1
|
Obregon-Perko V, Hodara VL, Parodi LM, Giavedoni LD. Baboon CD8 T cells suppress SIVmac infection in CD4 T cells through contact-dependent production of MIP-1α, MIP-1β, and RANTES. Cytokine 2018; 111:408-419. [PMID: 29807688 PMCID: PMC6261791 DOI: 10.1016/j.cyto.2018.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 11/15/2022]
Abstract
Simian immunodeficiency virus (SIV) infection in rhesus macaques is often characterized by high viremia and CD4 T cell depletion. By contrast, SIV infection in African nonhuman primate natural hosts is typically nonpathogenic despite active viral replication. Baboons are abundant in Africa and have a geographical distribution that overlaps with natural hosts, but they do not harbor SIVs. Previous work has demonstrated baboons are resistant to chronic SIV infection and/or disease in vivo but the underlying mechanisms remain unknown. Using in vitro SIVmac infections, we sought to identify SIV restriction factors in baboons by comparing observations to the pathogenic rhesus macaque model. SIVmac replicated in baboon PBMC but had delayed kinetics compared to rhesus PBMC. However, SIVmac replication in baboon and rhesus isolated CD4 cells were similar to the kinetics seen for rhesus PBMC, demonstrating intracellular restriction factors do not play a strong role in baboon inhibition of SIVmac replication. Here, we show CD8 T cells contribute to the innate SIV-suppressive activity seen in naïve baboon PBMC. As one mechanism of restriction, we identified higher production of MIP-1α, MIP-1β, and RANTES by baboon PBMC. Contact between CD4 and CD8 T cells resulted in maximum production of these chemokines and suppression of viral replication, whereas neutralization of CCR5-binding chemokines in baboon PBMC increased viral loads. Our studies indicate baboon natural restriction of SIVmac replication is largely dependent on CD4-extrinsinc mechanisms mediated, in part, by CD8 T cells.
Collapse
Affiliation(s)
- Veronica Obregon-Perko
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health, Long School of Medicine, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Vida L Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Laura M Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Luis D Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
2
|
Amedee AM, Nichols WA, Robichaux S, Bagby GJ, Nelson S. Chronic alcohol abuse and HIV disease progression: studies with the non-human primate model. Curr HIV Res 2015; 12:243-53. [PMID: 25053367 DOI: 10.2174/1570162x12666140721115717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 01/02/2023]
Abstract
The populations at risk for HIV infection, as well as those living with HIV, overlap with populations that engage in heavy alcohol consumption. Alcohol use has been associated with high-risk sexual behavior and an increased likelihood of acquiring HIV, as well as poor outcome measures of disease such as increased viral loads and declines in CD4+ T lymphocytes among those living with HIV-infections. It is difficult to discern the biological mechanisms by which alcohol use affects the virus:host interaction in human populations due to the numerous variables introduced by human behavior. The rhesus macaque infected with simian immunodeficiency virus has served as an invaluable model for understanding HIV disease and transmission, and thus, provides an ideal model to evaluate the effects of chronic alcohol use on viral infection and disease progression in a controlled environment. In this review, we describe the different macaque models of chronic alcohol consumption and summarize the studies conducted with SIV and alcohol. Collectively, they have shown that chronic alcohol consumption results in higher levels of plasma virus and alterations in immune cell populations that potentiate SIV replication. They also demonstrate a significant impact of chronic alcohol use on SIV-disease progression and survival. These studies highlight the utility of the rhesus macaque in deciphering the biological effects of alcohol on HIV disease. Future studies with this well-established model will address the biological influence of alcohol use on susceptibility to HIV, as well as the efficacy of anti-retroviral therapy.
