1
|
Capilla-Lasheras P, Branston CJ, Baker P, Cochrane C, Helm B, Dominoni DM. Urban effects on timing and variability of diel activity differ across passerine species and seasons. J Anim Ecol 2025. [PMID: 40202257 DOI: 10.1111/1365-2656.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
Life on Earth is adapted to rhythmic cycles in environmental conditions throughout the day and year via diel patterns of behavioural activity. Urban conditions can disrupt such behavioural rhythms of activity. However, most studies so far have investigated urban effects on patterns of activity of single species in a single season. Additionally, we know little about the level of between- and within-individual variation in urban and non-urban populations, and whether they differ. Here, we use automated radio telemetry to record patterns of daily activity in six passerine species (blackbird, robin, great tit, blue tit, dunnock and chaffinch) across two urban and two forest populations during the pre-breeding and post-breeding seasons. We investigate urban effects on five activity-related traits: time of activity onset, time of activity end, duration of diurnal activity, level of diurnal activity and level of nocturnal activity. We employ statistical tools that allow us to estimate urban effects on mean phenotypic values but also quantify urban versus forest differences in between-individual and within-individual phenotypic variation. We found the strongest urban effects on time of activity onset in blackbirds and robins during both the pre- and post-breeding seasons: urban populations of blackbird and robin started their daily activity earlier than their forest counterparts. We did not find this effect in the other species. Urban populations of all species showed higher levels of nocturnal activity than forest populations, but this effect was not offset by lower diurnal activity, suggesting that urban birds may incur higher daily energetic demands. Lastly, our analysis revealed large and consistent differences in variation in the investigated timing traits. Onset and end of daily activity were more variable in urban birds between individuals, implying lower population synchronisation, and more variable within individuals, implying less consistent behaviour, than in their forest counterparts. Conversely, activity levels were more variable in forest birds. We conclude that, for birds, urban life is associated with less rest, less consistency and lower synchronicity, but that effect sizes depend on species and time of the year. Our results warn against generalising the effects of urbanisation on daily rhythms of birds and call for future studies to understand the mechanisms behind species and seasonal differences.
Collapse
Affiliation(s)
- Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Swiss Ornithological Institute, Sempach, Switzerland
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Sevilla, Spain
| | - Claire J Branston
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Paul Baker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Cara Cochrane
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Barbara Helm
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Davide M Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Chahad-Ehlers S, Tagliatela J, de Oliveira JM, Arthur LP, de Brito RA. Intra- and interspecific temporal mating patterns in Anastrepha fraterculus and Anastrepha obliqua fruit flies. Chronobiol Int 2025; 42:360-377. [PMID: 40029704 DOI: 10.1080/07420528.2025.2471868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Daily rhythms, such as mating times, play a key role in shaping insect behavior and are pivotal in prezygotic reproductive isolation and speciation. To investigate whether mating behavior follows a daily rhythm under natural light-dark cycles and controlled temperature conditions, we examined the mating times of two related agricultural pest species, Anastrepha fraterculus and Anastrepha obliqua. Our observations revealed distinct patterns in their daily copulatory activities. A. fraterculus shows a unimodal pattern, peaking in the morning, while A. obliqua displays a bimodal pattern, with mating occurring in both the morning and late afternoon, all statistically validated. In A. obliqua, the morning peak is more pronounced before the winter solstice, reversing afterward. These results highlight the adaptability of these fruit flies' biological clocks, allowing them to adjust mating timing according to seasonal environmental changes. Our findings also reveal how each species gauges environmental light-dark durations, even if annual variation is less pronounced in tropical regions, with twilight serving as a daily marker. The observed plasticity, including phase shifts in both species and amplitude changes in A. obliqua, emphasizes their synchronization with environmental cycles, which may explain the absence of specific pre-mating behaviors and the initiation of mating in low-light conditions, as seen in A. fraterculus. This study underscores the importance of biological rhythm plasticity in understanding fruit fly mating behavior, with implications for population management and ecological dynamics, and reinforces the need for 24-h observations to capture these rhythms fully.
Collapse
Affiliation(s)
- Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Jéssica Tagliatela
- Programa de Pós-Graduação em Biologia Comparada, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Lucas Packer Arthur
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
3
|
Dietenberger M, Jechow A, Sann M, Hölker F. Shedding light on dark taxa: exploring a cryptic diversity of parasitoid wasps affected by artificial light at night. Sci Rep 2025; 15:6237. [PMID: 39979329 PMCID: PMC11842737 DOI: 10.1038/s41598-025-88111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Artificial light at night (ALAN) contributes to the globally observed insect decline. ALAN attracts nocturnal insects from their native ecosystems and disturbs their functions in the food web. Road lights in this context are ubiquitous and relevant ALAN sources that are often not considered in conservation approaches. In a previous study we showed that shielded LED road lights are suited to be part of conservation measures by effectively reducing the attraction of nocturnal insects. Here we show that this positive effect holds true for parasitoid wasps in an experimental BACI design (Before-After-Control-Impact). Combining morphological with molecular and phylogenetic analyses, we identified 106 individuals (62 morphotypes) of a minimum of 45 genera out of 13 Hymenoptera families. We were able to identify 21 species, 11 of which are newly reported in Southern Germany (Baden-Württemberg). Further combining knowledge on life history and host appearance from our data and the literature, we discuss potential impacts of ALAN ranging from an influence on nocturnal pollination via parasitoid pressure on moth species and biological control of invasive pest species to tritrophic interactions between primary and secondary parasitoids. We conclusively think that shielded LED road lights will reduce the ecological impact of ALAN on parasitoid wasps in a large and undescribed number of taxa with different host associations, likely affecting associated ecosystem functions such as biological control.
Collapse
Affiliation(s)
- Manuel Dietenberger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str.76, 79104, Freiburg, Germany.
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany.
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Manuela Sann
- Natural History Museum Bern, Bernastraße 15, Bern, 3005, Switzerland
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| |
Collapse
|
4
|
Gonulkirmaz-Cancalar O, Bloch G. Sex-Related Variation in Circadian Rhythms in the Bumble Bee Bombus terrestris. J Biol Rhythms 2024; 39:594-606. [PMID: 39370745 PMCID: PMC11613518 DOI: 10.1177/07487304241283863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mating success depends on many factors, but first of all, a male and a female need to meet at the same place and time. The circadian clock is an endogenous system regulating activity and sex-related behaviors in animals. We studied bumble bees (Bombus terrestris) in which the influence of circadian rhythms on sexual behavior has been little explored. We characterized circadian rhythms in adult emergence and locomotor activity under different illumination regimes for males and gynes (unmated queens). We developed a method to monitor adult emergence from the pupal cocoon and found no circadian rhythms in this behavior for either males or gynes. These results are not consistent with the hypothesis that the circadian clock regulates emergence from the pupa in this species. Consistent with this premise, we found that both gynes and males do not show circadian rhythms in locomotor activity during the first 3 days after pupal emergence, but shortly after developed robust circadian rhythms that are readily shifted by a phase delay in illumination regime. We conclude that the bumble bees do not need strong rhythms in adult emergence and during early adult life in their protected and regulated nest environment, but do need strong activity rhythms for timing flights and mating-related behaviors. Next, we tested the hypothesis that the locomotor activity of males and gynes have a similar phase, which may improve mating success. We found that both males and gynes have strong endogenous circadian rhythms that are entrained by the illumination regime, but males show rhythms at an earlier age, their rhythms are stronger, and their phase is slightly advanced relative to that of gynes. An earlier phase may be advantageous to males competing to mate a receptive gyne. Our results are consistent with the hypothesis that sex-related variations in circadian rhythms is shaped by sexual selection.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Grunst M, Grunst A, Thys B, Pinxten R, Eens M. Anthropogenic noise and light pollution decrease the repeatability of activity patterns and dampen expression of chronotypes in a free-living songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176552. [PMID: 39353492 DOI: 10.1016/j.scitotenv.2024.176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Anthropogenic environmental change is introducing a suite of novel disturbance factors, which can have wide-ranging effects on mean behavior and behavioral repeatability. For example, exposure to sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN), may affect consistent and repeatable individual-level timing of daily activity, which is referred to as chronotypes. Although chronotypes have been increasingly documented in wild animal populations and may affect fitness, evidence for long-term stability across life-history stages and seasons is notably lacking. Furthermore, how multiple anthropogenic stressors may interact to erode or magnify the expression of chronotypes remains unclear. We tested for existence of chronotypes across life-history stages and seasons in suburban female great tits (Parus major), using emergence time from nest boxes in the morning as a proxy for activity onset. We then examined joint effects of noise pollution and ALAN on expression of chronotypes, and tested for effects of noise, ALAN, and weather conditions on mean emergence time. We found repeatability of daily activity patterns (emergence times) across life-history stages and seasons, providing evidence of chronotypes, as well as interactive effects of anthropogenic disturbance factors and weather conditions on population mean behavior. Furthermore, across-season repeatability of emergence times was approximately double in magnitude in low light and low noise conditions, relative to in conditions with higher light and/or noise pollution. Thus, joint exposure to these sensory pollutants tends to erode expression of chronotypes. This effect was driven by higher among-individual variance in the relatively undisturbed environment and collapse of this variance in the more disturbed environments. Decreased repeatability in environments with high disturbance levels may reduce potential for behavioral traits, such as chronotype, to be the target of selection and limit adaptability.
