1
|
Mascio G, Notartomaso S, Ginerete RP, Imbriglio T, Bucci D, Liberatore F, Ceccherelli A, Castaldi S, Zampini G, Cannella M, Nicoletti F, Battaglia G, Bruno V. Formation of perineuronal nets within a thalamocortical circuit shapes mechanical and thermal pain thresholds in mice with neuropathic pain. Pain 2025; 166:1128-1142. [PMID: 40112162 PMCID: PMC12004981 DOI: 10.1097/j.pain.0000000000003563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025]
Abstract
ABSTRACT We moved from the hypothesis that perineuronal nets (PNNs), which are condensed structures of the extracellular matrix surrounding GABAergic interneurons in the forebrain, contribute to mechanisms of maladaptive neuronal plasticity underlying chronic pain. Here, we found that the density of PNNs labelled with the lectin Wisteria Floribunda Agglutinin (WFA) increased in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), reticular thalamic nucleus (RTN), and insular cortex of mice developing neuropathic pain in response to unilateral chronic constriction injury of the sciatic nerve. These regions are involved in neuronal circuits underlying perception, sufferance, embodiment, and top-down control of pain. At least in the SSC and mPFC, the increased density of WFA + PNNs was associated with an up-regulation of the proteoglycans, brevican and neurocan, as shown by immunoblot analysis. Enzymatic degradation of PNNs caused by local infusion of chondroitinase ABC in the contralateral SSC or RTN enhanced both mechanical and thermal pain thresholds in chronic constriction injury mice. In contrast, siRNA-induced knock-down of the PNN-degrading enzyme, type-9 matrix metalloproteinase (MMP-9), in the SSC or RTN lowered pain thresholds in sham-operated mice. These data, combined with our previous findings obtained in mice with chronic inflammatory pain, suggest that an enhanced formation/reduced degradation of WFA + PNNs in regions of the pain matrix is associated with different types of chronic pain and may drive mechanisms of nociceptive sensitization leading to reduced mechanical and thermal pain thresholds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alessia Ceccherelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sonia Castaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Gloria Zampini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Sinha A, Nickerson G, Bouyain S, Matthews RT. Contactin-1 is a critical neuronal cell surface receptor for perineuronal net structure. J Biol Chem 2025:108504. [PMID: 40220999 DOI: 10.1016/j.jbc.2025.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Perineuronal nets (PNNs) are neuron-specific, mesh-like, substructures within the central nervous system (CNS) extracellular matrix (ECM). They form on specific subsets of neurons and are well-established as key regulators of plasticity. The appearance of PNNs coincides with the developmental transition of the brain from a more to less plastic state with numerous studies implicating PNNs in regulating this transition. Additionally, recent work has also linked PNNs to several neuropsychiatric and neurodevelopmental disorders. However, despite this growing interest in PNNs, the mechanisms by which they modulate neural functions are poorly understood. This limited mechanistic understanding of PNNs is derived from the fact that there are limited models, tools or techniques that specifically target PNNs without also disrupting the surrounding neural ECM. Our work therefore focuses on understanding how PNNs form on the surface of cells with the ultimate goal of developing models and tools to manipulate and disrupt PNNs specifically. Here, using a phosphatidylinositol specific phospholipase-C, we first demonstrate that PNN components are bound to the cell surface by a glycosylphosphatidylinositol (GPI)-linked receptor protein. Furthermore, we demonstrate, through the exogenous addition of wild type and mutant variant to primary cortical neurons, that contactin-1 (Cntn1) is the GPI-linked protein critical for retaining nets to the cell surface. We believe the identification of Cntn1 as a key cell-surface protein for PNN structure is a very significant step forward in our understanding of the formation and structure of nets. It will offer new strategies to dissect the assembly of this specialized neural matrix.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Gabrielle Nickerson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110.
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
3
|
Auer S, Schicht M, Hoffmann L, Budday S, Frischknecht R, Blümcke I, Paulsen F. The Role of Perineuronal Nets in Physiology and Disease: Insights from Recent Studies. Cells 2025; 14:321. [PMID: 40072050 PMCID: PMC11898492 DOI: 10.3390/cells14050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases. Furthermore, future directions in PNN research are proposed, and the therapeutic potential of targeting PNNs to develop novel treatment options for various neurological disorders is explored. This review emphasizes the importance of PNNs in CNS physiology and pathology and underscores the need for further research in this area.
Collapse
Affiliation(s)
- Sophia Auer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Partner of the European Reference Network (ERN) EpiCARE, 91054 Erlangen, Germany; (L.H.); (I.B.)
