1
|
Goes AC, Kooij PW, Haifig I, Bueno OC, Rodrigues A. Exploring immune memory traits in the social immunity of a fungus-growing ant. Proc Biol Sci 2024; 291:20241097. [PMID: 39689882 DOI: 10.1098/rspb.2024.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
The immune system is crucial for organisms to defend against pathogens. Likewise, analogous immune features evolved against similar pressures at the superorganism scale. Upregulating hygiene to the same fungus pathogen is one assumption for convergent immune mechanisms in social insects, although more evidence of immune memory features remains to be confirmed. Here, we assess immune memory traits at the colony level in the leaf-cutting ant Atta sexdens. We exposed their fungus cultivar to both homologous and heterologous challenges with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, as well as the mycoantagonistic fungi Fusarium oxysporum and Trichoderma spirale. By measuring ants' behaviours, we evaluated the capacity of A. sexdens: (i) to enhance their collective hygiene, (ii) speed their hygiene in further infections, (iii) how long this capacity lasts in the colonies and (iv) the degree of specificity to increase hygienic responses. Fungus grooming behaviour was enhanced mostly against entomopathogenic fungi, with a trend of faster reactions during homologous challenges. In general, the capacity to elicit such upregulated actions lasted for up to 30 days, but no longer than 60 days. Overall, colonies exhibited a degree of immune specificity, enhancing hygiene only in response to homologous exposures but decreasing it when infected secondarily with a different fungus, indicating flexible social immunity of A. sexdens after immune challenges.
Collapse
Affiliation(s)
- Aryel C Goes
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Pepijn W Kooij
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Ives Haifig
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Odair C Bueno
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
2
|
Leeuwis RHJ, Hall JR, Zanuzzo FS, Smith N, Clow KA, Kumar S, Vasquez I, Goetz FW, Johnson SC, Rise ML, Santander J, Gamperl AK. Climate change can impair bacterial pathogen defences in sablefish via hypoxia-mediated effects on adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105161. [PMID: 38521379 DOI: 10.1016/j.dci.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the ∼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Nicole Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Ignacio Vasquez
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Frederick W Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Stewart C Johnson
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC, V9T 6N7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
3
|
Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol 2023; 14:1330312. [PMID: 38124757 PMCID: PMC10730662 DOI: 10.3389/fimmu.2023.1330312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
Collapse
Affiliation(s)
- Tomas Dolezal
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
4
|
Vommaro ML, Zanchi C, Angelone T, Giglio A, Kurtz J. Herbicide exposure alters the effect of the enthomopathogen Beauveria bassiana on immune gene expression in mealworm beetles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122662. [PMID: 37778488 DOI: 10.1016/j.envpol.2023.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Concerns have grown worldwide about the potentially far-reaching effects of herbicides on functional biodiversity in agroecosystems. Repeated applications over time can lead to accumulation of residues in soil, water, and food and may have negative impacts on non-target organisms. However, the effects of herbicide residues on interspecific relationships, such as host-pathogen interactions, are poorly studied. In this study, we evaluated the effects of two different concentrations of a commercial pendimethalin-based formulation (PND), the residual contamination (S, 13 ppm) in treated soils and the maximum residue level allowed by the European Commission in cereals (EU, 0.05 ppm). We tested the effect of PND on the biological interaction between the mealworm beetle Tenebrio molitor Linnaeus, 1758 and the entomopathogenic fungus Beauveria bassiana Vuillemin, 1912 (Bb, strain KVL 03-144) at two concentrations (LC50 5 × 105 conidia mL-1 and LC100 1 × 107 conidia mL-1). We checked the survival of beetles exposed to PND or/and inoculated with B. bassiana, the expression of four antimicrobial peptides (AMPs), and finally how PND affects in vitro germination of fungus. The exposure to PND had no significant effects on the survival of either control or Bb-exposed beetles. In the mealworm beetle, upregulation of gene expression of the inducible AMPs Tenecin 1, 2, and 4 was observed in PND-treated beetles after inoculation with Bb, while the levels of the non-inducible AMP Tenecin 3 were similar between treatments. In conclusion, our findings demonstrate that admitted residual doses of currently used herbicides modify an important component of the inducible immune response of an insect. This did not translate into an effect on the survival to B. bassiana in our system. However, residual doses of the herbicide at 13 ppm may temporarily affect fungal germination. These results raise questions about the compatibility of bioinsecticides with synthetic pesticides and the effects of herbicide residues on host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany.
