1
|
Umezawa A, Fukuda A, Horikawa R, Uchida H, Enosawa S, Oishi Y, Nakamura N, Sasaki K, Yanagi Y, Shimizu S, Nakao T, Kodama T, Sakamoto S, Hayakawa I, Akiyama S, Saku N, Miyata S, Ite K, Javaregowda PK, Toyoda M, Nonaka H, Nakamura K, Ito Y, Fukuhara Y, Miyazaki O, Nosaka S, Nakabayashi K, Haga C, Yoshioka T, Masuda A, Ohkura T, Yamazaki-Inoue M, Machida M, Abutani-Sakamoto R, Miyajima S, Akutsu H, Matsubara Y, Igarashi T, Kasahara M. First-in-human clinical study of an embryonic stem cell product for urea cycle disorders. Stem Cell Res Ther 2025; 16:120. [PMID: 40050977 PMCID: PMC11887382 DOI: 10.1186/s13287-025-04162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND This study assesses the safety and efficacy of hepatocyte-like cell (HLC) infusion therapy derived from human embryonic stem cells as bridging therapy for neonatal-onset urea cycle disorders (UCD). The research includes both preclinical and clinical evaluations to determine the feasibility of HLC infusion as a therapeutic option for safer pediatric liver transplantation. METHODS Preclinical studies were conducted to validate the safety, biodistribution, and ammonia metabolism capabilities of HLCs using SCID mice models of UCD and extensive animal studies. In the clinical trial, five neonates with UCD received HLC infusions, intending to maintain metabolic stability and exceed a target weight of over 6 kg, which is considered necessary for safer liver transplantation. RESULTS Preclinical studies demonstrated that HLCs successfully engrafted in the liver without adverse migration or tumor formation and effectively elongated survival. Clinically, all five neonates exceeded the target weight of 6 kg while maintaining metabolic stability and successfully bridging to transplantation. Post-transplantation follow-up revealed stable growth, metabolic control, and no neurological complications. CONCLUSIONS The combined preclinical and clinical findings support HLC infusion as a viable bridge therapy for neonates with UCD, providing metabolic support to achieve safer weight thresholds for transplantation. While promising, careful monitoring remains essential, particularly for potential complications such as thrombus formation. TRIAL REGISTRATION jRCT, jRCT1090220412. Registered on 27 February 2019, https://jrct.niph.go.jp/en-latest-detail/jRCT1090220412 (originally registered in JMACCT (JMA-IIA00412)).
Collapse
Affiliation(s)
- Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan.
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan.
| | - Akinari Fukuda
- National Center for Child Health and Development, Setagaya, Japan
| | - Reiko Horikawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Hajime Uchida
- National Center for Child Health and Development, Setagaya, Japan
| | - Shin Enosawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshie Oishi
- National Center for Child Health and Development, Setagaya, Japan
| | - Naoko Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kengo Sasaki
- National Center for Child Health and Development, Setagaya, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Yanagi
- National Center for Child Health and Development, Setagaya, Japan
| | - Seiichi Shimizu
- National Center for Child Health and Development, Setagaya, Japan
| | - Toshimasa Nakao
- National Center for Child Health and Development, Setagaya, Japan
| | - Tasuku Kodama
- National Center for Child Health and Development, Setagaya, Japan
| | - Seisuke Sakamoto
- National Center for Child Health and Development, Setagaya, Japan
| | - Itaru Hayakawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Saeko Akiyama
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan
| | - Noriaki Saku
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyata
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kenta Ite
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Palaksha Kanive Javaregowda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - Masashi Toyoda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Nonaka
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kazuaki Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshikazu Ito
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | | | - Osamu Miyazaki
- National Center for Child Health and Development, Setagaya, Japan
| | - Shunsuke Nosaka
- National Center for Child Health and Development, Setagaya, Japan
| | - Kazuhiko Nakabayashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Chizuko Haga
- National Center for Child Health and Development, Setagaya, Japan
| | - Takako Yoshioka
- National Center for Child Health and Development, Setagaya, Japan
| | - Akira Masuda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Ohkura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mayu Yamazaki-Inoue
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Masakazu Machida
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Rie Abutani-Sakamoto
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyajima
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Akutsu
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Igarashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mureo Kasahara
- National Center for Child Health and Development, Setagaya, Japan.
| |
Collapse
|
2
|
Li J, Li R, Bai X, Zhang W, Nie Y, Hu S. Direct reprogramming of fibroblasts into functional hepatocytes via CRISPRa activation of endogenous Gata4 and Foxa3. Chin Med J (Engl) 2024; 137:1351-1359. [PMID: 38721807 PMCID: PMC11191006 DOI: 10.1097/cm9.0000000000003088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.
Collapse
Affiliation(s)
- Jiacheng Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wenlong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
3
|
Ashmore-Harris C, Antonopoulou E, Finney SM, Vieira MR, Hennessy MG, Muench A, Lu WY, Gadd VL, El Haj AJ, Forbes SJ, Waters SL. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. NPJ Regen Med 2024; 9:19. [PMID: 38724586 PMCID: PMC11081951 DOI: 10.1038/s41536-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Melissa R Vieira
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Andreas Muench
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
4
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
Ding M, Huang W, Liu G, Zhai B, Yan H, Zhang Y. Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors. BMC Genomics 2023; 24:260. [PMID: 37173651 PMCID: PMC10182660 DOI: 10.1186/s12864-023-09349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.