| | - Silvia Budday
- Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Partner of the European Reference Network (ERN) EpiCARE, 91054 Erlangen, Germany; (L.H.); (I.B.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
4
|
Mueller-Buehl C, Pakusch J, Bader V, Winklhofer KF, Mark MD, Faissner A. Combined loss of brevican, neurocan, tenascin-C and tenascin-R leads to impaired fear retrieval due to perineuronal net loss. Sci Rep 2025; 15:5528. [PMID: 39953103 PMCID: PMC11828866 DOI: 10.1038/s41598-025-89580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
In conditions such as neurodegenerative diseases, posttraumatic stress disorder (PTSD), addiction and spinal cord injuries, restricted synaptic plasticity hinders the formation of new neuronal connections, preventing the compensation and treatment of adverse behaviors. Perineuronal nets (PNNs) significantly restrict synaptic plasticity by inhibiting synapse formation. The digestion of PNNs has been associated with short-term cognitive improvements and reduced long-term memory, offering potential therapeutic benefits in PTSD. This study investigates the correlation between PNNs and fear memory processes in extracellular matrix (ECM) mutant mice, particularly focusing on the amygdala-medial prefrontal cortex (mPFC) circuit, which is crucial for fear memory generation and maintenance. Fear conditioning was conducted on mice lacking four key ECM-molecules: brevican, neurocan, tenascin-C and tenascin-R (4x KO). These mice exhibited severe impairments in memory consolidation, as evident by their inability to retrieve previously learned fear memories, coupled with reduced PNN density and disturbed synaptic integrity along their PNNs. Additionally, changes in neural activity in the basolateral amygdala (BL) and reductions in VGAT+ synaptic puncta in the amygdala-mPFC circuit were observed. In contrast, tenascin single KOs showed intact fear behavior and memory compared to their control groups. Impaired fear memory consolidation can be advantageous in certain conditions, such as PTSD, making the 4x KO mice an intriguing model for future fear conditioning studies and highlighting brevican, neurocan, Tnc, and Tnr as compelling targets for further investigation. This study underscores the significance of ECM regulation for synaptic organization and the potential of PNN modulation as a therapeutic target for fear memory-related conditions.
Collapse
Affiliation(s)
- Cornelius Mueller-Buehl
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Johanna Pakusch
- Behavioral Neuroscience, Faculty of Biology and Biotechnology, Ruhr-University Bochum, D- 44780, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
- Cluster of Excellence RESOLV, D-44780, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Faculty of Biology and Biotechnology, Ruhr-University Bochum, D- 44780, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany.
| |
Collapse
|
5
|
Sinha A, Nickerson G, Bouyain S, Matthews RT. Contactin-1 is a critical neuronal cell surface receptor for perineuronal net structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622114. [PMID: 39605332 PMCID: PMC11601535 DOI: 10.1101/2024.11.05.622114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Perineuronal nets (PNNs), are neuron-specific substructures within the neural extracellular matrix (ECM). These reticular structures form on a very small subset of neurons in the central nervous system (CNS) and yet have a profound impact in regulating neuronal development and physiology. PNNs are well-established as key regulators of plasticity in the CNS. Their appearance coincides with the developmental transition of the brain more to less plastic state. And, importantly, numerous studies have demonstrated that indeed PNNs play a primary role in regulating this transition. There is, however, a growing literature implicating PNNs in numerous roles in neural physiology beyond their role in regulating developmental plasticity. Accordingly, numerous studies have shown PNNs are altered in a variety of neurological and neuropsychiatric diseases, linking them to these conditions. Despite the growing interest in PNNs, the mechanisms by which they modulate neural functions are poorly understood. We believe the limited mechanistic understanding of PNNs is derived from the fact that there are limited models, tools or techniques that specifically target PNNs in a cell-autonomous manner and without also disrupting the surrounding neural ECM. These limitations are primarily due to our incomplete understanding of PNN composition and structure. In particular, there is little understanding of the neuronal cell surface receptors that nucleate these structures on subset of neurons on which they form in the CNS. Therefore, the main focus our work is to identify the neuronal cell surface proteins critical for PNN formation and structure. In our previous studies we demonstrated PNN components are immobilized on the neuronal surface by two distinct mechanisms, one dependent on the hyaluronan backbone of PNNs and the other mediated by a complex formed by receptor protein tyrosine phosphatase zeta (RPTPζ) and tenascin-R (Tnr). Here we first demonstrate that the Tnr-RPTPζ complex in PNNs is bound to the cell surface by a glycosylphosphatidylinositol (GPI)-linked receptor protein. Using a biochemical and structural approach we demonstrate the GPI-linked protein critical for binding the Tnr-RPTPζ complex in PNNs is contactin-1 (Cntn1). We further show the binding of this complex in PNNs by Cntn1 is critical for PNN structure. We believe identification of CNTN1 as a key cell-surface protein for PNN structure is a very significant step forward in our understanding of PNN formation and structure and will offer new strategies and targets to manipulate PNNs and better understand their function.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Gabrielle Nickerson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Russell T. Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
6
|
Pathak V, Bertelli PM, Pedrini E, Harkin K, Peixoto E, Allen LD, Mcloughlin K, Chavda ND, Hamill KJ, Guduric-Fuchs J, Inforzato A, Bottazzi B, Stitt AW, Medina RJ. Modulation of diabetes-related retinal pathophysiology by PTX3. Proc Natl Acad Sci U S A 2024; 121:e2320034121. [PMID: 39348530 PMCID: PMC11474045 DOI: 10.1073/pnas.2320034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/09/2024] [Indexed: 10/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes characterized by vascular pathology and neuroinflammation. Pentraxin 3 (PTX3) is a soluble pattern recognition molecule that functions at the crossroads between innate immunity, inflammation, and tissue remodeling. DR is known to involve inflammatory pathways, although the potential relevance of PTX3 has not been explored. We found that PTX3 protein levels increased in the retina of diabetic mice. Similarly, evaluation of a publicly available transcriptomic human dataset revealed increased PTX3 expression in DR with diabetic macular edema and proliferative retinopathy, when compared to nondiabetic retinas or diabetic retinas without complications. To further understand the role of PTX3 within DR, we employed the streptozotocin-induced diabetes model in PTX3 knockout mice (PTX3KO), which were followed up for 9 mo to evaluate hallmarks of disease progression. In diabetic PTX3KO mice, we observed decreased reactive gliosis, diminished microglia activation, and reduced vasodegeneration, when compared to diabetic PTX3 wild-type littermates. The decrease in DR-associated pathological features in PTX3KO retinas translated into preserved visual function, as evidenced by improved optokinetic response, restored b-wave amplitude in electroretinograms, and attenuated neurodegeneration. We showed that PTX3 induced an inflammatory phenotype in human retinal macroglia, characterized by GFAP upregulation and increased secretion of IL6 and PAI-1. We confirmed that PTX3 was required for TNF-α-induced reactive gliosis, as PTX3KO retinal explants did not up-regulate GFAP in response to TNF-α. This study reveals a unique role for PTX3 as an enhancer of sterile inflammation in DR, which drives pathogenesis and ultimately visual impairment.