Collapse
Affiliation(s)
- Melissa Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA.
| | - Andrea Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Guillemette M, Seyer Y, Viain A. Clockwork precision: egg-laying-induced rise of body temperature is seasonally programmed in a wild bird. Front Physiol 2024; 15:1490877. [PMID: 39605857 PMCID: PMC11599261 DOI: 10.3389/fphys.2024.1490877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
There is long time interest about the phenology of plants and animals living in seasonal environments as research in that field would help to understand the coping mechanisms leading to a higher fitness. For instance, it has been shown several decades ago that birds prepare themselves 2-4 months before the actual start of the breeding season by slowly growing reproductive organs. In parallel, the resting metabolic rate increase during reproduction in various vertebrates including mammals, reptiles, and birds. Recently, it has been reported that body temperature of a marine bird species was reaching an annual peak during egg-laying, raising the question about the seasonal dynamic of this important physiological feature. Using data loggers implanted in the abdominal cavity of female Common Eiders (Somateria mollissima mollissima) for a full year, we show here that daily body temperature (T b.daily) is slowly increasing first and then accelerating at the approach of the laying period. Because the rise of T b.daily is tightly associated with egg-laying in this species, we also analysed the influence of ambient temperature (water and air) and photoperiod on this seasonal dynamic. Based on the various mechanisms at work and a parsimonious interpretation of the data, we conclude that photoperiod is the main cue driving the seasonal breeding program of eiders. Although the laying dates of the instrumented females were highly clustered over a period of 4 years, we speculated that the remaining variation observed was the result of eco-physiological challenges occurring over the years.
Collapse
Affiliation(s)
- Magella Guillemette
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Yannick Seyer
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Anouck Viain
- Ligue Pour la Protection des Oiseaux (LPO BFC), Délégation Territoriale Franche-Comté, Besançon, France
| |
Collapse
|
7
|
Foppen K, Pinxten R, Meijdam M, Eens M. Artificial Light at Night Advances the Onset of Vocal Activity in Both Male and Female Great Tits During the Breeding Season, While Noise Pollution Has Less Impact and Only in Females. Animals (Basel) 2024; 14:3199. [PMID: 39595252 PMCID: PMC11590875 DOI: 10.3390/ani14223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial light at night (ALAN) and noise pollution are two important stressors associated with urbanisation that can have a profound impact on animal behaviour and physiology, potentially disrupting biological rhythms. Although the influence of ALAN and noise pollution on daily activity patterns of songbirds has been clearly demonstrated, studies often focus on males, and the few that examined females have not included the potential influence of males on female activity patterns. Using free-living pairs of great tits (Parus major) as a model, we examined for the first time the effects of ALAN and noise pollution and their interaction on the onset of (vocal) activity in both members of a pair. We focused on the egg-laying phase, when both sexes are most vocally active. The onset of male dawn song, female emergence time from the nest box and the onset of female calling in the nest box were measured and used as a proxy for the chronotype. The repeatabilities for all chronotype proxies were high, with higher repeatabilities for males. Consistent with previous studies, ALAN advanced the onset of male dawn song, while it did not elicit a strong response in female emergence time. Additionally, our results suggest an indirect effect of ALAN on the onset of female vocal activity via acoustic interaction with the male. Noise pollution advanced the emergence time in females, while an interaction between ALAN and noise pollution was found for the onset of female calling. In agreement with previous studies, several covariables were shown to have an influence on the activity onset. Taking several proxies for chronotype into account, this study has provided robust evidence of effects of ALAN on male and female cavity-nesting songbirds during the egg-laying period.
Collapse
Affiliation(s)
- Kim Foppen
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| | | | | | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| |
Collapse
|
8
|
Louis V, Desbordes F, Besseau L, Lartaud F. Bivalve shell growth from molecular to sclerochronological scale: Environment and intrinsic factors control increment deposition. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106730. [PMID: 39265325 DOI: 10.1016/j.marenvres.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Biomineralisation of bivalve shells raises questions at the level of genes to the final calcified product. For the first time, gene expression has been studied in association with growth increment deposition in the mussel Mytilus galloprovincialis. A short-term experiment highlighted that biomineralisation genes exhibit a rhythm of expression consistent with the observed tidal increment formation. Long-term mark-recapture experiments were conducted in three Mediterranean environments and revealed that the mussel shells harbour complex incrementation regimes, consisting of daily, tidal and a mixed periodicity of ∼1.7 growth increment.d-1 formed. The latter is likely related to the local tidal regime, although the mussels were continuously submerged and exposed to a small tidal range. The pattern of growth increments shifted from mixed to daily in Mediterranean lagoon, and to tidal at sea, probably linked to biological clocks. Based on our results and the literature, a hypothetical model for mussel shell increment formation in various habitats is proposed.
Collapse
Affiliation(s)
- Victoria Louis
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, F-66650, Banyuls-sur-Mer, France; Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| | - Florian Desbordes
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, F-66650, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
9
|
Salvador RB, Tomotani BM. Clocks at a snail pace: biological rhythms in terrestrial gastropods. PeerJ 2024; 12:e18318. [PMID: 39494278 PMCID: PMC11529600 DOI: 10.7717/peerj.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Biological rhythms are ubiquitous across the tree of life. Organisms must allocate their activities into moments of the day and of the season that will increase their probability of surviving and reproducing, which is done in the form of daily and annual rhythms. So far, the vast majority of studies on biological rhythms have focused on classical laboratory model species. Still, the use of non-model species is gaining traction, as part of an effort to achieve a more holistic understanding of clock/calendar mechanisms in the "real world" but this requires species that can be studied in both the lab and in nature. Terrestrial gastropods, i.e., land snails and slugs, have the potential to be exciting models for the study of biological rhythms in nature. Therefore, we provide a review of the research on biological rhythms in terrestrial gastropods, with a focus on ecology and evolution. We present the state of the art in the field while giving a historical perspective of the studies, exploring each of the main lineages of terrestrial gastropods. We also point out some interesting directions that future studies could take to fill some of the more urgent gaps in current knowledge. We hope that our contribution will renew interest in this area and spark novel projects.