Collapse
Affiliation(s)
- Min Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hexin Yan
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Sharma A, Lee CY, Namsrai BE, Han Z, Tobolt D, Rao JS, Gao Z, Etheridge ML, Garwood M, Clemens MG, Bischof JC, Finger EB. Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming. Ann Biomed Eng 2023; 51:566-577. [PMID: 36183025 PMCID: PMC10315167 DOI: 10.1007/s10439-022-03064-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
Abstract
Liver cryopreservation has the potential to enable indefinite organ banking. This study investigated vitrification-the ice-free cryopreservation of livers in a glass-like state-as a promising alternative to conventional cryopreservation, which uniformly fails due to damage from ice formation or cracking. Our unique "nanowarming" technology, which involves perfusing biospecimens with cryoprotective agents (CPAs) and silica-coated iron oxide nanoparticles (sIONPs) and then, after vitrification, exciting the nanoparticles via radiofrequency waves, enables rewarming of vitrified specimens fast enough to avoid ice formation and uniformly enough to prevent cracking from thermal stresses, thereby addressing the two main failures of conventional cryopreservation. This study demonstrates the ability to load rat livers with both CPA and sIONPs by vascular perfusion, cool them rapidly to an ice-free vitrified state, and rapidly and homogenously rewarm them. While there was some elevation of liver enzymes (Alanine Aminotransferase) and impaired indocyanine green (ICG) excretion, the nanowarmed livers were viable, maintained normal tissue architecture, had preserved vascular endothelium, and demonstrated hepatocyte and organ-level function, including production of bile and hepatocyte uptake of ICG during normothermic reperfusion. These findings suggest that cryopreservation of whole livers via vitrification and nanowarming has the potential to achieve organ banking for transplant and other biomedical applications.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Charles Y Lee
- Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Diane Tobolt
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark G Clemens
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, 28223, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
- Division of Solid Organ Transplantation, University of Minnesota, 420 Delaware St. S.E., MMC 195, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
10
|
Tarique S, Naeem N, Salim A, Ainuddin JA, Haneef K. The role of epigenetic modifiers in the hepatic differentiation of human umbilical cord derived mesenchymal stem cells. Biol Futur 2022; 73:495-502. [PMID: 36512201 DOI: 10.1007/s42977-022-00145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Human umbilical cord (hUC) derived mesenchymal stem cells (MSCs) can be progressively differentiated into multiple lineages including hepatic lineages, and thus provide an excellent in vitro model system for the study of hepatic differentiation. At present, hepatic differentiation protocols are based on the use of soluble chemicals in the culture medium and provide immature hepatic like cells. Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) are two important epigenetic modifiers that regulate stem cell differentiation. Therefore, this study aimed to investigate the role of HDACi, valproic acid (VPA) and DNMTi,5-azacytidine (5-aza) along with a hepatic inducer in the hepatic differentiation of hUC-MSCs. hUC-MSCs were characterized via immunocytochemistry and flow cytometry. The final concentrations of VPA and 5-aza were optimized via MTT cytotoxicity assay. All treated groups were assessed for the presence of hepatic genes and proteins through qPCR and immunocytochemistry, respectively. The results showed that the pretreatment of epigenetic modifiers not only increased the hepatic genes but also increased the expression of the hepatic proteins. VPA induces hepatic differentiation in hUC-MSCs with significant gene expression of hepatic markers i.e., FOXA2 and CK8. Moreover, VPA pretreatment enhanced the expression of hepatic proteins AFP and TAT. The pretreatment of 5-aza shows significant gene expression of hepatic marker LDL-R. However, 5-aza treatment failed to induce hepatic protein expression. The results of the current study highlighted the effectiveness of epigenetic modifiers in the hepatic differentiation of hUC-MSCs. These differentiated cells can be employed in cell-based therapeutics for hepatic diseases in future.
Collapse
Affiliation(s)
- Sarah Tarique
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS), Ojha Campus Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| | - Jahan Ara Ainuddin
- Department of Gynecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
11
|
Torizal FG, Utami T, Lau QY, Inamura K, Nishikawa M, Sakai Y. Dialysis based-culture medium conditioning improved the generation of human induced pluripotent stem cell derived-liver organoid in a high cell density. Sci Rep 2022; 12:20774. [PMID: 36456801 PMCID: PMC9715714 DOI: 10.1038/s41598-022-25325-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Human pluripotent stem cell-derived liver organoids (HLOs) have recently become a promising alternative for liver regenerative therapy. To realize this application, a large amount of human-induced pluripotent stem cells (hiPSCs) derived-liver cells are required for partial liver replacement during transplantation. This method requires stepwise induction using costly growth factors to direct the hiPSCs into the hepatic lineage. Therefore, we developed a simple dialysis-based medium conditioning that fully utilized growth factors accumulation to improve hepatic differentiation of hiPSCs at a high cell density. The results demonstrated that the dialysis culture system could accumulate the four essential growth factors required in each differentiation stage: activin A, bone morphogenetic protein 4 (BMP4), hepatocyte growth factor (HGF), and oncostatin M (OSM). As a result, this low lactate culture environment allowed high-density bipotential hepatic differentiation of up to 4.5 × 107 cells/mL of human liver organoids (HLOs), consisting of hiPSC derived-hepatocyte like cells (HLCs) and cholangiocyte like-cells (CLCs). The differentiated HLOs presented a better or comparable hepatic marker and hepatobiliary physiology to the one that differentiated in suspension culture with routine daily medium replacement at a lower cell density. This simple miniaturized dialysis culture system demonstrated the feasibility of cost-effective high-density hepatic differentiation with minimum growth factor usage.
Collapse
Affiliation(s)
- Fuad Gandhi Torizal
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tia Utami
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Qiao You Lau
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kousuke Inamura
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Nishikawa
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Zhou GP, Li SP, Jiang YZ, Sun J, Tan YL, Zeng ZG, Wei L, Qu W, Sun LY, Zhu ZJ. Domino hepatocyte transplantation using explanted human livers with metabolic defects attenuates D-GalN/LPS-induced acute liver failure. J Transl Med 2022; 20:479. [PMID: 36266691 PMCID: PMC9583592 DOI: 10.1186/s12967-022-03674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background Explanted livers from patients with inherited metabolic liver diseases possess the potential to be a cell source of good-quality hepatocytes for hepatocyte transplantation (HT). This study evaluated the therapeutic effects of domino HT using hepatocytes isolated from explanted human livers for acute liver failure (ALF). Methods Isolated hepatocytes were evaluated for viability and function and then transplanted into d-galactosamine/lipopolysaccharide-induced ALF mice via splenic injection. The survival rate was analyzed by the Kaplan–Meier method and log-rank test. Liver function was evaluated by serum biochemical parameters, and inflammatory cytokine levels were measured by ELISA. The pathological changes in the liver tissues were assessed by hematoxylin–eosin staining. Hepatocyte apoptosis was investigated by TUNEL, and hepatocyte apoptosis-related proteins were detected by western blot. The localization of human hepatocytes in the injured mouse livers was detected by immunohistochemical analyses. Results Hepatocytes were successfully isolated from explanted livers of 10 pediatric patients with various liver-based metabolic disorders, with an average viability of 85.3% ± 13.0% and average yield of 9.2 × 106 ± 3.4 × 106 cells/g. Isolated hepatocytes had an excellent ability to secret albumin, produce urea, uptake indocyanine green, storage glycogen, and express alpha 1 antitrypsin, albumin, cytokeratin 18, and CYP3A4. Domino HT significantly reduced mortality, decreased serum levels of alanine aminotransferase and aspartate aminotransferase, and improved the pathological damage. Moreover, transplanted hepatocytes inhibited interleukin-6 and tumor necrosis factor-α levels. Domino HT also ameliorates hepatocyte apoptosis, as evidenced by decreased TUNEL positive cells. Positive staining for human albumin suggested the localization of human hepatocytes in ALF mice livers. Conclusion Explanted livers from patients with inheritable metabolic disorders can serve as a viable cell source for cell-based therapies. Domino HT using hepatocytes with certain metabolic defects has the potential to be a novel therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Yu-Le Tan
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China. .,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China.
