1
|
Tan YH, Poong SW, Beardall J, Phang SM, Lim PE. Metabolomic and physiological analyses of two picochlorophytes from distinct oceanic latitudes under future ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107095. [PMID: 40163968 DOI: 10.1016/j.marenvres.2025.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Phytoplankton are cosmopolitan marine photosynthetic organisms that are vital to biogeochemical cycles and marine ecosystems. The current rise in atmospheric CO2 and surface ocean temperatures are poised to disrupt the ecological niches of phytoplankton. Picochlorophytes, a broad taxon of small green eukaryotic phytoplankton, have been shown to perform well under future rising oceanic CO2 and temperature scenarios. This study investigates the acclimation responses of cosmopolitan picochlorophytes from the Chlorella-lineage under high CO2 (1000 p.p.m.) and a rise of 4 °C (8 °C - polar picochlorophyte; 32 °C, tropical picochlorophyte). In order to determine how the future ocean warming and acidification might affect picochlorophytes, a polar strain of Chlorella and a tropical Parachlorella were selected, and their physiology and GCMS-based metabolomics were investigated. Growth rate and cellular dimensions (diameter, volume, and surface area) of Chlorella significantly increased in all environmental future scenarios compared to Parachlorella. Photosynthetic parameters of the picochlorophytes studied showed acclimation, with high temperature and high CO2 triggering the adaptation of Fv/Fm, NPQmax, and Ek of Chlorella and Parachlorella, respectively. High CO2 induced the most changes in the Chlorella metabolome, altering the levels of metabolites related to amino acids and their derivatives, glutathione production, carbohydrates, and photochemical quenching. Combined high CO2/temperature altered Parachlorella's metabolome, though with a small number of biomarkers detected. This study provided evidence to support the hypothesis that picochlorophytes could thrive in a more acidified and warmer ocean.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Chauhan N, Dedman CJ, Baldreki C, Dowle AA, Larson TR, Rickaby REM. Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans. MARINE POLLUTION BULLETIN 2024; 209:117136. [PMID: 39427478 DOI: 10.1016/j.marpolbul.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential. Upregulation in antioxidant, DNA repair and cell cycle-related protein-groups indicated oxidative damage across high (pH 8.8) and low pH (pH 7.6) compared to control pH (pH 8.2), and correlated with reduced growth rates. Upregulation of mitochondrial proteins suggested higher metabolite demand for restoring cellular homeostasis under pH-induced stress. Photosynthetic rates generally correlated with CO2 availability, driving higher net carbon fixation rates at low pH. The intracellular pH-buffering capacity of the coastal Chrysotila carterae and high metabolic adaptability in the bloom-forming Gephyrocapsa huxleyi will likely facilitate their adaptation to ocean acidification or artificial ocean alkalinisation. However, the pH sensitivity of the ancient open-ocean Coccolithus braarudii will possibly result in reduced growth and shrinking of its ecological niche.
Collapse
Affiliation(s)
- Nishant Chauhan
- Department of Earth Sciences, University of Oxford, UK; Department of Earth Sciences, University of Cambridge, UK.
| | - Craig J Dedman
- Department of Earth Sciences, University of Oxford, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, UK
| | - Chloë Baldreki
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
3
|
Armstrong E, Law CS. Resilience of Emiliania huxleyi to future changes in subantarctic waters. PLoS One 2023; 18:e0284415. [PMID: 37917737 PMCID: PMC10621989 DOI: 10.1371/journal.pone.0284415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 11/04/2023] Open
Abstract
Lower pH and elevated temperature alter phytoplankton growth and biomass in short-term incubations, but longer-term responses and adaptation potential are less well-studied. To determine the future of the coccolithophore Emiliania huxleyi, a mixed genotype culture from subantarctic water was incubated for 720 days under present-day temperature and pH, and also projected future conditions by the year 2100. The future population exhibited a higher growth rate relative to present-day cells transferred to future conditions after 309 days, indicating adaptation or genotype selection; this was reflected by an increase in optimum growth temperature of ~2.5°C by the end of the experiment. Following transfer to opposing conditions in short-term cross-over incubations, cell volume responded rapidly, within eight generations, confirming trait plasticity. The changes in growth rate and cell volume were larger than reported in previous single stressor relationships and incubations, suggesting synergistic or additive effects of combined elevated temperature and lower pH and highlighting the importance of long-term multiple stressor experiments. At the end of the incubation there were no significant differences in cellular composition (particulate organic content and chlorophyll a), or primary production between present-day and future populations. Conversely, two independent methods showed a 50% decrease in both particulate inorganic carbon and calcification rate, consistent with the decrease in cell volume, in the future population. The observed plasticity and adaptive capacity of E. huxleyi indicate resilience to future conditions in subantarctic waters, although changes in cell volume and carbonate may alter grazing loss and cell ballast, so influencing carbon export to the deep ocean.