Collapse
Affiliation(s)
| | | | | | | | - Steve Nelson
- Department of Microbiology, Immunology, and Parasitology, LSUHSC, 1901 Perdido St., New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Amedee AM, Nichols WA, LeCapitaine NJ, Stouwe CV, Birke LL, Lacour N, Winsauer PJ, Molina PE. Chronic Δ⁹-tetrahydrocannabinol administration may not attenuate simian immunodeficiency virus disease progression in female rhesus macaques. AIDS Res Hum Retroviruses 2014; 30:1216-25. [PMID: 25113915 DOI: 10.1089/aid.2014.0108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persons living with HIV/AIDS (PLWHA) frequently use cannabinoids, either recreationally by smoking marijuana or therapeutically (delta-9-tetrahydrocannabinol; Δ(9)-THC dronabinol). Previously, we demonstrated that chronic Δ(9)-THC administration decreases early mortality in male simian immunodeficiency virus (SIV)-infected macaques. In this study, we sought to examine whether similar protective effects resulted from chronic cannabinoid administration in SIV-infected female rhesus macaques. Clinical and viral parameters were evaluated in eight female rhesus macaques that received either Δ(9)-THC (0.18-0.32 mg/kg, intramuscularly, twice daily) or vehicle (VEH) starting 28 days prior to intravenous inoculation with SIVmac251. SIV disease progression was assessed by changes in body weight, mortality, viral levels in plasma and mucosal sites, and lymphocyte subsets. In contrast to our results in male animals, chronic Δ(9)-THC did not protect SIV-infected female rhesus macaques from early mortality. Markers of SIV disease, including viral load and CD4(+)/CD8(+) ratio, were not altered by Δ(9)-THC compared to control females; however, females that received chronic Δ(9)-THC did not gain as much weight as control animals. In addition, Δ(9)-THC administration increased total CXCR4 expression in both peripheral and duodenal CD4(+) and CD8(+) T lymphocytes prior to SIV inoculation. Although protection from early mortality was not evident, chronic Δ(9)-THC did not affect clinical markers of SIV disease progression. The contrasting effects of chronic Δ(9)-THC in males versus females remain to be explained, but highlight the need for further studies to explore the sex-dependent effects of Δ(9)-THC and other cannabinoids on the HIV disease course and their implications for virus transmission.
Collapse
Affiliation(s)
- Angela M. Amedee
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Whitney A. Nichols
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nedra Lacour
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
4
|
Abstract
Limited understanding of correlates of protection from HIV transmission hinders development of an efficacious vaccine. D. J. M. Lewis and colleagues (J. Virol. 88:11648-11657, 2014, doi:10.1128/JVI.01621-14) now report that vaginal immunization with an HIVgp140 vaccine linked to the 70-kDa heat shock protein downregulated the human immunodeficiency virus (HIV) coreceptor CCR5 (chemokine [C-C motif] receptor 5) and increased expression of the HIV resistance factor APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G), in women. These effects correlated with HIV suppression ex vivo. Thus, vaccine-induced innate responses not only facilitate adaptive immunity-they may prove to be critical for preventing HIV transmission.
Collapse
|
5
|
Molina PE, Amedee AM, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer PJ, Vande Stouwe C, McGoey RR, Auten MW, LaMotte L, Chandra LC, Birke LL. Modulation of gut-specific mechanisms by chronic δ(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis. AIDS Res Hum Retroviruses 2014; 30:567-78. [PMID: 24400995 DOI: 10.1089/aid.2013.0182] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our studies have demonstrated that chronic Δ(9)-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques. Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression. We used a systems approach to examine the duodenal immune environment in 4- to 6-year-old male rhesus monkeys inoculated intravenously with SIVMAC251 after 17 months of chronic THC administration (0.18-0.32 mg/kg, intramuscularly, twice daily). Duodenal tissue samples excised from chronic THC- (N=4) and vehicle (VEH)-treated (N=4) subjects at ∼5 months postinoculation showed lower viral load, increased duodenal integrin beta 7(+)(β7) CD4(+) and CD8(+) central memory T cells, and a significant preferential increase in Th2 cytokine expression. Gene array analysis identified six genes that were differentially expressed in intestinal samples of the THC/SIV animals when compared to those differentially expressed between VEH/SIV and uninfected controls. These genes were identified as having significant participation in (1) apoptosis, (2) cell survival, proliferation, and morphogenesis, and (3) energy and substrate metabolic processes. Additional analysis comparing the duodenal gene expression in THC/SIV vs. VEH/SIV animals identified 93 differentially expressed genes that participate in processes involved in muscle contraction, protein folding, cytoskeleton remodeling, cell adhesion, and cell signaling. Immunohistochemical staining showed attenuated apoptosis in epithelial crypt cells of THC/SIV subjects. Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.