| |
Collapse
|
13
|
Cellular Therapies in Pediatric Liver Diseases. Cells 2022; 11:cells11162483. [PMID: 36010561 PMCID: PMC9406752 DOI: 10.3390/cells11162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the gold standard for the treatment of pediatric end-stage liver disease and liver based metabolic disorders. Although liver transplant is successful, its wider application is limited by shortage of donor organs, surgical complications, need for life long immunosuppressive medication and its associated complications. Cellular therapies such as hepatocytes and mesenchymal stromal cells (MSCs) are currently emerging as an attractive alternative to liver transplantation. The aim of this review is to present the existing world experience in hepatocyte and MSC transplantation and the potential for future effective applications of these modalities of treatment.
Collapse
|
14
|
Tamai M, Adachi E, Kawase M, Tagawa YI. Syngeneic implantation of mouse hepatic progenitor cell-derived three-dimensional liver tissue with dense collagen fibrils. World J Gastroenterol 2022; 28:1444-1454. [PMID: 35582675 PMCID: PMC9048472 DOI: 10.3748/wjg.v28.i14.1444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver transplantation is a therapy for irreversible liver failure; however, at present, donor organs are in short supply. Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes.
AIM To investigate the possibility that hepatic progenitor cells (HPCs) prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine, we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells.
METHODS In vitro liver organoid tissue has been generated by accumulating collagen fibrils, fibroblasts, and HPCs on a mesh of polylactic acid fabric using a bioreactor; this was subsequently implanted into syngeneic wild-type mice.
RESULTS The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy.
CONCLUSION Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system. This tissue was comparable to liver lobules, and with fibroblasts embedded in the network collagen fibrils of this artificial tissue, it is useful for reconstructing the hepatic interstitial structure.
Collapse
Affiliation(s)
- Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
- Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Eijiro Adachi
- Department of Molecular Morphology, Kitasato University, Yokohama-shi 319-3526, Japan
- Long-Term Care Health Facility Yasuragi, Ibaraki Zip or Postal Code, Japan
| | - Masaya Kawase
- Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Yoh-ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
| |
Collapse
|
15
|
Mukherjee S, Kotnis A, Ray SK, Vaidyanathan K, Singh S, Mittal R. Current Scenario of Clinical Diagnosis to Identify Inborn Errors of Metabolism with Precision Profiling for Expanded Screening in Infancy in a Resource-limited Setting. Curr Pediatr Rev 2022; 19:34-47. [PMID: 35379152 DOI: 10.2174/1573396318666220404113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Inborn errors of metabolism (IEM) are a diverse collection of abnormalities that cause a variety of morbidities and mortality in children and are classified as uncommon genetic diseases. Early and accurate detection of the condition can save a patient's life. By aiding families as they navigate the experience of having a child with an IEM, healthcare practitioners have the chance to reduce the burden of negative emotional consequences. New therapeutic techniques, such as enzyme replacement and small chemical therapies, organ transplantation, and cellular and gene-based therapies using whole-genome sequencing, have become available in addition to traditional medical intake and cofactor treatments. In the realm of metabolic medicine and metabolomics, the twentyfirst century is an exciting time to be alive. The availability of metabolomics and genomic analysis has led to the identification of a slew of novel diseases. Due to the rarity of individual illnesses, obtaining high-quality data for these treatments in clinical trials and real-world settings has proven difficult. Guidelines produced using standardized techniques have helped enhance treatment delivery and clinical outcomes over time. This article gives a comprehensive description of IEM and how to diagnose it in patients who have developed clinical signs early or late. The appropriate use of standard laboratory outcomes in the preliminary patient assessment is also emphasized that can aid in the ordering of specific laboratory tests to confirm a suspected diagnosis, in addition, to begin treatment as soon as possible in a resource limiting setting where genomic analysis or newborn screening facility is not available.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | | | - Kannan Vaidyanathan
- Department of Biochemistry, Amrita Institute of Medical Science & Research Center, Kochi, Kerala-682041, India
| | - Snighdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
16
|
Gupta S, Pinky, Vishal, Sharma H, Soni N, Rao EP, Dalela M, Yadav A, Nautiyal N, Kumar A, Nayak B, Banerjee A, Dinda AK, Mohanty S. Comparative Evaluation of Anti-Fibrotic Effect of Tissue Specific Mesenchymal Stem Cells Derived Extracellular Vesicles for the Amelioration of CCl4 Induced Chronic Liver Injury. Stem Cell Rev Rep 2021; 18:1097-1112. [PMID: 34859376 DOI: 10.1007/s12015-021-10313-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
Mesenchymal Stem Cells (MSCs) derived Extracellular Vesicles (EVs) have emerged as an effective candidate for amelioration of liver fibrosis. However, the effect and the mechanisms of MSC-EVs in liver repair remains elusive. In this study, we have evaluated the differential regenerative efficacy of EVs derived from two different human tissue-specific MSCs (Adipose tissue; AD-MSC and Wharton's Jelly; WJ-MSC), in a murine model of chronic liver fibrosis. Mouse model of chronic liver injury was induced by carbon tetrachloride (CCl4) injection, followed by administration of EVs via the tail vein. Both quantitative and qualitative assessment was done to evaluate the hepatic regenerative potential of tissue specific MSC-extracellular vesicles. EVs, regardless of their MSC source, were found to be effective in alleviating chronic liver fibrosis, as demonstrated by macroscopic alterations in the liver. According to the findings of the comprehensive study, there were subtle variations in the tissue specific MSCs-EVs mediated approaches. A greater anti-fibrotic impact was demonstrated by AD-MSC derived EVs through extracellular matrix alteration and hepatocyte proliferation. WJ-MSC EVs, on the other hand, have an anti-inflammatory effect, as evidenced by alterations in the expression of pro- and anti-inflammatory cytokines. Furthermore, cargo profiling of these EVs revealed differences in the miRNA and protein expression, as well as the pathways that they were associated. Comparative overview of regression of fibrosis using tissue specific MSC derived EVs (credits BioRender.com ).