| | - Caroline Zanchi
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany; Institute for Biology, Freie Universität Berlin, Königin-Luise Str. 1-3, 14 195, Berlin, Germany
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany
| |
Collapse
|
5
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
6
|
Messina S, Costantini D, Eens M. Impacts of rising temperatures and water acidification on the oxidative status and immune system of aquatic ectothermic vertebrates: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161580. [PMID: 36646226 DOI: 10.1016/j.scitotenv.2023.161580] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Species persistence in the Anthropocene is dramatically threatened by global climate change. Large emissions of carbon dioxide (CO2) from human activities are driving increases in mean temperature, intensity of heatwaves, and acidification of oceans and freshwater bodies. Ectotherms are particularly sensitive to CO2-induced stressors, because the rate of their metabolic reactions, as well as their immunological performance, are affected by environmental temperatures and water pH. We reviewed and performed a meta-analysis of 56 studies, involving 1259 effect sizes, that compared oxidative status or immune function metrics between 42 species of ectothermic vertebrates exposed to long-term increased temperatures or water acidification (≥48 h), and those exposed to control parameters resembling natural conditions. We found that CO2-induced stressors enhance levels of molecular oxidative damages in ectotherms, while the activity of antioxidant enzymes was upregulated only at higher temperatures, possibly due to an increased rate of biochemical reactions dependent on the higher ambient temperature. Differently, both temperature and water acidification showed weak impacts on immune function, indicating different direction (increase or decrease) of responses among immune traits. Further, we found that the intensity of temperature treatments (Δ°C) and their duration, enhance the physiological response of ectotherms, pointing to stronger effects of prolonged extreme warming events (i.e., heatwaves) on the oxidative status. Finally, adult individuals showed weaker antioxidant enzymatic responses to an increase in water temperature compared to early life stages, suggesting lower acclimation capacity. Antarctic species showed weaker antioxidant response compared to temperate and tropical species, but level of uncertainty in the antioxidant enzymatic response of Antarctic species was high, thus pairwise comparisons were statistically non-significant. Overall, the results of this meta-analysis indicate that the regulation of oxidative status might be one key mechanism underlying thermal plasticity in aquatic ectothermic vertebrates.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - David Costantini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS - 7 rue Cuvier, 75005 Paris, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
7
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
8
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
9
|
Low impact of tuberculosis severity on wild boar body condition. Res Vet Sci 2023; 155:161-167. [PMID: 36706665 DOI: 10.1016/j.rvsc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Body condition (BC), is a measure to assess the health status of domestic and wild animals. When food resources are abundant, a decrease in BC may indicate an increase in the energetic expenditure due to the effects of growth, reproduction, or disease. BC impoverishment is one of the most common clinical effects of diseases progressing chronically, such as animal tuberculosis (TB) caused by bacteria belonging to the Mycobacterium tuberculosis complex. The Eurasian wild boar (Sus scrofa) is the main wild TB reservoir in the Mediterranean basin. The specific aims of this work were to assess the relationship between sex, age and TB severity altogether on the BC of wild boar. For this purpose, we used the kidney fat index (KFI), to assess the impact of TB progression on the BC of 1372 hunter-harvested free-ranging wild boar in seven populations in southern Spain. Surprisingly, TB had only slight effects on wild boar BC and individuals exhibiting severe TB showed greater BC than TB-free individuals. The age (adults had greater BC than juveniles) and sex (females had greater BC than males) were the main BC determinants in wild boar. Sampling population and season explained more BC variability than individual factors, suggesting that other external factors might play an important role in the BC, and probably on the impact of the disease on this wild reservoir. The low impact of TB on wild boar BC suggests that individuals with severe TB and good BC represent potential long-term super-shedders of this pathogen.
Collapse
|
10
|
Mo C, Smilanich AM. Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding efficiency in a specialist insect herbivore. Front Physiol 2023; 14:1127670. [PMID: 36909228 PMCID: PMC9998540 DOI: 10.3389/fphys.2023.1127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.
Collapse
Affiliation(s)
- Carmen Mo
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Angela M Smilanich
- Department of Biology, University of Nevada, Reno, NV, United States.,Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
11
|
Slama SL, Williams GS, Painter MN, Sheedy MD, Sandmeier FC. Temperature and Season Influence Phagocytosis by B1 Lymphocytes in the Mojave Desert Tortoise. Integr Comp Biol 2022; 62:1683-1692. [PMID: 35536570 DOI: 10.1093/icb/icac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lymphocytes are usually interpreted as functioning in adaptive immunity despite evidence that large proportions of these cells (B1 lymphocytes) have innate immune functions, including phagocytosis, in the peripheral blood of ectothermic vertebrates. We used a recently optimized assay to assess environmental influences on phagocytic activity of lymphocytes isolated from the Mojave desert tortoise (Gopherus agassizii). Previous studies suggest that lymphocytes in this species are associated with reduced pathogen loads, especially in cooler climates, and that lymphocyte numbers fluctuate seasonally. Thus, we evaluated thermal dependence of phagocytic activity in vitro and across seasons. While B1 lymphocytes appeared to be cold-adapted and always increased phagocytosis at cool temperatures, we also found evidence of thermal acclimation. Tortoises upregulated these lymphocytes during cooler seasons in the fall as their preferred body temperatures dropped, and phagocytosis also increased in efficiency during this same time. Like many other ectothermic species, populations of desert tortoises are in decline, in part due to a cold-adapted pathogen that causes chronic respiratory disease. Future studies, similarly focused on the function of B1 lymphocytes, could serve to uncover new patterns in thermal acclimation of immune functions and disease ecology across taxa of ectothermic vertebrates.
Collapse
Affiliation(s)
- Summer L Slama
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Grace S Williams
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Mariah N Painter
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Maxwell D Sheedy
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Franziska C Sandmeier
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| |
Collapse
|
12
|
Smith S, Hoelzl F, Zahn S, Criscuolo F. Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations. Mol Ecol 2022; 31:6239-6251. [PMID: 34664335 PMCID: PMC9788021 DOI: 10.1111/mec.16233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 02/02/2023]
Abstract
Increasing evidence at the cellular level is helping to provide proximate explanations for the balance between investment in growth, reproduction and somatic maintenance in wild populations. Studies of telomere dynamics have informed researchers about the loss and gain of telomere length both on a seasonal scale and across the lifespan of individuals. In addition, telomere length and telomere rate of loss seems to have evolved differently among taxonomic groups, and relate differently to organismal diversity of lifespan. So far, the mechanisms behind telomere maintenance remain elusive, although many studies have inferred a role for telomerase, an enzyme/RNA complex known to induce telomere elongation from laboratory studies. Exciting further work is also emerging that suggests telomerase (and/or its individual component parts) has a role in fitness that goes beyond the maintenance of telomere length. Here, we review the literature on telomerase biology and examine the evidence from ecological studies for the timing and extent of telomerase activation in relation to life history events associated with telomere maintenance. We suggest that the underlying mechanism is more complicated than originally anticipated, possibly involves several complimentary pathways, and is probably associated with high energetic costs. Potential pathways for future research are numerous and we outline what we see as the most promising prospects to expand our understanding of individual differences in immunity or reproduction efficiency.
Collapse
Affiliation(s)
- Steve Smith
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Franz Hoelzl
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Sandrine Zahn
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| | - François Criscuolo
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
13
|
Bartuseviciute V, Diaz Pauli B, Salvanes AGV, Heino M. Size-selective harvesting affects the immunocompetence of guppies exposed to the parasite Gyrodactylus. Proc Biol Sci 2022; 289:20220534. [PMID: 35975444 PMCID: PMC9382225 DOI: 10.1098/rspb.2022.0534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Harvesting is typically size-selective, targeting large individuals. This is expected to lead to reduced average body size and earlier maturation (i.e. faster life histories). Such changes can also affect traits seemingly unrelated to harvesting, including immunocompetence. Here we test four hypotheses on how harvesting affects immunocompetence based on the pace-of-life syndrome, habitat area limitation and energy allocation and acquisition, respectively. We empirically evaluate these hypotheses using an experimental system consisting of the ectoparasite Gyrodactylus turnbulli and lines of guppies Poecilia reticulata that had been subjected to either small, random or large size-selective harvest for over 12 years. We followed the infection progression of individually infected fish for 15 days. We found significant differences between the harvested lines: fish from the small-harvested lines had the highest parasite loads. During the early phase of the infection, parasite loads were the lowest in the large-harvested lines, whereas the terminal loads were the lowest for the random-harvested lines. These results agree with the predictions from the energetic trade-off and surface area hypotheses. To our knowledge, this is the first demonstration of the consequences of size-selective harvesting on immunocompetence.
