formulations. However, high amounts of water-binding substances are required to lower the aw enough to affect microbial growth. Since consequences for the skin barrier have been poorly studied so far, we investigated the effect of aw-lowering agents on both the antimicrobial properties of o/w emulsions and skin physiological parameters. A combination of selected natural humectants (Sodium lactate, Propanediol, Erythritol, Betaine and Sodium PCA) with a total concentration of 28 wt% in an o/w emulsion was able to reduce its aw from 0.980 ± 0.003 to 0.865 ± 0.005. The challenge test results of the aw-lowered emulsion showed a convincing microbial count reduction in potentially pathogenic microorganisms. The addition of as little as 0.5% of the antimicrobial multifunctionals Glyceryl Caprylate and Magnolia Officinalis Bark Extract further enhanced the antimicrobial effect, resulting in adequate antimicrobial protection. Moreover, twice-daily application of the aw-lowered emulsion for a period of four weeks led to a skin barrier-enhancing effect: TEWL significantly decreased, and SC hydration significantly increased. Thus, we present an opportunity to replace conventional preservatives with a natural alternative preservation strategy that has been shown to offer benefits for the skin.
Collapse
|
32
|
Sec-Dependent Secretion of Subtilase SptE in Haloarchaea Facilitates Its Proper Folding and Heterocatalytic Processing by Halolysin SptA Extracellularly. Appl Environ Microbiol 2022; 88:e0024622. [PMID: 35348390 DOI: 10.1128/aem.00246-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to high-salt conditions, haloarchaea export most secretory proteins through the Tat pathway in folded states; however, it is unclear why some haloarchaeal proteins are still routed to the Sec pathway. SptE is an extracellular subtilase of Natrinema sp. strain J7-2. Here, we found that SptE precursor comprises a Sec signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE) containing seven domains (C1 to C7). SptE is produced extracellularly as a mature form (M180) in strain J7-2 and a proform (ΔS) in the ΔsptA mutant strain, indicating that halolysin SptA mediates the conversion of the secreted proform into M180. The proper folding of ΔS is more efficient in the presence of NaCl than KCl. ΔS requires SptA for cleavage of the N-terminal propeptide and C-terminal C6 and C7 domains to generate M180, accompanied by the appearance of autoprocessing product M120 lacking C5. At lower salinities or elevated temperatures, M180 and M120 could be autoprocessed into M90, which comprises the catalytic and C1 domains and has a higher activity than M180. When produced in Haloferax volcanii, SptE could be secreted as a properly folded proform, but its variant (TSptE) with a Tat signal peptide does not fold properly and suffers from severe proteolysis extracellularly; meanwhile, TSptE is more inclined to aggregate intracellularly than SptE. Systematic domain deletion analysis reveals that the long CTE is an important determinant for secretion of SptE via the Sec rather than Tat pathway to prevent enzyme aggregation before secretion. IMPORTANCE While Tat-dependent haloarchaeal subtilases (halolysins) have been extensively studied, the information about Sec-dependent subtilases of haloarchaea is limited. Our results demonstrate that proper maturation of Sec-dependent subtilase SptE of Natrinema sp. strain J7-2 depends on the action of halolysin SptA from the same strain, yielding multiple hetero- and autocatalytic mature forms. Moreover, we found that the different extra- and intracellular salt types (NaCl versus KCl) of haloarchaea and the long CTE are extrinsic and intrinsic factors crucial for routing SptE to the Sec rather than Tat pathway. This study provides new clues about the secretion and adaptation mechanisms of Sec substrates in haloarchaea.
Collapse
|
33
|
Microbial Risk Assessment of Industrial Ice Cream Marketed in Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ice cream is a frozen dairy dessert consumed worldwide. The frozen state may give a positive impression regarding microbiological safety; however, transmission of foodborne pathogens can also occur through ice cream consumption. A total of 200 samples of milk-based industrial ice cream, with and without inclusions, were purchased at different mass-market retailers in Italy and analyzed for the detection and enumeration of the aerobic colonies, Enterobacteriaceae, coagulase-positive staphylococci, Salmonella spp. and Listeria monocytogenes. Results were classified according to different ranges of acceptability, whose limits were set for each microbiological parameter. Unsatisfactory loads were obtained for two and nine samples as regarded the aerobic colonies and Enterobacteriaceae, respectively. L. monocytogenes was detected in 16 samples, and in three of them, the loads exceeded the legal limit of acceptability (≤100 cfu/g) during marketing. No unsatisfactory loads were obtained for coagulase-positive staphylococci and no Salmonella spp. was detected. The results obtained allow speculation that inclusions may be a relevant source of contamination for industrial ice cream. However, inadequate manufacturing and hygiene practices also threaten the safety of the finished product. Ice cream is a complex food matrix, and a comprehensive approach to the whole production system is required to ensure high standards of quality and safety.