Collapse
Affiliation(s)
- Rodrigo Brincalepe Salvador
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
- Finnish Museum of Natural History, University of Helsinki, University of Helsinki, Helsinki, Finland
| | - Barbara Mizumo Tomotani
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Tomotani BM, Strauß AFT, Kishkinev D, van de Haar H, Helm B. Circadian clock period length is not consistently linked to chronotype in a wild songbird. Eur J Neurosci 2024; 60:5522-5536. [PMID: 39256897 DOI: 10.1111/ejn.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Circadian clock properties vary between individuals and relate to variation in entrained timing in captivity. How this variation translates into behavioural differences in natural settings, however, is poorly understood. Here, we tested in great tits whether variation in the free-running period length (tau) under constant dim light (LL) was linked to the phase angle of the entrained rhythm ("chronotype") in captivity and in the wild, as recently indicated in our study species. We also assessed links between tau and the timing of first activity onset and offset under LL relative to the last experienced light-dark (LD) cycle. We kept 66 great tits, caught in two winters, in LL for 14 days and subsequently released them with a radio transmitter back to the wild, where their activity and body temperature rhythms were tracked for 1 to 22 days. For a subset of birds, chronotype was also recorded in the lab before release. Neither wild nor lab chronotypes were related to tau. We also found no correlation between lab and wild chronotypes. However, the first onset in LL had a positive relationship with tau, but only in males. Our results demonstrate that links between tau and phase of entrainment, postulated on theoretical grounds, may not consistently hold under natural conditions, possibly due to strong masking. This calls for more holistic research on how the many components of the circadian system interact with the environment to shape timing in the wild. Wild birds showed chronotypes in the field that were unlinked to their circadian period length tau measured in captivity. In males only, the first onset of activity after exposure to constant dim light did correlate with tau. Our study emphasises the need to investigate clocks in the real world, including a need to better understand masking.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aurelia F T Strauß
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | | - Huib van de Haar
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
| | - Barbara Helm
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
11
|
Sondhi Y, Messcher RL, Bellantuono AJ, Storer CG, Cinel SD, Godfrey RK, Mongue AJ, Weng YM, Glass D, St Laurent RA, Hamilton CA, Earl C, Brislawn CJ, Kitching IJ, Bybee SM, Theobald JC, Kawahara AY. Day-night gene expression reveals circadian gene disco as a candidate for diel-niche evolution in moths. Proc Biol Sci 2024; 291:20240591. [PMID: 39194299 DOI: 10.1098/rspb.2024.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the gene disco, involved in circadian control, optic lobe and clock neuron development in Drosophila, shows robust adult circadian mRNA cycling in moth heads. Disco is highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We propose disco as a candidate gene for the diversification of temporal diel-niche in moths.
Collapse
Affiliation(s)
- Yash Sondhi
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Rebeccah L Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | | | - Caroline G Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Scott D Cinel
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
| | - Andrew J Mongue
- Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611, USA
| | - Yi-Ming Weng
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Deborah Glass
- School of Life Sciences, University of Sussex, Sussex House , Brighton BN1 9RH, UK
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History , Washington, DC, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho , Moscow, ID 83844, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Biodiversity Knowledge Integration Center, School of Life Sciences, Arizona State University , Tempe, AZ 852281, USA
| | | | - Ian J Kitching
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Seth M Bybee
- Department of Biology, Monte L. Bean Museum, Brigham Young University, 4102 Life Science Building , Provo, UT 84602, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Holland JG, Prior KF, O'Donnell AJ, Reece SE. Testing the evolutionary drivers of malaria parasite rhythms and their consequences for host-parasite interactions. Evol Appl 2024; 17:e13752. [PMID: 39006006 PMCID: PMC11246599 DOI: 10.1111/eva.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.
Collapse
Affiliation(s)
- Jacob G. Holland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | | | | | - Sarah E. Reece
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
- Institute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Levy K, Wegrzyn Y, Moaraf S, Barnea A, Ayali A. When night becomes day: Artificial light at night alters insect behavior under semi-natural conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171905. [PMID: 38531451 DOI: 10.1016/j.scitotenv.2024.171905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Light is the most important Zeitgeber for temporal synchronization in nature. Artificial light at night (ALAN) disrupts the natural light-dark rhythmicity and thus negatively affects animal behavior. However, to date, ALAN research has been mostly conducted under laboratory conditions in this context. Here, we used the field cricket, Gryllus bimaculatus, to investigate the effect of ALAN on insect behavior under semi-natural conditions, i.e., under shaded natural lighting conditions, natural temperature and soundscape. Male crickets were placed individually in outdoor enclosures and exposed to ALAN conditions ranging from <0.01 to 1500 lx intensity. The crickets' stridulation behavior was recorded for 14 consecutive days and nights and their daily activity patterns were analysed. ALAN impaired the crickets' stridulation rhythm, evoking a change in the crickets' naturally synchronized daily activity period. This was manifested by a light-intensity-dependent increase in the proportion of insects demonstrating an intrinsic circadian rhythm (free-run behavior). This also resulted in a change in the population's median activity cycle period. These ALAN-induced effects occurred despite the crickets' exposure to almost natural conditions. Our findings provide further validity to our previous studies on ALAN conducted under lab conditions and establish the deleterious impacts of ALAN on animal behavioral patterns. TEASER: Artificial light at night alters cricket behavior and desynchronizes their stridulation even under near-natural conditions.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Yoav Wegrzyn
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Stan Moaraf
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel; Department of Natural Sciences, The Open University of Israel, Ra'anana 4353701, Israel
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, Ra'anana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
14
|
Strauß AFT, Bosma L, Visser ME, Helm B. Short-time exposure to light at night affects incubation patterns and correlates with subsequent body weight in great tits (Parus major). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:364-376. [PMID: 38327263 DOI: 10.1002/jez.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Artificial light at night (ALAN) widely affects wildlife by blurring light-dark differences, including transitions such as sunrise and sunset, thereby affecting regulation of diel rhythms. As a result, activity onsets in many wild diurnal songbirds advance under ALAN. From chronobiological studies, it is known that the direction and strength of the response to light depends on when during the night exposure takes place. However, these experiments are mostly done under continuous light conditions, when animals have free-running rhythms. It remains unclear whether phase-dependence also holds in entrained, wild songbirds; i.e., does the effect of ALAN on activity patterns differ between exposure in the morning compared to the evening? This information is essential to assess the effects of mitigation measures by limiting ALAN to selected times of the night. We exposed incubating great tits (Parus major) inside the nest-box to 4 h of dim light, of which 1 h overlapped with dawn before sunrise or dusk after sunset. We found a small advancing effect of morning-light on activity onset and of evening-light on offset compared to dark controls but not vice versa. Breeding success and chick condition were unaffected by the light treatments. However, light-treated females had lower weights 9-18 days after the end of the treatment compared to the controls, independent of whether ALAN occurred in the morning or the evening, indicating possible costs of ALAN. Despite the weak behavioral response, ALAN might have affected the females' circadian clock or physiology resulting in lower body condition.
Collapse
Affiliation(s)
- Aurelia F T Strauß
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lies Bosma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Bird Migration Unit, Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
15
|
Morrow A, Smale L, Meek PD, Lundrigan B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:123-143. [PMID: 38569487 PMCID: PMC11346379 DOI: 10.1159/000538090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than at night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. METHODS This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brains immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. RESULTS Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. CONCLUSION Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable trade-offs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information.
Collapse
Affiliation(s)
- Andrea Morrow
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Paul Douglas Meek
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Barbara Lundrigan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Michigan State University Museum, East Lansing, MI, USA
| |
Collapse
|
16
|
Helm B, Greives T, Zeman M. Endocrine-circadian interactions in birds: implications when nights are no longer dark. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220514. [PMID: 38310930 PMCID: PMC10838642 DOI: 10.1098/rstb.2022.0514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 02/06/2024] Open
Abstract
Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine-circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine-circadian interface. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Barbara Helm
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, 6204 Sempach, Switzerland
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava SK 84215, Slovakia
| |
Collapse
|
17
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Thoré ESJ, Aulsebrook AE, Brand JA, Almeida RA, Brodin T, Bertram MG. Time is of the essence: The importance of considering biological rhythms in an increasingly polluted world. PLoS Biol 2024; 22:e3002478. [PMID: 38289905 PMCID: PMC10826942 DOI: 10.1371/journal.pbio.3002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.