Collapse
Affiliation(s)
| | | | - Anne Gro Vea Salvanes
- University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
| | - Mikko Heino
- University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
14
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
15
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
16
|
Horn CJ, Wasylenko JA, Luong LT. Scared of the dark? Phototaxis as behavioural immunity in a host-parasite system. Biol Lett 2022; 18:20210531. [PMID: 35078333 PMCID: PMC8790348 DOI: 10.1098/rsbl.2021.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Behavioural immunity describes suites of behaviours hosts use to minimize the risks of infection by parasites/pathogens. Research has focused primarily on the evasion and physical removal of infectious stages, as well as behavioural fever. However, other behaviours affect infection risk while carrying ecologically significant trade-offs. Phototaxis, in particular, has host fitness implications (e.g. altering feeding and thermoregulation) that also impact infection outcomes. In this study, we hypothesized that a fly host, Drosophila nigrospiracula, employs phototaxis as a form of behavioural immunity to reduce the risk of infection. First, we determined that the risk of infection is lower for flies exposed in the light relative to the dark using micro-arena experiments. Because Drosophila vary in ectoparasite resistance based on mating status we examined parasite-mediated phototaxis in mated and unmated females. We found that female flies spent more time in the light side of phototaxis chambers when mites were present than in the absence of mites. Mating marginally decreased female photophobia independently of mite exposure. Female flies moved to lighter, i.e. less infectious, environments when threatened with mites, suggesting phototaxis is a mechanism of behavioural immunity. We discuss how parasite-mediated phototaxis potentially trades-off with host nutrition and thermoregulation.
Collapse
Affiliation(s)
- Collin J. Horn
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Jacob A. Wasylenko
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Lien T. Luong
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| |
Collapse
|
17
|
Kernen L, Phan A, Bo J, Herzog EL, Huynh J, Segner H, Baumann L. Estrogens as immunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106025. [PMID: 34837781 DOI: 10.1016/j.aquatox.2021.106025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs) can cause alterations in sexual development and reproductive function of fish. Growing evidence suggests that EEDCs can also interfere with development and function of innate immunity of fish. The present study examined a potential disruptive effect of EEDCs at field-relevant concentrations on the development of adaptive immunity, more specifically the thymus. Zebrafish (Danio rerio) were exposed from fertilization until 64 days post-fertilization (dpf) to environmentally relevant (3 and 10 ng/L) concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2). The exposure duration covered the period of initial thymus differentiation to maximum growth. Thymus development was assessed by histological and morphometric (thymus area) analysis, thymocyte number, and transcript levels of thymocyte marker genes. Additionally, transcript levels of the estrogen receptors (esr1 and esr2a) were determined. The EE2 exposure altered sexual development (gonad differentiation, transcript levels of hepatic vitellogenin and estrogen receptors) of zebrafish, as expected. At the same time, the EE2 treatment reduced the thymus growth (thymus area, thymocyte number) and transcript levels of thymus marker genes. The expression of the thymic estrogen receptors responded to the EE2 exposure but in a different pattern than the hepatic estrogen receptors. After the 64-day-exposure period, the juvenile fish were transferred into clean water for another 95 days to assess the reversibility of EE2-induced effects. The thymic alterations were found to be reversible in female zebrafish but persisted in males. The present study provides the first evidence that the development of the fish adaptive immune system is sensitive to EEDCs, and that this takes place at concentrations similar to those that disrupt sexual development.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Audrey Phan
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361102, China
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - John Huynh
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Piecyk A, Hahn MA, Roth O, Dheilly NM, Heins DC, Bell MA, Kalbe M. Cross-continental experimental infections reveal distinct defence mechanisms in populations of the three-spined stickleback Gasterosteus aculeatus. Proc Biol Sci 2021; 288:20211758. [PMID: 34547906 PMCID: PMC8456148 DOI: 10.1098/rspb.2021.1758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Epidemiological traits of host-parasite associations depend on the effects of the host, the parasite and their interaction. Parasites evolve mechanisms to infect and exploit their hosts, whereas hosts evolve mechanisms to prevent infection and limit detrimental effects. The reasons why and how these traits differ across populations still remain unclear. Using experimental cross-infection of three-spined stickleback Gasterosteus aculeatus and their species-specific cestode parasites Schistocephalus solidus from Alaskan and European populations, we disentangled host, parasite and interaction effects on epidemiological traits at different geographical scales. We hypothesized that host and parasite main effects would dominate both within and across continents, although interaction effects would show geographical variation of natural selection within and across continents. We found that mechanisms preventing infection (qualitative resistance) occurred only in a combination of hosts and parasites from different continents, while mechanisms limiting parasite burden (quantitative resistance) and reducing detrimental effects of infection (tolerance) were host-population specific. We conclude that evolution favours distinct defence mechanisms on different geographical scales and that it is important to distinguish concepts of qualitative resistance, quantitative resistance and tolerance in studies of macroparasite infections.
