1
|
Litchman E, Villéger S, Zinger L, Auguet JC, Thuiller W, Munoz F, Kraft NJB, Philippot L, Violle C. Refocusing the microbial rare biosphere concept through a functional lens. Trends Ecol Evol 2024; 39:923-936. [PMID: 38987022 DOI: 10.1016/j.tree.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure. It also sheds light on functionally distinct microbes, directing conservation efforts towards taxa harboring rare yet ecologically crucial functions.
Collapse
Affiliation(s)
- Elena Litchman
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | | | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS, Institut de Recherche pour le Développement (IRD), Toulouse INP, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Munoz
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Agroecology, Dijon, France
| | - Cyrille Violle
- CEFE, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sheikh SY, Hassan F, Shukla D, Bala S, Faruqui T, Akhter Y, Khan AR, Nasibullah M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol Int 2024; 100:102863. [PMID: 38272301 DOI: 10.1016/j.parint.2024.102863] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.
Collapse
Affiliation(s)
- Sabahat Yasmeen Sheikh
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Deepanjali Shukla
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Shashi Bala
- Department of Chemistry, Lucknow University, Lucknow 226026, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India.
| |
Collapse
|
4
|
Araújo M, Moreira D, Mesquita I, Ferreira C, Mendes-Frias A, Barros-Carvalho S, Dinis-Oliveira RJ, Duarte-Oliveira C, Cunha C, Carvalho A, Saha B, Cordeiro-da-Silva A, Estaquier J, Silvestre R. Intramacrophage lipid accumulation compromises T cell responses and is associated with impaired drug therapy against visceral leishmaniasis. Immunology 2023; 170:510-526. [PMID: 37635289 DOI: 10.1111/imm.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Under perturbing conditions such as infection with Leishmania, a protozoan parasite living within the phagosomes in mammalian macrophages, cellular and organellar structures, and metabolism are dynamically regulated for neutralizing the pressure of parasitism. However, how modulations of the host cell metabolic pathways support Leishmania infection remains unknown. Herein, we report that lipid accumulation heightens the susceptibility of mice to L. donovani infection and promotes resistance to first-line anti-leishmanial drugs. Despite being pro-inflammatory, the in vitro generated uninfected lipid-laden macrophages (LLMs) or adipose-tissue macrophages (ATMs) display lower levels of reactive oxygen and nitrogen species. Upon infection, LLMs secrete higher IL-10 and lower IL-12p70 cytokines, inhibiting CD4+ T cell activation and Th1 response suggesting a key modulatory role for intramacrophage lipid accumulation in anti-leishmanial host defence. We, therefore, examined this causal relationship between lipids and immunomodulation using an in vivo high-fat diet (HFD) mouse model. HFD increased the susceptibility to L. donovani infection accompanied by a defective CD4+ Th1 and CD8+ T cell response. The white adipose tissue of HFD mice displays increased susceptibility to L. donovani infection with the preferential infection of F4/80+ CD11b+ CD11c+ macrophages with higher levels of neutral lipids reserve. The HFD increased resistance to a first-line anti-leishmanial drug associated with a defective adaptive immune response. These data demonstrate that the accumulation of neutral lipids contributes to susceptibility to visceral leishmaniasis hindering host-protective immune response and reducing the efficacy of antiparasitic drug therapies.