Collapse
Affiliation(s)
- Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, University of Otago, Dunedin, New Zealand
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Cliff S. Law
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- NIWA, Greta Point, Wellington, New Zealand
| |
Collapse
|
4
|
Xu H, Liu H, Chen F, Zhang X, Zhang Z, Ma J, Pan K, Liu H. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106232. [PMID: 37866975 DOI: 10.1016/j.marenvres.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The effects of ocean acidification (OA) on coccolithophore's photosynthesis, calcification rates, and growth have been extensively studied. However, how the intracellular Ca2+, mechanical properties and chemical composition of the coccoliths are affected by OA have not yet been investigated. This study tries to fill these gaps using Emiliania huxleyi as a model coccolithophore. When the seawater pCO2 increased from 400 μatm to 1200 μatm, the intracellular Ca2+ and coccolith area were reduced by 66% and 36%, respectively. Single-cell mapping by atomic force microscopy revealed that the modulus and hardness of coccolith decreased from 23.6 ± 0.2 GPa to 12.0 ± 5.5 GPa and from 0.53 ± 0.15 GPa to 0.20 ± 0.06 GPa, respectively. Additionally, the proportional organic matter and silicon in the coccolith surfaces increased with pCO2. The copepods Acartia pacifica fed on more E. huxleyi grown at higher pCO2. Our study implies that OA could change coccolithophore's competitive interactions with other phytoplankton and ultimately influence carbon export to the deep ocean.
Collapse
Affiliation(s)
- Huo Xu
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaodong Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Sheward RM, Liefer JD, Irwin AJ, Finkel ZV. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:4259-4278. [PMID: 37279257 DOI: 10.1111/gcb.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups. Here, a comprehensive meta-analysis of experimental laboratory data reveals the variable C:N:P stoichiometry of Emiliania huxleyi, a globally significant calcifying phytoplankton species. Mean C:N:P of E. huxleyi is 124C:16N:1P under control conditions (i.e. growth not limited by one or more environmental stressors) and shows a range of responses to changes in nutrient and light availability, temperature and pCO2 . Macronutrient limitation caused strong shifts in stoichiometry, increasing N:P and C:P under P deficiency (by 305% and 493% respectively) and doubling C:N under N deficiency. Responses to light, temperature and pCO2 were mixed but typically shifted cellular elemental content and C:N:P stoichiometry by ca. 30% or less. Besides these independent effects, the interactive effects of multiple environmental changes on E. huxleyi stoichiometry under future ocean conditions could be additive, synergistic or antagonistic. To synthesise our meta-analysis results, we explored how the cellular elemental content and C:N:P stoichiometry of E. huxleyi may respond to two hypothetical future ocean scenarios (increased temperature, irradiance and pCO2 combined with either N deficiency or P deficiency) if an additive effect is assumed. Both future scenarios indicate decreased calcification (which is predominantly sensitive to elevated pCO2 ), increased C:N, and up to fourfold shifts in C:P and N:P. Our results strongly suggest that climate change will significantly alter the role of E. huxleyi (and potentially other calcifying phytoplankton species) in marine biogeochemical processes.
Collapse
Affiliation(s)
- Rosie M Sheward
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Justin D Liefer
- Department of Biology/Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Andrew J Irwin
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Thangaraj S, Liu H, Guo Y, Ding C, Kim IN, Sun J. Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification. Environ Microbiol 2023. [PMID: 36721374 DOI: 10.1111/1462-2920.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN :101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st-10th generation to initiate the acclimation process under ocean warming and acidifying conditions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Department of Marine Science, Incheon National University, Incheon, South Korea.,Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yiyan Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Shetye S, Gazi S, Manglavil A, Shenoy D, Kurian S, Pratihary A, Shirodkar G, Mohan R, Dias A, Naik H, Gauns M, Nandakumar K, Borker S. Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42351-42366. [PMID: 36648723 DOI: 10.1007/s11356-023-25249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Oceanic calcifying plankton such as coccolithophores is expected to exhibit sensitivity to climate change stressors such as warming and acidification. Observational studies on coccolithophore communities along with carbonate chemistry provide important perceptions of possible adaptations of these organisms to ocean acidification. However, this phytoplankton group remains one of the least studied in the northern Indian Ocean. In 2017, the biogeochemistry group at the Council for Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO) initiated a coccolithophore monitoring study in the eastern Arabian Sea (EAS). Here, we document for the first time a detailed spatial and seasonal distribution of coccolithophores and their controlling factors from the EAS, which is a well-known source of CO2 to the atmosphere. To infer the seasonality, data collected at three transects (Goa, Mangalore, and Kochi) during the Southwest Monsoon (SWM) of 2018 was compared with that of the late SWM of 2017. Apart from this, the abundance of coccolithophores was studied at the Candolim Time Series (CaTS) transect, off Goa during the Northeast Monsoon (NEM). The most abundant coccolithophore species found in the study region was Gephyrocapsa oceanica. A high abundance of G. oceanica (1800 × 103cells L-1) was observed at the Mangalore transect during the late SWM despite experiencing low pH and can be linked to nitrogen availability. The high abundance of G. oceanica at Mangalore was associated with high dimethylsulphide (DMS). Particulate inorganic carbon (PIC) and scattering coefficient retrieved from satellites also indicated a high abundance of coccolithophores off Mangalore during the late SWM of 2017. Interestingly, G. oceanica showed malformation during the late SWM in low pH waters. Malformation in coccolithophores could have a far-reaching impact on the settling fluxes of organic matter and also on the emissions of climatically important gases such as DMS and CO2, thus influencing atmospheric chemistry. The satellite data for PIC in the EAS indicates a high abundance of coccolithophore in recent years, especially during the warm El Nino years (2015 and 2018). This warrants the need for a better assessment of the fate of coccolithophores in high-CO2 and warmer oceans.