Collapse
Affiliation(s)
- Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Megan A. Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Evolutionary Biology, Kiel University, Kiel, Germany
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David C. Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Michael A. Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
19
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
20
|
Tadiri CP, Fussmann GF, Scott ME. Parasite spread in experimental metapopulations: resistance, tolerance and host competence. OIKOS 2021. [DOI: 10.1111/oik.07837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Marilyn E. Scott
- Inst. of Parasitology, McGill Univ. Ste. Anne‐de‐Bellevue QC Canada
| |
Collapse
|
21
|
Vommaro ML, Kurtz J, Giglio A. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). INSECTS 2021; 12:insects12050423. [PMID: 34066849 PMCID: PMC8151185 DOI: 10.3390/insects12050423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated at molecular and physiological levels, but information on morphological and functional characteristics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated overview of the morphology of circulating immune cells from mealworm beetle adults, using light and transmission electron microscopy. Based on their affinities for May-Grünwald Giemsa stain, haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circulating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation, turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical tests revealed differences in the distribution of carbohydrates among cell types underling the great plasticity of the immune response and the direct involvement of circulating immune cells in the resource allocation. In addition, our results provide a detailed morphological description of vesicle trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-098-449-2982; Fax: +39-098-449-2986
| |
Collapse
|
22
|
Balbi T, Auguste M, Ciacci C, Canesi L. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Front Immunol 2021; 12:618726. [PMID: 33679759 PMCID: PMC7930816 DOI: 10.3389/fimmu.2021.618726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Wesener F, Szymczak A, Rillig MC, Tietjen B. Stress priming affects fungal competition - evidence from a combined experimental and modelling study. Environ Microbiol 2021; 23:5934-5945. [PMID: 33538387 DOI: 10.1111/1462-2920.15418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022]
Abstract
Priming, an inducible stress defence strategy that prepares an organism for an impending stress event, is common in microbes and has been studied mostly in isolated organisms or populations. How the benefits of priming change in the microbial community context and, vice versa, whether priming influences competition between organisms, remain largely unknown. In this study, we grew different isolates of soil fungi that experienced heat stress in isolation and pairwise competition experiments and assessed colony extension rate as a measure of fitness under priming and non-priming conditions. Based on this data, we developed a cellular automaton model simulating the growth of the ascomycete Chaetomium angustispirale competing against other fungi and systematically varied fungal response traits to explain similarities and differences observed in the experimental data. We showed that competition changes the priming benefit compared with isolated growth and that it can even be reversed depending on the competitor's traits such as growth rate, primeability and stress susceptibility. With this study, we transfer insights on priming from studies in isolation to competition between species. This is an important step towards understanding the role of inducible defences in microbial community assembly and composition.
Collapse
Affiliation(s)
- Felix Wesener
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Königin-Luise-Str. 2/4, Gartenhaus, Berlin, 14195, Germany
| | - Aleksandra Szymczak
- Institute of Biology, Ecology of Plants, Freie Universität Berlin, Altensteinstraße 6, Berlin, 14195, Germany
| | - Matthias C Rillig
- Institute of Biology, Ecology of Plants, Freie Universität Berlin, Altensteinstraße 6, Berlin, 14195, Germany.,Berlin Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Britta Tietjen
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Königin-Luise-Str. 2/4, Gartenhaus, Berlin, 14195, Germany.,Berlin Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
24
|
Bruns HA, Wisenden BD, Vanniasinkam T, Taylor RT, Elliott SL, Sparks-Thissen RL, Justement LB, Pandey S. Inside the Undergraduate Immunology Classroom: Current Practices that Provide a Framework for Curriculum Consensus. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2021; 22:22.1.8. [PMID: 33584948 PMCID: PMC7861212 DOI: 10.1128/jmbe.v22i1.2269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2020] [Indexed: 05/09/2023]
Abstract
Although immunological research has become increasingly important in recent decades for understanding infectious and immune-mediated diseases, immunological pedagogy at the undergraduate level has lagged behind in reports of evidence-based scholarship. To address the need for a renewed emphasis on immunology education and to describe the current status of undergraduate education in immunology, an online survey of instructors with experience in teaching immunology was conducted. The survey investigated the effects of instructors' level of teaching experience, target student population, and course components on the emphasis given to certain immunology subtopics in their courses. Instructor teaching experience and current role in teaching influenced the proportion of time allotted to lab techniques, clinical topics, and evolutionary aspects, but type of institution (undergraduate and graduate degree-granting institutions) did not affect course content or emphasis on subtopics. Topics that received the greatest emphasis were the adaptive immune system, the innate immune system, host-pathogen interactions, and molecular mechanisms. Vaccines, hypersensitivity, autoimmunity, and essential immunology techniques were ranked slightly lower, while topics such as evolution, metabolism and antibody purification received the least emphasis. Inclusion of a lab component increased time given to lab-related and clinical topics but did not affect the perceived importance of various scientific competencies. These data describe current curricular practices of instructors who have experience teaching immunology and inform curricular priorities and course design frameworks for undergraduate immunology education.
Collapse
Affiliation(s)
- Heather A. Bruns
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brian D. Wisenden
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563
| | - Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rebekah T. Taylor
- Department of Biology, Frostburg State University, Frostburg, MD 21502
| | - Samantha L. Elliott
- Center for Inclusive Teaching & Learning and Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD 20686
| | | | - Louis B. Justement
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sumali Pandey
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563
| |
Collapse
|
25
|
Garvey M, Bredlau J, Kester K, Creighton C, Kaplan I. Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Michael Garvey
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Department of Entomology Purdue University West Lafayette IN USA
| | - Justin Bredlau
- Department of Entomology University of Kentucky Lexington KY USA
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Karen Kester
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Curtis Creighton
- Department of Biological Sciences Purdue University Northwest Hammond IN USA
| | - Ian Kaplan
- Department of Entomology Purdue University West Lafayette IN USA
| |
Collapse
|
26
|
Cepon-Robins TJ. Measuring attack on self: The need for field-friendly methods development and research on autoimmunity in human biology. Am J Hum Biol 2020; 33. [PMID: 33289250 DOI: 10.1002/ajhb.23544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autoimmune and inflammatory disorder (AIID) prevalence appears to be increasing in all but the world's poorest regions and countries. Autoimmune diseases occur when there is a breakdown in processes that regulate inflammation and self-recognition by immune cells. Very few field-based studies have been conducted among Indigenous populations and underserved communities with limited access to medical care. This is due, in part, to the fact that autoimmune diseases are difficult to diagnose, even in clinical settings. In remote field settings these difficulties are compounded by the absence of infrastructure necessary for sample storage and analysis, and the lack of hospital/clinic access for more invasive diagnostic procedures. Because of these limitations, little is known about the prevalence of autoimmunity outside wealthy regions and clinical settings. AIMS The present paper discusses why AIID are of critical importance in human biology research and why more work needs to be devoted to validating, testing, and utilizing methods for detecting autoantibodies and other biomarkers related to autoimmunity in field-friendly, minimally invasively-collected samples. This paper reviews some of the methods used to diagnose AIIDs in clinical settings, and highlights methods that have been used in studies within human biology and related fields, emphasizing the invasiveness of specific methods and their feasibility in remote field settings. DISCUSSION AND CONCLUSIONS Risk for AIID is affected by several reproductive, dietary, environmental, and genetic factors. Human biologists have unique perspectives that they can bring to autoimmunity research, and more population-based studies on autoimmunity are needed within these and related fields.