Collapse
Affiliation(s)
- Suchi Gupta
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Pinky
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Vishal
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Harshita Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Naina Soni
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - E Pranshu Rao
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Manu Dalela
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Alka Yadav
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India
| | - Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1st Floor, ORBO Complex, New Delhi, Ansari Nagar, India.
| |
Collapse
|
17
|
Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021; 75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
There is an unmet need for functional primary human hepatocytes to support the pharmaceutical and (bio)medical demand. The unique discovery, a decade ago, that somatic cells can be drawn out of their apparent biological lockdown to reacquire a pluripotent state has revealed a completely new avenue of possibilities for generating surrogate human hepatocytes. Since then, the number of papers reporting the direct conversion of somatic cells into induced hepatocytes (iHeps) has burgeoned. A hepatic cell fate can be established via the ectopic expression of native liver-enriched transcription factors in somatic cells, thereby bypassing the need for an intermediate (pluripotent) stem cell state. That said, understanding and eventually controlling the processes that give rise to functional iHeps remains challenging. In this review, we provide an overview of the state-of-the-art reprogramming cocktails and techniques, as well as their corresponding conversion efficiencies. Special attention is paid to the role of liver-enriched transcription factors as hepatogenic reprogramming tools and small molecules as facilitators of hepatic transdifferentiation. To conclude, we formulate recommendations to optimise, standardise and enrich the in vitro production of iHeps to reach clinical standards, and propose minimal criteria for their characterisation.
Collapse
Affiliation(s)
- Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
18
|
Tsuchida T, Murata S, Hasegawa S, Mikami S, Enosawa S, Hsu HC, Fukuda A, Okamoto S, Mori A, Matsuo M, Kawakatsu Y, Matsunari H, Nakano K, Nagashima H, Taniguchi H. Investigation of Clinical Safety of Human iPS Cell-Derived Liver Organoid Transplantation to Infantile Patients in Porcine Model. Cell Transplant 2021; 29:963689720964384. [PMID: 33103476 PMCID: PMC7784600 DOI: 10.1177/0963689720964384] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transplantation of liver organoids has been investigated as a treatment alternative to liver transplantation for chronic liver disease. Transportal approach can be considered as a method of delivering organoids to the liver. It is important to set the allowable organoid amount and verify translocation by intraportal transplantation. We first examined the transplantation tolerance and translocation of porcine fetal liver-derived allogeneic organoids using piglets. Fetal liver-derived organoids generated from the Kusabira Orange-transduced pig were transplanted to the 10-day-old piglet liver through the left branch of the portal vein. All recipients survived without any observable adverse events. In contrast, both local and main portal pressures increased transiently during transplantation. In necropsy samples, Kusabira Orange-positive donor cells were detected primarily in the target lobe of the liver and partly in other areas, including the lungs and brain. As we confirmed the transplantation allowance by porcine fetal liver-derived organoids, we performed intraportal transplantation of human-induced pluripotent stem cell (iPSC)-derived liver organoid, which we plan to use in clinical trials, and portal pressure and translocation were investigated. Human iPSC-derived liver organoids were transplanted into the same 10-day-old piglet. Portal hypertension and translocation of human iPSC-derived liver organoids to the lungs were observed in one of two transplanted animals. Translocation occurred in the piglet in which patent ductus venosus (PDV) was observed. Therefore, a 28-day-old piglet capable of surgically ligating PDV was used, and after the PDV was ligated, human iPSC-derived liver organoids with the amount of which is scheduled in clinical trials were transplanted. This procedure inhibited the translocation of human iPSC-derived liver organoids to extrahepatic sites without no portal hypertension. In conclusion, human iPSC-derived liver organoids can be safely transplanted through the portal vein. Ligation of the ductus venosus prior to transplantation was effective in inhibiting extrahepatic translocation in newborns and infants.
Collapse
Affiliation(s)
- Tomonori Tsuchida
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunsuke Hasegawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Mikami
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo, Japan
| | - Huai-Che Hsu
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Department of Transplantation Surgery, Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Megumi Matsuo
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yumi Kawakatsu
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Division of Regenerative Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Mehta KJ. Role of iron and iron-related proteins in mesenchymal stem cells: Cellular and clinical aspects. J Cell Physiol 2021; 236:7266-7289. [PMID: 33821487 DOI: 10.1002/jcp.30383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues where these cells show niche-dependent multilineage differentiation and secrete immunomodulatory molecules to support numerous physiological processes. Due to their regenerative and reparative properties, MSCs are extremely valuable for cell-based therapy in tackling several pathological conditions including COVID-19. Iron is essential for MSC processes but iron-loading, which is common in several chronic conditions, hinders normal MSC functionality. This not only aggravates disease pathology but can also affect allogeneic and autologous MSC therapy. Thus, understanding MSCs from an iron perspective is of clinical significance. Accordingly, this review highlights the roles of iron and iron-related proteins in MSC physiology. It describes the contribution of iron and endogenous iron-related effectors like hepcidin, ferroportin, transferrin receptor, lactoferrin, lipocalin-2, bone morphogenetic proteins and hypoxia inducible factors in MSC biology. It summarises the excess-iron-induced alterations in MSC components, processes and discusses signalling pathways involving ROS, PI3K/AKT, MAPK, p53, AMPK/MFF/DRP1 and Wnt. Additionally, it evaluates the endogenous and exogenous saviours of MSCs against iron-toxicity. Lastly, it elaborates on the involvement of MSCs in the pathology of clinical conditions of iron-excess, namely, hereditary hemochromatosis, diabetes, β-thalassaemia and myelodysplastic syndromes. This unique review integrates the distinct fields of iron regulation and MSC physiology. Through an iron-perspective, it describes both mechanistic and clinical aspects of MSCs and proposes an iron-linked MSC-contribution to physiology, pathology and therapeutics. It advances the understanding of MSC biology and may aid in identifying signalling pathways, molecular targets and compounds for formulating adjunctive iron-based therapies for excess-iron conditions, and thereby inform regenerative medicine.