Collapse
Affiliation(s)
- Eli S. J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- TRANSfarm—Science, Engineering, & Technology Group, KU Leuven, Lovenjoel, Belgium
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anne E. Aulsebrook
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Botté A, Payton L, Lefeuvre E, Tran D. Is part-night lighting a suitable mitigation strategy to limit Artificial Light at Night effects on the biological rhythm at the behavioral and molecular scales of the oyster Crassostrea gigas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167052. [PMID: 37714354 DOI: 10.1016/j.scitotenv.2023.167052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Artificial Light at Night (ALAN) is a fast-spreading threat to organisms, especially in coastal environments, where night lighting is increasing due to constant anthropization. Considering that ALAN affects a large diversity of coastal organisms, finding efficient solutions to limit these effects is of great importance but poorly investigated. The potential benefit of one strategy, in particular, should be studied since its use is growing: part-night lighting (PNL), which consists in switching off the lights for a few hours during nighttime. The aim of this study is to investigate the positive potential of the PNL strategy on the daily rhythm of the oyster Crassostrea gigas, a key species of coastal areas of ecological and commercial interest. Oysters were exposed to a control condition and three different ALAN modalities. A realistic PNL condition is applied, recreating a strategy of city policy in a coastal city boarding an urbanized bay (Lanton, Arcachon Bay, France). The PNL modality consists in switching off ALAN direct sources (5 lx) for 4 h (23-3 h) during which oysters are in darkness. Then, a PNL + skyglow (PNL + S) modality reproduces the previous one mimicking a skyglow (0.1 lx), an indirect ALAN source, during the direct lighting switch off, to get as close as possible to realistic conditions. Finally, the third ALAN condition mimics full-night direct lighting (FNL). Results revealed that PNL reduces some adverse effects of FNL on the behavioral daily rhythm. But, counterintuitively, PNL + S appears more harmful than FNL for some parameters of the behavioral daily rhythm. PNL + S modality is also the only one that affect oysters' clock and melatonin synthesis gene expression, suggesting physiological consequences. Thus, in realistic conditions, the PNL mitigation strategy might not be beneficial in the presence of skyglow, seeing worse for a coastal organism such as the oysters.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Elisa Lefeuvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
20
|
Seymoure B, Dell A, Hölker F, Kalinkat G. A framework for untangling the consequences of artificial light at night on species interactions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220356. [PMID: 37899016 PMCID: PMC10613547 DOI: 10.1098/rstb.2022.0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Although much evidence exists showing organismal consequences from artificial light at night (ALAN), large knowledge gaps remain regarding ALAN affecting species interactions. Species interactions occur via shared spatio-temporal niches among species, which may be determined by natural light levels. We review how ALAN is altering these spatio-temporal niches through expanding twilight or full Moon conditions and constricting nocturnal conditions as well as creating patches of bright and dark. We review literature from a database to determine if ALAN is affecting species interactions via spatio-temporal dynamics. The literature indicates a growing interest in ALAN and species interactions: 58% of the studies we analysed have been published since 2020. Seventy-five of 79 studies found ALAN altered species interactions. Enhancements and reductions of species interactions were equally documented. Many studies revealed ALAN affecting species interactions spatially, but few revealed temporal alterations. There are biases regarding species interactions and ALAN-most studies investigated predator-prey interactions with vertebrates as predators and invertebrates as prey. Following this literature review, we suggest avenues, such as remote sensing and animal tracking, that can guide future research on the consequences of ALAN on species interactions across spatial and temporal axes. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Brett Seymoure
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anthony Dell
- National Great Rivers Research and Education Center, Alton, IL 62024, USA
- Department of Biology, WashingtonUniversity in St Louis, St Louis, MO 63130, USA
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 12587 Berlin, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
| |
Collapse
|
21
|
Martorell-Barceló M, Signaroli M, Barcelo-Serra M, Lana A, Aspillaga E, Grau A, Arlinghaus R, Alós J. Chronotypes-personality behavioural syndromes in wild marine fish. Sci Rep 2023; 13:20281. [PMID: 37985683 PMCID: PMC10662165 DOI: 10.1038/s41598-023-45579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023] Open
Abstract
Chronotypes, the individual differences in daily activity timing, have profound associations with numerous physiological processes. Despite this, the covariance between chronotypes and other aspects of an individual's behaviour has been infrequently explored in non-human animals. This study delves into individual's variation across four axes of personality in a controlled environment, utilising the pearly razorfish, a model species for fish chronotype studies. We identified behavioural types across the aggressiveness continuum and established behavioural syndromes amongst exploration, activity, and boldness, irrespective of body size and condition. Subsequent to this, the experimental subjects were reintroduced to their natural habitat and individually tracked using high-resolution technology to ascertain their chronotypes. Our results revealed that whilst the exploration-activity-boldness syndrome bore no correlation with chronotypes, a significant association was observed between aggressiveness and chronotype. Hence, individuals with later awakening times and rest onsets were more aggressive than their counterparts with earlier awakening times and rest onsets. This study provides pioneering evidence linking fish chronotypes with other behavioural traits, such as aggressiveness, suggesting that behavioural variation could be potentially linked to the individuals' variation in internal clocks and the environmental variables influencing their expression.
Collapse
Affiliation(s)
| | - Marco Signaroli
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), Esporles, Balearic Islands, Spain
| | - Margarida Barcelo-Serra
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), Esporles, Balearic Islands, Spain
| | - Arancha Lana
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), Esporles, Balearic Islands, Spain
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), Esporles, Balearic Islands, Spain
| | - Amalia Grau
- IRFAP LIMIA (Laboratorio de Investigaciones Marinas y Acuicultura), Andratx, Balearic Islands, Spain
| | - Robert Arlinghaus
- Department of Fish Ecology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Josep Alós
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), Esporles, Balearic Islands, Spain
| |
Collapse
|
22
|
Santos JS, Skene DJ, Crispim CA, Moreno CRDC. Seasonal and Regional Differences in Eating Times in a Representative Sample of the Brazilian Population. Nutrients 2023; 15:4019. [PMID: 37764802 PMCID: PMC10535183 DOI: 10.3390/nu15184019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Human food intake and its timing are a complex behavior that can be influenced by a variety of factors, some of which may vary from season to season or from region to region. In this study, our aim was to investigate the seasonal variation in food intake times, with a particular focus on how these may vary across different regions of a country. We conducted an analysis of data from 20,622 adults from the National Household Budget Survey (POF-IBGE), encompassing complete food diaries collected from individuals residing in Brazil, and thereby ensuring representation across different latitudes. Each participant's daily food intake was reported for two non-consecutive days at different times in the same week using food diaries. An ANOVA revealed a later food intake time in the evening in high-latitude regions compared to low-latitude regions. The Sidak post-hoc test showed a significant interaction effect between region and season, demonstrating a pattern of early First Intake Time and Eating Midpoint in the Northeast region during spring/summer. Additionally, we observed an independent effect of the region, as early food intake times were found in low-latitude regions. These findings offer a basis for discussing food intake times among individuals living in different regions located on distinct latitudes.
Collapse
Affiliation(s)
- Jefferson Souza Santos
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Debra Jean Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (D.J.S.); (C.A.C.)
| | - Cibele Aparecida Crispim
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (D.J.S.); (C.A.C.)