Collapse
Affiliation(s)
- Suhas Shetye
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Sahina Gazi
- ESSO-National Centre for Polar & Ocean Research, Headland Sada, Goa, 403804, India
| | - Arundhathy Manglavil
- Regional Centre, CSIR-National Institute of Oceanography, Kochi, Kerala, 628018, India
| | - Damodar Shenoy
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Gayatri Shirodkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Rahul Mohan
- ESSO-National Centre for Polar & Ocean Research, Headland Sada, Goa, 403804, India
| | - Albertina Dias
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Hema Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | | | - Sidhesh Borker
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|
8
|
Kumar A, Nonnis S, Castellano I, AbdElgawad H, Beemster GTS, Buia MC, Maffioli E, Tedeschi G, Palumbo A. Molecular response of Sargassum vulgare to acidification at volcanic CO 2 vents: Insights from proteomic and metabolite analyses. Mol Ecol 2022; 31:3844-3858. [PMID: 35635253 DOI: 10.1111/mec.16553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Ocean acidification is impacting marine life all over the world. Understanding how species can cope with the changes in seawater carbonate chemistry represents a challenging issue. We addressed this topic using underwater CO2 vents that naturally acidify some marine areas off the island of Ischia. In the most acidified area of the vents, having a mean pH value of 6.7, comparable to far-future predicted acidification scenarios (by 2300), the biomass is dominated by the brown alga Sargassum vulgare. The novelty of the present study is the characterization of the S. vulgare proteome together with metabolite analyses to identify the key proteins, metabolites, and pathways affected by ocean acidification. A total of 367 and 387 proteins were identified in populations grown at pH that approximates the current global average (8.1) and acidified sites, respectively. Analysis of their relative abundance revealed that 304 proteins are present in samples from both sites: 111 proteins are either higher or exclusively present under acidified conditions, whereas 120 proteins are either lower or present only under control conditions. Functionally, under acidification, a decrease in proteins related to translation and post-translational processes and an increase of proteins involved in photosynthesis, glycolysis, oxidation-reduction processes, and protein folding were observed. In addition, small-molecule metabolism was affected, leading to a decrease of some fatty acids and antioxidant compounds under acidification. Overall, the results obtained by proteins and metabolites analyses, integrated with previous transcriptomic, physiological, and biochemical studies, allowed us to delineate the molecular strategies adopted by S. vulgare to grow in future acidified environments, including an increase of proteins involved in energetic metabolism, oxidation-reduction processes, and protein folding at the expense of proteins involved in translation and post-translational processes.
Collapse
Affiliation(s)
- Amit Kumar
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Marine Research Center, Naples, Italy
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, India
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
- CRC "Innovation for well-being and environment" (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Maria Cristina Buia
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Marine Research Center, Naples, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
- CRC "Innovation for well-being and environment" (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
9
|
Moreno HD, Köring M, Di Pane J, Tremblay N, Wiltshire KH, Boersma M, Meunier CL. An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure. Commun Biol 2022; 5:179. [PMID: 35233039 PMCID: PMC8888609 DOI: 10.1038/s42003-022-03105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Global change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of Emiliania huxleyi and demise of Noctiluca scintillans, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.
Collapse
Affiliation(s)
- Hugo Duarte Moreno
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany.
| | - Martin Köring
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
| | - Julien Di Pane
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
| | - Nelly Tremblay
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
| | - Karen H Wiltshire
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Wattenmeerstation, Hafenstr. 43, 25992, List auf Sylt, Germany
| | - Maarten Boersma
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
- University of Bremen, FB 2, Bibliothekstr. 1, 28359, Bremen, Germany
| | - Cédric L Meunier
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Ostkaje 1118, 27498, Helgoland, Germany
| |
Collapse
|
10
|
Frada MJ, Keuter S, Koplovitz G, Avrahami Y. Divergent fate of coccolithophores in a warming tropical ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:1560-1568. [PMID: 34808010 DOI: 10.1111/gcb.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rising ocean temperatures will alter the diversity of marine phytoplankton communities, likely leading to modifications in food-web and biogeochemical dynamics. Here we focus on coccolithophores, a prominent group of calcifying phytoplankton that plays a central role in the global carbon cycle. Using both new (2017-2020) and historical (1975-1976) data from the northern Red Sea, we found that during 'mild summers', the most common coccolithophores - Emiliania huxleyi and Gephyrocapsa ericsonii - co-exist at similar densities. Both species then particularly flourish during subsequent winter periods where nutrient availability is higher due to convective mixing. However, during 'hot summers', which have become progressively the norm over the last decades with average surface temperatures exceeding 27°C for long time-periods, G. ericsonii density markedly declined. Moreover, G. ericsonii remains at low background levels even during winter mixing periods, while E. huxleyi succession and development during winter appears unchanged. Further incubation assays using native assemblages confirmed that G. ericsonii's growth over 27°C is significantly reduced relative to E. huxleyi. Additional factors likely contribute to impair G. ericsonii populations at sea, but temperature is a key factor. Our results illustrate the divergent impact of ongoing ocean warming in tropical phytoplankton species.
