1
|
Pearson A, Bouhamar A. UL24 herpesvirus determinants of pathogenesis: Roles in virus-host interactions. Virology 2025; 603:110376. [PMID: 39765022 DOI: 10.1016/j.virol.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Members of the UL24 herpesvirus gene family are determinants of pathogenesis. The gene is widely conserved across the Orthoherpesviridae family, also commonly referred to as Herpesviridae. In this review, the impact of UL24 homologs on pathogenesis as studied with different model systems is presented, as well as mechanistic aspects related to the different roles of UL24 proteins in virus-host cell interactions. The targeting of UL24 for the development of therapeutic applications is also discussed.
Collapse
Affiliation(s)
- Angela Pearson
- Institut National de La Recherche Scientifique, Laval, Québec, Canada.
| | - Amel Bouhamar
- Institut National de La Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
2
|
Orbaum-Harel O, Sarid R. Comparative Review of the Conserved UL24 Protein Family in Herpesviruses. Int J Mol Sci 2024; 25:11268. [PMID: 39457049 PMCID: PMC11508437 DOI: 10.3390/ijms252011268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The UL24 protein family, conserved across all subfamilies of Orthoherpesviridae, plays diverse and significant roles in viral replication, host-virus interactions and pathogenesis. Understanding the molecular mechanisms and interactions of UL24 proteins is key to unraveling the complex interplay between herpesviruses and their hosts. This review provides a comparative and comprehensive overview of current knowledge on UL24 family members, including their conservation, expression patterns, cellular localization, and functional roles upon their expression and during viral infection, highlighting their significance in herpesvirus biology and their potential functions.
Collapse
Affiliation(s)
- Odelia Orbaum-Harel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
4
|
A High-Content Screening Assay for the Discovery of Novel Proteasome Inhibitors from Formosan Soft Corals. Mar Drugs 2018; 16:md16100395. [PMID: 30347865 PMCID: PMC6213913 DOI: 10.3390/md16100395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic pathway that safeguards protein homeostasis. The main 26S proteasome consists of a 20S catalytic core proteasome and a 19S substrate recognition proteasome. UPS dysfunction underlies many important clinical diseases involving inflammation, tumors, and neurodegeneration. Currently, three 20S proteasome inhibitors, bortezomib, carfilzomib, and ixazomib, have been approved for the treatment of multiple myeloma. We aim to screen UPS inhibitors for biomedical purposes. The protein interaction network of human cytomegalovirus UL76 targets UPS, resulting in aggregations of ubiquitinated proteins termed aggresomes. In this study, we demonstrated that cell-based high-content measurements of EGFP-UL76 aggresomes responded to bortezomib and MG132 treatment in a dose-dependent manner. Employing this high-content screening (HCS) assay, we screened natural compounds purified from Formosan soft corals. Four cembrane-based compounds, sarcophytonin A (1), sarcophytoxide (2), sarcophine (3), and laevigatol A (4), were found to enhance the high-content profiles of EGFP-UL76 aggresomes with relative ratios of 0.2. By comparison to the mechanistic action of proteasome inhibitors, compounds 1 and 3 modulated the accumulation of ubiquitinated proteins, with a unique pattern likely targeting 19S proteasome. We confirmed that the EGFP-UL76 aggresome-based HCS system greatly improves the efficacy and sensitivity of the identification of proteasome inhibitors.