- Chrononutrition Research Group, Faculty of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, Brazil
| | - Claudia Roberta de Castro Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil;
- Psychology Department, Stockholm University, 114 19 Stockholm, Sweden
| |
Collapse
|
23
|
Gonulkirmaz-Cancalar O, Shertzer O, Bloch G. Bumble Bees ( Bombus terrestris) Use Time-Memory to Associate Reward with Color and Time of Day. INSECTS 2023; 14:707. [PMID: 37623417 PMCID: PMC10455649 DOI: 10.3390/insects14080707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Circadian clocks regulate ecologically important complex behaviors in honey bees, but it is not clear whether similar capacities exist in other species of bees. One key behavior influenced by circadian clocks is time-memory, which enables foraging bees to precisely time flower visitation to periods of maximal pollen or nectar availability and reduces the costs of visiting a non-rewarding flower patch. Bumble bees live in smaller societies and typically forage over shorter distances than honey bees, and it is therefore not clear whether they can similarly associate reward with time of day. We trained individually marked bumble bee (Bombus terrestris) workers to forage for sugar syrup in a flight cage with yellow or blue feeders rewarding either during the morning or evening. After training for over two weeks, we recorded all visitations to colored feeders filled with only water. We performed two experiments, each with a different colony. We found that bees tended to show higher foraging activity during the morning and evening training sessions compared to other times during the day. During the test day, the trained bees were more likely to visit the rewarding rather than the non-rewarding colored feeders at the same time of day during the test sessions, indicating that they associated time of day and color with the sugar syrup reward. These observations lend credence to the hypothesis that bumble bees have efficient time-memory, indicating that this complex behavior is not limited to honey bees that evolved sophisticated social foraging behaviors over large distances.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Oded Shertzer
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Botté A, Payton L, Tran D. Artificial light at night at environmental intensities disrupts daily rhythm of the oyster Crassostrea gigas. MARINE POLLUTION BULLETIN 2023; 191:114850. [PMID: 37019034 DOI: 10.1016/j.marpolbul.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
Artificial Light At Night (ALAN) masks the natural light cycles and thus can disturb the synchronization of organisms' biological rhythms with their environment. Although coastlines are highly exposed to this growing threat, studies concerning the impacts of ALAN on coastal organisms remain scarce. In this study, we investigated the ALAN exposure effects at environmentally realistic intensities (0.1, 1, 10, 25 lx) on the oyster Crassostrea gigas, a sessile bivalve subject to light pollution on shores. We focused on the effects on oyster's daily rhythm at behavioral and molecular levels. Our results showed that ALAN disrupts the oyster's daily rhythm by increasing valve activity and annihilating day / night differences of expression of circadian clock and clock-associated genes. ALAN effects occur starting from 0.1 lx, in the range of artificial skyglow illuminances. We concluded that realistic ALAN exposure affects oysters' biological rhythm, which could lead to severe physiological and ecological consequences.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
25
|
Tomotani BM, Timpen F, Spoelstra K. Ingrained city rhythms: flexible activity timing but more persistent circadian pace in urban birds. Proc Biol Sci 2023; 290:20222605. [PMID: 37192668 PMCID: PMC10188242 DOI: 10.1098/rspb.2022.2605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Urbanization dramatically increases the amount of light at night, which may disrupt avian circadian organization. We measured activity patterns of great tits breeding in the city and forest, and subsequently measured two clock properties of these birds under controlled conditions: tau (endogenous circadian clock speed) and after-effects (history dependency of the clock relative to previous conditions). City and forest birds showed a high repeatability of activity onset (0.60 and 0.41, respectively), with no difference between habitats after controlling for date effects. Activity duration and offset showed more variance, without a difference between birds from the two habitats. Tau did not differ between city and forest birds, however, city birds showed stronger after-effects, taking more days to revert to their endogenous circadian period. Finally, onset of activity was correlated with clocks speed in both habitats. Our results suggest that potential differences in activity timing of city birds is not caused by different clock speeds, but by a direct response to light. Persistence in after-effects suggests a reduced sensitivity of the clock to light at night. Urbanization may select for clock properties that increase the inertia of the endogenous circadian system to improve accuracy of activity rhythms when exposed to noisier lighting cues.
Collapse
Affiliation(s)
- Barbara M. Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fabian Timpen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
26
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Brunner AR, Chmura HE, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tonra CM, Tremblay JA, Marra PP. Songbirds initiate migratory flights synchronously relative to civil dusk. MOVEMENT ECOLOGY 2023; 11:24. [PMID: 37122011 PMCID: PMC10150543 DOI: 10.1186/s40462-023-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Each spring and fall billions of songbirds depart on nocturnal migrations across the globe. Theory suggests that songbirds should depart on migration shortly after sunset to maximize their potential for nightly flight duration or to time departure with the emergence of celestial cues needed for orientation and navigation. Although captive studies have found that songbirds depart during a narrow window of time after sunset, observational studies have found that wild birds depart later and more asynchronously relative to sunset than predicted. METHODS We used coded radio tags and automated radio-telemetry to estimate the time that nearly 400 individuals from nine songbird species departed their breeding or wintering grounds across North America. We also assessed whether each species was most likely beginning long-distance migratory flights at departure or instead first making non-migratory regional flights. We then explored variation in nocturnal departure time by post-departure movement type, species, age, sex, and season. RESULTS We found that 90% of individuals from species that were likely initiating long-distance migratory flights departed within 69 min of civil dusk, regardless of species, season, age, or sex. By contrast, species that likely first made non-migratory regional movements away from the migratory destination departed later and more asynchronously throughout the night. Regardless of post-departure movement type, 98% of individuals departed after civil dusk but otherwise showed no preference in relation to twilight phase. CONCLUSIONS Although the presence of celestial orientation cues at civil dusk may set a starting point for departure each night, the fact that species likely beginning long-distance migration departed earlier and more synchronously relative to civil dusk than those first making non-migratory regional movements is consistent with the hypothesis that departing promptly after civil dusk functions to maximize the potential for nightly flight duration and distance. By studying the onset of migration, our study provides baseline information about departure decisions that may enhance our understanding of departure timing throughout migration.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW - MRC 5503, Washington, DC, 20008, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, N0E 1M0, Birds, Port Rowan, ON, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098XH, Amsterdam, The Netherlands
| | - Alicia R Brunner
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd, 43210, Columbus, OH, USA
| | - Helen E Chmura
- Rocky Mountain Research Station, USDA Forest Service, 800 East Beckwith Avenue, 59801, Missoula, MT, USA
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, G1J 0C3, Québec, QC, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Christopher M Tonra
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd, 43210, Columbus, OH, USA
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, G1J 0C3, Québec, QC, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
27
|
Gilbert NA, McGinn KA, Nunes LA, Shipley AA, Bernath-Plaisted J, Clare JDJ, Murphy PW, Keyser SR, Thompson KL, Maresh Nelson SB, Cohen JM, Widick IV, Bartel SL, Orrock JL, Zuckerberg B. Daily activity timing in the Anthropocene. Trends Ecol Evol 2023; 38:324-336. [PMID: 36402653 DOI: 10.1016/j.tree.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.
Collapse
Affiliation(s)
- Neil A Gilbert
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate A McGinn
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura A Nunes
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy A Shipley
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Jacy Bernath-Plaisted
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John D J Clare
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Penelope W Murphy
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer R Keyser
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly L Thompson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; German Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Scott B Maresh Nelson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy M Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Ivy V Widick
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Evidence of separate influence of moon and sun on light synchronization of mussel's daily rhythm during the polar night. iScience 2023; 26:106168. [PMID: 36876122 PMCID: PMC9978622 DOI: 10.1016/j.isci.2023.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.
Collapse
|
29
|
Levy K, Barnea A, Ayali A. Exposure to a nocturnal light pulse simultaneously and differentially affects stridulation and locomotion behaviors in crickets. Front Physiol 2023; 14:1151570. [PMID: 37008009 PMCID: PMC10061070 DOI: 10.3389/fphys.2023.1151570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
It is crucial for living organisms to be in synchrony with their environment and to anticipate circadian and annual changes. The circadian clock is responsible for entraining organisms' activity to the day-night rhythmicity. Artificial light at night (ALAN) was shown to obstruct the natural light cycle, leading to desynchronized behavioral patterns. Our knowledge of the mechanisms behind these adverse effects of ALAN, however, is far from complete. Here we monitored the stridulation and locomotion behavior of male field crickets (Gryllus bimaculatus), raised under light:dark conditions, before, during, and after exposure to a nocturnal 3-h pulse of different ALAN intensities. The experimental insects were then placed under a constant light regime (of different intensities); their behavior was continuously monitored; and the period of their daily activity rhythms was calculated. The light pulse treatment induced a simultaneous negative (suppressing stridulation) and positive (inducing locomotion) effect, manifested in significant changes in the average level of the specific activity on the night of the pulse compared to the preceding and the following nights. The transition to constant light conditions led to significant changes in the period of the circadian rhythms. Both effects were light-intensity-dependent, indicating the importance of dark nights for both individual and population synchronization.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
30
|
Yokomizo T, Takahashi Y. Endogenous rhythm variation and adaptation to the tidal environment in the freshwater snail, Semisulcospira reiniana. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1078234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms have endogenous timekeeping system(s) to coordinate their biological processes with environmental cycles, allowing adaptation to external rhythmic changes in their environment. The change in endogenous rhythms could contribute to range expansion in a novel rhythmic environment. We hypothesized that populations of the freshwater snail near estuaries show a circatidal rhythm to synchronize with the tidal cycle. We compared the behavioral and gene expression rhythms between non-tidal and tidal populations of the freshwater snail, Semisulcospira reiniana. Individuals inhabiting tidal areas exhibited a rhythmic activity pattern coordinated with the tidal cycle under both field and laboratory conditions, but individuals inhabiting upstream non-tidal areas showed a circadian activity pattern. The proportion of circadian oscillating genes was greater in non-tidal than in tidal individuals, while that of circatidal oscillating genes was greater in tidal than in non-tidal individuals. Additionally, transcriptome-wide population genetic analyses revealed that these two adjacent populations can be clearly distinguished genetically, though the genetic distance was very small. Our results provide evidence of the shift in an endogenous rhythm via range expansion to a novel rhythmic environment. The changes in a small number of genes and/or phenotypic plasticity may contribute to the difference in the endogenous rhythms between non-tidal and tidal populations.