Collapse
Affiliation(s)
- Varun Pathak
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Pietro M. Bertelli
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Edoardo Pedrini
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Kevin Harkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Elisa Peixoto
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Lynsey-Dawn Allen
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Kiran Mcloughlin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Natasha D. Chavda
- Department for Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, LiverpoolL7 8TX, United Kingdom
| | - Kevin J. Hamill
- Department for Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, LiverpoolL7 8TX, United Kingdom
| | - Jasenka Guduric-Fuchs
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Antonio Inforzato
- Laboratory of Cellular and Humoral Innate Immunity, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan20089, Italy
- Department of Biomedical Sciences, Humanitas University, Milan20072, Italy
| | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Rozzano, Milan20089, Italy
| | - Alan W. Stitt
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
| | - Reinhold J. Medina
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BelfastBT9 7BL, United Kingdom
- Department for Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, LiverpoolL7 8TX, United Kingdom
| |
Collapse
|
7
|
Sanchez B, Kraszewski P, Lee S, Cope EC. From molecules to behavior: Implications for perineuronal net remodeling in learning and memory. J Neurochem 2024; 168:1854-1876. [PMID: 38158878 DOI: 10.1111/jnc.16036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Collapse
Affiliation(s)
- Brenda Sanchez
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Piotr Kraszewski
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Sabrina Lee
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Elise C Cope
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| |
Collapse
|
8
|
Zhang N, Lin R, Xu H, Jing X, Zhou H, Wen X, Xie Q. Identification of Curcumin Targets in the Brain of Epileptic Mice Using DARTS. ACS OMEGA 2024; 9:22754-22763. [PMID: 38826549 PMCID: PMC11137688 DOI: 10.1021/acsomega.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
Curcumin, a compound derived from turmeric, is traditionally utilized in East Asian medicine for treating various health conditions, including epilepsy. Despite its involvement in numerous cellular signaling pathways, the specific mechanisms and targets of curcumin in epilepsy treatment have remained unclear. Our study focused on identifying the primary targets and functional pathways of curcumin in the brains of epileptic mice. Using drug affinity responsive target stabilization (DARTS) and affinity chromatography, we identified key targets in the mouse brain, revealing 232 and 70 potential curcumin targets, respectively. Bioinformatics analysis revealed a strong association of these proteins with focal adhesions and cytoskeletal components. Further experiments using DARTS, along with immunofluorescence staining and cell migration assays, confirmed curcumin's ability to regulate the dynamics of focal adhesions and influence cell migration. This study not only advances our understanding of curcumin's role in epilepsy treatment but also serves as a model for identifying therapeutic targets in neurological disorders.
Collapse
Affiliation(s)
- Ninan Zhang
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Ruifan Lin
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Honglin Xu
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Xianghong Jing
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Zhou
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxiao Wen
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Xie
- Wangjing
Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
9
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Paveliev M, Egorchev AA, Musin F, Lipachev N, Melnikova A, Gimadutdinov RM, Kashipov AR, Molotkov D, Chickrin DE, Aganov AV. Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence. Int J Mol Sci 2024; 25:4227. [PMID: 38673819 PMCID: PMC11049984 DOI: 10.3390/ijms25084227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anton A. Egorchev
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Foat Musin
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Nikita Lipachev
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| | - Anastasiia Melnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 74, Kazan 420015, Tatarstan, Russia;
| | - Rustem M. Gimadutdinov
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Aidar R. Kashipov
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Dmitry Molotkov
- Biomedicum Imaging Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland;
| | - Dmitry E. Chickrin
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Albert V. Aganov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| |
Collapse
|
11
|
Pietzner M, Uluvar B, Kolnes KJ, Jeppesen PB, Frivold SV, Skattebo Ø, Johansen EI, Skålhegg BS, Wojtaszewski JFP, Kolnes AJ, Yeo GSH, O'Rahilly S, Jensen J, Langenberg C. Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nat Metab 2024; 6:764-777. [PMID: 38429390 PMCID: PMC7617311 DOI: 10.1038/s42255-024-01008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Burulça Uluvar
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristoffer J Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - S Victoria Frivold
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Giles S H Yeo
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Galán-Llario M, Gramage E, García-Guerra A, Torregrosa AB, Gasparyan A, Navarro D, Navarrete F, García-Gutiérrez MS, Manzanares J, Herradón G. Adolescent intermittent ethanol exposure decreases perineuronal nets in the hippocampus in a sex dependent manner: Modulation through pharmacological inhibition of RPTPβ/ζ. Neuropharmacology 2024; 247:109850. [PMID: 38295947 DOI: 10.1016/j.neuropharm.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPβ/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPβ/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.