Collapse
Affiliation(s)
- Marta Araújo
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Moreira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Inês Mesquita
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Mendes-Frias
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Barros-Carvalho
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- MTG Research and Development Lab, Porto, Portugal
| | - Cláudio Duarte-Oliveira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Cité, Paris, France
- Pathophysiology of Cell Death in Host-Pathogen Interactions, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Ricardo Silvestre
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
6
|
Mansur Pontes CL, Höehr de Moraes M, Lückemeyer DD, Wagner G, Andersson B, Stoco PH, Grisard EC. Differential expression and activity of arginine kinase between the American trypanosomatids Trypanosoma rangeli and Trypanosoma cruzi. Exp Parasitol 2021; 230:108159. [PMID: 34563508 DOI: 10.1016/j.exppara.2021.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
Trypanosoma rangeli is a non-virulent hemoflagellate parasite infecting humans, wild and domestic mammals in Central and Latin America. The share of genotypic, phenotypic, and biological similarities with the virulent, human-infective T. cruzi and T. brucei, allows comparative studies on mechanisms of pathogenesis. In this study, investigation of the T. rangeli Arginine Kinase (TrAK) revealed two highly similar copies of the AK gene in this taxon, and a distinct expression profile and activity between replicative and infective forms. Although TrAK expression seems stable during epimastigotes growth, the enzymatic activity increases during the exponential growth phase and decreases from the stationary phase onwards. No differences were observed in activity or expression levels of TrAK during in vitro differentiation from epimastigotes to infective forms, and no detectable AK expression was observed for blood trypomastigotes. Overexpression of TrAK by T. rangeli showed no effects on the in vitro growth pattern, differentiation to infective forms, or infectivity to mice and triatomines. Although differences in TrAK expression and activity were observed among T. rangeli strains from distinct genetic lineages, our results indicate an up-regulation during parasite replication and putative post-translational myristoylation of this enzyme. We conclude that up-regulation of TrAK activity in epimastigotes appears to improve proliferation fitness, while reduced TrAK expression in blood trypomastigotes may be related to short-term and subpatent parasitemia in mammalian hosts.
Collapse
Affiliation(s)
- Carime Lessa Mansur Pontes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Höehr de Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Patrícia Hermes Stoco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Immune-metabolic interactions between Leishmania and macrophage host. Curr Opin Microbiol 2021; 63:231-237. [PMID: 34438164 DOI: 10.1016/j.mib.2021.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Manipulation of host metabolic fluxes by Leishmania represents a strategy to circumvent host immune response leading to long-term parasite survival and playing an important role in the pathology of infection. Specific Leishmania-dependent metabolic alterations in infected macrophages have been associated with resistance or susceptibility to infection. Thus, deciphering the multilevel interactions between metabolism and function on innate immune cells during infection offers considerable therapeutic or prophylactic promise. In this review, we provide an overview of recent literature highlighting Leishmania-macrophage interactions and discuss the potential of metabolic targeted therapies to shift the balance of dysfunctional, damaging, or non-productive responses to protective immune reactivity patterns towards pathogen elimination.
Collapse
|
8
|
Cestari I, Stuart K. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes. PLoS Negl Trop Dis 2020; 14:e0008689. [PMID: 33119588 PMCID: PMC7595295 DOI: 10.1371/journal.pntd.0008689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unicellular eukaryote Trypanosoma brucei undergoes extensive cellular and developmental changes during its life cycle. These include regulation of mammalian stage surface antigen variation and surface composition changes between life stages; switching between glycolysis and oxidative phosphorylation; differential mRNA editing; and changes in posttranscriptional gene expression, protein trafficking, organellar function, and cell morphology. These diverse events are coordinated and controlled throughout parasite development, maintained in homeostasis at each life stage, and are essential for parasite survival in both the host and insect vector. Described herein are the enzymes and metabolites of the phosphatidylinositol (PI) cellular regulatory network, its integration with other cellular regulatory systems that collectively control and coordinate these numerous cellular processes, including cell development and differentiation and the many associated complex processes in multiple subcellular compartments. We conclude that this regulation is the product of the organization of these enzymes within the cellular architecture, their activities, metabolite fluxes, and responses to environmental changes via signal transduction and other processes. We describe a paradigm for how these enzymes and metabolites could function to control and coordinate multiple cellular functions. The significance of the PI system's regulatory functions in single-celled eukaryotes to metazoans and their potential as chemotherapeutic targets are indicated.