Collapse
|
31
|
Intrinsic individual variation in daily activity onset and plastic responses on temporal but not spatial scales in female great tits. Sci Rep 2022; 12:18022. [PMID: 36289438 PMCID: PMC9605954 DOI: 10.1038/s41598-022-22935-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
In a variety of species, individuals appear to be consistent in the daily timing of their activity onset. Such consistent among-individual differences can result from both intrinsic factors, as individuals may e.g. differ genetically, and extrinsic factors, as the environment may vary on spatial and temporal scales. However, previous studies typically did not differentiate between their respective contributions on individual variation in the timing of activities. Here, we repeatedly measured the onset of activity in female great tits (Parus major) on consecutive days during the egg laying phase of the breeding season in four consecutive years. Subsequently, we used a variance partitioning analysis in order to determine which part of the total variation could be attributed to intrinsic (female identity) and extrinsic (nest box identity) factors. Overall, 27% of the total variation could be attributed to female identity. In addition, we found temporal variation in the activity onset, indicating that individuals can plastically adjust their timing. Yet despite their general ability to change the timing of activities over time, spatial environmental factors did not contribute significantly to the observed variation. Individuals may choose a habitat that matches the preferred timing of activities, or might not benefit from adjusting their timing to environmental factors that might vary on spatial scales.
Collapse
|
32
|
Food limitation modulates the endogenous control of spring migratory behavior in a captive long-distance migratory bird population. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|
34
|
Meijdam M, Müller W, Thys B, Eens M. No relationship between chronotype and timing of breeding when variation in daily activity patterns across the breeding season is taken into account. Ecol Evol 2022; 12:e9353. [PMID: 36188525 PMCID: PMC9490139 DOI: 10.1002/ece3.9353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that individuals are consistent in the timing of their daily activities, and that individual variation in temporal behavior is related to the timing of reproduction. However, it remains unclear whether observed patterns relate to the timing of the onset of activity or whether an early onset of activity extends the time that is available for foraging. This may then again facilitate reproduction. Furthermore, the timing of activity onset and offset may vary across the breeding season, which may complicate studying the above-mentioned relationships. Here, we examined in a wild population of great tits (Parus major) whether an early clutch initiation date may be related to an early onset of activity and/or to longer active daylengths. We also investigated how these parameters are affected by the date of measurement. To test these hypotheses, we measured emergence and entry time from/into the nest box as proxies for activity onset and offset in females during the egg laying phase. We then determined active daylength. Both emergence time and active daylength were related to clutch initiation date. However, a more detailed analysis showed that the timing of activities with respect to sunrise and sunset varied throughout the breeding season both within and among individuals. The observed positive relationships are hence potentially statistical artifacts. After methodologically correcting for this date effect, by using data from the pre-egg laying phase, where all individuals were measured on the same days, neither of the relationships remained significant. Taking methodological pitfalls and temporal variation into account may hence be crucial for understanding the significance of chronotypes.
Collapse
Affiliation(s)
- Marjolein Meijdam
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Wendt Müller
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
35
|
Dani C, Sheeba V. Drosophila Populations Reared Under Tropical Semi-natural Conditions Evolve Season-dependent Differences in Timing of Eclosion. Front Physiol 2022; 13:954731. [PMID: 35910567 PMCID: PMC9334559 DOI: 10.3389/fphys.2022.954731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Circadian clocks are considered an evolutionary adaptation to environmental cycles, helping organisms to adapt to daily and seasonal changes. However, most studies on the evolution of circadian rhythms have been carried out in controlled laboratory conditions; hence evolution of circadian clocks and rhythms in organisms reared under the influence of naturally varying time cues is not well understood. To address this, we reared large outbred fly populations in an outdoor enclosure on our institutional grounds in Bengaluru, southern India for about 150 generations, at the same time maintaining their ancestral control populations under standard laboratory conditions. Studying their rhythms in eclosion, a vital behavior for Drosophila, in the laboratory and semi-natural environments revealed that flies reared under semi-natural conditions differed in the timing of eclosion under semi-natural conditions in a season-dependent manner from their laboratory-reared counterparts. These differences were manifested under harsh semi-natural environments but not under mild ones or in standard laboratory conditions. Further analysis revealed that this phenotype might be responsive to seasonal changes in temperature cycles which was confirmed in the laboratory with simulated light and temperature cycles that approximated semi-natural conditions. Our results highlight key intricacies on the relative impact of intensity and timing of environmental cues for predicting the timing of Drosophila eclosion under tropical naturalistic conditions. Overall, our research uncovers previously unexplored aspects of adaptive circadian timekeeping in complex natural conditions, offering valuable insight into the evolution of clocks.
Collapse
|
36
|
Muranaka T, Ito S, Kudoh H, Oyama T. Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis. iScience 2022; 25:104634. [PMID: 35800759 PMCID: PMC9253726 DOI: 10.1016/j.isci.2022.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation is the basis for trait adaptation via evolutionary selection. However, the driving forces behind quantitative trait variations remain unclear owing to their complexity at the molecular level. This study focused on the natural variation of the free-running period (FRP) of the circadian clock because FRP is a determining factor of the phase phenotype of clock-dependent physiology. Lemna aequinoctialis in Japan is a paddy field duckweed that exhibits a latitudinal cline of critical day length (CDL) for short-day flowering. We collected 72 strains of L. aequinoctialis and found a significant correlation between FRPs and locally adaptive CDLs, confirming that variation in the FRP-dependent phase phenotype underlies photoperiodic adaptation. Diel transcriptome analysis revealed that the induction timing of an FT gene is key to connecting the clock phase to photoperiodism at the molecular level. This study highlights the importance of FRP as a variation resource for evolutionary adaptation. Natural variation of flowering/circadian traits in a paddy-field duckweed is studied. Critical day length for flowering of the duckweed in Japan shows a latitudinal cline. A negative correlation between critical day length and circadian period was found. An FT gene responding to lengthening of the dark period was isolated.
Collapse
|
37
|
Geissmann Q, Abram PK, Wu D, Haney CH, Carrillo J. Sticky Pi is a high-frequency smart trap that enables the study of insect circadian activity under natural conditions. PLoS Biol 2022; 20:e3001689. [PMID: 35797311 PMCID: PMC9262196 DOI: 10.1371/journal.pbio.3001689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the face of severe environmental crises that threaten insect biodiversity, new technologies are imperative to monitor both the identity and ecology of insect species. Traditionally, insect surveys rely on manual collection of traps, which provide abundance data but mask the large intra- and interday variations in insect activity, an important facet of their ecology. Although laboratory studies have shown that circadian processes are central to insects' biological functions, from feeding to reproduction, we lack the high-frequency monitoring tools to study insect circadian biology in the field. To address these issues, we developed the Sticky Pi, a novel, autonomous, open-source, insect trap that acquires images of sticky cards every 20 minutes. Using custom deep learning algorithms, we automatically and accurately scored where, when, and which insects were captured. First, we validated our device in controlled laboratory conditions with a classic chronobiological model organism, Drosophila melanogaster. Then, we deployed an array of Sticky Pis to the field to characterise the daily activity of an agricultural pest, Drosophila suzukii, and its parasitoid wasps. Finally, we demonstrate the wide scope of our smart trap by describing the sympatric arrangement of insect temporal niches in a community, without targeting particular taxa a priori. Together, the automatic identification and high sampling rate of our tool provide biologists with unique data that impacts research far beyond chronobiology, with applications to biodiversity monitoring and pest control as well as fundamental implications for phenology, behavioural ecology, and ecophysiology. We released the Sticky Pi project as an open community resource on https://doc.sticky-pi.com.
Collapse
Affiliation(s)
- Quentin Geissmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| | - Paul K. Abram
- Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | - Di Wu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Juli Carrillo
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| |
Collapse
|
38
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
39
|
Mridha S, Kümmerli R. Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol 2022; 5:545. [PMID: 35668142 PMCID: PMC9170778 DOI: 10.1038/s42003-022-03493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThere has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individual cells of the bacterium Pseudomonas aeruginosa into two public goods, the siderophores pyochelin and pyoverdine. Using gene expression as a proxy for investment, we initially observe no coordination but high heterogeneity and bimodality in siderophore investment across cells. With increasing cell density, gene expression becomes more homogenized across cells, accompanied by a moderate shift from pyochelin to pyoverdine expression. We find positive associations in the expression of pyochelin and pyoverdine genes across cells, with cell-to-cell variation correlating with cellular metabolic states. Our work suggests that siderophore-mediated signalling aligns behaviour of individuals over time and spurs a coordinated three-phase siderophore investment cycle.