Collapse
Affiliation(s)
- Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK
| |
Collapse
|
20
|
Silva DRS, Carreira ACO, Ferreira AO, da Silva MD, Sogayar MC, Miglino MA. Characterization of rat liver bud-derived cells. Tissue Cell 2021; 71:101510. [PMID: 33721789 DOI: 10.1016/j.tice.2021.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Cells derived from the fetal liver have been shown to be a rich source of progenitor stem cells, constituting a promising source for Tissue Engineering and Regenerative Medicine. In this study, embryo and fetal liver-bud derived cells from Fischer 344 rats were obtained at E12.5, E14.5 and E16.5 gestational days and evaluated for cell phenotype, survival and proliferation. Liver transaminase (AST and ALT) and AFP levels were lower in embryo liver-bud-derived cells on day 12.5. Markers for stem cells, cell cycle progression and cell death were differentially expressed in E12.5 cell cultures. Analysis of mitochondrial electric potential on 14.5 and 16.5 days showed a tendency for cells with lower functional or metabolic ability, in comparison to cultures derived from day 12.5. The results demonstrated that the majority of the E16.5 cells were in the G0 / G1 phase. The capacity of synthesis (S) and cellular division (G2 / M) of embryo and fetal liver bud-derived cells was constant over all gestational periods. In conclusion, embryo and fetal liver-bud-derived cells during the periods of 12.5 and 14.5 days, showed expression profile of progenitor cells, cell activity and hematopoietic function in culture.
Collapse
Affiliation(s)
- Dara Rúbia Souza Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil; Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of Sao Paulo (USP), Pangaré Street 100, University City, Butanta, SP 05360-130, Brazil
| | - Amanda Olivotti Ferreira
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of Sao Paulo (USP), Pangaré Street 100, University City, Butanta, SP 05360-130, Brazil; Department of Biochemistry, Chemistry Institute, University of Sao Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Prof. Dr Orlando Marques de Paiva Avenue, 87, University City, Sao Paulo, SP 05508-270, Brazil.
| |
Collapse
|
21
|
Sahabian A, Dahlmann J, Martin U, Olmer R. Production and cryopreservation of definitive endoderm from human pluripotent stem cells under defined and scalable culture conditions. Nat Protoc 2021; 16:1581-1599. [PMID: 33580232 DOI: 10.1038/s41596-020-00470-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The endodermal germ layer gives rise to respiratory epithelium, hepatocytes, pancreatic cells and intestinal lineages, among other cell types. These lineages can be differentiated from human pluripotent stem cells (hPSCs) via a common definitive endoderm (DE) intermediate that is characterized by the co-expression of the cell surface markers CXCR4, c-KIT and EPCAM and the transcription factors SOX17 and FOXA2. Here we provide a detailed protocol for mass production of DE from hPSCs in scalable and easy-to-handle suspension culture using a rotating Erlenmeyer flask or a sophisticated, fully controllable, 150-ml stirred tank bioreactor. This protocol uses two different media formulations that are chemically defined and xeno free and therefore good manufacturing practice ready. Our protocol allows for efficient hPSC-derived DE specification in multicellular aggregates within 3 days and generates up to 1 × 108 DE cells with >92% purity in one differentiation batch when using the bioreactor. The hPSC-derived DE cells that are generated can be cryopreserved for later downstream differentiation into various endodermal lineages. This protocol should facilitate the flexible production of mature DE derivatives for physiologically relevant disease models, high-throughput drug screening, toxicology testing and cellular therapies.
Collapse
Affiliation(s)
- Anais Sahabian
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Julia Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
He W, Qin D, Li B, Zhang H, Cheng X, Sun J, Hua J, Peng S. Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs. Res Vet Sci 2021; 136:39-50. [PMID: 33582313 DOI: 10.1016/j.rvsc.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023]
Abstract
Adipose-derived mesenchymal stem cells have been used to treat acute kidney injury (AKI). The role of endoplasmic reticulum (ER) stress in AKI treatment with canine adipose-derived mesenchymal stem cells (cADSCs) remains unknown. This study intended to investigate the therapeutic effects of cADSCs cultured in different media on AKI in mice and dogs and reveal the role of ER stress in this process. The mice were divided into two branches: a control group and a gentamicin induced group (this group treated with low-serum ADSC or high-serum ADSC or 4-phenylbutyric acid (4-PBA)). The dogs were divided into control, model, and cell-injected groups. To suppress ER stress, mice were simultaneously treated with 4-PBA. The results showed there were improvements in renal function and tissue damage and a corresponding decrease in ER stress in the kidneys of the mice that received cell injection. However, the cells cultured with 2% FBS showed a better growth state and resulted in lower ER stress levels in treated kidneys. In the 4-PBA-treated group, ER stress was suppressed, and there was corresponding kidney injury recovery. Similarly, both kidney damage and ER stress were alleviated after AKI dogs were injected with the cells. Our findings reveal that both allogeneic and xenogeneic cADSCs were effective treatments for AKI by inhibiting ER stress. These results also provide evidence for a new clinical therapy for acute renal disease in pets.
Collapse
Affiliation(s)
- Wenlai He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuedi Cheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
23
|
Philips CA, Augustine P. Still 'dwelling in the possibility' - critical update on stem cell therapy for acute on chronic liver failure. World J Stem Cells 2020; 12:1124-1132. [PMID: 33178396 PMCID: PMC7596449 DOI: 10.4252/wjsc.v12.i10.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy could improve survival in patients with liver failure. Studies on stem cell therapy and related growth factors in decompensated cirrhosis has been on the forefront but has shown heterogenous results. Recent high-quality studies have shown a lack of efficacy and safety. Patients with acute-on-chronic liver failure (ACLF) are a unique group with high mortality in the short-term associated with rapid onset extrahepatic organ failures. In these patients, there is an urgent need to identify treatments that can improve liver cell function and mass, prevent sepsis/organ failure, ameliorate systemic inflammation, and increase transplant-free survival. Stem cells are a novel treatment in ACLF but with unclear efficacy and safety. In this narrative review, we discuss the basics of liver regeneration in patients with ACLF and update current clinical status of stem cell use in patients with ACLF for improving our understanding of future directions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India.