Collapse
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (IC); (KS)
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IC); (KS)
| |
Collapse
|
9
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
10
|
Cestari I. Phosphoinositide signaling and regulation in Trypanosoma brucei: Specialized functions in a protozoan pathogen. PLoS Pathog 2020; 16:e1008167. [PMID: 31895930 PMCID: PMC6939900 DOI: 10.1371/journal.ppat.1008167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
- * E-mail:
| |
Collapse
|
11
|
Herreros-Cabello A, Callejas-Hernández F, Fresno M, Gironès N. Comparative proteomic analysis of trypomastigotes from Trypanosoma cruzi strains with different pathogenicity. INFECTION GENETICS AND EVOLUTION 2019; 76:104041. [PMID: 31536808 DOI: 10.1016/j.meegid.2019.104041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 02/02/2023]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is one of the most neglected diseases in Latin America, being currently a global health problem. Its immunopathogenesis is still quite unknown. Moreover, there are important differences in pathogenicity between some different T. cruzi strains. For example, in mice, Y strain produces a high acute lethality while VFRA remains in the host mostly in a chronic manner. Comparative proteomic studies between T. cruzi strains represent a complement for transcriptomics and may allow the detection of relevant factors or distinctive functions. Here for the first time, we compared the proteome of trypomastigotes from 2 strains, Y and VFRA, analyzed by mass spectrometry. Gene ontology analysis were used to display similarities or differences in cellular components, biological processes and molecular functions. Also, we performed metabolic pathways enrichment analysis to detect the most relevant pathways in each strain. Although in general they have similar profiles in the different ontology groups, there were some particular interesting differences. Moreover, there were around 10% of different proteins between Y and VFRA strains, that were shared by other T. cruzi strains or protozoan species. They displayed many common enriched metabolic pathways but some others were uniquely enriched in one strain. Thus, we detected enriched antioxidant defenses in VFRA that could correlate with its ability to induce a chronic infection in mice controlling ROS production, while the Y strain revealed a great enrichment of pathways related with nucleotides and protein production, that could fit with its high parasite replication and lethality. In summary, Y and VFRA strains displayed comparable proteomes with some particular distinctions that could contribute to understand their different biological behaviors.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| |
Collapse
|
12
|
Beri D, Ramdani G, Balan B, Gadara D, Poojary M, Momeux L, Tatu U, Langsley G. Insights into physiological roles of unique metabolites released from Plasmodium-infected RBCs and their potential as clinical biomarkers for malaria. Sci Rep 2019; 9:2875. [PMID: 30814599 PMCID: PMC6393545 DOI: 10.1038/s41598-018-37816-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
Plasmodium sp. are obligate intracellular parasites that derive most of their nutrients from their host meaning the metabolic circuitry of both are intricately linked. We employed untargeted, global mass spectrometry to identify metabolites present in the culture supernatants of P. falciparum-infected red blood cells synchronized at ring, trophozoite and schizont developmental stages. This revealed a temporal regulation in release of a distinct set of metabolites compared with supernatants of non-infected red blood cells. Of the distinct metabolites we identified pipecolic acid to be abundantly present in parasite lysate, infected red blood cells and infected culture supernatant. Further, we performed targeted metabolomics to quantify pipecolic acid concentrations in both the supernatants of red blood cells infected with P. falciparum, as well as in the plasma and infected RBCs of P. berghei-infected mice. Measurable and significant hyperpipecolatemia suggest that pipecolic acid has the potential to be a diagnostic marker for malaria.
Collapse
Affiliation(s)
- Divya Beri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ghania Ramdani
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Balu Balan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Darshak Gadara
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mukta Poojary
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Laurence Momeux
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France. .,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
13
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
14
|
Moog D, Przyborski JM, Maier UG. Genomic and Proteomic Evidence for the Presence of a Peroxisome in the Apicomplexan Parasite Toxoplasma gondii and Other Coccidia. Genome Biol Evol 2018; 9:3108-3121. [PMID: 29126146 PMCID: PMC5737649 DOI: 10.1093/gbe/evx231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 02/06/2023] Open
Abstract
Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid β-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites.