Collapse
Affiliation(s)
- Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
27
|
Roast MJ, Aranzamendi NH, Fan M, Teunissen N, Hall MD, Peters A. Fitness outcomes in relation to individual variation in constitutive innate immune function. Proc Biol Sci 2020; 287:20201997. [PMID: 33143586 DOI: 10.1098/rspb.2020.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although crucial for host survival when facing persistent parasite pressure, costly immune functions will inevitably compete for resources with other energetically expensive traits such as reproduction. Optimizing, but not necessarily maximizing, immune function might therefore provide net benefit to overall host fitness. Evidence for associations between fitness and immune function is relatively rare, limiting our potential to understand ultimate fitness costs of immune investment. Here, we assess how measures of constitutive immune function (haptoglobin, natural antibodies, complement activity) relate to subsequent fitness outcomes (survival, reproductive success, dominance acquisition) in a wild passerine (Malurus coronatus). Surprisingly, survival probability was not positively linearly predicted by any immune index. Instead, both low and high values of complement activity (quadratic effect) were associated with higher survival, suggesting that different immune investment strategies might reflect a dynamic disease environment. Positive linear relationships between immune indices and reproductive success suggest that individual heterogeneity overrides potential resource reallocation trade-offs within individuals. Controlling for body condition (size-adjusted body mass) and chronic stress (heterophil-lymphocyte ratio) did not alter our findings in a sample subset with available data. Overall, our results suggest that constitutive immune components have limited net costs for fitness and that variation in immune maintenance relates to individual differences more closely.
Collapse
Affiliation(s)
- Michael J Roast
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | | | - Marie Fan
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
28
|
Nystrand M, Dowling DK. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans-a meta-analysis. BMC Biol 2020; 18:135. [PMID: 33028304 PMCID: PMC7541220 DOI: 10.1186/s12915-020-00856-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Life-history theory predicts a trade-off between investment into immune defence and other fitness-related traits. Accordingly, individuals are expected to upregulate their immune response when subjected to immune challenge. However, this is predicted to come at the expense of investment into a range of other traits that are costly to maintain, such as growth, reproduction and survival. Currently, it remains unclear whether the magnitude of such costs, and trade-offs involving immune investment and other traits, manifests consistently across species and sexes. To address this, we conducted a meta-analysis to investigate how changes in sex, ontogenetic stage and environmental factors shape phenotypic trait expression following an immune challenge. RESULTS We explored the effects of immune challenge on three types of traits across sexually reproducing metazoans: life-history, morphological and proximate immune traits (235 effect sizes, 53 studies, 37 species [21 invertebrates vs. 16 vertebrates]). We report a general negative effect of immune challenge on survival and reproduction, a positive effect on immune trait expression, but no effect on morphology or development time. The negative effects of immune challenge on reproductive traits and survival were larger in females than males. We also report a pronounced effect of the immune treatment agent used (e.g. whether the treatment involved a live pathogen or not) on the host response to immune challenge, and find an effect of mating status on the host response in invertebrates. CONCLUSION These results suggest that costs associated with immune deployment following an immune challenge are context-dependent and differ consistently in their magnitude across the sexes of diverse taxonomic lineages. We synthesise and discuss the outcomes in the context of evolutionary theory on sex differences in life-history and highlight the need for future studies to carefully consider the design of experiments aimed at disentangling the costs of immune deployment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
29
|
Dáttilo W, Barrozo-Chávez N, Lira-Noriega A, Guevara R, Villalobos F, Santiago-Alarcon D, Neves FS, Izzo T, Ribeiro SP. Species-level drivers of mammalian ectoparasite faunas. J Anim Ecol 2020; 89:1754-1765. [PMID: 32198927 DOI: 10.1111/1365-2656.13216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Traditionally, most studies have described the organization of host-parasite interaction networks by considering only few host groups at limited geographical extents. However, host-parasite relationships are merged within different taxonomic groups and factors shaping these interactions likely differ between host and parasite groups, making group-level differences important to better understand the ecological and evolutionary dynamics of these interactive communities. Here we used a dataset of 629 ectoparasite species and 251 species of terrestrial mammals, comprising 10 orders distributed across the Nearctic and Neotropical regions of Mexico to assess the species-level drivers of mammalian ectoparasite faunas. Specifically, we evaluated whether body weight, geographical range size and within-range mammal species richness (i.e. diversity field) predict mammal ectoparasite species richness (i.e. degree centrality) and their closeness centrality within the mammal-ectoparasite network. In addition, we also tested if the observed patterns differ among mammal orders and if taxonomic closely related host mammals could more likely share the same set of ectoparasites. We found that ectoparasite species richness of small mammals (mainly rodents) with large proportional range sizes was high compared to large-bodied mammals, whereas the diversity field of mammals had no predictive value (except for bats). We also observed that taxonomic proximity was a main determinant of the probability to share ectoparasite species. Specifically, the probability to share ectoparasites in congeneric species reached up to 90% and decreased exponentially as the taxonomic distance increased. Further, we also detected that some ectoparasites are generalists and capable to infect mammalian species across different orders and that rodents have a remarkable role in the network structure, being closely connected to many other taxa. Hence, because many rodent species have synanthropic habits they could act as undesired reservoirs of disease agents for humans and urban animals. Considering the reported worldwide phenomenon of the proliferation of rodents accompanying the demographic decrease or even local extinction of large-bodied mammal species, these organisms may already be an increasing health threat in many regions of the world.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Mexico
| | - Nathalia Barrozo-Chávez
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | | - Roger Guevara
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Mexico
| | | | - Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, Mexico
| | - Frederico Siqueira Neves
- Departamento de Genética, Ecología e Evoluçã, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Izzo
- Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratório de Ecohealth, Ecologia de Insetos de Dossel e Sucessão Natural, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
30
|
Tong X, Wang Y, Yang P, Wang C, Kang L. Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence. PLoS Genet 2020; 16:e1008675. [PMID: 32271756 PMCID: PMC7173932 DOI: 10.1371/journal.pgen.1008675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/21/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.