Collapse
|
34
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
35
|
Cesur RM, Ansari IM, Chen F, Clark BC, Schneegurt MA. Bacterial Growth in Brines Formed by the Deliquescence of Salts Relevant to Cold Arid Worlds. ASTROBIOLOGY 2022; 22:104-115. [PMID: 34748403 PMCID: PMC8785760 DOI: 10.1089/ast.2020.2336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Hygroscopic salts at Mars' near-surface (MgSO4, (per)chlorates, NaCl) may form brines by absorbing moisture from the atmosphere at certain times through the process of deliquescence. We have previously shown strong bacterial growth in saturated MgSO4 (∼67% w/v as epsomite) at room temperature, and growth was observed at the MgSO4 eutectic point (43% w/v at -4°C). Here, we have investigated the growth of salinotolerant microbes (Halomonas, Marinococcus, Planococcus) from Hot Lake, Washington; Basque Lake, British Columbia; and Great Salt Plains, Oklahoma under deliquescing conditions. Bacterial cultures were grown to mid-log phase in SP medium supplemented with 50% MgSO4 (as epsomite), 20% NaClO3, or 10% NaCl (w/v), and small aliquots in cups were dried by vacuum desiccation. When the dried culture was rehydrated by the manual addition of water, the culture resumed growth in the reconstituted brine. When desiccated cultures were maintained in a sealed container with a brine reservoir of the matching growth medium controlling the humidity of the headspace, the desiccated microbial culture evaporites formed brine by deliquescence using humidity alone. Bacterial cultures resumed growth in all three salts once rehydrated by deliquescence. Cultures of Halomonas sp. str. HL12 showed robust survival and growth when subjected to several cycles of desiccation and deliquescent or manual rehydration. Our laboratory demonstrations of microbial growth in deliquescent brines are relevant to the surface and near-subsurface of cold arid worlds like Mars. When conditions become wetter, hygroscopic evaporite minerals can deliquesce to produce the earliest habitable brines. Survival after desiccation and growth in deliquescent brines increases the likelihood that microbes from Earth, carried on spacecraft, pose a contamination risk to Mars.
Collapse
Affiliation(s)
- Robin M. Cesur
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Irfan M. Ansari
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Fei Chen
- Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - Mark A. Schneegurt
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
36
|
Vustin MM. The Biological Role of Glycerol in Yeast Cells. Yeast as Glycerol Producers. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Xu J, Xie Y, Paul NC, Roopesh MS, Shah DH, Tang J. Water sorption characteristics of freeze-dried bacteria in low-moisture foods. Int J Food Microbiol 2021; 362:109494. [PMID: 34895752 DOI: 10.1016/j.ijfoodmicro.2021.109494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Water sorption isotherms of bacteria reflect the water activity with the change of moisture content of bacteria at a specific temperature. The temperature-dependency of water activity change can help to understand the thermal resistance of bacteria during a thermal process. Thermal resistance of bacteria in low-moisture foods may differ significantly depending on the physiological characteristics of microorganisms, including cell structure, existence of biofilms, and growth state. Previous studies demonstrated that the incremental change of aw in bacterial cells during thermal treatments resulted in changes in their thermotolerance. In this study, a pathogen associated with low-moisture foods outbreaks, Salmonella Enteritidis PT30 (in planktonic and biofilm forms), and its validated surrogate, Enterococcus faecium, were lyophilized and their water sorption isotherms (WSI) at 20, 40, and 60 °C were determined by using a vapor sorption analyzer and simulated by the Guggenheim, Anderson and De Boer model (GAB). The published thermal death times at 80 °C (D80 °C-values) of these bacteria in low-moisture environments were related with their WSI-derived aw changes. The results showed that planktonic E. faecium and biofilms of Salmonella, exhibiting higher thermal resistance compared to the planktonic cultures of Salmonella, had a smaller increase in aw when thermally treated from 20 to 60 °C in sealed test cells. The computational modeling also showed that when temperature increased from 20 to 60 °C, with an increase in relative humidity from 10% to 60%, freeze-dried planktonic E. faecium and Salmonella cells would equilibrate to their surrounding environments in 0.15 s and 0.25 s, respectively, suggesting a rapid equilibration of bacterial cells to their microenvironment. However, control of bacteria with different cell structure and growth state would require further attentions on process design adjustment because of their different water sorption characteristics.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA; Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Yucen Xie
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, 483 Agronomy Rd, College Station, TCX 77843, USA
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 3-16 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6120, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| |
Collapse
|
38
|
Seager S, Petkowski JJ, Gao P, Bains W, Bryan NC, Ranjan S, Greaves J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. ASTROBIOLOGY 2021; 21:1206-1223. [PMID: 32787733 DOI: 10.1089/ast.2020.2244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.