Collapse
Affiliation(s)
- Miguel José Frada
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabine Keuter
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yoav Avrahami
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Chan WY, Oakeshott JG, Buerger P, Edwards OR, van Oppen MJH. Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:1737-1754. [PMID: 33547698 DOI: 10.1111/gcb.15546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - John G Oakeshott
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
| | - Owain R Edwards
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
12
|
Feng Y, Roleda MY, Armstrong E, Summerfield TC, Law CS, Hurd CL, Boyd PW. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi. GLOBAL CHANGE BIOLOGY 2020; 26:5630-5645. [PMID: 32597547 DOI: 10.1111/gcb.15259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Ongoing ocean global change due to anthropogenic activities is causing multiple chemical and physical seawater properties to change simultaneously, which may affect the physiology of marine phytoplankton. The coccolithophore Emiliania huxleyi is a model species often employed in the study of the marine carbon cycle. The effect of ocean acidification (OA) on coccolithophore calcification has been extensively studied; however, physiological responses to multiple environmental drivers are still largely unknown. Here we examined two-way and multiple driver effects of OA and other key environmental drivers-nitrate, phosphate, irradiance, and temperature-on the growth, photosynthetic, and calcification rates, and the elemental composition of E. huxleyi. In addition, changes in functional gene expression were examined to understand the molecular mechanisms underpinning the physiological responses. The single driver manipulation experiments suggest decreased nitrate supply being the most important driver regulating E. huxleyi physiology, by significantly reducing the growth, photosynthetic, and calcification rates. In addition, the interaction of OA and decreased nitrate supply (projected for year 2100) had more negative synergistic effects on E. huxleyi physiology than all other two-way factorial manipulations, suggesting a linkage between the single dominant driver (nitrate) effects and interactive effects with other drivers. Simultaneous manipulation of all five environmental drivers to the conditions of the projected year 2100 had the largest negative effects on most of the physiological metrics. Furthermore, functional genes associated with inorganic carbon acquisition (RubisCO, AEL1, and δCA) and calcification (CAX3, AEL1, PATP, and NhaA2) were most downregulated by the multiple driver manipulation, revealing linkages between responses of functional gene expression and associated physiological metrics. These findings together indicate that for more holistic projections of coccolithophore responses to future ocean global change, it is necessary to understand the relative importance of environmental drivers both individually (i.e., mechanistic understanding) and interactively (i.e., cumulative effect) on coccolithophore physiology.
Collapse
Affiliation(s)
- Yuanyuan Feng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Michael Y Roleda
- Department of Botany, University of Otago, Dunedin, New Zealand
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Cliff S Law
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
13
|
Nam O, Suzuki I, Shiraiwa Y, Jin E. Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore Emiliania huxleyi. Microorganisms 2020; 8:E1389. [PMID: 32927844 PMCID: PMC7563939 DOI: 10.3390/microorganisms8091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
14
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
15
|
Jury CP, Delano MN, Toonen RJ. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci Rep 2019; 9:20419. [PMID: 31892705 PMCID: PMC6938506 DOI: 10.1038/s41598-019-56313-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Estimates of heritability inform evolutionary potential and the likely outcome of many management actions, but such estimates remain scarce for marine organisms. Here, we report high heritability of calcification rate among the eight most dominant Hawaiian coral species under reduced pH simulating future ocean conditions. Coral colonies were sampled from up to six locations across a natural mosaic in seawater chemistry throughout Hawai'i and fragmented into clonal replicates maintained under both ambient and high pCO2 conditions. Broad sense heritability of calcification rates was high among all eight species, ranging from a low of 0.32 in Porites evermanni to a high of 0.61 in Porites compressa. The overall results were inconsistent with short-term acclimatization to the local environment or adaptation to the mean or ideal conditions. Similarly, in 'local vs. foreign' and 'home vs. away' tests there was no clear signature of local adaptation. Instead, the data are most consistent with a protected polymorphism as the mechanism which maintains differential pH tolerance within the populations. Substantial individual variation, coupled with high heritability and large population sizes, imply considerable scope for natural selection and adaptive capacity, which has major implications for evolutionary potential and management of corals in response to climate change.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, P.O. Box 1346, Kāne'ohe, HI, 96744, USA.
| | - Mia N Delano
- Global Environmental Science, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, P.O. Box 1346, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
16
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
17
|
Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, Hutchins DA. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME JOURNAL 2019; 14:413-424. [PMID: 31636366 DOI: 10.1038/s41396-019-0525-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022]
Abstract
Average sea surface temperatures are expected to rise 4° this century, and marine phytoplankton and bacterial community composition, biogeochemical rates, and trophic interactions are all expected to change in a future warmer ocean. Thermal experiments typically use constant temperatures; however, weather and hydrography cause marine temperatures to fluctuate on diel cycles and over multiple days. We incubated natural communities of phytoplankton collected from California coastal waters during spring, summer, and fall under present-day and future mean temperatures, using thermal treatments that were either constant or fluctuated on a 48 h cycle. As assayed by marker-gene sequencing, the emergent microbial communities were consistent within each season, except when culture temperatures exceeded the highest temperature recorded in a 10-year local thermal dataset. When temperature treatments exceeded the 10-year maximum the phytoplankton community shifted, becoming dominated by diatom amplicon sequence variants (ASVs) not seen at lower temperatures. When mean temperatures were above the 10-year maximum, constant and fluctuating regimes each selected for different ASVs. These findings suggest coastal microbial communities are largely adapted to the current range of temperatures they experience. They also suggest a general hypothesis whereby multiyear upper temperature limits may represent thresholds, beyond which large community restructurings may occur. Now inevitable future temperature increases that exceed these environmental thresholds, even temporarily, may fundamentally reshape marine microbial communities and therefore the biogeochemical cycles that they mediate.