Collapse
|
5
|
Cytomegalovirus Late Protein pUL31 Alters Pre-rRNA Expression and Nuclear Organization during Infection. J Virol 2017; 91:JVI.00593-17. [PMID: 28659485 DOI: 10.1128/jvi.00593-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
The replication cycle of human cytomegalovirus (CMV) leads to drastic reorganization of domains in the host cell nucleus. However, the mechanisms involved and how these domains contribute to infection are not well understood. Our recent studies defining the CMV-induced nuclear proteome identified several viral proteins of unknown functions, including a protein encoded by the UL31 gene. We set out to define the role of UL31 in CMV replication. UL31 is predicted to encode a 74-kDa protein, referred to as pUL31, containing a bipartite nuclear localization signal, an intrinsically disordered region overlapping arginine-rich motifs, and a C-terminal dUTPase-like structure. We observed that pUL31 is expressed with true late kinetics and is localized to nucleolin-containing nuclear domains. However, pUL31 is excluded from the viral nuclear replication center. Nucleolin is a marker of nucleoli, which are membrane-less regions involved in regulating ribosome biosynthesis and cellular stress responses. Other CMV proteins associate with nucleoli, and we demonstrate that pUL31 specifically interacts with the viral protein, pUL76. Coexpression of both proteins altered pUL31 localization and nucleolar organization. During infection, pUL31 colocalizes with nucleolin but not the transcriptional activator, UBF. In the absence of pUL31, CMV fails to reorganize nucleolin and UBF and exhibits a replication defect at a low multiplicity of infection. Finally, we observed that pUL31 is necessary and sufficient to reduce pre-rRNA levels, and this was dependent on the dUTPase-like motif in pUL31. Our studies demonstrate that CMV pUL31 functions in regulating nucleolar biology and contributes to the reorganization of nucleoli during infection.IMPORTANCE Nucleolar biology is important during CMV infection with the nucleolar protein, with nucleolin playing a role in maintaining the architecture of the viral nuclear replication center. However, the extent of CMV-mediated regulation of nucleolar biology is not well established. Proteins within nucleoli regulate ribosome biosynthesis and p53-dependent cellular stress responses that are capable of inducing cell cycle arrest and/or apoptosis, and they are proposed targets for cancer therapies. This study establishes that CMV protein pUL31 is necessary and sufficient to regulate nucleolar biology involving the reorganization of nucleolar proteins. Understanding these processes will help define approaches to stimulate cellular intrinsic stress responses that are capable of inhibiting CMV infection.
Collapse
|
6
|
Sanabria-Solano C, Gonzalez CE, Richerioux N, Bertrand L, Dridi S, Griffiths A, Langelier Y, Pearson A. Regulation of viral gene expression by the herpes simplex virus 1UL24 protein (HSV-1UL24 inhibits accumulation of viral transcripts). Virology 2016; 495:148-60. [PMID: 27214229 DOI: 10.1016/j.virol.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
UL24 is conserved among all Herpesviridae. In herpes simplex virus 1 (HSV-1), UL24 mutations lead to reduced viral titers both in cell culture and in vivo, and reduced pathogenicity. The human cytomegalovirus ortholog of UL24 has a gene regulatory function; however, it is not known whether other UL24 orthologs also affect gene expression. We discovered that in co-transfection experiments, expression of UL24 correlated with a reduction in the expression of several viral proteins and transcripts. Substitution mutations targeting conserved residues in UL24 impaired this function. Reduced transcript levels did not appear attributable to changes in mRNA stability. The UL24 ortholog of Herpes B virus exhibited a similar activity. An HSV-1 mutant that does not express UL24 produced more viral R1 and R2 transcripts than the wild type or rescue virus relative to the amount of viral DNA. These results reveal a new role for HSV-1UL24 in regulating viral mRNA accumulation.
Collapse
Affiliation(s)
| | - Carmen Elena Gonzalez
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Nicolas Richerioux
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Luc Bertrand
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Slimane Dridi
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Anthony Griffiths
- Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227-5301, United States
| | - Yves Langelier
- CRCHUM (Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Pavillon R, 900 Saint-Denis, Montréal, Canada H2X 0A9
| | - Angela Pearson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7.