Collapse
Affiliation(s)
- Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Gao
- Department of Astronomy, University of California at Berkeley, California, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle C Bryan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Institute of Astronomy, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
39
|
Izenberg NR, Gentry DM, Smith DJ, Gilmore MS, Grinspoon DH, Bullock MA, Boston PJ, Słowik GP. The Venus Life Equation. ASTROBIOLOGY 2021; 21:1305-1315. [PMID: 33512272 DOI: 10.1089/ast.2020.2326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ancient Venus and Earth may have been similar in crucial ways for the development of life, such as liquid water oceans, land-ocean interfaces, favorable chemical ingredients, and energy pathways. If life ever developed on, or was transported to, early Venus from elsewhere, it might have thrived, expanded, and then survived the changes that have led to an inhospitable surface on Venus today. The Venus cloud layer may provide a refugium for extant life that persisted from an earlier more habitable surface environment. We introduce the Venus Life Equation (VLE)-a theory and evidence-based approach to calculate the probability of extant life on Venus, L, using three primary factors of life: Origination, Robustness, and Continuity, or L = O · R · C. We evaluate each of these factors using our current understanding of Earth and Venus environmental conditions from the Archean to the present. We find that the probability of origination of life on Venus would be similar to that of Earth, and argue that the other factors should be nonzero, comparable with other promising astrobiological targets in the solar system. The VLE also identifies poorly understood aspects of Venus that can be addressed by direct observations with future exploration missions.
Collapse
Affiliation(s)
- Noam R Izenberg
- Earth and Environmental Sciences Department, Johns Hopkins University Applied Physics Laboratory (JHUAPL), Laurel, Maryland, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Martha S Gilmore
- Earth and Environmental Sciences Department, Wesleyan University, Middletown, Connecticut, USA
| | | | | | | | - Grzegorz P Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
40
|
Limaye SS, Mogul R, Baines KH, Bullock MA, Cockell C, Cutts JA, Gentry DM, Grinspoon DH, Head JW, Jessup KL, Kompanichenko V, Lee YJ, Mathies R, Milojevic T, Pertzborn RA, Rothschild L, Sasaki S, Schulze-Makuch D, Smith DJ, Way MJ. Venus, an Astrobiology Target. ASTROBIOLOGY 2021; 21:1163-1185. [PMID: 33970019 DOI: 10.1089/ast.2020.2268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, Cal Poly Pomona, Pomona, California, USA
| | - Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Vladimir Kompanichenko
- Institute for Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan, Russia
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technical University of Berlin, Berlin, Germany
| | - Richard Mathies
- Chemistry Department and Space Sciences Lab, University of California, Berkeley, Berkeley, California, USA
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rosalyn A Pertzborn
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology, Hachioji, Japan
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, New York, USA
| |
Collapse
|
41
|
Ghellam M, Zannou O, Galanakis CM, Aldawoud TMS, Ibrahim SA, Koca I. Vacuum-Assisted Osmotic Dehydration of Autumn Olive Berries: Modeling of Mass Transfer Kinetics and Quality Assessment. Foods 2021; 10:foods10102286. [PMID: 34681335 PMCID: PMC8534464 DOI: 10.3390/foods10102286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/01/2023] Open
Abstract
Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10-10 to 1.55 × 10-10 m2·s-1 for water loss and from 0.72 × 10-10 to 0.62 × 10-10 m2·s-1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.