Collapse
|
40
|
Slavenko A, Dror L, Camaiti M, Farquhar JE, Shea GM, Chapple DG, Meiri S. Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world's second-largest family of terrestrial vertebrates. Evolution 2022; 76:1195-1208. [PMID: 35355258 PMCID: PMC9322454 DOI: 10.1111/evo.14482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.
Collapse
Affiliation(s)
- Alex Slavenko
- School of BiosciencesUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - Liat Dror
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Marco Camaiti
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Jules E. Farquhar
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Glenn M. Shea
- Sydney School of Veterinary Science B01University of SydneyNew South WalesAustralia,Australian Museum Research InstituteThe Australian MuseumSydneyNew South WalesAustralia
| | - David G. Chapple
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Shai Meiri
- School of ZoologyTel Aviv UniversityTel AvivIsrael,The Steinhardt Museum of Natural HistoryTel AvivIsrael
| |
Collapse
|
41
|
Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats. Sci Rep 2022; 12:7947. [PMID: 35562382 PMCID: PMC9106710 DOI: 10.1038/s41598-022-11158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Timing is essential for survival and reproduction of organisms across the tree of life. The core circadian clock gene Clk is involved in the regulation of annual timing events and shows highly conserved sequence homology across vertebrates except for one variable region of poly-glutamine repeats. Clk genotype varies in some species with latitude, seasonal timing and migration. However, findings are inconsistent, difficult to disentangle from environmental responses, and biased towards high latitudes. Here we combine field data with a common-garden experiment to study associations of Clk polymorphism with latitude, migration and annual-cycle timing within the stonechat species complex across its trans-equatorial distribution range. Our dataset includes 950 records from 717 individuals from nine populations with diverse migratory strategies. Gene diversity was lowest in resident African and Canary Island populations and increased with latitude, independently of migration distance. Repeat length and annual-cycle timing was linked in a population-specific way. Specifically, equatorial African stonechats showed delayed timing with longer repeat length for all annual-cycle stages. Our data suggest that at low latitudes with nearly constant photoperiod, Clk genotype might orchestrate a range of consistent, individual chronotypes. In contrast, the influence of Clk on annual-cycle timing at higher latitudes might be mediated by its interactions with genes involved in (circadian) photoperiodic pathways.
Collapse
|
42
|
Rivera K, Fidino M, Farris ZJ, Magle SB, Murphy A, Gerber BD. Rethinking habitat occupancy modeling and the role of diel activity in an anthropogenic world. Am Nat 2022; 200:556-570. [DOI: 10.1086/720714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Thiel A, Giroud S, Hertel AG, Friebe A, Devineau O, Fuchs B, Blanc S, Støen OG, Laske TG, Arnemo JM, Evans AL. Seasonality in Biological Rhythms in Scandinavian brown Bears. Front Physiol 2022; 13:785706. [PMID: 35600291 PMCID: PMC9118031 DOI: 10.3389/fphys.2022.785706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Biological rhythms, such as rhythms in activity and body temperature, are usually highly synchronized and entrained by environmental conditions, such as photoperiod. However, how the expression of these rhythms changes during hibernation, when the perception of environmental cues is limited, has not yet been fully understood for all hibernators, especially in the wild. The brown bear (Ursus arctos) in Scandinavia lives in a highly seasonal environment and adapts to harsh winter conditions by exhibiting hibernation, characterized by reduced metabolism and activity. In this study, we aimed to explore the expression of biological rhythms in activity, body temperature and heart rate of free-ranging brown bears over the annual cycle, including active, hibernation and the transition states around den entry and exit. We found that rhythms in physiology and activity are mostly synchronized and entrained by the light-dark cycle during the bears' active state with predominantly diel and ultradian rhythms for body temperature, activity and heart rate. However, during hibernation, rhythms in body temperature and heart rate were considerably slowed down to infradian rhythms, influenced by the amount of snow in the denning area, whereas rhythms in activity remained diel. Rhythms in the transition states when bears prepared for entering or coming out of hibernation state displayed a combination of infradian and diel rhythms, indicating the preparation of the body for the change in environmental conditions. These results reveal that brown bears adjust their biological rhythms to the seasonal environment they inhabit. Rhythms in physiology and activity show simultaneity during the active state but are partly disconnected from each other during hibernation, when bears are most sheltered from the environment.
Collapse
Affiliation(s)
- Alexandra Thiel
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne G. Hertel
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Martinsried, Germany
| | - Andrea Friebe
- Scandinavian Brown Bear Research Project, Orsa, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Olivier Devineau
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Stephane Blanc
- IPHC, University of Strasbourg, Strasbourg, France
- UMR7178, CNRS, Strasbourg, France
| | | | - Timothy G. Laske
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Jon M. Arnemo
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina L. Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| |
Collapse
|
44
|
Farrera A, Ramos-Fernández G. Collective Rhythm as an Emergent Property During Human Social Coordination. Front Psychol 2022; 12:772262. [PMID: 35222144 PMCID: PMC8868940 DOI: 10.3389/fpsyg.2021.772262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
The literature on social interactions has shown that participants coordinate not only at the behavioral but also at the physiological and neural levels, and that this coordination gives a temporal structure to the individual and social dynamics. However, it has not been fully explored whether such temporal patterns emerge during interpersonal coordination beyond dyads, whether this phenomenon arises from complex cognitive mechanisms or from relatively simple rules of behavior, or which are the sociocultural processes that underlie this phenomenon. We review the evidence for the existence of group-level rhythmic patterns that result from social interactions and argue that the complexity of group dynamics can lead to temporal regularities that cannot be predicted from the individual periodicities: an emergent collective rhythm. Moreover, we use this interpretation of the literature to discuss how taking into account the sociocultural niche in which individuals develop can help explain the seemingly divergent results that have been reported on the social influences and consequences of interpersonal coordination. We make recommendations on further research to test these arguments and their relationship to the feeling of belonging and assimilation experienced during group dynamics.
Collapse
Affiliation(s)
- Arodi Farrera
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriel Ramos-Fernández
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
45
|
Rock A, Wilcockson D, Last KS. Towards an Understanding of Circatidal Clocks. Front Physiol 2022; 13:830107. [PMID: 35283768 PMCID: PMC8914038 DOI: 10.3389/fphys.2022.830107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Circadian clocks are an intrinsic element of life that orchestrate appropriately timed daily physiological and behavioural rhythms entrained to the solar cycle, thereby conferring increased fitness. However, it is thought that the first archaic ‘proto-clocks’ evolved in ancient cyanobacteria in a marine environment, where the dominant time cues (zeitgebers) probably would have been lunar-driven and included tidal cycles. To date, non-circadian ‘marine clocks’ have been described with circatidal (~12.4 h), circasemilunar (~14.8 days), and circalunar (~29.5 days) periodicity, mostly studied in accessible but temporally complex intertidal habitats. In contrast to the well-described circadian clock, their molecular machinery is poorly understood, and fundamental mechanisms remain unclear. We propose that a multi-species approach is the most apposite strategy to resolve the divergence that arose from non-circadian clockwork forged in an evolutionary environment with multiple zeitgebers. We review circatidal clock models with a focus on intertidal organisms, for which robust behavioural, physiological, or genetic underpinnings have been explicated, and discuss their relative experimental merits. Developing a comprehensive mechanistic understanding of circatidal clocks should be a priority because it will ultimately contribute to a more holistic understanding of the origins and evolution of chronobiology itself.