Collapse
Affiliation(s)
- Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Jude M Przyborski
- Laboratory for Parasitology, Philipps University Marburg, Germany.,Centre for Infectious Diseases, Parasitology, Heidelberg University Medical School, INF324, Heidelberg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University, Marburg, Germany
| |
Collapse
|
15
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
16
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Hernández-Chinea C, Maimone L, Campos Y, Mosca W, Romero PJ. Apparent isocitrate lyase activity in Leishmania amazonensis. Acta Parasitol 2017; 62:701-707. [PMID: 29035856 DOI: 10.1515/ap-2017-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/23/2017] [Indexed: 11/15/2022]
Abstract
Early reports have demonstrated the occurrence of glyoxylate cycle enzymes in several Leishmania species. However, these results have been underestimated because genes for the two key enzymes of the cycle, isocitrate lyase (ICL) and malate synthase (MS), are not annotated in Leishmania genomes. We have re-examined this issue in promastigotes of Leishmania amazonensis. Enzyme activities were assayed spectrophotometrically in cellular extracts and characterized partially. A 40 kDa band displaying ICL activity was visualized on zymograms of the extracts. By immunoblotting with mouse antibodies against ICL from Bacillus stearothermophilus, a band of approximately 40 kDa was identified, coincident with the relative molecular mass of the activity band revealed on zymograms. Indirect immunofluorescence of intact promastigotes showed that the recognized antigen is distributed as a punctuated pattern, mainly distributed beneath the subpellicular microtubules, over a diffused cytoplasmic stain. These results clearly demonstrate the existence of an apparent ICL activity in L. amazonensis promastigotes, which is associated to a 40 kDa polypeptide and distributed both diffused and as punctuate aggregates in the cytoplasm. The relevance of this activity is discussed.
Collapse
|
18
|
Semini G, Paape D, Paterou A, Schroeder J, Barrios‐Llerena M, Aebischer T. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection. Microbiologyopen 2017; 6:e00469. [PMID: 28349644 PMCID: PMC5552908 DOI: 10.1002/mbo3.469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
| | - Daniel Paape
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Athina Paterou
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| | - Juliane Schroeder
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Martin Barrios‐Llerena
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Centre for Cardiovascular SciencesQueen's Medical Research Institute University of EdinburghEdinburghUK
| | - Toni Aebischer
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|
19
|
Abstract
The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.
Collapse
Affiliation(s)
| | - John Parkinson
- a Program in Molecular Structure and Function , Hospital for Sick Children , Toronto , Ontario , Canada
- b Departments of Biochemistry, Molecular Genetics and Computer Science , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
20
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
21
|
Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts. Parasitology 2016; 143:1683-1690. [DOI: 10.1017/s0031182016001323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYProtozoan parasites of the genus Cryptosporidium infect all vertebrate groups and display some host specificity in their infections. It is therefore possible to assume that Cryptosporidium parasites evolved intimately aside with vertebrate lineages. Here we propose a scenario of Cryptosporidium–Vertebrata coevolution testing the hypothesis that the origin of Cryptosporidium parasites follows that of the origin of modern vertebrates. We use calibrated molecular clocks and cophylogeny analyses to provide and compare age estimates and patterns of association between these clades. Our study provides strong support for the evolution of parasitism of Cryptosporidium with the rise of the vertebrates about 600 million years ago (Mya). Interestingly, periods of increased diversification in Cryptosporidium coincides with diversification of crown mammalian and avian orders after the Cretaceous-Palaeogene (K-Pg) boundary, suggesting that adaptive radiation to new mammalian and avian hosts triggered the diversification of this parasite lineage. Despite evidence for ongoing host shifts we also found significant correlation between protozoan parasites and vertebrate hosts trees in the cophylogenetic analysis. These results help us to understand the underlying macroevolutionary mechanisms driving evolution in Cryptosporidium and may have important implications for the ecology, dynamics and epidemiology of cryptosporidiosis disease in humans and other animals.
Collapse
|
22
|
Shapiro LLM, Murdock CC, Jacobs GR, Thomas RJ, Thomas MB. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc Biol Sci 2016; 283:20160298. [PMID: 27412284 PMCID: PMC4947883 DOI: 10.1098/rspb.2016.0298] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260-330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics.
Collapse
Affiliation(s)
- Lillian L M Shapiro
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Courtney C Murdock
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Gregory R Jacobs
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel J Thomas
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
24
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
25
|
Von Bülow J, Beitz E. Number and regulation of protozoan aquaporins reflect environmental complexity. THE BIOLOGICAL BULLETIN 2015; 229:38-46. [PMID: 26338868 DOI: 10.1086/bblv229n1p38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.