Collapse
Affiliation(s)
- Xiwen Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yundan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Kawecki TJ. Sexual selection reveals a cost of pathogen resistance undetected in life-history assays. Evolution 2019; 74:338-348. [PMID: 31814118 PMCID: PMC7028033 DOI: 10.1111/evo.13895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023]
Abstract
Mechanisms of resistance to pathogens and parasites are thought to be costly and thus to lead to evolutionary trade‐offs between resistance and life‐history traits expressed in the absence of the infective agents. On the other hand, sexually selected traits are often proposed to indicate “good genes” for resistance, which implies a positive genetic correlation between resistance and success in sexual selection. Here I show that experimental evolution of improved resistance to the intestinal pathogen Pseudomonas entomophila in Drosophila melanogaster was associated with a reduction in male sexual success. Males from four resistant populations achieved lower paternity than males from four susceptible control populations in competition with males from a competitor strain, indicating an evolutionary cost of resistance in terms of mating success and/or sperm competition. In contrast, no costs were found in larval viability, larval competitive ability and population productivity assayed under nutritional limitation; together with earlier studies this suggests that the costs of P. entomophila resistance for nonsexual fitness components are negligible. Thus, rather than indicating heritable pathogen resistance, sexually selected traits expressed in the absence of pathogens may be sensitive to costs of resistance, even if no such costs are detected in other fitness traits.
Collapse
Affiliation(s)
- Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| |
Collapse
|
32
|
Steiner AA, Romanovsky AA. Energy Trade-offs in Host Defense: Immunology Meets Physiology. Trends Endocrinol Metab 2019; 30:875-878. [PMID: 31668960 DOI: 10.1016/j.tem.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
Abstract
Host defense relies not only on microbicidal mechanisms (resistance), but also on management of collateral damage (tolerance). Here, we discuss how this immunology concept converges with a physiology-born theory on the dichotomy of thermometabolic responses in infection (fever versus hypothermia), yielding a model of immunity that transcends discipline barriers.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
33
|
Ferro K, Peuß R, Yang W, Rosenstiel P, Schulenburg H, Kurtz J. Experimental evolution of immunological specificity. Proc Natl Acad Sci U S A 2019; 116:20598-20604. [PMID: 31548373 PMCID: PMC6789748 DOI: 10.1073/pnas.1904828116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.
Collapse
Affiliation(s)
- Kevin Ferro
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Department of Entomology, University of Arizona, Tucson, AZ 85704
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Wentao Yang
- Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, Kiel University, 24118 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
34
|
Dibakou SE, Basset D, Souza A, Charpentier M, Huchard E. Determinants of Variations in Fecal Neopterin in Free-Ranging Mandrills. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
35
|
Pike VL, Ford SA, King KC, Rafaluk‐Mohr C. Fecundity compensation is dependent on the generalized stress response in a nematode host. Ecol Evol 2019; 9:11957-11961. [PMID: 31695900 PMCID: PMC6822023 DOI: 10.1002/ece3.5704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fecundity compensation, increased offspring output following parasite exposure, is widely reported, but the underlying mechanisms remain unclear. General stress responses are linked to other indirect defenses against parasites, and therefore may be responsible. We challenged strains of Caenorhabditis elegans (wild type and mutants with compromised or strengthened stress responses) with Staphylococcus aureus. RESULTS In all strains except the compromised stress response mutant, we saw elevated offspring production if hosts survived initial parasite exposure. CONCLUSION We infer that general stress responses are linked with fecundity compensation. These results may explain why trade-offs are not always observed among parasite defense mechanisms.
Collapse
|
36
|
Poirotte C, Kappeler PM. Hygienic personalities in wild grey mouse lemurs vary adaptively with sex. Proc Biol Sci 2019; 286:20190863. [PMID: 31387505 DOI: 10.1098/rspb.2019.0863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Detecting the risk of infection and minimizing parasite exposure represent the first lines of host defence against parasites. Individuals differ in the expression of these behavioural defences, but causes of such variation have received little empirical attention. We therefore experimentally investigated the effects of several individual and environmental factors on the expression level of faecal avoidance in the context of feeding, drinking, sleeping and defecating in a wild primate population. We found a strong sex bias in the expression level of anti-parasite behaviours of grey mouse lemurs (Microcebus murinus), with only females strongly avoiding contaminated food, water and nests, and exhibiting selective defecation. Our results further suggest that individuals adapted their protective behaviours according to variation in intrinsic and ecological factors that may influence the cost-benefit balance of behavioural defences. Overall, individuals exhibited high consistency of investment in protective behaviours across behavioural contexts and time, suggesting that grey mouse lemurs exhibit different hygienic personalities. Finally, the global hygienic score was negatively correlated with faecal-orally transmitted parasite richness, suggesting that variation in behavioural defence has fitness consequences. We suggest that integrating inter-individual variation in behavioural defences in epidemiological studies should improve our ability to model disease spread within populations.
Collapse
Affiliation(s)
- Clémence Poirotte
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 2019; 191:141-152. [PMID: 31367913 DOI: 10.1007/s00442-019-04480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Herbivorous insects can defend themselves against pathogens via an immune response, which is influenced by the nutritional quality and phytochemistry of the host plant. However, it is unclear how these aspects of diet interact to influence the insect immune response and what role is played by ingested foliar microbes. We examined dietary protein, phytochemistry, and the caterpillar microbiome to understand variation in immune response of the Melissa blue butterfly, Lycaeides melissa. We also asked if these factors have host plant-specific effects by measuring L. melissa immune response when reared on a recently colonized exotic host plant (Medicago sativa) as compared to the immune response on an ancestral, native host (Astragalus canadensis). L. melissa did not experience immunological benefits directly related to consumption of the novel plant M. sativa. However, we did find negative, direct effects of phytochemical diversity and negative, direct effects of diet-derived microbial diversity on constitutive immune response for caterpillars fed M. sativa, as measured by phenoloxidase activity. Foliar protein did not directly influence the immune response, but did do so indirectly by increasing weight gain. Our results highlight the important effects of host diet on caterpillar physiology and raise the possibility that foliar microbiota, despite being rapidly passed through the gut, can affect the caterpillar immune response.