Collapse
Affiliation(s)
- Mohamed Ghellam
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayis University, 55000 Samsun, Turkey; (M.G.); (O.Z.); (I.K.)
| | - Oscar Zannou
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayis University, 55000 Samsun, Turkey; (M.G.); (O.Z.); (I.K.)
| | - Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73100 Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Turki M. S. Aldawoud
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Ilkay Koca
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayis University, 55000 Samsun, Turkey; (M.G.); (O.Z.); (I.K.)
| |
Collapse
|
42
|
Miralles-Robledillo JM, Bernabeu E, Giani M, Martínez-Serna E, Martínez-Espinosa RM, Pire C. Distribution of Denitrification among Haloarchaea: A Comprehensive Study. Microorganisms 2021; 9:1669. [PMID: 34442748 PMCID: PMC8400030 DOI: 10.3390/microorganisms9081669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common features that they share are high sun radiation and low availability of oxygen. To overcome these stressful conditions, and more particularly to deal with oxygen limitation, some microorganisms drive alternative respiratory pathways such as denitrification. In this paper, denitrification in haloarchaea has been studied from a phylogenetic point of view. It has been demonstrated that the presence of denitrification enzymes is a quite common characteristic in Halobacteria class, being nitrite reductase and nitric oxide reductase the enzymes with higher co-occurrence, maybe due to their possible role not only in denitrification, but also in detoxification. Moreover, copper-nitrite reductase (NirK) is the only class of respiratory nitrite reductase detected in these microorganisms up to date. The distribution of this alternative respiratory pathway and their enzymes among the families of haloarchaea has also been discussed and related with the environment in which they constitute the major populations. Complete denitrification phenotype is more common in some families like Haloarculaceae and Haloferacaceae, whilst less common in families such as Natrialbaceae and Halorubraceae.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Elena Martínez-Serna
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
43
|
Prokaryotic Communities in the Thalassohaline Tuz Lake, Deep Zone, and Kayacik, Kaldirim and Yavsan Salterns (Turkey) Assessed by 16S rRNA Amplicon Sequencing. Microorganisms 2021; 9:microorganisms9071525. [PMID: 34361960 PMCID: PMC8304926 DOI: 10.3390/microorganisms9071525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/31/2023] Open
Abstract
Prokaryotic communities and physico-chemical characteristics of 30 brine samples from the thalassohaline Tuz Lake (Salt Lake), Deep Zone, Kayacik, Kaldirim, and Yavsan salterns (Turkey) were analyzed using 16S rRNA amplicon sequencing and standard methods, respectively. Archaea (98.41% of reads) was found to dominate in these habitats in contrast to the domain Bacteria (1.38% of reads). Representatives of the phylum Euryarchaeota were detected as the most predominant, while 59.48% and 1.32% of reads, respectively, were assigned to 18 archaeal genera, 19 bacterial genera, 10 archaeal genera, and one bacterial genus that were determined to be present, with more than 1% sequences in the samples. They were the archaeal genera Haloquadratum, Haloarcula, Halorhabdus, Natronomonas, Halosimplex, Halomicrobium, Halorubrum, Halonotius, Halolamina, Halobacterium, and Salinibacter within the domain Bacteria. The genera Haloquadratum and Halorhabdus were found in all sampling sites. While Haloquadratum, Haloarcula, and Halorhabdus were the most abundant genera, two uncultured Tuz Lake Halobacteria (TLHs) 1 and 2 were detected in high abundance, and an additional uncultured haloarchaeal TLH-3 was found as a minor abundant uncultured taxon. Their future isolation in pure culture would permit us to expand our knowledge on hypersaline thalassohaline habitats, as well as their ecological role and biomedical and biotechnological potential applications.