Collapse
Affiliation(s)
- Julia Von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| |
Collapse
|
26
|
Grant JR, Katz LA. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol Evol 2014; 6:2350-60. [PMID: 25146649 PMCID: PMC4217692 DOI: 10.1093/gbe/evu179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages.
Collapse
Affiliation(s)
- Jessica R Grant
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts
| |
Collapse
|
27
|
Entamoeba histolytica adaptation to glucose starvation: a matter of life and death. Curr Opin Microbiol 2014; 20:139-45. [DOI: 10.1016/j.mib.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
28
|
Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 2013; 8:e77283. [PMID: 24204787 PMCID: PMC3813737 DOI: 10.1371/journal.pone.0077283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.
Collapse
|
29
|
Baumel-Alterzon S, Weber C, Guillén N, Ankri S. Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of Entamoeba histolytica in glucose-poor environments. Cell Microbiol 2012; 15:130-44. [PMID: 23016994 DOI: 10.1111/cmi.12036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
Adaptation to nutritional changes is a key feature for successful survival of a pathogen within its host. The protozoan parasite Entamoeba histolytica normally colonizes the human colon and in rare occasions, this parasite spread to distant organs, such as the liver. E. histolytica obtains most of its energy from the fermentation of glucose into ethanol. In this study, we were intrigued to know how this parasite reacts to changes in glucose availability and we addressed this issue by performing a DNA microarray analysis of gene expression. Results show that parasites that were adapted to growth in absence of glucose increased their virulence and altered the transcription of several genes. One of these genes is the dihydropyrimidine dehydrogenase (DPD), which is involved in degradation of pyrimidines. We showed that this gene is crucial for the parasite's growth when the availability of glucose is limited. These data contribute to our understanding of the parasite's ability to survive in glucose-poor environments and reveal a new role for the DPD enzyme.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
30
|
Besteiro S. Which roles for autophagy in Toxoplasma gondii and related apicomplexan parasites? Mol Biochem Parasitol 2012; 184:1-8. [PMID: 22515957 DOI: 10.1016/j.molbiopara.2012.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/16/2023]
Abstract
Autophagy is a life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles called autophagosomes, and degraded after fusion with a lytic compartment. This process can be triggered under cellular stress conditions in order to recycle damaged organelles or provide nutrients to the cell, but may also be involved in cell remodelling during normal development. This catabolic process is conserved among most eukaryotes and characterisation of its molecular machinery has benefited greatly from functional genetic studies in yeast and mammalian models. Until recently, not much was known about the functions of autophagy in Apicomplexa, but recent data obtained in Toxoplasma have shed light on a very important role for this machinery, potentially at the crossroads between life and death decisions for the parasite. The possible roles for autophagy during the life cycles of other medically important apicomplexan parasites and the perspectives for discovering new drug targets in this pathway for combating these parasites are discussed in this review.
Collapse
Affiliation(s)
- Sébastien Besteiro
- DIMNP, UMR5235 CNRS, Universités de Montpellier 1 & 2, Montpellier 34095, France.
| |
Collapse
|
31
|
Lin SS, Blume M, von Ahsen N, Gross U, Bohne W. Extracellular Toxoplasma gondii tachyzoites do not require carbon source uptake for ATP maintenance, gliding motility and invasion in the first hour of their extracellular life. Int J Parasitol 2011; 41:835-41. [PMID: 21515276 DOI: 10.1016/j.ijpara.2011.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Apicomplexan parasites undergo metabolic shifts in adaptation to environmental changes. Here, we investigate the metabolic requirements which are responsible for ATP homeostasis in the extracellular stage of Toxoplasma gondii. Surprisingly, we found that freshly released tachyzoites are able to maintain a constant ATP level during the first hour of extracellular incubation without the acquisition of external carbon sources. We further demonstrated that the extent of gliding motility and that of host cell invasion is independent from the availability of external carbon sources during this one hour extracellular period. The ATP level and the invasion efficiency of extracellular parasites were severely decreased by treatment with the glycolysis inhibitor, 2-deoxy-d-glucose, but not by the F(0)F(1)-ATPase inhibitor, oligomycin. This suggests that although the uptake of glucose itself is not required during the 1h incubation period, extracellular parasites depend on the activity of the glycolytic pathway for ATP homeostasis. Furthermore, active glycolysis was evident by the secretion of lactate into the culture medium, even in the absence of external carbon sources. Together, our studies suggest that tachyzoites are independent from external carbon sources within the first hour of their extracellular life, which is the most relevant time span for finding a new host cell, but rely on the glycolytic metabolisation of internal carbon sources for ATP maintenance, gliding motility and host cell invasion.