Collapse
Affiliation(s)
- Patricia E. Molina
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Angela M. Amedee
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jovanny Zabaleta
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mahesh Mohan
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Robin R. McGoey
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthew W. Auten
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lynn LaMotte
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lawrance C. Chandra
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
6
|
Aamer HA, Rajakumar P, Nyaundi J, Murphey-Corb M. Resistance to simian immunodeficiency virus low dose rectal challenge is associated with higher constitutive TRIM5α expression in PBMC. Retrovirology 2014; 11:39. [PMID: 24884551 PMCID: PMC4041354 DOI: 10.1186/1742-4690-11-39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/14/2014] [Indexed: 01/09/2023] Open
Abstract
Background At least six host-encoded restriction factors (RFs), APOBEC3G, TRIM5α, tetherin, SAMHD1, schlafen 11, and Mx2 have now been shown to inhibit HIV and/or SIV replication in vitro. To determine their role in vivo in the resistance of macaques to mucosally-acquired SIV, we quantified both pre-exposure (basal) and post-exposure mRNA levels of these RFs, Mx1, and IFNγ in PBMC, lymph nodes, and duodenum of rhesus macaques undergoing weekly low dose rectal exposures to the primary isolate, SIV/DeltaB670. Results Repetitive challenge divided the monkeys into two groups with respect to their susceptibility to infection: highly susceptible (2–3 challenges, 5 monkeys) and poorly susceptible (≥6 challenges, 3 monkeys). Basal RF and Mx1 expression varied among the three tissues examined, with the lowest expression generally detected in duodenal tissues, and the highest observed in PBMC. The one exception was A3G whose basal expression was greatest in lymph nodes. Importantly, significantly higher basal expression of TRIM5α and Mx1 was observed in PBMC of animals more resistant to mucosal infection. Moreover, individual TRIM5α levels were stable throughout a year prior to infection. Post-exposure induction of these genes was also observed after virus appearance in plasma, with elevated levels in PBMC and duodenum transiently occurring 7–10 days post infection. They did not appear to have an effect on control of viremia. Interestingly, minimal to no induction was observed in the resistant animal that became an elite controller. Conclusions These results suggest that constitutively expressed TRIM5α appears to play a greater role in restricting mucosal transmission of SIV than that associated with type I interferon induction following virus entry. Surprisingly, this association was not observed with the other RFs. The higher basal expression of TRIM5α observed in PBMC than in duodenal tissues emphasizes the understated role of the second barrier to systemic infection involving the transport of virus from the mucosal compartment to the blood. Together, these observations provide a strong incentive for a more comprehensive examination of the intrinsic, variable control of constitutive expression of these genes in the sexual transmission of HIV.
Collapse
Affiliation(s)
| | | | | | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity. ACTA ACUST UNITED AC 2013; 20:82-91. [PMID: 23352142 DOI: 10.1016/j.chembiol.2012.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of nonenzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents.
Collapse
|
8
|
Murphey-Corb M, Rajakumar P, Michael H, Nyaundi J, Didier PJ, Reeve AB, Mitsuya H, Sarafianos SG, Parniak MA. Response of simian immunodeficiency virus to the novel nucleoside reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine in vitro and in vivo. Antimicrob Agents Chemother 2012; 56:4707-12. [PMID: 22713337 PMCID: PMC3421895 DOI: 10.1128/aac.00723-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/05/2012] [Indexed: 01/13/2023] Open
Abstract
Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are essential components in first-line therapy for human immunodeficiency virus (HIV) infection. However, long-term treatment with existing NRTIs can be associated with significant toxic side effects and the emergence of drug-resistant strains. The identification of new NRTIs for the continued management of HIV-infected people therefore is paramount. In this report, we describe the response of a primary isolate of simian immunodeficiency virus (SIV) to 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) both in vitro and in vivo. EFdA was 3 orders of magnitude better than tenofovir (TFV), zidovudine (AZT), and emtricitabine (FTC) in blocking replication of SIV in monkey peripheral blood mononuclear cells (PBMCs) in vitro, and in a preliminary study using two SIV-infected macaques with advanced AIDS, it was highly effective at treating SIV infection and AIDS symptoms in vivo. Both animals had 3- to 4-log decreases in plasma virus burden within 1 week of EFdA therapy (0.4 mg/kg of body weight, delivered subcutaneously twice a day) that eventually became undetectable. Clinical signs of disease (diarrhea, weight loss, and poor activity) also resolved within the first month of treatment. No detectable clinical or pathological signs of drug toxicity were observed within 6 months of continuous therapy. Virus suppression was sustained until drug treatment was discontinued, at which time virus levels rebounded. Although the rebound virus contained the M184V/I mutation in the viral reverse transcriptase, EFdA was fully effective in maintaining suppression of mutant virus throughout the drug treatment period. These results suggest that expanded studies with EFdA are warranted.
Collapse
Affiliation(s)
- Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fuller DH, Rajakumar P, Che JW, Narendran A, Nyaundi J, Michael H, Yager EJ, Stagnar C, Wahlberg B, Taber R, Haynes JR, Cook FC, Ertl P, Tite J, Amedee AM, Murphey-Corb M. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques. PLoS One 2012; 7:e33715. [PMID: 22442716 PMCID: PMC3307760 DOI: 10.1371/journal.pone.0033715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.