| |
Collapse
|
7
|
Wang SK, Jiang MJ, Lin SR, Chen MY, Wang HH, Duh CY. Calpains mediate the proteolytic modification of human cytomegalovirus UL112-113 proteins. J Gen Virol 2015; 96:1115-1126. [DOI: 10.1099/vir.0.000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/03/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shang-Kwei Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meei Jyh Jiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Rung Lin
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Yin Chen
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsueh Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Yih Duh
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Human cytomegalovirus UL76 elicits novel aggresome formation via interaction with S5a of the ubiquitin proteasome system. J Virol 2013; 87:11562-78. [PMID: 23966401 DOI: 10.1128/jvi.01568-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV UL76 is a member of a conserved Herpesviridae protein family (Herpes_UL24) that is involved in viral production, latency, and reactivation. UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems (UPS). Furthermore, fluorescence recovery after photobleaching experiments suggests that UL76 reduces protein mobility in the aggresome, which indicates that UL76 elicits the aggregation of misfolded proteins. Moreover, in the absence of other viral proteins, UL76 interacts with S5a, which is a major receptor of polyubiquitinated proteins for UPS proteolysis via its conserved region and the von Willebrand factor type A (VWA) domain of S5a. We demonstrate that UL76 sequesters polyubiquitinated proteins and S5a to nuclear aggresomes in biological proximity. After knockdown of endogenous S5a by RNA interference techniques, the UL76 level was only minimally affected in transiently expressing cells. However, a significant reduction in the number of cells containing UL76 nuclear aggresomes was observed, which suggests that S5a may play a key role in aggresome formation. Moreover, we show that UL76 interacts with S5a in the late phase of viral infection and that knockdown of S5a hinders the development of both the replication compartment and the aggresome. In this study, we demonstrate that UL76 induces a novel nuclear aggresome, likely by subverting S5a of the UPS. Given that UL76 belongs to a conserved family, this underlying mechanism may be shared by all members of the Herpesviridae.
Collapse
|
9
|
Nascimento R, Costa H, Parkhouse RME. Virus manipulation of cell cycle. PROTOPLASMA 2012; 249:519-528. [PMID: 21986922 DOI: 10.1007/s00709-011-0327-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal.
| | | | | |
Collapse
|
10
|
Nascimento R, Costa H, Dias JD, Parkhouse RME. MHV-68 Open Reading Frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol 2010; 156:375-86. [PMID: 21104281 DOI: 10.1007/s00705-010-0862-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
Abstract
Recently, it has been demonstrated that the MHV-68 ORF20-encoded gene product induces cell-cycle arrest at the G2/M phase, followed by apoptosis. To study the role of this conserved gene in vivo, two independent ORF20-deficient MHV-68 viruses and their revertants were constructed. As the replication in vitro of both mutants followed similar kinetics to that of the wild-type and revertant viruses, ORF20 is therefore a nonessential virus gene. No cell cycle arrest could be observed upon infection of cells with wild type MHV-68 or mutant viruses. In addition, no major differences were detected between mock- and virus-infected cells when protein and inactivation levels of the mitotic promoter factor cdc2/cyclinB were analyzed. Following intranasal infection, the recovery of mutant, revertant and wild-type viruses in the lungs was similar. With the ORF20-deficient viruses, however, there was a significant delay of four days in clearance of virus from the lungs. Surprisingly, the magnitude and cell population distribution in the exudates of the lung was essentially similar to mice infected with wild-type, revertant or ORF20-deleted viruses. Subsequent establishment of latency was normal for both mutants, demonstrating that ORF20 does not play a critical role in establishment of a persistent infection. These results indicate that while expression of ORF20 may impact on the pathogenicity of the infection, the observed induction of G2/M arrest in ORF20-expressing cells may not be the primary function of ORF20 in the context of viral infection.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande nº6, Apartado 14, 2779-558 Oeiras, Portugal
| | | | | | | |
Collapse
|
11
|
Isomura H, Stinski MF, Murata T, Nakayama S, Chiba S, Akatsuka Y, Kanda T, Tsurumi T. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene. PLoS One 2010; 5:e11901. [PMID: 20689582 PMCID: PMC2912765 DOI: 10.1371/journal.pone.0011901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/07/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Kanokoden, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang SK, Hu CH, Lu MC, Duh CY, Liao PC, Tyan YC. Novel virus-associated proteins encoded by UL112–113 of human cytomegalovirus. J Gen Virol 2009; 90:2840-2848. [DOI: 10.1099/vir.0.013037-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Evidence suggests that the products of the human cytomegalovirus (HCMV) UL112–113 genes are involved in viral DNA replication during lytic infection. A polyclonal antibody was raised against the UL112 open reading frame (ORF) to characterize its function in detail. Immunoblots utilizing the UL112 antibody identified seven distinct protein bands (p20, p26, p28, p34, p43, p50 and p84) expressed during the HCMV infectious cycle. After screening a cDNA library constructed from cells 72 h after infection with HCMV, only four different cDNA protein-producing constructs were obtained, and their ORFs corresponded to p34, p43, p50 and p84. The proteins p20, p26 and p28 were further shown to be selectively included within mature HCMV particles, virions, non-infectious enveloped particles and dense bodies. Immunoaffinity protein purification was used to prepare the samples for liquid chromatography coupled to tandem mass spectrometry. This analysis revealed that p20, p26 and p28 were derived from the UL112 ORF, most likely through post-translational proteolytic cleavage.