Collapse
Affiliation(s)
- San San Lin
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | | | | | | | | |
Collapse
|
32
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Inbar E, Canepa GE, Carrillo C, Glaser F, Suter Grotemeyer M, Rentsch D, Zilberstein D, Pereira CA. Lysine transporters in human trypanosomatid pathogens. Amino Acids 2010; 42:347-60. [PMID: 21170560 DOI: 10.1007/s00726-010-0812-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.
Collapse
Affiliation(s)
- Ehud Inbar
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
35
|
Seeber F, Soldati-Favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:161-228. [DOI: 10.1016/s1937-6448(10)81005-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Affiliation(s)
- Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| |
Collapse
|
37
|
Milon G. Perpetuation of Leishmania: some novel insight into elegant developmental programs. Vet Res 2009; 40:38. [PMID: 19379663 PMCID: PMC2695029 DOI: 10.1051/vetres/2009021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 04/16/2009] [Indexed: 11/16/2022] Open
Abstract
Leishmania spp. are polarized single-celled eukaryotic parasites, the perpetuation of which relies on two other organisms they “use” as hosts. One of the Leishmania host organisms is a blood-feeding female sand fly, the second host being a mammal that acts as a blood source for the female sand fly. Leishmania-hosting sand flies transmit the metacyclic promastigote developmental stage to the mammal skin. While many mammals are known to act as sand fly blood sources, only some of these mammals are/will be “used” as Leishmania hosts. This host status means that skin as well as skin-distant tissues and cell lineages (mononuclear phagocytes and fibroblasts) of these mammals are rapidly and continuously remodelled as niches where Leishmania will deploy its developmental programs: it is noteworthy that without the deployment of the developmental program underlying Leishmania transmission from the mammal to the blood-searching and blood-feeding sand flies, the perpetuation of Leishmania will be suspended. While post genomic approaches are providing insight about some features of Leishmania major, Leishmania infantum/chagasi and Leishmania braziliensis, such approaches are not yet available for the natural hosts (wild rodents, wild sand flies) these Leishmania species “use” as hosts.
Collapse
Affiliation(s)
- Geneviève Milon
- Institut Pasteur, Département de Parasitologie et Mycologie, Unité Immunophysiologie et Parasitisme Intracellulaire, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
38
|
Mather MW, Vaidya AB. Mitochondria in malaria and related parasites: ancient, diverse and streamlined. J Bioenerg Biomembr 2008; 40:425-33. [PMID: 18814021 DOI: 10.1007/s10863-008-9176-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
Abstract
Parasitic organisms have emerged from nearly every corner of the eukaryotic kingdom and hence display tremendous diversity of form and function. This diversity extends to their mitochondria and mitochondrion-derived organelles. While the principles of the chemiosmotic theory apply to all these pathogens, the differences from their hosts provide opportunities for therapeutic development. In this review we discuss examples of mitochondrial systems from a deep-branching phylum, Apicomplexa. Many important human pathogens, such as malaria parasites, belong to this phylum. Unique features of their mitochondria are validated targets for drugs that are selectively toxic to the parasites.
Collapse
Affiliation(s)
- Michael W Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
39
|
Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol 2008; 24:468-78. [PMID: 18775675 DOI: 10.1016/j.pt.2008.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/15/2022]
Abstract
Apicomplexans form a large group of obligate intracellular parasites that occupy diverse environmental niches. To adapt to their hosts, these parasites have evolved sophisticated strategies to access host-cell nutrients and minimize exposure to the host's defence mechanisms. Concomitantly, they have drastically reshaped their own metabolic functions by retaining, losing or gaining genes for metabolic enzymes. Although several Apicomplexans remain experimentally intractable, bioinformatic analyses of their genomes have generated preliminary metabolic maps. Here, we compare the metabolic pathways of five Apicomplexans, focusing on their different mitochondrial functions, which highlight their adaptation to their individual intracellular habitats.