Collapse
|
38
|
Ecology of fear: environment-dependent parasite avoidance among ovipositing Drosophila. Parasitology 2019; 146:1564-1570. [DOI: 10.1017/s0031182019000854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractHabitat avoidance is an anti-parasite behaviour exhibited by at-risk hosts that can minimize exposure to parasites. Because environments are often heterogeneous, host decision-making with regards to habitat use may be affected by the presence of parasites and habitat quality simultaneously. In this study we examine how the ovipositing behaviour of a cactiphilic fruit fly, Drosophila nigrospiracula, is affected by the presence of an ectoparasitic mite, Macrocheles subbadius, in conjunction with other environmental factors – specifically the presence or absence of conspecific eggs and host plant tissue. We hypothesized that the trade-off between site quality and parasite avoidance should favour ovipositing at mite-free sites even if it is of inferior quality. We found that although flies avoided mites in homogeneous environments (86% of eggs at mite-free sites), site quality overwhelmed mite avoidance. Both conspecific eggs (65% of eggs at infested sites with other Drosophila eggs) and host plant tissue (78% of eggs at infested sites with cactus) overpowered mite avoidance. Our results elucidate the context-dependent decision-making of hosts in response to the presence of parasites in variable environments, and suggest how the ecology of fear and associated trade-offs may influence the relative investment in anti-parasite behaviour in susceptible hosts.
Collapse
|
39
|
Stewart Merrill TE, Hall SR, Merrill L, Cáceres CE. Variation in Immune Defense Shapes Disease Outcomes in Laboratory and Wild Daphnia. Integr Comp Biol 2019; 59:1203-1219. [DOI: 10.1093/icb/icz079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host–parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collected hosts. We found support for each factor as a driver of infection. Elevated parasite exposure, which occurs through consumption of infectious fungal spores, increased a host’s probability of infection. The host’s gut epithelium functioned as a barrier to infection, but in the opposite manner from which we predicted: thinner anterior gut epithelia were more resistant to infectious spores than thick epithelia. This relationship may be mediated by structural attributes associated with epithelial cell height. Fungal spores that breached the host’s gut barrier elicited an intensity-dependent hemocyte response that decreased the probability of infection for some Daphnia. Although larger body sizes were associated with increased levels of spore ingestion, larger hosts also had lower frequencies of parasite attack, less penetrable gut barriers, and stronger hemocyte responses. After investigating which mechanisms underlie host susceptibility, we asked: do these four factors contribute equally or asymmetrically to the outcome of infection? An information-theoretic approach revealed that host immune defenses (barriers and immune responses) played the strongest roles in mediating infection outcomes. These two immunological traits may be valuable metrics for linking host susceptibility to the spread of infectious disease.
Collapse
Affiliation(s)
- Tara E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Loren Merrill
- Department of Natural Resources, University of Illinois, Urbana, IL 61801, USA
| | - Carla E Cáceres
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Horn CJ, Luong LT. Current parasite resistance trades off with future defenses and flight performance. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2697-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Piecyk A, Ritter M, Kalbe M. The right response at the right time: Exploring helminth immune modulation in sticklebacks by experimental coinfection. Mol Ecol 2019; 28:2668-2680. [PMID: 30993799 PMCID: PMC6852435 DOI: 10.1111/mec.15106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.
Collapse
Affiliation(s)
- Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marc Ritter
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
42
|
Piecyk A, Roth O, Kalbe M. Specificity of resistance and geographic patterns of virulence in a vertebrate host-parasite system. BMC Evol Biol 2019; 19:80. [PMID: 30890121 PMCID: PMC6425677 DOI: 10.1186/s12862-019-1406-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown. We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes including host immune gene expression were determined. RESULTS S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus prevalence (NO hosts) were better able to control the parasite's growth, regardless of the origin of the parasite. Host condition and immunological parameters converged upon infection and parasite growth showed the same geographic pattern in both host types. CONCLUSION Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains, whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is, on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both genotypes.
Collapse
Affiliation(s)
- Agnes Piecyk
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| |
Collapse
|
43
|
Maslennikova SO, Gerlinskaya LA, Kontsevaya GV, Anisimova MV, Nedospasov SA, Feofanova NA, Moshkin MP, Moshkin YM. TNFα is responsible for the canonical offspring number-size trade-off. Sci Rep 2019; 9:4568. [PMID: 30872598 PMCID: PMC6418207 DOI: 10.1038/s41598-019-38844-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is a canonical life-history trade-off between quantity and quality of offspring, but molecular determinants for this are unknown. Here, we show that knockout of tumor necrosis factor (TNF-KO) in mice switched a relation between the number and size of developing embryos from expectedly negative to unexpectedly positive. Depletion of TNFα imbalanced humoral and trophic maintenance of embryo growth during gestation with respect to the litter size. The levels of embryotrophic GM-CSF cytokine and placental efficiency attained positive correlations with the number and size of embryos in TNF-KO females. Thus, TNFα oversees mother’s resource allocations to balance embryo growth with the number of offspring. Consequently, this suggests an intricate link between the number-size trade-off and immunity given a pivotal role of TNFα in immune homeostasis.
Collapse
Affiliation(s)
- S O Maslennikova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G V Kontsevaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M V Anisimova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Nedospasov
- Lomonosov Moscow State University, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N A Feofanova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - M P Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Y M Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia. .,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
44
|
|
45
|
Roast MJ, Aulsebrook AE, Fan M, Hidalgo Aranzamendi N, Teunissen N, Peters A. Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiol Biochem Zool 2019; 92:140-151. [PMID: 30689489 DOI: 10.1086/702310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>513</mml:mn><mml:mtext>-</mml:mtext><mml:mn>647</mml:mn></mml:mrow></mml:math> ). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function.