Collapse
Affiliation(s)
- Deborah Heydenburg Fuller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Albany Medical College, Albany, New York, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Premeela Rajakumar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny W. Che
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Amithi Narendran
- Albany Medical College, Albany, New York, United States of America
| | - Julia Nyaundi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heather Michael
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric J. Yager
- Albany Medical College, Albany, New York, United States of America
| | - Cristy Stagnar
- Albany Medical College, Albany, New York, United States of America
| | - Brendon Wahlberg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Taber
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel R. Haynes
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | | | - Peter Ertl
- GlaxoSmithKline, Stevenage, United Kingdom
| | - John Tite
- GlaxoSmithKline, Stevenage, United Kingdom
| | - Angela M. Amedee
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Santos RV, Lin KC, Mansfield K, Wachtman LM. Specific pathogen-free status alters immunophenotype in rhesus macaques: implications for the study of simian immunodeficiency virus. AIDS Res Hum Retroviruses 2011; 27:1033-42. [PMID: 21391843 DOI: 10.1089/aid.2010.0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The repertoire of viruses to which research primates are exposed, even in the absence of clinical disease, may contribute to experimental confounding. In this study we examined whether standard specific pathogen-free (SPF) rhesus macaques exposed to a wider spectrum of enzootic viruses and expanded SPF macaques derived to exclude a greater number of viral agents would display alterations in immune activation or immune cell populations. Given the impact of immunophenotype on human immunodeficiency virus (HIV) progression and the importance of the simian immunodeficiency virus (SIV) model for the study of HIV pathogenesis, we elected to additionally examine the impact of SPF status on the capacity of peripheral blood mononuclear cells (PBMCs) to support SIV replication. The expanded SPF group displayed significant immune alterations including increased serum interleukin (IL)-15 and a greater in vitro elaboration of GM-CSF, IL1ra, VEGF, IL-10, IL12/23, and MIP-1b. Consistent with reduced viral antigenic exposure in expanded SPF macaques, decreased CD4(+) and CD8(+) transitional and effector memory (T(EM)) cell populations were observed. Expanded SPF PBMC cultures also demonstrated an increased peak (192.61 ng/ml p27) and area under the curve in in vitro SIV production (1968.64 ng/ml p27) when compared to standard SPF macaques (99.32 ng/ml p27; p=0.03 and 915.17 ng/ml p27; p=0.03, respectively). In vitro SIV replication did not correlate with CD4(+) T(EM) cell counts but was highly correlated with serum IL-15 in the subset of animals examined. Findings suggest that an altered immunophenotype associated with the maintenance of primates under differing levels of bioexclusion has the potential to impact the outcome of SIV studies and models for which the measurement of immunologic endpoints is critical.
Collapse
Affiliation(s)
- Rosemary V. Santos
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Kuei-Chin Lin
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Keith Mansfield
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Lynn M. Wachtman
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| |
Collapse
|
11
|
Winsauer PJ, Molina PE, Amedee AM, Filipeanu CM, McGoey RR, Troxclair DA, Walker EM, Birke LL, Stouwe CV, Howard JM, Leonard ST, Moerschbaecher JM, Lewis PB. Tolerance to chronic delta-9-tetrahydrocannabinol (Δ⁹-THC) in rhesus macaques infected with simian immunodeficiency virus. Exp Clin Psychopharmacol 2011; 19:154-72. [PMID: 21463073 PMCID: PMC3140653 DOI: 10.1037/a0023000] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although Δ⁹-THC has been approved to treat anorexia and weight loss associated with AIDS, it may also reduce well-being by disrupting complex behavioral processes or enhancing HIV replication. To investigate these possibilities, four groups of male rhesus macaques were trained to respond under an operant acquisition and performance procedure, and administered vehicle or Δ⁹-THC before and after inoculation with simian immunodeficiency virus (SIV(mac251), 100 TCID₅₀/ml, i.v.). Prior to chronic Δ⁹-THC and SIV inoculation, 0.032-0.32 mg/kg of Δ⁹-THC produced dose-dependent rate-decreasing effects and small, sporadic error-increasing effects in the acquisition and performance components in each subject. Following 28 days of chronic Δ⁹-THC (0.32 mg/kg, i.m.) or vehicle twice daily, delta-9-THC-treated subjects developed tolerance to the rate-decreasing effects, and this tolerance was maintained during the initial 7-12 months irrespective of SIV infection (i.e., +THC/-SIV, +THC/+SIV). Full necropsy was performed on all SIV subjects an average of 329 days post-SIV inoculation, with postmortem histopathology suggestive of a reduced frequency of CNS pathology as well as opportunistic infections in delta-9-THC-treated subjects. Chronic Δ⁹-THC also significantly reduced CB-1 and CB-2 receptor levels in the hippocampus, attenuated the expression of a proinflammatory cytokine (MCP-1), and did not increase viral load in plasma, cerebrospinal fluid, or brain tissue compared to vehicle-treated subjects with SIV. Together, these data indicate that chronic Δ⁹-THC produces tolerance to its behaviorally disruptive effects on complex tasks while not adversely affecting viral load or other markers of disease progression during the early stages of infection.