Collapse
Affiliation(s)
- Shang-Kwei Wang
- Department of Microbiology, Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC
| | - Cheng-Hui Hu
- Department of Microbiology, Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC
| | - Miao-Chan Lu
- Department of Microbiology, Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC
| | - Chang-Yih Duh
- Asia-Pacific Ocean Research Center, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan, ROC
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan, ROC
| | - Yu-Chang Tyan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan, ROC
| |
Collapse
|
13
|
Siew VK, Duh CY, Wang SK. Human cytomegalovirus UL76 induces chromosome aberrations. J Biomed Sci 2009; 16:107. [PMID: 19930723 PMCID: PMC2788540 DOI: 10.1186/1423-0127-16-107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/25/2009] [Indexed: 12/26/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations.
Collapse
Affiliation(s)
- Voon-Kwan Siew
- Department of Microbiology, Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
| | | | | |
Collapse
|
14
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
15
|
Bertrand L, Pearson A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol 2008; 89:1142-1151. [PMID: 18420791 DOI: 10.1099/vir.0.83573-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UL24 is widely conserved among herpesviruses but its function during infection is poorly understood. Previously, we discovered a genetic link between UL24 and the herpes simplex virus 1-induced dispersal of the nucleolar protein nucleolin. Here, we report that in the absence of viral infection, transiently expressed UL24 accumulated in both the nucleus and the Golgi apparatus. In the majority of transfected cells, nuclear staining for UL24 was diffuse, but a minor staining pattern, whereby UL24 was present in nuclear foci corresponding to nucleoli, was also observed. Expression of UL24 correlated with the dispersal of nucleolin. This dispersal did not appear to be a consequence of a general disaggregation of nucleoli, as foci of fibrillarin staining persisted in cells expressing UL24. The conserved N-terminal region of UL24 was sufficient to cause this change in subcellular distribution of nucleolin. Interestingly, a bipartite nuclear localization signal predicted within the C terminus of UL24 was dispensable for nuclear localization. None of the five individual UL24 homology domains was required for nuclear or Golgi localization, but deletion of these domains resulted in the loss of nucleolin-dispersal activity. We determined that a nucleolar-targeting signal was contained within the first 60 aa of UL24. Our results show that the conserved N-terminal domain of UL24 is sufficient to specifically induce dispersal of nucleolin in the absence of other viral proteins or virus-induced cellular modifications. These results suggest that UL24 directly targets cellular factors that affect the composition of nucleoli.
Collapse
Affiliation(s)
- Luc Bertrand
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Angela Pearson
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| |
Collapse
|
16
|
Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 2007; 363:397-409. [PMID: 17346762 DOI: 10.1016/j.virol.2007.01.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/02/2007] [Accepted: 01/18/2007] [Indexed: 11/23/2022]
Abstract
UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went from clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.