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| |
Collapse
|
24
|
Zhou GP, Jiang YZ, Sun LY, Zhu ZJ. Therapeutic effect and safety of stem cell therapy for chronic liver disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2020; 11:419. [PMID: 32977828 PMCID: PMC7519526 DOI: 10.1186/s13287-020-01935-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Stem cell therapy is becoming an emerging therapeutic option for chronic liver disease (CLD). However, whether stem cell therapy is more effective than conventional treatment remains questionable. We performed a large-scale meta-analysis of randomized controlled trials (RCTs) to evaluate the therapeutic effects and safety of stem cell therapy for CLD. Methods We systematically searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov databases for the period from inception through March 16, 2020. Primary outcomes were all-cause mortality and adverse events related to stem cell therapy. Secondary outcomes included the model for end-stage liver disease score, total bilirubin, albumin, alanine aminotransferase, prothrombin activity, and international normalized ratio. The standardized mean difference (SMD) and odds ratio (OR) with 95% confidence interval (CI) were calculated using a random-effects model. Results Twenty-four RCTs were included and the majority of these studies showed a high risk of bias. The meta-analysis indicated that compared with conventional treatment, stem cell therapy was associated with improved survival and liver function including the model of end-stage liver disease score, total bilirubin, and albumin levels. However, it had no obvious beneficial effects on alanine aminotransferase level, prothrombin activity, and international normalized ratio. Subgroup analyses showed stem cell therapy conferred a short-term survival benefit for patients with acute-on-chronic liver failure (ACLF), a single injection was more effective than multiple injections, hepatic arterial infusion was more effective than intravenous infusion, and bone marrow-derived stem cells were more effective than those derived from the umbilical cord. Thirteen trials reported adverse events related to stem cell therapy, but no serious adverse events were reported. Conclusions Stem cell therapy is a safe and effective therapeutic option for CLD, while patients with ACLF benefit the most in terms of improved short-term survival. A single injection administration of bone marrow-derived stem cells via the hepatic artery has superior therapeutic effects.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
25
|
Recompensation of Decompensated Hepatitis B Cirrhosis: Current Status and Challenges. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9609731. [PMID: 33029534 PMCID: PMC7527887 DOI: 10.1155/2020/9609731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Liver-function decompensation or hepatocellular carcinoma (HCC) gradually appears after chronic hepatitis B progresses to cirrhosis. Effective antiviral treatment can significantly improve the long-term prognosis of decompensated patients, and some patients present recompensation of decompensated hepatitis B cirrhosis. At present, there are limited research data on the recompensation of decompensated hepatitis B cirrhosis. There is still controversy regarding the evaluation time, evaluation indicators, influencing factors, and long-term prognosis of recompensation.
Collapse
|
26
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
27
|
Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol 2020; 50:279-309. [DOI: 10.1080/10408444.2020.1756219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xihui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Tianyan Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control (NIFDC), China Food and Drug Administration (CFDA), Beijing, P. R. China
| | - Leshuai W. Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| |
Collapse
|
28
|
Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020; 9:cells9020420. [PMID: 32059501 PMCID: PMC7072243 DOI: 10.3390/cells9020420] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The liver is a very complex organ that ensures numerous functions; it is thus susceptible to multiple types of damage and dysfunction. Since 1983, orthotopic liver transplantation (OLT) has been considered the only medical solution available to patients when most of their liver function is lost. Unfortunately, the number of patients waiting for OLT is worryingly increasing, and extracorporeal liver support devices are not yet able to counteract the problem. In this review, the current and expected methodologies in liver regeneration are briefly analyzed. In particular, human pluripotent stem cells (hPSCs) as a source of hepatic cells for liver therapy and regeneration are discussed. Principles of hPSC differentiation into hepatocytes are explored, along with the current limitations that have led to the development of 3D culture systems and organoid production. Expected applications of these organoids are discussed with particular attention paid to bio artificial liver (BAL) devices and liver bio-fabrication.
Collapse
Affiliation(s)
- Antonietta Messina
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Eléanor Luce
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Marwa Hussein
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: ; Tel.: +33-145595138
| |
Collapse
|
29
|
Ansari T, Southgate A, Obiri-Yeboa I, Jones LG, Greco K, Olayanju A, Mbundi L, Somasundaram M, Davidson B, Sibbons PD. Development and Characterization of a Porcine Liver Scaffold. Stem Cells Dev 2020; 29:314-326. [PMID: 31854227 DOI: 10.1089/scd.2019.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The growing number of patients requiring liver transplantation for chronic liver disease cannot be currently met due to a shortage in donor tissue. As such, alternative tissue engineering approaches combining the use of acellular biological scaffolds and different cell populations (hepatic or progenitor) are being explored to augment the demand for functional organs. Our goal was to produce a clinically relevant sized scaffold from a sustainable source within 24 h, while preserving the extracellular matrix (ECM) to facilitate cell repopulation at a later stage. Whole porcine livers underwent perfusion decellularization via the hepatic artery and hepatic portal vein using a combination of saponin, sodium deoxycholate, and deionized water washes resulting in an acellular scaffold with an intact vasculature and preserved ECM. Molecular and immunohistochemical analysis (collagen I and IV and laminin) showed complete removal of any DNA material, together with excellent retention of glycosaminoglycans and collagen. Fourier-transform infrared spectroscopy (FTIR) analysis showed both absence of nuclear material and removal of any detergent residue, which was successfully achieved after additional ethanol gradient washes. Samples of the decellularized scaffold were assessed for cytotoxicity by seeding with porcine adipose-derived mesenchymal stem cells in vitro, these cells over a 10-day period showed attachment and proliferation. Perfusion of the vascular tree with contrast media followed by computed tomography (CT) imaging showed an intact vascular network. In vivo implantation of whole intact nonseeded livers, into a porcine model (as auxiliary graft) showed uniform perfusion macroscopically and histologically. Using this method, it is possible to create an acellular, clinically sized, liver scaffold with intact vasculature in less than 24 h.