Collapse
Affiliation(s)
- Alberto Rock
- Department of Science, Scottish Association for Marine Science, Oban, United Kingdom
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: David Wilcockson,
| | - Kim S. Last
- Department of Science, Scottish Association for Marine Science, Oban, United Kingdom
| |
Collapse
|
46
|
Dominoni DM, de Jong M, van Oers K, O'Shaughnessy P, Blackburn GJ, Atema E, Mateman AC, D'Amelio PB, Trost L, Bellingham M, Clark J, Visser ME, Helm B. Integrated molecular and behavioural data reveal deep circadian disruption in response to artificial light at night in male Great tits (Parus major). Sci Rep 2022; 12:1553. [PMID: 35091579 PMCID: PMC8799718 DOI: 10.1038/s41598-022-05059-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022] Open
Abstract
Globally increasing levels of artificial light at night (ALAN) are associated with shifting rhythms of behaviour in many wild species. However, it is unclear whether changes in behavioural timing are paralleled by consistent shifts in the molecular clock and its associated physiological pathways. Inconsistent shifts between behavioural and molecular rhythms, and between different tissues and physiological systems, disrupt the circadian system, which coordinates all major body functions. We therefore compared behavioural, transcriptional and metabolomic responses of captive great tits (Parus major) to three ALAN intensities or to dark nights, recording activity and sampling brain, liver, spleen and blood at mid-day and midnight. ALAN advanced wake-up time, and this shift was paralleled by advanced expression of the clock gene BMAL1 in all tissues, suggesting close links between behaviour and clock gene expression across tissues. However, further analysis of gene expression and metabolites revealed that clock shifts were inconsistent across physiological systems. Untargeted metabolomic profiling showed that only 9.7% of the 755 analysed metabolites followed the behavioural shift. This high level of desynchronization indicates that ALAN disrupted the circadian system on a deep, easily overlooked level. Thus, circadian disruption could be a key mediator of health impacts of ALAN on wild animals.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Maaike de Jong
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Els Atema
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Pietro B D'Amelio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa
- Centre d'Ecologie Functionnelle et Evolutive, University of Montpellier, CNRS, EPHE, IRD, Univ Paul-Valery Montpellier 3, Montpellier, France
| | - Lisa Trost
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Jessica Clark
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
47
|
Siehler O, Wang S, Bloch G. Remarkable Sensitivity of Young Honey Bee Workers to Multiple Non-photic, Non-thermal, Forager Cues That Synchronize Their Daily Activity Rhythms. Front Physiol 2022; 12:789773. [PMID: 35002771 PMCID: PMC8733668 DOI: 10.3389/fphys.2021.789773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Honey bees live in colonies containing tens of thousands of workers that coordinate their activities to produce efficient colony-level behavior. In free-foraging colonies, nest bees are entrained to the forager daily phase of activity even when experiencing conflicting light-dark illumination regime, but little is known on the cues mediating this potent social synchronization. We monitored locomotor activity in an array of individually caged bees in which we manipulated the contact with neighbour bees. We used circular statistics and coupling function analyses to estimate the degree of social synchronization. We found that young bees in cages connected to cages housing foragers showed stronger rhythms, better synchronization with each other, higher coupling strength, and a phase more similar to that of the foragers compared to similar bees in unconnected cages. These findings suggest that close distance contacts are sufficient for social synchronization or that cage connection facilitated the propagation of time-giving social cues. Coupling strength was higher for bees placed on the same tray compared with bees at a similar distance but on a different tray, consistent with the hypothesis that substrate borne vibrations mediate phase synchronization. Additional manipulation of the contact between cages showed that social synchronization is better among bees in cages connected with tube with a single mesh partition compared to sealed tubes consistent with the notion that volatile cues act additively to substrate borne vibrations. These findings are consistent with self-organization models for social synchronization of activity rhythms and suggest that the circadian system of honey bees evolved remarkable sensitivity to non-photic, non-thermal, time giving entraining cues enabling them to tightly coordinate their behavior in the dark and constant physical environment of their nests.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
48
|
Brochu MP, Aubin-Horth N. Shedding light on the circadian clock of the threespine stickleback. J Exp Biol 2021; 224:jeb242970. [PMID: 34854903 PMCID: PMC8729910 DOI: 10.1242/jeb.242970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The circadian clock is an internal timekeeping system shared by most organisms, and knowledge about its functional importance and evolution in natural environments is still needed. Here, we investigated the circadian clock of wild-caught threespine sticklebacks (Gasterosteus aculeatus) at the behavioural and molecular levels. Although their behaviour, ecology and evolution are well studied, information on their circadian rhythms are scarce. We quantified the daily locomotor activity rhythm under a light:dark cycle (LD) and under constant darkness (DD). Under LD, all fish exhibited significant daily rhythmicity, while under DD, only 18% of individuals remained rhythmic. This interindividual variation suggests that the circadian clock controls activity only in certain individuals. Moreover, under LD, some fish were almost exclusively nocturnal, while others were active around the clock. Furthermore, the most nocturnal fish were also the least active. These results suggest that light masks activity (i.e. suppresses activity without entraining the internal clock) more strongly in some individuals than others. Finally, we quantified the expression of five clock genes in the brain of sticklebacks under DD using qPCR. We did not detect circadian rhythmicity, which could indicate either that the clock molecular oscillator is highly light-dependent, or that there was an oscillation but that we were unable to detect it. Overall, our study suggests that a strong circadian control on behavioural rhythms may not necessarily be advantageous in a natural population of sticklebacks and that the daily phase of activity varies greatly between individuals because of a differential masking effect of light.
Collapse
Affiliation(s)
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
49
|
Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol 2021; 18:679-689. [PMID: 34002082 PMCID: PMC8521648 DOI: 10.1038/s41575-021-00452-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Certain members of the gut microbiota exhibit diurnal variations in relative abundance and function to serve as non-canonical drivers of host circadian rhythms and metabolism. Also known as microbial oscillators, these microorganisms entrain upon non-photic cues, primarily dietary, to modulate host metabolism by providing input to both circadian clock-dependent and clock-independent host networks. Microbial oscillators are generally promoted by plant-based, low-fat (lean) diets, and most are abolished by low-fibre, high-sugar, high-fat (Western) diets. The changes in microbial oscillators under different diets then affect host metabolism by altering central and peripheral host circadian clock functions and/or by directly affecting other metabolic targets. Here, we review the unique role of the gut microbiota as a non-photic regulator of host circadian rhythms and metabolism. We describe genetic, environmental, dietary and other host factors such as sex and gut immunity that determine the composition and behaviour of microbial oscillators. The mechanisms by which these oscillators regulate host circadian gene expression and metabolic state are further discussed. Because of the gut microbiota's unique role as a non-photic driver of host metabolism and circadian rhythms, the development and clinical application of novel gut microbiota-related diagnostics and therapeutics hold great promise for achieving and maintaining metabolic health.
Collapse
Affiliation(s)
- Hyoann Choi
- Department of Medicine, Knapp Center for Biomedical Discovery, Chicago, IL, USA.,Department of Biological Engineering and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mrinalini C. Rao
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, Chicago, IL, USA.,
| |
Collapse
|
50
|
Levy K, Wegrzyn Y, Efronny R, Barnea A, Ayali A. Lifelong exposure to artificial light at night impacts stridulation and locomotion activity patterns in the cricket Gryllus bimaculatus. Proc Biol Sci 2021; 288:20211626. [PMID: 34547907 PMCID: PMC8456136 DOI: 10.1098/rspb.2021.1626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Living organisms experience a worldwide continuous increase in artificial light at night (ALAN), negatively affecting their behaviour. The field cricket, an established model in physiology and behaviour, can provide insights into the effect of ALAN on insect behaviour. The stridulation and locomotion patterns of adult male crickets reared under different lifelong ALAN intensities were monitored simultaneously for five consecutive days in custom-made anechoic chambers. Daily activity periods and acrophases were compared between the experimental groups. Control crickets exhibited a robust rhythm, stridulating at night and demonstrating locomotor activity during the day. By contrast, ALAN affected both the relative level and timing of the crickets' nocturnal and diurnal activity. ALAN induced free-running patterns, manifested in significant changes in the median and variance of the activity periods, and even arrhythmic behaviour. The magnitude of disruption was light intensity dependent, revealing an increase in the difference between the activity periods calculated for stridulation and locomotion in the same individual. This finding may indicate the existence of two peripheral clocks. Our results demonstrate that ecologically relevant ALAN intensities affect crickets' behavioural patterns, and may lead to decoupling of locomotion and stridulation behaviours at the individual level, and to loss of synchronization at the population level.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Yoav Wegrzyn
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ronny Efronny
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|