Collapse
Affiliation(s)
- Joshua D Kling
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Blvd., Mountain View, CA, 94035, USA
| | - Feixue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - Megan D Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - Xinwei Wang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA.,School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Pingping Qu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90007, USA.
| |
Collapse
|
18
|
Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun 2019; 10:4234. [PMID: 31530807 PMCID: PMC6748936 DOI: 10.1038/s41467-019-12169-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
Phytoplankton account for nearly half of global primary productivity and strongly affect the global carbon cycle, yet little is known about the forces that drive the evolution of these keystone microscopic organisms. Here we combine morphometric data from the fossil record of the ubiquitous coccolithophore genus Gephyrocapsa with genomic analyses of extant species to assess the genetic processes underlying Pleistocene palaeontological patterns. We demonstrate that all modern diversity in Gephyrocapsa (including Emiliania huxleyi) originated in a rapid species radiation during the last 0.6 Ma, coincident with the latest of the three pulses of Gephyrocapsa diversification and extinction documented in the fossil record. Our evolutionary genetic analyses indicate that new species in this genus have formed in sympatry or parapatry, with occasional hybridisation between species. This sheds light on the mode of speciation during evolutionary radiation of marine phytoplankton and provides a model of how new plankton species form. The phytoplankton Gephyrocapsa have gone through repeated macroevolutionary shifts in size. Here, Bendif et al. combine fossil and genomic data to show the latest shift was coincident with a species radiation and suggest that previous shifts have also resulted from cycles of radiation and extinction.
Collapse
|
19
|
Jin P, Liu N, Gao K. Physiological responses of a coccolithophore to multiple environmental drivers. MARINE POLLUTION BULLETIN 2019; 146:225-235. [PMID: 31426151 DOI: 10.1016/j.marpolbul.2019.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification is known to affect primary producers differentially in terms of species and environmental conditions, with controversial results obtained under different experimental setups. In this work we examined the physiological performances of the coccolithophore Gephyrocapsa oceanica that had been acclimated to 1000 μatm CO2 for ~400 generations, and then exposed to multiple drivers, light intensity, light fluctuating frequency, temperature and UV radiation. Here, we show that increasing light intensity resulted in higher non-photochemical quenching and the effective absorption cross-section of PSII. The effective photochemical efficiency (Fv'/Fm') decreased with increased levels of light, which was counterbalanced by fluctuating light regimes. The greenhouse condition acts synergistically with decreasing fluctuating light frequency to increase the Fv'/Fm' and photosynthetic carbon fixation rate. Our data suggest that the coccolithophorid would be more stressed with increased exposures to solar UV irradiances, though its photosynthetic carbon fixation could be enhanced under the greenhouse condition.
Collapse
Affiliation(s)
- Peng Jin
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Liu
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
20
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin. PLoS One 2018; 13:e0197875. [PMID: 29782536 PMCID: PMC5962083 DOI: 10.1371/journal.pone.0197875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain’s sequence–function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.
Collapse
|
22
|
Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene. Trends Ecol Evol 2018; 33:213-225. [DOI: 10.1016/j.tree.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
|
23
|
Affiliation(s)
- Graham Bell
- Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
24
|
Iñiguez C, Heinrich S, Harms L, Gordillo FJL. Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3971-3984. [PMID: 28575516 PMCID: PMC5853390 DOI: 10.1093/jxb/erx164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/25/2017] [Indexed: 05/29/2023]
Abstract
Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m-2 s-1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.
Collapse
Affiliation(s)
- Concepción Iñiguez
- University of Malaga, Department of Ecology, Faculty of Sciences, Boulevard Louis Pasteur s/n, Málaga, Spain
| | - Sandra Heinrich
- University of Hamburg, Ohnhorst Str., Hamburg, Germany
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Am Handelshafen, Bremerhaven, Germany
| | - Lars Harms
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Am Handelshafen, Bremerhaven, Germany
| | - Francisco J L Gordillo
- University of Malaga, Department of Ecology, Faculty of Sciences, Boulevard Louis Pasteur s/n, Málaga, Spain
| |
Collapse
|
25
|
Kumar A, AbdElgawad H, Castellano I, Lorenti M, Delledonne M, Beemster GTS, Asard H, Buia MC, Palumbo A. Physiological and Biochemical Analyses Shed Light on the Response of Sargassum vulgare to Ocean Acidification at Different Time Scales. FRONTIERS IN PLANT SCIENCE 2017; 8:570. [PMID: 28469628 PMCID: PMC5396147 DOI: 10.3389/fpls.2017.00570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a "natural laboratory" to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans.