Collapse
Affiliation(s)
- Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Alba García-Guerra
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
13
|
Khoshneviszadeh M, Henneicke S, Pirici D, Senthilnathan A, Morton L, Arndt P, Kaushik R, Norman O, Jukkola J, Dunay IR, Seidenbecher C, Heikkinen A, Schreiber S, Dityatev A. Microvascular damage, neuroinflammation and extracellular matrix remodeling in Col18a1 knockout mice as a model for early cerebral small vessel disease. Matrix Biol 2024; 128:39-64. [PMID: 38387749 DOI: 10.1016/j.matbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Collagen type XVIII (COL18) is an abundant heparan sulfate proteoglycan in vascular basement membranes. Here, we asked (i) if the loss of COL18 would result in blood-brain barrier (BBB) breakdown, pathological alterations of small arteries and capillaries and neuroinflammation as found in cerebral small vessel disease (CSVD) and (ii) if such changes may be associated with remodeling of synapses and neural extracellular matrix (ECM). We found that 5-month-old Col18a1-/- mice had elevated BBB permeability for mouse IgG in the deep gray matter, and intravascular erythrocyte accumulations were observed brain-wide in capillaries and arterioles. BBB permeability increased with age and affected cortical regions and the hippocampus in 12-month-old Col18a1-/- mice. None of the Col18a1-/- mice displayed hallmarks of advanced CSVD, such as hemorrhages, and did not show perivascular space enlargement. Col18a1 deficiency-induced BBB leakage was accompanied by activation of microglia and astrocytes, a loss of aggrecan in the ECM of perineuronal nets associated with fast-spiking inhibitory interneurons and accumulation of the perisynaptic ECM proteoglycan brevican and the microglial complement protein C1q at excitatory synapses. As the pathway underlying these regulations, we found increased signaling through the TGF-ß1/Smad3/TIMP-3 cascade. We verified the pivotal role of COL18 for small vessel wall structure in CSVD by demonstrating the protein's involvement in vascular remodeling in autopsy brains from patients with cerebral hypertensive arteriopathy. Our study highlights an association between the alterations of perivascular ECM, extracellular proteolysis, and perineuronal/perisynaptic ECM, as a possible substrate of synaptic and cognitive alterations in CSVD.
Collapse
Affiliation(s)
- Mahsima Khoshneviszadeh
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Solveig Henneicke
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Philipp Arndt
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oula Norman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jari Jukkola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Constanze Seidenbecher
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Anne Heikkinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
14
|
Sterin I, Niazi A, Kim J, Park J, Park S. Novel extracellular matrix architecture on excitatory neurons revealed by HaloTag-HAPLN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587384. [PMID: 38585814 PMCID: PMC10996768 DOI: 10.1101/2024.03.29.587384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The brain's extracellular matrix (ECM) regulates neuronal plasticity and animal behavior. ECM staining shows an aggregated pattern in a net-like structure around a subset of neurons and diffuse staining in the interstitial matrix. However, understanding the structural features of ECM deposition across various neuronal types and subcellular compartments remains limited. To visualize the organization pattern and assembly process of the hyaluronan-scaffolded ECM in the brain, we fused a HaloTag to HAPLN1, which links hyaluronan and proteoglycans. Expression or application of the probe enables us to identify spatial and temporal regulation of ECM deposition and heterogeneity in ECM aggregation among neuronal populations. Dual-color birthdating shows the ECM assembly process in culture and in vivo. Sparse expression in vivo reveals novel forms of ECM architecture around excitatory neurons and developmentally regulated dendritic ECM. Overall, our study uncovers extensive structural features of the brain' ECM, suggesting diverse roles in regulating neuronal plasticity.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Wéber I, Dakos A, Mészár Z, Matesz C, Birinyi A. Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain. Front Neuroanat 2024; 18:1369103. [PMID: 38496826 PMCID: PMC10940344 DOI: 10.3389/fnana.2024.1369103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.
Collapse
Affiliation(s)
- Ildikó Wéber
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adél Dakos
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clara Matesz
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - András Birinyi
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Elbaz B, Darwish A, Vardy M, Isaac S, Tokars HM, Dzhashiashvili Y, Korshunov K, Prakriya M, Eden A, Popko B. The bone transcription factor Osterix controls extracellular matrix- and node of Ranvier-related gene expression in oligodendrocytes. Neuron 2024; 112:247-263.e6. [PMID: 37924811 PMCID: PMC10843489 DOI: 10.1016/j.neuron.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Oligodendrocytes are the primary producers of many extracellular matrix (ECM)-related proteins found in the CNS. Therefore, oligodendrocytes play a critical role in the determination of brain stiffness, node of Ranvier formation, perinodal ECM deposition, and perineuronal net formation, all of which depend on the ECM. Nevertheless, the transcription factors that control ECM-related gene expression in oligodendrocytes remain unknown. Here, we found that the transcription factor Osterix (also known as Sp7) binds in proximity to genes important for CNS ECM and node of Ranvier formation and mediates their expression. Oligodendrocyte-specific ablation of Sp7 changes ECM composition and brain stiffness and results in aberrant node of Ranvier formation. Sp7 is known to control osteoblast maturation and bone formation. Our comparative analyses suggest that Sp7 plays a conserved biological role in oligodendrocytes and in bone-forming cells, where it mediates brain and bone tissue stiffness by controlling expression of ECM components.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Alaa Darwish
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maia Vardy
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sara Isaac
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haley Margaret Tokars
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yulia Dzhashiashvili
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirill Korshunov
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amir Eden
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Tamnanloo F, Ochoa-Sanchez R, Oliveira MM, Lima C, Lépine M, Dubois K, Bosoi C, Tremblay M, Sleno L, Rose CF. Multiple ammonia-induced episodes of hepatic encephalopathy provoke neuronal cell loss in bile-duct ligated rats. JHEP Rep 2023; 5:100904. [PMID: 37942225 PMCID: PMC10628859 DOI: 10.1016/j.jhepr.2023.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Background & Aims Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1β) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.