Collapse
|
44
|
Huang Y, Cai Y, Yu T. Sodium glutamate as a booster: Inducing Rhodosporidium paludigenum to enhance the inhibition of Penicillium expansum on pears. J Appl Microbiol 2021; 132:1239-1249. [PMID: 34251734 DOI: 10.1111/jam.15212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
AIMS This research sought to improve the ability of biocontrol yeast to suppress postharvest fungal disease and explore possible mechanisms of action. METHODS AND RESULTS The addition of 2% sodium glutamate (SG), which is edible and recognized as safe, enhances the inhibitory effect of Rhodosporidium paludigenum Fell & Tallman on Penicillium expansum in vivo and in vitro. Rhodosporidium paludigenum cells grown in medium with a final concentration of 2% SG, displayed viability under a variety of stress conditions, including sodium chloride (NaCl), calcofluor white (CFW), Congo red (CR) and sodium dodecyl sulphate (SDS). Activity and relative gene expression levels of antioxidant-related enzymes in R. paludigenum, including peroxisomal catalase (CAT), thioredoxin reductase (TrxR), glutathione peroxidase (GSH-PX), glutathione reductase (GR) and superoxide dismutase (SOD) were altered in the presence of SG. Levels of reactive oxygen species (ROS) increased in cells grown in the presence of SG as well as the content of several amino acids. CONCLUSIONS In the presence of 2% SG R. paludigenum inhibited P. expansum and exhibited tolerance to a number of stressful conditions which may involve the upregulation of antioxidant enzymes and amino acids. SIGNIFICANCE AND IMPACT OF THE STUDY The ability of culture conditions to enhance the fungal suppressive abilities of yeast has the potential to enhance the management of postharvest disease in fruit.
Collapse
Affiliation(s)
- Yining Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Yiting Cai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
45
|
Halophilic Prokaryotes in Urmia Salt Lake, a Hypersaline Environment in Iran. Curr Microbiol 2021; 78:3230-3238. [PMID: 34216240 DOI: 10.1007/s00284-021-02583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 10/20/2022]
Abstract
In this study, fluorescence in situ hybridization (FISH) and PCR-amplified fragments of the 16SrDNA gene were used to determine prokaryotes diversity in Urmia Salt Lake. Prokaryote cell population in Urmia lake range from 3.1 ± 0.3 × 106, 2 ± 0.2 × 108, 4 ± 0.3 × 108, and 1.8 ± 0.2 × 108 cells ml-1 for water, soil, sediment, and salt samples by DAPI (4́, 6-diamidino-2-phenylindole) direct count, respectively. The proportion of bacteria and archaea in the samples determinable by FISH ranged between 36.1 and 55% and 48.5 and 55.5%, respectively. According to the DGGE method, some bands were selected and separated from the gel, then amplified and sequenced. The results of sequences were related to two phyla Proteobacteria (16.6%) and Bacteroidetes (83.3%), which belonged to four genera Salinibacter, Mangroviflexus, Pseudomonas, and Cesiribacter, and the archaeal sequences were related to Euryarchaeota phyla and three genera Halonotius, Haloquadratum, and Halorubrum. According to our results, it seems that prokaryotic populations in this hypersaline environment are more diverse than expected, and bacteria are so abundant and diverse and form the metabolically active part of the microbial population inhabiting this extreme environment. Molecular dependent and independent approaches revealed a different aspect of this environment microbiota.
Collapse
|
46
|
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the last two decades the world has experienced an abrupt change in climate. Both natural and artificial factors are climate change drivers, although the effect of natural factors are lesser than the anthropogenic drivers. These factors have changed the pattern of precipitation resulting in a rise in sea levels, changes in evapotranspiration, occurrence of flood overwintering of pathogens, increased resistance of pests and parasites, and reduced productivity of plants. Although excess CO2 promotes growth of C3 plants, high temperatures reduce the yield of important agricultural crops due to high evapotranspiration. These two factors have an impact on soil salinization and agriculture production, leading to the issue of water and food security. Farmers have adopted different strategies to cope with agriculture production in saline and saline sodic soil. Recently the inoculation of halotolerant plant growth promoting rhizobacteria (PGPR) in saline fields is an environmentally friendly and sustainable approach to overcome salinity and promote crop growth and yield in saline and saline sodic soil. These halotolerant bacteria synthesize certain metabolites which help crops in adopting a saline condition and promote their growth without any negative effects. There is a complex interkingdom signaling between host and microbes for mutual interaction, which is also influenced by environmental factors. For mutual survival, nature induces a strong positive relationship between host and microbes in the rhizosphere. Commercialization of such PGPR in the form of biofertilizers, biostimulants, and biopower are needed to build climate resilience in agriculture. The production of phytohormones, particularly auxins, have been demonstrated by PGPR, even the pathogenic bacteria and fungi which also modulate the endogenous level of auxins in plants, subsequently enhancing plant resistance to various stresses. The present review focuses on plant-microbe communication and elaborates on their role in plant tolerance under changing climatic conditions.