Collapse
Affiliation(s)
- Amit Kumar
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| | - Maurizio Lorenti
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | | | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Maria Cristina Buia
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| |
Collapse
|
26
|
Kumar A, Castellano I, Patti FP, Delledonne M, Abdelgawad H, Beemster GTS, Asard H, Palumbo A, Buia MC. Molecular response of Sargassum vulgare to acidification at volcanic CO 2 vents: insights from de novo transcriptomic analysis. Mol Ecol 2017; 26:2276-2290. [PMID: 28133853 DOI: 10.1111/mec.14034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Ocean acidification is an emerging problem that is expected to impact ocean species to varying degrees. Currently, little is known about its effect on molecular mechanisms induced in fleshy macroalgae. To elucidate genome wide responses to acidification, a transcriptome analysis was carried out on Sargassum vulgare populations growing under acidified conditions at volcanic CO2 vents and compared with populations in a control site. Several transcripts involved in a wide range of cellular and metabolic processes were differentially expressed. No drastic changes were observed in the carbon acquisition processes and RuBisCO level. Moreover, relatively few stress genes, including those for antioxidant enzymes and heat-shock proteins, were affected. Instead, increased expression of transcripts involved in energy metabolism, photosynthetic processes and ion homeostasis suggested that algae increased energy production to maintain ion homeostasis and other cellular processes. Also, an increased allocation of carbon to cell wall and carbon storage was observed. A number of genes encoding proteins involved in cellular signalling, information storage and processing and transposition were differentially expressed between the two conditions. The transcriptional changes of key enzymes were largely confirmed by enzymatic activity measurements. Altogether, the changes induced by acidification indicate an adaptation of growth and development of S. vulgare at the volcanic CO2 vents, suggesting that this fleshy alga exhibits a high plasticity to low pH and can adopt molecular strategies to grow also in future more acidified waters.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Integrative Marine Ecology, Center of Villa Dohrn - Benthic Ecology, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesco Paolo Patti
- Department of Integrative Marine Ecology, Center of Villa Dohrn - Benthic Ecology, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
| | | | - Hamada Abdelgawad
- Department of Biology, Integrated Molecular Plant Physiology Research Group (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Department of Biology, Integrated Molecular Plant Physiology Research Group (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Han Asard
- Department of Biology, Integrated Molecular Plant Physiology Research Group (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Center of Villa Dohrn - Benthic Ecology, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
| |
Collapse
|
27
|
Evans TG, Pespeni MH, Hofmann GE, Palumbi SR, Sanford E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol Ecol 2017; 26:2257-2275. [PMID: 28141889 DOI: 10.1111/mec.14038] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023]
Abstract
Increasing awareness of spatial and temporal variation in ocean pH suggests some marine populations may be adapted to local pH regimes and will therefore respond differently to present-day pH variation and to long-term ocean acidification. In the Northeast Pacific Ocean, differences in the strength of coastal upwelling cause latitudinal variation in prevailing pH regimes that are hypothesized to promote local adaptation and unequal pH tolerance among resident populations. In this study, responses to experimental seawater acidification were compared among embryos and larvae from six populations of purple sea urchins (Strongylocentrotus purpuratus) inhabiting areas that differ in their frequency of low pH exposure and that prior research suggests are locally adapted to seawater pH. Transcriptomic analyses demonstrate urchin populations most frequently exposed to low pH seawater responded to experimental acidification by expressing genes within major ATP-producing pathways at greater levels than populations encountering low pH less often. Multiple genes within the tricarboxylic acid cycle, electron transport chain and fatty acid beta oxidation pathways were upregulated in urchin populations experiencing low pH conditions most frequently. These same metabolic pathways were significantly over-represented among genes both expressed in a population-specific manner and putatively under selection to enhance low pH tolerance. Collectively, these data suggest natural selection is acting on metabolic gene networks to redirect ATP toward maintaining acid-base homeostasis and enhance tolerance of seawater acidification. As a trade-off, marine populations more tolerant of low pH may have less energy to put towards other aspects of fitness and to respond to additional ocean change.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, USA
| |
Collapse
|
28
|
75 years since Monod: It is time to increase the complexity of our predictive ecosystem models (opinion). Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Li F, Beardall J, Collins S, Gao K. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO 2 over 1800 generations. GLOBAL CHANGE BIOLOGY 2017; 23:127-137. [PMID: 27629864 DOI: 10.1111/gcb.13501] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 μatm, HCL, pHT : 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 μatm, LCL, pHT : 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2 , being consistent to previous findings, they downregulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long-term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom-dominated phytoplankton assemblages.
Collapse
Affiliation(s)
- Futian Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - Sinéad Collins
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
30
|
Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarajan V. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 2016; 15:4120-34. [PMID: 26507238 DOI: 10.1002/pmic.201500198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).
Collapse
Affiliation(s)
- R Dineshram
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Q Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Rakesh Sharma
- Department of Biochemistry, L.K.S Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kondethimmanahalli Chandramouli
- Biological, Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Ivan Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
31
|
Goncalves P, Anderson K, Thompson EL, Melwani A, Parker LM, Ross PM, Raftos DA. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification. Mol Ecol 2016; 25:4836-49. [DOI: 10.1111/mec.13808] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Sydney Institute of Marine Science Chowder Bay NSW 2088 Australia
| | - Kelli Anderson
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Sydney Institute of Marine Science Chowder Bay NSW 2088 Australia
| | - Emma L. Thompson
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Sydney Institute of Marine Science Chowder Bay NSW 2088 Australia
| | - Aroon Melwani
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Sydney Institute of Marine Science Chowder Bay NSW 2088 Australia
| | - Laura m. Parker
- School of Biological Sciences University of Sydney Sydney NSW 2006 Australia
| | - Pauline M. Ross
- School of Biological Sciences University of Sydney Sydney NSW 2006 Australia
| | - David A. Raftos
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- Sydney Institute of Marine Science Chowder Bay NSW 2088 Australia
| |
Collapse
|
32
|
Armstrong EJ, Stillman JH. Construction and Characterization of Two Novel Transcriptome Assemblies in the Congeneric Porcelain Crabs Petrolisthes cinctipes and P. manimaculis. Integr Comp Biol 2016; 56:1092-1102. [PMID: 27375271 DOI: 10.1093/icb/icw043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Crustaceans have commonly been used as non-model systems in basic biological research, especially physiological regulation. With the recent and rapid adoption of functional genomic tools, crustaceans are increasingly becoming model systems for ecological investigations of development and evolution and for mechanistic examinations of genotype-phenotype interactions and molecular pathways of response to environmental stressors. Comparative transcriptomic approaches, however, remain constrained by a lack of sequence data in closely related crustacean taxa. We identify challenges in the use of functional genomics tools in comparative analysis among decapod crustacean in light of recent advances. We present RNA-seq data from two congeneric species of porcelain crabs (Petrolisthes cinctipes and P. manimaculis) used to construct two de novo transcriptome assemblies with ∼194K and ∼278K contigs, respectively. We characterize and contrast these assemblies and compare them to a previously generated EST sequence library for P. cinctipes We also discuss the potential use of these data as a case-study system in the broader context of crustacean comparative transcriptomics.