Collapse
Affiliation(s)
- Farzaneh Tamnanloo
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | | | | | - Carina Lima
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Maggy Lépine
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | | | | | | | - Lekha Sleno
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Christopher F. Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| |
Collapse
|
18
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
19
|
Carceller H, Gramuntell Y, Klimczak P, Nacher J. Perineuronal Nets: Subtle Structures with Large Implications. Neuroscientist 2023; 29:569-590. [PMID: 35872660 DOI: 10.1177/10738584221106346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that surround the soma and proximal dendrites of certain neurons in the central nervous system, particularly parvalbumin-expressing interneurons. Their appearance overlaps the maturation of neuronal circuits and the closure of critical periods in different regions of the brain, setting their connectivity and abruptly reducing their plasticity. As a consequence, the digestion of PNNs, as well as the removal or manipulation of their components, leads to a boost in this plasticity and can play a key role in the functional recovery from different insults and in the etiopathology of certain neurologic and psychiatric disorders. Here we review the structure, composition, and distribution of PNNs and their variation throughout the evolutive scale. We also discuss methodological approaches to study these structures. The function of PNNs during neurodevelopment and adulthood is discussed, as well as the influence of intrinsic and extrinsic factors on these specialized regions of the extracellular matrix. Finally, we review current data on alterations in PNNs described in diseases of the central nervous system (CNS), focusing on psychiatric disorders. Together, all the data available point to the PNNs as a promising target to understand the physiology and pathologic conditions of the CNS.
Collapse
Affiliation(s)
- Héctor Carceller
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
20
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Soden PA, Henderson AR, Lee E. A Microfluidic Model of AQP4 Polarization Dynamics and Fluid Transport in the Healthy and Inflamed Human Brain: The First Step Towards Glymphatics-on-a-Chip. Adv Biol (Weinh) 2022; 6:e2200027. [PMID: 35922370 PMCID: PMC9771879 DOI: 10.1002/adbi.202200027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
Collapse
Affiliation(s)
- Paul A Soden
- College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
24
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
25
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
26
|
Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022; 11:cells11142131. [PMID: 35883574 PMCID: PMC9317039 DOI: 10.3390/cells11142131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and, therefore, they lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons cocultured on this astrocyte–ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity, as evidenced by higher frequency calcium oscillation, compared to standard coculture conditions. When the pharmacological activity of various compounds was tested on MMC-treated cocultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.
Collapse
|
27
|
Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 10:917575. [PMID: 35733853 PMCID: PMC9207388 DOI: 10.3389/fcell.2022.917575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.
Collapse
Affiliation(s)
- Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry I—Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| | - Mohammad I. K. Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| |
Collapse
|
28
|
Mueller-Buehl C, Reinhard J, Roll L, Bader V, Winklhofer KF, Faissner A. Brevican, Neurocan, Tenascin-C, and Tenascin-R Act as Important Regulators of the Interplay Between Perineuronal Nets, Synaptic Integrity, Inhibitory Interneurons, and Otx2. Front Cell Dev Biol 2022; 10:886527. [PMID: 35721494 PMCID: PMC9201762 DOI: 10.3389/fcell.2022.886527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fast-spiking parvalbumin interneurons are critical for the function of mature cortical inhibitory circuits. Most of these neurons are enwrapped by a specialized extracellular matrix (ECM) structure called perineuronal net (PNN), which can regulate their synaptic input. In this study, we investigated the relationship between PNNs, parvalbumin interneurons, and synaptic distribution on these cells in the adult primary visual cortex (V1) of quadruple knockout mice deficient for the ECM molecules brevican, neurocan, tenascin-C, and tenascin-R. We used super-resolution structured illumination microscopy (SIM) to analyze PNN structure and associated synapses. In addition, we examined parvalbumin and calretinin interneuron populations. We observed a reduction in the number of PNN-enwrapped cells and clear disorganization of the PNN structure in the quadruple knockout V1. This was accompanied by an imbalance of inhibitory and excitatory synapses with a reduction of inhibitory and an increase of excitatory synaptic elements along the PNNs. Furthermore, the number of parvalbumin interneurons was reduced in the quadruple knockout, while calretinin interneurons, which do not wear PNNs, did not display differences in number. Interestingly, we found the transcription factor Otx2 homeoprotein positive cell population also reduced. Otx2 is crucial for parvalbumin interneuron and PNN maturation, and a positive feedback loop between these parameters has been described. Collectively, these data indicate an important role of brevican, neurocan, tenascin-C, and tenascin-R in regulating the interplay between PNNs, inhibitory interneurons, synaptic distribution, and Otx2 in the V1.