Collapse
|
46
|
Mastore M, Quadroni S, Toscano A, Mottadelli N, Brivio MF. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J Therm Biol 2018; 79:15-23. [PMID: 30612676 DOI: 10.1016/j.jtherbio.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
In this work, we analysed the efficacy of different commercial bio-insecticides (Steinernema feltiae, Steinernema carpocapsae, Heterorhabditis bacteriophora and Bacillus thuringiensis) by valuating the mortality induced on two insect models, Galleria mellonella (Lepidoptera) and Sarcophaga africa (Diptera) after exposure to different temperatures (10, 20 and 30 °C). Moreover, we investigated the effects of temperature on the basal humoral immunity of the two target insects; particularly, phenoloxidase (PO) and lysozyme activity. Our results show that G. mellonella is susceptible to all bio-insecticides at all the examined temperatures, except when infected at 10 °C with S. carpocapsae and at 30 °C with S. feltiae and B. thuringiensis. S. africa is more susceptible at 30 °C to all bioinsecticides; whereas, when infected at 10 and 20 °C, H. bacteriophora is the most efficient. Temperature modulates PO activity of both G. mellonella and S. africa, otherwise variations in lysozyme activity is observed only in G. mellonella. Except for a possible correlation between the increased lysozyme activity and the delayed Bt efficacy recorded on G. mellonella at 30 °C, a different resistance to bio-insecticides at different temperatures does not seem to be associated to variations of the host basal immunity, probably due to immunoevasive and immunodepressive strategies of these entomopathogens.
Collapse
Affiliation(s)
- Maristella Mastore
- Lab. of Comparative Immunology and Parasitology, Dept. of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Silvia Quadroni
- Lab. of Ecology, Dept. of Science and High Technology, University of Insubria, Varese, Italy
| | - Andrea Toscano
- Lab. of Comparative Immunology and Parasitology, Dept. of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Nicolò Mottadelli
- Lab. of Comparative Immunology and Parasitology, Dept. of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Maurizio F Brivio
- Lab. of Comparative Immunology and Parasitology, Dept. of Theoretical and Applied Sciences, University of Insubria, Varese, Italy.
| |
Collapse
|
47
|
Shaw DK, Tate AT, Schneider DS, Levashina EA, Kagan JC, Pal U, Fikrig E, Pedra JHF. Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends Immunol 2018; 39:862-873. [PMID: 30301592 PMCID: PMC6218297 DOI: 10.1016/j.it.2018.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Recent scientific breakthroughs have significantly expanded our understanding of arthropod vector immunity. Insights in the laboratory have demonstrated how the immune system provides resistance to infection, and in what manner innate defenses protect against a microbial assault. Less understood, however, is the effect of biotic and abiotic factors on microbial-vector interactions and the impact of the immune system on arthropod populations in nature. Furthermore, the influence of genetic plasticity on the immune response against vector-borne pathogens remains mostly elusive. Herein, we discuss evolutionary forces that shape arthropod vector immunity. We focus on resistance, pathogenicity and tolerance to infection. We posit that novel scientific paradigms should emerge when molecular immunologists and evolutionary ecologists work together.
Collapse
Affiliation(s)
- Dana K Shaw
- Department of Veterinary Microbiology and Pathology, Washington State, Pullman, WA, USA.
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - David S Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
48
|
Parasites and Host Species Barriers in Animal Hybrid Zones. Trends Ecol Evol 2018; 34:19-30. [PMID: 30348471 DOI: 10.1016/j.tree.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Abstract
Species barriers are tested in hybrid zones when gene flow occurs between hybridizing species. Hybridization can erode species barriers, lead to the introgression of adaptive traits, or remain stable through time. Outcomes in hybrid zones are influenced by divergence between the hybridizing taxa, behavior, ecology, and geography. Parasites and pathogens play a major role in host fitness and appear to have varied impacts on species barriers in hybrid zones. We comprehensively reviewed the literature on parasitism in animal hybrid zones and present an evolutionary framework within which to consider parasite-hybrid interactions. Parasites most frequently show potential to contribute to species barrier breakdown in hybrid zones, but also frequently show potential to facilitate the maintenance of species barriers. Incorporating eco-immunology, parasite community theory, and spatiotemporal approaches will be important as genomic tools allow researchers to examine parasites and hybrid zones at greater resolution and in a diversity of natural habitats.
Collapse
|
49
|
Glander S, He F, Schmitz G, Witten A, Telschow A, de Meaux J. Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve. Genome Biol Evol 2018; 10:2278-2291. [PMID: 30215800 PMCID: PMC6133262 DOI: 10.1093/gbe/evy124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented. Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan. Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on flowering time is predicted to have on diversity in host immunity.
Collapse
Affiliation(s)
- Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Fei He
- Institute of Botany, University of Cologne, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
50
|
Valverde JP, Eggert H, Kurtz J, Schielzeth H. Condition-dependence and sexual ornamentation: Effects of immune challenges on a highly sexually dimorphic grasshopper. INSECT SCIENCE 2018; 25:617-630. [PMID: 28229542 DOI: 10.1111/1744-7917.12448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 05/24/2023]
Abstract
Sexual ornaments contribute substantially to phenotypic diversity and it is particularly relevant to understand their evolution. Ornaments can assume the function of signals-of-quality that the choosy sex uses to evaluate potential mating partners. Often there are no obvious direct benefits and investment into mate choice is primarily rewarded by beneficial alleles that are inherited to the offspring. Inter-sexual communication via sexual ornaments requires honesty of the sexual signal, yet the question of what maintains honesty remains only partially solved. One solution is that honesty is maintained by trait expression being dependent on individual condition, since condition-dependent trait expression offers an effectively inexhaustible source of genetic variability. Here we test in the highly sexually dimorphic club-legged grasshopper Gomphocerus sibiricus if putative sexual ornaments, in particular the striking front-leg clubs, are more strongly affected by a lipopolysaccharide (LPS) immune challenge than putatively not sexually selected traits. Our results show overall little condition-dependent expression of morphological and song traits, with sexually selected traits exhibiting effects comparable to nonsexually selected traits (with the possible exception of stridulatory file length and syllable-to-pause ratio in advertisement songs). Interestingly, field observations of individuals of lethally parasitized individuals suggest that a very strong environmental challenge can specifically affect the expression of the front-leg clubs. The presence of 1% of males in natural populations with missing or heavily deformed clubs plus 5% with minor club deformations furthermore indicate that there are risks associated with club development during final ecdysis and this might act as a filter against deleterious alleles.
Collapse
Affiliation(s)
- J Pablo Valverde
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Hendrik Eggert
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Department of Population Ecology, Institute of Ecology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|