Collapse
Affiliation(s)
- Eric J Armstrong
- *Department of Integrative Biology, University of California, 3040 Valley Life Sciences Bldg, Berkeley, CA 94720, USA .,Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA
| | - Jonathon H Stillman
- *Department of Integrative Biology, University of California, 3040 Valley Life Sciences Bldg, Berkeley, CA 94720, USA.,Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA
| |
Collapse
|
33
|
Gunderson AR, Armstrong EJ, Stillman JH. Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2016; 8:357-78. [PMID: 26359817 DOI: 10.1146/annurev-marine-122414-033953] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Collapse
Affiliation(s)
- Alex R Gunderson
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Eric J Armstrong
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Jonathon H Stillman
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| |
Collapse
|
34
|
Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat Commun 2015; 6:8714. [PMID: 26503801 PMCID: PMC4640080 DOI: 10.1038/ncomms9714] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022] Open
Abstract
Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes. Increasing atmospheric CO2 concentrations causes ocean acidification, which alters marine chemical environments with unknown consequences for marine ecosystems. Here, Gao et al. show that ocean acidification increases levels of phenolic compounds in phytoplankton and zooplankton, implying a food chain impact.
Collapse
|
35
|
O'Malley MA, Travisano M, Velicer GJ, Bolker JA. How Do Microbial Populations and Communities Function as Model Systems? QUARTERLY REVIEW OF BIOLOGY 2015; 90:269-93. [DOI: 10.1086/682588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Evans TG. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 2015; 218:1925-35. [DOI: 10.1242/jeb.114306] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Transcriptomics has emerged as a powerful approach for exploring physiological responses to the environment. However, like any other experimental approach, transcriptomics has its limitations. Transcriptomics has been criticized as an inappropriate method to identify genes with large impacts on adaptive responses to the environment because: (1) genes with large impacts on fitness are rare; (2) a large change in gene expression does not necessarily equate to a large effect on fitness; and (3) protein activity is most relevant to fitness, and mRNA abundance is an unreliable indicator of protein activity. In this review, these criticisms are re-evaluated in the context of recent systems-level experiments that provide new insight into the relationship between gene expression and fitness during environmental stress. In general, these criticisms remain valid today, and indicate that exclusively using transcriptomics to screen for genes that underlie environmental adaptation will overlook constitutively expressed regulatory genes that play major roles in setting tolerance limits. Standard practices in transcriptomic data analysis pipelines may also be limiting insight by prioritizing highly differentially expressed and conserved genes over those genes that undergo moderate fold-changes and cannot be annotated. While these data certainly do not undermine the continued and widespread use of transcriptomics within environmental physiology, they do highlight the types of research questions for which transcriptomics is best suited and the need for more gene functional analyses. Such information is pertinent at a time when transcriptomics has become increasingly tractable and many researchers may be contemplating integrating transcriptomics into their research programs.
Collapse
|
37
|
Abstract
ABSTRACT
The change in oceanic carbonate chemistry due to increased atmospheric PCO2 has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2. From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid–base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the external environment, such as epithelial tissues, may be susceptible to changes in external pH. Such biochemical systems could be adapted to a reduced pH environment by adjustment of weak bonds in an analogous fashion to biochemical adaptation to temperature. Whether such biochemical adaptation to OA exists remains to be discovered.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Romberg Tiburon Center, Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94709, USA
| | - Adam W. Paganini
- Romberg Tiburon Center, Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| |
Collapse
|
38
|
Irwin AJ, Finkel ZV, Müller-Karger FE, Troccoli Ghinaglia L. Phytoplankton adapt to changing ocean environments. Proc Natl Acad Sci U S A 2015; 112:5762-6. [PMID: 25902497 PMCID: PMC4426419 DOI: 10.1073/pnas.1414752112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt.
Collapse
Affiliation(s)
- Andrew J Irwin
- Department of Mathematics and Computer Science, Mount Allison University, Sackville, NB, Canada E4L 1E6;
| | - Zoe V Finkel
- Environmental Science Program, Mount Allison University, Sackville, NB, Canada E4L 1A7
| | - Frank E Müller-Karger
- Institute for Marine Remote Sensing/IMaRS, College of Marine Science, University of South Florida, St. Petersburg, FL 33701; and
| | - Luis Troccoli Ghinaglia
- Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente, Boca de Río, Isla de Margarita, Venezuela
| |
Collapse
|
39
|
Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:33-42. [PMID: 25773301 DOI: 10.1016/j.cbpa.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 01/26/2023]
Abstract
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA.
| | | | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Brian Gaylord
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Tessa M Hill
- Department of Geology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Ann D Russell
- Department of Geology, University of California Davis, Davis, CA 95616, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
40
|
Azevedo LB, De Schryver AM, Hendriks AJ, Huijbregts MAJ. Calcifying species sensitivity distributions for ocean acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1495-500. [PMID: 25551400 PMCID: PMC6485514 DOI: 10.1021/es505485m] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Increasing CO2 atmospheric levels lead to increasing ocean acidification, thereby enhancing calcium carbonate dissolution of calcifying species. We gathered peer-reviewed experimental data on the effects of acidified seawater on calcifying species growth, reproduction, and survival. The data were used to derive species-specific median effective concentrations, i.e., pH50, and pH10, via logistic regression. Subsequently, we developed species sensitivity distributions (SSDs) to assess the potentially affected fraction (PAF) of species exposed to pH declines. Effects on species growth were observed at higher pH than those on species reproduction (mean pH10 was 7.73 vs 7.63 and mean pH50 was 7.28 vs 7.11 for the two life processes, respectively) and the variability in the sensitivity of species increased with increasing number of species available for the PAF (pH10 standard deviation was 0.20, 0.21, and 0.33 for survival, reproduction, and growth, respectively). The SSDs were then applied to two climate change scenarios to estimate the increase in PAF (ΔPAF) by future ocean acidification. In a high CO2 emission scenario, ΔPAF was 3 to 10% (for pH50) and 21 to 32% (for pH10). In a low emission scenario, ΔPAF was 1 to 4% (for pH50) and 7 to 12% (for pH10). Our SSDs developed for the effect of decreasing ocean pH on calcifying marine species assemblages can also be used for comparison with other environmental stressors.
Collapse
Affiliation(s)
- Ligia B. Azevedo
- International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, Schlossplatz 1, A-2361 Laxenburg, Austria
- Radboud University Nijmegen, Department of Environmental Science, 6525 HP Nijmegen, The Netherlands
- Corresponding Author Phone: +43(0)2236807597;
| | - An M. De Schryver
- ETH Zürich, Institute of Environmental Engineering, 8092 Zürich, Switzerland
- Quantis, Parc Scientifique EPFL, Bâtiment D, 1015 Lausanne, Switzerland
| | - A. Jan Hendriks
- Radboud University Nijmegen, Department of Environmental Science, 6525 HP Nijmegen, The Netherlands
| | - Mark A. J. Huijbregts
- Radboud University Nijmegen, Department of Environmental Science, 6525 HP Nijmegen, The Netherlands
| |
Collapse
|
41
|
Stillman JH, Armstrong E. Genomics Are Transforming Our Understanding of Responses to Climate Change. Bioscience 2015. [DOI: 10.1093/biosci/biu219] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
42
|
Lohbeck KT, Riebesell U, Reusch TBH. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proc Biol Sci 2015; 281:rspb.2014.0003. [PMID: 24827439 DOI: 10.1098/rspb.2014.0003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.
Collapse
Affiliation(s)
- Kai T Lohbeck
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
43
|
Rokitta SD, Von Dassow P, Rost B, John U. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics 2014; 15:1051. [PMID: 25467008 PMCID: PMC4301891 DOI: 10.1186/1471-2164-15-1051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/18/2014] [Indexed: 02/03/2023] Open
Abstract
Background Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at ‘early’ and ‘full’ nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. Results The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. Conclusions The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1051) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian D Rokitta
- Alfred Wegener Institute - Helmholtz-Centre for Polar- and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| | | | | | | |
Collapse
|
44
|
Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂. PLoS One 2014; 9:e88308. [PMID: 24505472 PMCID: PMC3914986 DOI: 10.1371/journal.pone.0088308] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 11/18/2022] Open
Abstract
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ∼0.5–250 µmol kg−1 (i.e. ∼20–6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
Collapse
Affiliation(s)
- Scarlett Sett
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| | - Lennart T. Bach
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kai G. Schulz
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, Lismore, Australia
| | - Signe Koch-Klavsen
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mario Lebrato
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
45
|
Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH. Evolution in an acidifying ocean. Trends Ecol Evol 2013; 29:117-25. [PMID: 24355315 DOI: 10.1016/j.tree.2013.11.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022]
Abstract
Ocean acidification poses a global threat to biodiversity, yet species might have the capacity to adapt through evolutionary change. Here we summarize tools available to determine species' capacity for evolutionary adaptation to future ocean change and review the progress made to date with respect to ocean acidification. We focus on two key approaches: measuring standing genetic variation within populations and experimental evolution. We highlight benefits and challenges of each approach and recommend future research directions for understanding the modulating role of evolution in a changing ocean.
Collapse
Affiliation(s)
- Jennifer M Sunday
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Piero Calosi
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Sciences, Kristineberg, 45178, Fiskebäckskil, Sweden
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathon H Stillman
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA; Department of Integrative Biology, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| |
Collapse
|
46
|
Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 2013; 7:140-55. [PMID: 24454553 PMCID: PMC3894903 DOI: 10.1111/eva.12120] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023] Open
Abstract
Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.
Collapse
Affiliation(s)
- Sinéad Collins
- Ashworth Laboratories, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | - Björn Rost
- Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island Narragansett, RI, USA
| |
Collapse
|
47
|
Godbold JA, Calosi P. Ocean acidification and climate change: advances in ecology and evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120448. [PMID: 23980247 DOI: 10.1098/rstb.2012.0448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J A Godbold
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.
| | | |
Collapse
|
48
|
Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120444. [PMID: 23980245 PMCID: PMC3758176 DOI: 10.1098/rstb.2012.0444] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.
Collapse
Affiliation(s)
- Piero Calosi
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|