Collapse
Affiliation(s)
- Cornelius Mueller-Buehl
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Dannenhoffer CA, Gómez-A A, Macht VA, Jawad R, Sutherland EB, Vetreno RP, Crews FT, Boettiger CA, Robinson DL. Impact of adolescent intermittent ethanol exposure on interneurons and their surrounding perineuronal nets in adulthood. Alcohol Clin Exp Res 2022; 46:759-769. [PMID: 35307830 PMCID: PMC9117471 DOI: 10.1111/acer.14810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Binge alcohol exposure during adolescence results in long-lasting alterations in the brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long-term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) that surround some interneurons, particularly PV+ interneurons, further regulate cellular plasticity. The effect of AIE exposure on the expression of these markers within the PFC is not well understood. METHODS The present study tested the hypothesis that AIE exposure reduces the expression of PV+ and choline acetyltransferase (ChAT)+ interneurons in the adult PFC and striatum and increases the related expression of PNNs (marked by binding of Wisteria floribunda agglutinin lectin) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2-days-on/2-days-off, i.e., P25 to P54) or water (CON), and brain tissue was harvested in adulthood (>P80). Immunohistochemistry and co-immunofluorescence were used to assess the expression of ChAT, PV, and PNNs within the adult PFC and striatum following AIE exposure. RESULTS ChAT and PV interneuron densities in the striatum and PFC were unchanged after AIE exposure. However, PNN density in the PFC of AIE-exposed rats was greater than in CON rats. Moreover, significantly more PV neurons were surrounded by PNNs in AIE-exposed subjects than controls in both PFC subregions assessed: orbitofrontal cortex (CON = 34%; AIE = 40%) and medial PFC (CON = 10%; AIE = 14%). CONCLUSIONS These findings indicate that, following AIE exposure, PV interneuron expression in the adult PFC and striatum is unaltered, while PNNs surrounding these neurons are increased. This increase in PNNs may restrict the plasticity of the ensheathed neurons, thereby contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.
Collapse
Affiliation(s)
- Carol A. Dannenhoffer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Rayyanoor Jawad
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - E. Blake Sutherland
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
- Neuroscience Curriculum, University of North Carolina at Chapel Hill
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill
- Neuroscience Curriculum, University of North Carolina at Chapel Hill
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
30
|
Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2022; 42:647-664. [PMID: 33128689 PMCID: PMC11441266 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
Affiliation(s)
- Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008
| | - Yana O Mukhamedshina
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia.
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, Tatarstan, Russia, 420008.
| |
Collapse
|
31
|
Mahmud KAHA, Hasan F, Khan MI, Adnan A. Shock-Induced Damage Mechanism of Perineuronal Nets. Biomolecules 2021; 12:biom12010010. [PMID: 35053158 PMCID: PMC8774183 DOI: 10.3390/biom12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules’ damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules’ secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.
Collapse
|
32
|
Dankovich TM, Kaushik R, Olsthoorn LHM, Petersen GC, Giro PE, Kluever V, Agüi-Gonzalez P, Grewe K, Bao G, Beuermann S, Hadi HA, Doeren J, Klöppner S, Cooper BH, Dityatev A, Rizzoli SO. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat Commun 2021; 12:7129. [PMID: 34880248 PMCID: PMC8654841 DOI: 10.1038/s41467-021-27462-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
The brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
Collapse
Affiliation(s)
- Tal M. Dankovich
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Rahul Kaushik
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Linda H. M. Olsthoorn
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany ,grid.418140.80000 0001 2104 4211Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Cassinelli Petersen
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Philipp Emanuel Giro
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Verena Kluever
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Katharina Grewe
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Guobin Bao
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Sabine Beuermann
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Hannah Abdul Hadi
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Jose Doeren
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Simon Klöppner
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Benjamin H. Cooper
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Alexander Dityatev
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Silvio O. Rizzoli
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany
| |
Collapse
|
33
|
Nojima K, Miyazaki H, Hori T, Vargova L, Oohashi T. Assessment of Possible Contributions of Hyaluronan and Proteoglycan Binding Link Protein 4 to Differential Perineuronal Net Formation at the Calyx of Held. Front Cell Dev Biol 2021; 9:730550. [PMID: 34604231 PMCID: PMC8485899 DOI: 10.3389/fcell.2021.730550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.
Collapse
Affiliation(s)
- Kojiro Nojima
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruko Miyazaki
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lydia Vargova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czechia.,Department of Cellular Physiology, Institute of Experimental Medicine AS CR, Prague, Czechia
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
34
|
Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, Bentsen MA, Alonge KM, Zhao C, Tadross J, Holmqvist S, Shimizu T, Hathaway H, Li H, Macklin W, Schwartz MW, Richardson WD, Yeo GSH, Franklin RJM, Karadottir RT, Rowitch DH, Blouet C. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep 2021; 36:109362. [PMID: 34260928 PMCID: PMC8293628 DOI: 10.1016/j.celrep.2021.109362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Sara Kohnke
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sophie Buller
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danae Nuzzaci
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine Ridley
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Helena Pivonkova
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Marie A Bentsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chao Zhao
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Tadross
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Staffan Holmqvist
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Hannah Hathaway
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wendy Macklin
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ragnhildur T Karadottir
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
35
|
Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins. Cells 2021; 10:cells10061345. [PMID: 34072323 PMCID: PMC8230358 DOI: 10.3390/cells10061345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the brain plays a crucial role in providing optimal conditions for neuronal function. Interactions between neurons and a specialized form of ECM, perineuronal nets (PNN), are considered a key mechanism for the regulation of brain plasticity. Such an assembly of interconnected structural and regulatory molecules has a prominent role in the control of synaptic plasticity. In this review, we discuss novel ways of studying the interplay between PNN and its regulatory components, particularly tenascins, in the processes of synaptic plasticity, mechanotransduction, and neurogenesis. Since enhanced neuronal activity promotes PNN degradation, it is possible to study PNN remodeling as a dynamical change in the expression and organization of its constituents that is reflected in its ultrastructure. The discovery of these subtle modifications is enabled by the development of super-resolution microscopy and advanced methods of image analysis.