Collapse
|
47
|
Benison KC, O'Neill WK, Blain D, Hallsworth JE. Water Activities of Acid Brine Lakes Approach the Limit for Life. ASTROBIOLOGY 2021; 21:729-740. [PMID: 33819431 PMCID: PMC8219186 DOI: 10.1089/ast.2020.2334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/09/2021] [Indexed: 05/19/2023]
Abstract
Water activity is an important characteristic for describing unusual waters and is a determinant of habitability for microorganisms. However, few empirical studies of water activity have been done for natural waters exhibiting an extreme chemistry. Here, we investigate water activity for acid brines from Western Australia and Chile with pH as low as 1.4, salinities as high as 32% total dissolved solids, and complex chemical compositions. These acid brines host diverse communities of extremophilic microorganisms, including archaea, bacteria, algae, and fungi, according to metagenomic analyses. For the most extreme brine, its water activity (0.714) was considerably lower than that of saturated (pure) NaCl brine. This study provides a thermodynamic insight into life within end-member natural waters that lie at, or possibly beyond, the very edge of habitable space on Earth.
Collapse
Affiliation(s)
- Kathleen C. Benison
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA
| | - William K. O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
48
|
Thompson TP, Kelly SA, Skvortsov T, Plunkett G, Ruffell A, Hallsworth JE, Hopps J, Gilmore BF. Microbiology of a
NaCl
stalactite ‘salticle’ in Triassic halite. Environ Microbiol 2021; 23:3881-3895. [DOI: 10.1111/1462-2920.15524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Stephen A. Kelly
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Gill Plunkett
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - Alastair Ruffell
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| | - Jason Hopps
- Irish Salt Mining & Exploration Company Ltd. Carrickfergus BT38 9BT UK
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
49
|
Zhou R, Mitra P, Melnychenko A, Rizvi SS. Quality attributes and rheological properties of novel high milk protein‐based extrudates made by supercritical fluid extrusion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Zhou
- College of Food Science and Technology Shanghai Ocean University Shanghai201306China
- State Key Laboratory of Dairy Biotechnology Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd. Shanghai200436China
- Institute of Food Science Cornell University Stocking Hall Ithaca NY14853USA
| | - Pranabendu Mitra
- Department of Food and Nutrition University of Wisconsin‐Stout Menomonie WI54751USA
| | - Andrew Melnychenko
- Institute of Food Science Cornell University Stocking Hall Ithaca NY14853USA
| | - Syed S.H. Rizvi
- Institute of Food Science Cornell University Stocking Hall Ithaca NY14853USA
| |
Collapse
|
50
|
Lopes FC, Ligabue-Braun R. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.589414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many commodities are abundantly produced around the world, including soybean, corn, rice sugarcane, cassava, coffee, fruits, and many others. These productions are responsible for the generation of enormous amounts of daily residues, such as cassava and sugarcane bagasses, rice husk, and coffee peel. These residues are rich sources for renewable energy and can be used as substrates for industrial interest products. Microorganisms are useful biofactories, capable of producing important primary and secondary metabolites, including alcohol, enzymes, antibiotics, pigments, and many other molecules. The production of pigments was reported in bacteria, filamentous fungi, yeasts, and algae. These natural microbial pigments are very promising because synthetic colorants present a long history of allergies and toxicity. In addition, many natural pigments present other biological activities, such as antioxidant and antimicrobial activities, that are interesting for industrial applications. The use of inexpensive substrates for the production of these metabolites is very attractive, considering that agro-industrial residues are generated in high amounts and usually are a problem to the industry. Therefore, in this article we review the production of microbial pigments using agro-industrial residues during the current decade (2010–2020), considering both submerged and solid state fermentations, wild-type and genetically modified microorganisms, laboratorial to large-scale bioprocesses, and other possible biological activities related to these pigments.
Collapse
|