Collapse
Affiliation(s)
- Tahera Ansari
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Aaron Southgate
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Irene Obiri-Yeboa
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Lauren G Jones
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Karin Greco
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Adedamola Olayanju
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Lubinda Mbundi
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Murali Somasundaram
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Brian Davidson
- Department of Surgery, Royal Free Campus, UCL Medical School, London, United Kingdom
| | - Paul D Sibbons
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| |
Collapse
|
30
|
Chemically-Defined, Xeno-Free, Scalable Production of hPSC-Derived Definitive Endoderm Aggregates with Multi-Lineage Differentiation Potential. Cells 2019; 8:cells8121571. [PMID: 31817235 PMCID: PMC6953099 DOI: 10.3390/cells8121571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
For the production and bio-banking of differentiated derivatives from human pluripotent stem cells (hPSCs) in large quantities for drug screening and cellular therapies, well-defined and robust procedures for differentiation and cryopreservation are required. Definitive endoderm (DE) gives rise to respiratory and digestive epithelium, as well as thyroid, thymus, liver, and pancreas. Here, we present a scalable, universal process for the generation of DE from human-induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs). Optimal control during the differentiation process was attained in chemically-defined and xeno-free suspension culture, and high flexibility of the workflow was achieved by the introduction of an efficient cryopreservation step at the end of DE differentiation. DE aggregates were capable of differentiating into hepatic-like, pancreatic, intestinal, and lung progenitor cells. Scale-up of the differentiation process using stirred-tank bioreactors enabled production of large quantities of DE aggregates. This process provides a useful advance for versatile applications of DE lineages, in particular for cell therapies and drug screening.
Collapse
|
31
|
Natural Flavonol, Myricetin, Enhances the Function and Survival of Cryopreserved Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20246123. [PMID: 31817281 PMCID: PMC6940939 DOI: 10.3390/ijms20246123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
To improve the therapeutic potential of hepatocyte transplantation, the effects of the mitogen-activated protein kinase kinase 4 (MKK4) inhibitor, myricetin (3,3′,4′,5,5′,7-hexahydroxylflavone) were examined using porcine and human hepatocytes in vitro and in vivo. Hepatocytes were cultured, showing the typical morphology of hepatic parenchymal cell under 1–10 µmol/L of myricetin, keeping hepatocyte specific gene expression, and ammonia removal activity. After injecting the hepatocytes into neonatal Severe combined immunodeficiency (SCID) mouse livers, cell colony formation was found at 10–15 weeks after transplantation. The human albumin levels in the sera of engrafted mice were significantly higher in the recipients of myricetin-treated cells than non-treated cells, corresponding to the size of the colonies. In terms of therapeutic efficacy, the injection of myricetin-treated hepatocytes significantly prolonged the survival of ornithine transcarbamylase-deficient SCID mice from 32 days (non-transplant control) to 54 days. Biochemically, the phosphorylation of MKK4 was inhibited in the myricetin-treated hepatocytes. These findings suggest that myricetin has a potentially therapeutic benefit that regulates hepatocyte function and survival, thereby treating liver failure.
Collapse
|
32
|
Wang Z, Li W, Jing H, Ding M, Fu G, Yuan T, Huang W, Dai M, Tang D, Zeng M, Chen Y, Zhang H, Zhu X, Peng Y, Li Q, Yu WF, Yan HX, Zhai B. Generation of hepatic spheroids using human hepatocyte-derived liver progenitor-like cells for hepatotoxicity screening. Theranostics 2019; 9:6690-6705. [PMID: 31588244 PMCID: PMC6771233 DOI: 10.7150/thno.34520] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: The idiosyncratic drug-induced liver injury (iDILI) is a major cause of acute liver injury and a key challenge in late-stage drug development. Individual heterogeneity is considered to be an essential factor of iDILI. However, few in vitro model can predict heterogeneity in iDILI. We have previously shown that mouse and human hepatocytes can be converted to expandable liver progenitor-like cells in vitro (HepLPCs). However, the limited proliferation potential of human HepLPCs confines its industrial application. Here, we reported the generation of a novel hepatocyte model not only to provide unlimited cell sources for human hepatocytes but also to establish a tool for studying iDILI in vitro. Methods: Human primary hepatocytes were isolated by modified two-step perfusion technique. The chemical reprogramming culture condition together with gene-transfer were then used to generate the immortalized HepLPC cell lines (iHepLPCs). Growth curve, doubling time, and karyotype were analyzed to evaluate the proliferation characteristics of iHepLPCs. Modified Hepatocyte Maturation Medium and 3D spheroid culture were applied to re-differentiate iHepLPCs. Results: iHepLPCs exhibited efficient expansion for at least 40 population doublings, with a stable proliferative ability. They could easily differentiate back into metabolically functional hepatocytes in vitro within 10 days. Furthermore, under three-dimensional culture conditions, the formed hepatic spheroids showed multiple liver functions and toxicity profiles close to those of primary human hepatocytes. Importantly, we established a hepatocyte bank by generating a specific number of such cell lines. Screening for population heterogeneity allowed us to analyze the in vitro heterogeneous responses to hepatotoxicity induced by molecular targeted drugs. Conclusions: In light of the proliferative capacity and the heterogeneity they represented, these iHepLPCs cell lines may offer assistance in studying xenobiotic metabolism as well as liver diseases in vitro.
Collapse
|
33
|
Yovchev MI, Lee EJ, Rodriguez‐Silva W, Locker J, Oertel M. Biliary Obstruction Promotes Multilineage Differentiation of Hepatic Stem Cells. Hepatol Commun 2019; 3:1137-1150. [PMID: 31388633 PMCID: PMC6672331 DOI: 10.1002/hep4.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Because of their high regenerative potential, stem cells are an ideal resource for development of therapies that replace injured tissue mass and restore function in patients with end-stage liver diseases. Using a rat model of bile duct ligation (BDL) and biliary fibrosis, we investigated cell engraftment, liver repopulation, and ectopic tissue formation after intrasplenic transplantation of epithelial stem/progenitor cells. Fetal liver cells were infused into the spleens of Fisher 344 rats with progressing biliary fibrosis induced by common BDL or rats without BDL. Cell delivery was well tolerated. After migration to the liver, donor-derived stem/progenitor cells engrafted, differentiated into hepatocytes and cholangiocytes, and formed large cell clusters at 2 months in BDL rats but not controls. Substantial numbers of donor cells were also detected at the splenic injection site where they generated hepatic and nonhepatic tissue. Transplanted cells differentiated into phenotypes other than hepato/cholangiocytic cells only in rats that underwent BDL. Quantitative reverse-transcription polymerase chain reaction analyses demonstrated marked up-regulation of tissue-specific genes of nonhepatic endodermal lineages (e.g., caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1 [Pdx1], keratin 13 [CK-13]), confirmed by immunohistochemistry. Conclusion: BDL and its induced fibrosis promote liver repopulation by ectopically transplanted fetal liver-derived cells. These cell fractions contain multipotent stem cells that colonize the spleen of BDL rats and differentiate into multiple gastrointestinal tissues, including liver, pancreas, intestine, and esophagus. The splenic microenvironment, therefore, represents an ideal niche to assess the differentiation of these stem cells, while BDL provides a stimulus that induces their differentiation.