Collapse
|
36
|
Dembitskaya Y, Gavrilov N, Kraev I, Doronin M, Tang Y, Li L, Semyanov A. Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 2021; 96:102406. [PMID: 33848733 DOI: 10.1016/j.ceca.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of brain extracellular matrix (ECM) on synaptic plasticity remains controversial. Here, we show that targeted enzymatic attenuation with chondroitinase ABC (ChABC) of ECM triggers the appearance of new glutamatergic synapses on hippocampal pyramidal neurons, thereby increasing the amplitude of field EPSPs while decreasing both the mean miniature EPSC amplitude and AMPA/NMDA ratio. Although the increased proportion of 'unpotentiated' synapses caused by ECM attenuation should promote long-term potentiation (LTP), surprisingly, LTP was suppressed. The upregulation of small conductance Ca2+-activated K+ (SK) channels decreased the excitability of pyramidal neurons, thereby suppressing LTP. A blockade of SK channels restored cell excitability and enhanced LTP; this enhancement was abolished by a blockade of Rho-associated protein kinase (ROCK), which is involved in the maturation of dendritic spines. Thus, targeting ECM elicits the appearance of new synapses, which can have potential applications in regenerative medicine. However, this process is compensated for by a reduction in postsynaptic neuron excitability, preventing network overexcitation at the expense of synaptic plasticity.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Nikolay Gavrilov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK
| | - Maxim Doronin
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China
| | - Alexey Semyanov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia; Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China; Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str 19с1, Moscow, 119146, Russia.
| |
Collapse
|
37
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
38
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
39
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
40
|
Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, Zhang W, Lu L, Han Y, Shi J. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci 2020; 13:4. [PMID: 32116542 PMCID: PMC7025547 DOI: 10.3389/fnmol.2020.00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures regulating developmental plasticity and protecting neurons against oxidative stress. PNN abnormalities have been observed in various psychiatric disorders such as schizophrenia and bipolar disorder, but the relationship between PNN density and depression still remains unclear. In the present study, we examined the density and components of PNNs including aggrecan, neurocan and Tenascin-R in the prelimbic cortex (PrL) after chronic unpredictable mild stress (CUMS). We found that depressive-like behaviors were induced after 30 days of CUMS accompanied by decreases in PNN+ cell density and aggrecan expression in the PrL. In addition, rats subjected to 20 days of CUMS were separated into vulnerable and resilient subpopulations that differ along several behavioral domains. Consistently, the density of PNNs and the expression level of neurocan in the vulnerable group were decreased compared to control and resilient groups. Finally, we examined individual differences based on locomotion in a novel context and classified rats as high responding (HR) and low responding (LR) phenotypes. The density of PNNs and the expression level of neurocan in the LR group were lower than the HR group. Moreover, the LR rats were more susceptible to depressive-like behaviors compared with HR rats. Altogether, these results suggest that the density of PNNs in the PrL is associated with depressive-like behaviors in young-aged rats, and it may serve as a potential endophenotype or therapeutic target for depression.
Collapse
Affiliation(s)
- Zhoulong Yu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Die Hu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
41
|
Eill GJ, Sinha A, Morawski M, Viapiano MS, Matthews RT. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49907-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Murase S, Winkowski D, Liu J, Kanold PO, Quinlan EM. Homeostatic regulation of perisynaptic matrix metalloproteinase 9 (MMP9) activity in the amblyopic visual cortex. eLife 2019; 8:52503. [PMID: 31868167 PMCID: PMC6961978 DOI: 10.7554/elife.52503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Dark exposure (DE) followed by light reintroduction (LRx) reactivates robust synaptic plasticity in adult mouse primary visual cortex (V1), which allows subsequent recovery from amblyopia. Previously we showed that perisynaptic proteolysis by MMP9 mediates the enhancement of plasticity by LRx in binocular adult mice (Murase et al., 2017). However, it was unknown if a visual system compromised by amblyopia could engage this pathway. Here we show that LRx to adult amblyopic mice induces perisynaptic MMP2/9 activity and extracellular matrix (ECM) degradation in deprived and non-deprived V1. Indeed, LRx restricted to the amblyopic eye is sufficient to induce robust MMP2/9 activity at thalamo-cortical synapses and ECM degradation in deprived V1. Two-photon live imaging demonstrates that the history of visual experience regulates MMP2/9 activity in V1, and that DE lowers the threshold for the proteinase activation. The homeostatic reduction of the MMP2/9 activation threshold by DE enables visual input from the amblyopic pathway to trigger robust perisynaptic proteolysis.
Collapse
Affiliation(s)
- Sachiko Murase
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Dan Winkowski
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| |
Collapse
|
43
|
Eill GJ, Sinha A, Morawski M, Viapiano MS, Matthews RT. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure. J Biol Chem 2019; 295:955-968. [PMID: 31822561 DOI: 10.1074/jbc.ra119.010830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/09/2019] [Indexed: 01/06/2023] Open
Abstract
Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.