Collapse
|
17
|
Wang SK, Duh CY, Wu CW. Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. J Virol 2004; 78:9750-62. [PMID: 15331708 PMCID: PMC515012 DOI: 10.1128/jvi.78.18.9750-9762.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL76 gene encodes a highly conserved herpesvirus protein, pUL76, which is able to modulate gene expression in either activation or repression. In this study, two specific transcripts were found to contain the reading frame of UL76, one a 4.5-kb and the other a 5.5-kb tricistronic mRNA encoding the UL76, UL77, and UL78 open reading frames. Both transcripts were expressed with true late kinetics, as revealed by data showing inhibition of production in the presence of phosphonoformic acid. Immediately after viral infection, pUL76 was found in the nuclear fraction and was detected in cells in the presence of the protein synthesis inhibitor cycloheximide. Subsequent virus particle purification and Western blot analysis revealed that two forms of pUL76 are associated within mature virions. The high-molecular-mass protein (H-pUL76) was verified as originating from a free form of pUL76 by cross-linking with an unknown protein(s). By performing a biochemical fractionation experiment with purified virions, we provide evidence that pUL76 and H-pUL76 are associated with the detergent-soluble (envelope) and -insoluble (tegument/capsid) fractions, respectively. Both results were consistent with the images exhibited by immunoelectron microscopy, which showed that the distribution of gold particles labeled by the anti-pUL76 antibody juxtaposed the compartments of the envelope and the tegument/capsid of the virion. Evidence indicated that expression of pUL76 at the immediate-early phase of the viral replication cycle leads to the inhibition of HCMV production. The viral constituent pUL76, with a dominant-negative effect on replication, may provide a novel mechanism for HCMV's resumption of latency.
Collapse
Affiliation(s)
- Shang-Kwei Wang
- 100 Shih-Chuan 1st Road, Department of Microbiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | |
Collapse
|
18
|
Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 2003; 100:14976-81. [PMID: 14657367 PMCID: PMC299866 DOI: 10.1073/pnas.2136652100] [Citation(s) in RCA: 404] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Six strains of human cytomegalovirus have been sequenced, including two laboratory strains (AD169 and Towne) that have been extensively passaged in fibroblasts and four clinical isolates that have been passaged to a limited extent in the laboratory (Toledo, FIX, PH, and TR). All of the sequenced viral genomes have been cloned as infectious bacterial artificial chromosomes. A total of 252 ORFs with the potential to encode proteins have been identified that are conserved in all four clinical isolates of the virus. Multiple sequence alignments revealed substantial variation in the amino acid sequences encoded by many of the conserved ORFs.
Collapse
Affiliation(s)
- Eain Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 80544, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Murphy E, Rigoutsos I, Shibuya T, Shenk TE. Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 2003; 100:13585-90. [PMID: 14593199 PMCID: PMC263857 DOI: 10.1073/pnas.1735466100] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bio-Dictionary-based Gene Finder was used to reassess the coding potential of the AD169 laboratory strain of human cytomegalovirus and sequences in the Toledo strain that are missing in the laboratory strain of the virus. The gene-finder algorithm assesses the potential of an ORF to encode a protein based on matches to a database of amino acid patterns derived from a large collection of proteins. The algorithm was used to score all human cytomegalovirus ORFs with the potential to encode polypeptides >/=50 aa in length. As a further test for functionality, the genomes of the chimpanzee, rhesus, and murine cytomegaloviruses were searched for orthologues of the predicted human cytomegalovirus ORFs. The analysis indicates that 37 previously annotated ORFs ought to be discarded, and at least nine previously unrecognized ORFs with relatively strong coding potential should be added. Thus, the human cytomegalovirus genome appears to contain approximately 192 unique ORFs with the potential to encode a protein. Support for several of the predictions of our in silico analysis was obtained by sequencing several domains within a clinical isolate of human cytomegalovirus.
Collapse
Affiliation(s)
- Eain Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 80544, USA
| | | | | | | |
Collapse
|