Collapse
Affiliation(s)
- Frank Seeber
- Molecular Parasitology, Institute for Biology, Humboldt University, Philippstr. 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
40
|
Kastenmüller G, Gasteiger J, Mewes HW. An environmental perspective on large-scale genome clustering based on metabolic capabilities. Bioinformatics 2008; 24:i56-62. [DOI: 10.1093/bioinformatics/btn302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
41
|
Abstract
Over the last 10 years - in Microbes and Infection - the publications dealing with protozoan parasites were mainly providing insights on the pathogenic processes leading to the local or systemic damages in the mammals, these parasitic organisms exploit/subvert as hosts. As a result, many investigators introduced the objectives of their analysis by referring to "host-pathogen" interactions. Though we, as investigators, are all determined to decipher the pathogenic processes which can indeed be coupled to the parasite uncontrolled development, I think that the parasites - alike the living organisms they subvert as hosts - need to be considered as living organisms per se, instead of being considered as "pathogens". Such a conceptual frame will promote research on the processes on which relies their perpetuation whatever the level under investigations - individual and/or population level. Only the unicellular protozoan parasites of the genus Leishmania known to be hosted by blood-feeding insects and mammals will be further considered in this brief contribution.
Collapse
Affiliation(s)
- Geneviève Milon
- Institut Pasteur, Unité d'Immunophysiologie et Parasitisme Intracellulaire,75724 Paris Cedex 15, France.
| |
Collapse
|
42
|
Drexler AL, Vodovotz Y, Luckhart S. Plasmodium development in the mosquito: biology bottlenecks and opportunities for mathematical modeling. Trends Parasitol 2008; 24:333-6. [PMID: 18603475 PMCID: PMC2593109 DOI: 10.1016/j.pt.2008.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 11/20/2022]
Abstract
Quantitative analyses of malaria parasite development are necessary to assess the efficacy of control measures. Such analyses in the mammalian host have been difficult to implement, lagging behind the use of antiparasitic drugs, vaccine development and transmission-blocking strategies. Even less is known about the genetic, environmental and other factors that impact sporogony in the mosquito host. Here, we summarize current knowledge and review a first attempt to model sporogonic development quantitatively.
Collapse
Affiliation(s)
- Anna L Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, CA 95616, USA
| | | | | |
Collapse
|
43
|
Long S, Jirků M, Mach J, Ginger ML, Sutak R, Richardson D, Tachezy J, Lukes J. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol 2008; 69:94-109. [PMID: 18433447 DOI: 10.1111/j.1365-2958.2008.06260.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe-S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis. Collectively, the data suggest trypanosome frataxin functions primarily only in Fe-S cluster biogenesis and protection from reactive oxygen species.
Collapse
Affiliation(s)
- Shaojun Long
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Natural Sciences, University of South Bohemia, Ceské Budejovice (Budweis), Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ali V, Nozaki T. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites. Clin Microbiol Rev 2007; 20:164-87. [PMID: 17223627 PMCID: PMC1797636 DOI: 10.1128/cmr.00019-06] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The "amitochondriate" protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine gamma-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, L-trifluoromethionine, which is catalyzed by methionine gamma-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.
Collapse
Affiliation(s)
- Vahab Ali
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
45
|
van Hellemond JJ, Tielens AGM. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett 2006; 580:5552-8. [PMID: 16920110 DOI: 10.1016/j.febslet.2006.07.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
Trypanosomes are unicellular parasites and like all decent parasites, they try to obtain from the host as much material as possible, including lipids. However, the needs of a parasite are not always the same as those of the host, and therefore, mostly, some biosynthetic work still has to be done by the parasite itself. Very often at least modifications of the lipid components that are acquired from the host have to be made. Furthermore, next to the lipids Trypanosoma brucei indeed obtains from the host, some other lipid components have to be synthesized de novo. Especially the processes where the metabolism of T. brucei differs from that of the host, will be discussed, as at least some of them are excellent targets for the development of urgently needed new chemotherapeutics.
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | |
Collapse
|