Collapse
Affiliation(s)
- Geoffrey J Eill
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210.,Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
44
|
Marchand A, Schwartz C. Perineuronal net expression in the brain of a hibernating mammal. Brain Struct Funct 2019; 225:45-56. [PMID: 31748912 DOI: 10.1007/s00429-019-01983-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
During hibernation, mammals like the 13-lined ground squirrel cycle between physiological extremes. Most of the hibernation season is spent in bouts of torpor, where body temperature, heart rate, and cerebral blood flow are all very low. However, the ground squirrels periodically enter into interbout arousals (IBAs), where physiological parameters return to non-hibernating levels. During torpor, neurons in many brain regions shrink and become electrically quiescent, but reconnect and regain activity during IBA. Previous work showed evidence of extracellular matrix (ECM) changes occurring in the hypothalamus during hibernation that could be associated with this plasticity. Here, we examined expression of a specialized ECM structure, the perineuronal net (PNN), in the forebrain of ground squirrels in torpor, IBA, and summer (non-hibernating). PNNs are known to restrict plasticity, and could be important for retaining essential connections in the brain during hibernation. We found PNNs in three regions of the hypothalamus: ventrolateral hypothalamus, paraventricular nucleus (PVN), and anterior hypothalamic area. We also found PNNs throughout the cerebral cortex, amygdala, and lateral septum. The total area covered by PNNs within the PVN was significantly higher during IBA compared to non-hibernating and torpor (P < 0.01). Additionally, the amount of PNN coverage area per Nissl-stained neuron in the PVN was significantly higher in hibernation compared to non-hibernating (P < 0.05). No other significant differences were found across seasons. The PVN is involved in food intake and homeostasis, and PNNs found here could be essential for retaining vital life functions during hibernation.
Collapse
Affiliation(s)
- Anna Marchand
- Department of Biology, University of Wisconsin-La Crosse, 1725 State St., La Crosse, WI, 54601, USA
| | - Christine Schwartz
- Department of Biology, University of Wisconsin-La Crosse, 1725 State St., La Crosse, WI, 54601, USA.
| |
Collapse
|
45
|
The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging. Neurochem Res 2019; 45:68-82. [PMID: 31664654 DOI: 10.1007/s11064-019-02894-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
Collapse
|
46
|
Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation. Neural Plast 2019; 2019:6804575. [PMID: 31772567 PMCID: PMC6854953 DOI: 10.1155/2019/6804575] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) is a mesh-like proteoglycan structure on the neuronal surface which is involved in regulating plasticity. The PNN regulates plasticity via multiple pathways, one of which is direct regulation of synapses through the control of AMPA receptor mobility. Since neuronal pentraxin 2 (Nptx2) is a known regulator of AMPA receptor mobility and Nptx2 can be removed from the neuronal surface by PNN removal, we investigated whether Nptx2 has a function in the PNN. We found that Nptx2 binds to the glycosaminoglycans hyaluronan and chondroitin sulphate E in the PNN. Furthermore, in primary cortical neuron cultures, the addition of NPTX2 to the culture medium enhances PNN formation during PNN development. These findings suggest Nptx2 as a novel PNN binding protein with a role in the mechanism of PNN formation.
Collapse
|
47
|
Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019; 9:13939. [PMID: 31558805 PMCID: PMC6763627 DOI: 10.1038/s41598-019-50404-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.
Collapse
|
48
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
50
|
Kaushik R, Morkovin E, Schneeberg J, Confettura AD, Kreutz MR, Senkov O, Dityatev A. Traditional Japanese Herbal Medicine Yokukansan Targets Distinct but Overlapping Mechanisms in Aged Mice and in the 5xFAD Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:411. [PMID: 30631278 PMCID: PMC6315162 DOI: 10.3389/fnagi.2018.00411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Yokukansan (YKS) is a traditional Japanese herbal medicine that has been used in humans for the treatment of several neurological conditions, such as age-related anxiety and behavioral and psychological symptoms (BPSD) related to multiple forms of dementia, including Alzheimer’s disease (AD). However, the cellular and molecular mechanisms targeted by YKS in the brain are not completely understood. Here, we compared the efficacy of YKS in ameliorating the age- and early-onset familial AD-related behavioral and cellular defects in two groups of animals: 18- to 22-month-old C57BL6/J wild-type mice and 6- to 9-month-old 5xFAD mice, as a transgenic mouse model of this form of AD. Animals were fed food pellets that contained YKS or vehicle. After 1–2 months of YKS treatment, we evaluated the cognitive improvements in both the aged and 5xFAD transgenic mice, and their brain tissues were further investigated to assess the molecular and cellular changes that occurred following YKS intake. Our results show that both the aged and 5xFAD mice exhibited impaired behavioral performance in novel object recognition and contextual fear conditioning (CFC) tasks, which was significantly improved by YKS. Further analyses of the brain tissue from these animals indicated that in aged mice, this improvement was associated with a reduction in astrogliosis, microglia activation and downregulation of the extracellular matrix (ECM), whereas in 5xFAD mice, none of these mechanisms were evident. These results show the differential action of YKS in healthy aged and 5xFAD mice. However, both aged and 5xFAD YKS-treated mice showed increased neuroprotective signaling through protein kinase B/Akt as the common mode of action. Our data suggest that YKS may impart its beneficial effects through Akt signaling in both 5xFAD mice and aged mice, with multiple additional mechanisms potentially contributing to its beneficial effects in aged animals.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Evgeny Morkovin
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Fundamental Medicine and Biology, Volgograd State Medical University (VSMU), Volgograd, Russia.,Laboratory of Genomic and Proteomic Research, Volgograd Medical Research Center (VMRC), Volgograd, Russia
| | - Jenny Schneeberg
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology (LG), Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|