Collapse
Affiliation(s)
- Mladen I. Yovchev
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | - Edward J. Lee
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | | | - Joseph Locker
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Michael Oertel
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
34
|
Miki T, Takano C, Garcia IM, Grubbs BH. Construction and Evaluation of a Subcutaneous Splenic Injection Port for Serial Intraportal Vein Cell Delivery in Murine Disease Models. Stem Cells Int 2019; 2019:5419501. [PMID: 31191676 PMCID: PMC6525820 DOI: 10.1155/2019/5419501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
The liver is the largest internal organ and the center of homeostatic metabolism. Liver-directed cell transplantation is, therefore, an attractive therapeutic option to treat various metabolic disorders as well as liver diseases. Although clinical liver-directed cell transplantation requires multiple cell injections into the portal venous system, a mouse model is lacking which allows us to perform repetitive cell injections into the portal venous system. Here, we propose a surgical model that utilizes the spleen as a subcutaneous injection port. Mouse spleens were translocated under the skin with intact vascular pedicles. Human placental stem cell transplantations were performed one week following this port construction and repeated three times. Cell distribution was analyzed by quantifying human DNA using human Alu-specific primers. About 50% of the transplanted cells were located homogeneously in the liver one hour after the splenic port injection. Fluorescent-labeled cell tracking and antihuman mitochondrion immunohistochemistry studies demonstrated that the cells localized predominantly in small distal portal branches. A similar cell distribution was observed after multiple cell injections. These data confirm that the subcutaneous splenic injection port is suitable for performing repetitive cell transplantation into the portal venous system of mouse models.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Chika Takano
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Irving M. Garcia
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, 1200 N. State Street, IRD 220, Los Angeles, CA 90033, USA
| |
Collapse
|
35
|
Hay DC, O'Farrelly C. Designer human tissue: coming to a lab near you. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0212. [PMID: 29786548 PMCID: PMC5974436 DOI: 10.1098/rstb.2017.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology ‘in a dish’ or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.
Collapse
Affiliation(s)
- David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Cliona O'Farrelly
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Dublin, Republic of Ireland
| |
Collapse
|
36
|
Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol 2019; 98:151041. [PMID: 31023504 DOI: 10.1016/j.ejcb.2019.04.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising alternative agents for the treatment of inflammatory disorders due to their immunomodulatory functions, and several clinical trials on MSC-based products are currently being conducted. In this review, we discuss recent progress made on the use of MSCs as immunomodulatory agents, developmental challenges posed by MSC-based therapy, and the strategies being used to overcome these challenges. In this context, current understanding of the mechanisms responsible for MSC interactions with the immune system and the molecular responses of MSCs to inflammatory signals are discussed. The immunosuppressive activities of MSCs are initiated by cell-to-cell contact and the release of immuno-regulatory molecules. By doing so, MSCs can inhibit the proliferation and function of T cells, natural killer cells, B cells, and dendritic cells, and can also increase the proliferation of regulatory T cells. However, various problems, such as low transplanted cell viability, poor homing and engraftment into injured tissues, MSC heterogeneity, and lack of adequate information on optimum MSC doses impede clinical applications. On the other hand, it has been shown that the immunomodulatory activities and viabilities of MSCs might be enhanced by 3D-cultured systems, genetic modifications, preconditioning, and targeted-delivery.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
37
|
Ding HR, Wang JL, Tang ZT, Wang Y, Zhou G, Liu Y, Ren HZ, Shi XL. Mesenchymal Stem Cells Improve Glycometabolism and Liver Regeneration in the Treatment of Post-hepatectomy Liver Failure. Front Physiol 2019; 10:412. [PMID: 31024348 PMCID: PMC6468048 DOI: 10.3389/fphys.2019.00412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mortality rate of post-hepatectomy liver failure (PHLF) remains very high, and liver transplantation is the only effective treatment regimen for PHLF. Cell transplantation is a potential treatment for liver diseases. Previous studies have proved that mesenchymal stem cells (MSCs) have immunomodulatory functions. In the present study, we found that MSCs promoted glycogen synthesis and liver regeneration in the treatment of PHLF. MSC transplantation also improved the survival rate of rats after 90% partial hepatectomy (PH). In our current study, we aimed to determine the efficacy and mechanism of MSC transplantation in the treatment of PHLF. METHODS Mesenchymal stem cells were isolated from Sprague-Dawley rats and cultured using a standardized protocol. The MSCs were transplanted to treat acute liver failure induced by 90% PH. The therapeutic efficacy of MSCs on PHLF was verified through measuring alanine transaminase (ALT), aspartate aminotransferase (AST), international normalized ratio (INR), serum ammonia, liver weight to body weight ratio, blood glucose, and histology. To further study the mechanism of MSC transplantation in treatment for PHLF, we assessed the changes in the AKT/glycogen synthase kinase-3β (GSK-3β)/β-catenin pathway. A-674563 (AKT inhibitor) and SB216763 (GSK-3β inhibitor) were employed to validate our findings. SPSS version 19.0 was used for statistical analysis, and the independent-samples t-test was carried out to analyze the collected data. RESULTS Mesenchymal stem cell transplantation attenuated the liver injury in acute liver failure induced by 90% PH. MSC transplantation improved the glucose metabolism and survival rate in the PHLF model. The effect of MSC transplantation on hepatocyte proliferation might be related to AKT/GSK-3β/β-catenin pathway. CONCLUSION Mesenchymal stem cell transplantation could be use as a potential treatment for PHLF.
Collapse
Affiliation(s)
- Hao-ran Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing-lin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen-ting Tang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang Zhou
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|