Collapse
Affiliation(s)
- Peter J. Winsauer
- Department of Pharmacology, and the Alcohol and Drug Abuse Research Center, LSU Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- Department of Physiology, and the Alcohol and Drug Abuse Research Center, LSU Health Sciences Center
| | - Angela M. Amedee
- Department of Microbiology Immunology and Parasitology, LSU Health Sciences Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Susceptibility to Simian immunodeficiency virus ex vivo predicts outcome of a prime-boost vaccine after SIVmac239 challenge. J Acquir Immune Defic Syndr 2010; 52:162-9. [PMID: 19644382 DOI: 10.1097/qai.0b013e3181b22f4a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Efficacy assessment of AIDS vaccines relies both on preclinically challenging immunized monkeys with simian immunodeficiency virus (SIV) or monitoring infection rates in large human trials. Although conventional parameters of vaccine-induced immune responses do not completely predict outcome, existing methods for testing cellular immunity are sophisticated and difficult to establish in resource-limited settings. METHODS We have used virus replication kinetics (VVR) on ConA-stimulated peripheral blood mononuclear cells from rhesus monkeys immunized with DNA replication-defective adenovirus vector expressing various SIV genes, as an ex vivo model, to mimic the effects of different immune effector functions on viral infection. RESULTS VVR was attenuated by the immunization and correlated 2 weeks after first boost, with the number of interferon gamma-secreting cells and T-cell noncytotoxic antiviral responses. Importantly, VVR on the day of challenge but not interferon gamma responses correlated with viremia and with memory CD4+ T-cell measurements after SIVmac239 challenge. Similarly, T-cell noncytotoxic antiviral responses on the day of challenge correlated directly with memory CD4 T cell and inversely with plasma viremia after challenge. CONCLUSIONS VVR thus served as a better predictor of protective capacity of the vaccine regimen in these monkeys. We suggest that VVR be considered in the evaluation of candidate AIDS vaccines in humans.
Collapse
|
13
|
Okoye A, Park H, Rohankhedkar M, Coyne-Johnson L, Lum R, Walker JM, Planer SL, Legasse AW, Sylwester AW, Piatak M, Lifson JD, Sodora DL, Villinger F, Axthelm MK, Schmitz JE, Picker LJ. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis. ACTA ACUST UNITED AC 2009; 206:1575-88. [PMID: 19546246 PMCID: PMC2715089 DOI: 10.1084/jem.20090356] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.
Collapse
Affiliation(s)
- Afam Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prolonged survival of vaccinated macaques after oral SIVmac239 challenge regardless of viremia control in the chronic phase. Vaccine 2009; 26:6690-8. [PMID: 18694796 DOI: 10.1016/j.vaccine.2008.07.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 07/04/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022]
Abstract
To evaluate the efficacy of a multigenic vaccine and its protective immunity in the SIVmac239 challenge model, 12 rhesus macaques were divided into two groups. The vaccine group was intramuscularly immunized with multigenic DNA and recombinant adenovirus vaccine, while the control group received buffers. At 16 weeks after the last immunization, all macaques were challenged orally with pathogenic SIVmac239. The mean plasma SIV RNA loads of the vaccine group were significantly lower than those of the placebo control group up to 16 weeks post-challenge. The vaccine-induced Gag-specific IFN-gamma ELISPOT T cell responses inversely correlated with the viral loads before the chronic phase. Two out of six vaccinated macaques with strong and sustained Gag-specific T cell responses showed viremia control and maintained CD4+ T cell percentage. However, the other four vaccinated macaques showed high viral loads and reduced level of CD4+ T cell percentages during the chronic phase, comparable to those in control macaques. Five out of six vaccinated macaques survived for more than 72 weeks, while five out of six controls died of an AIDS-related disease. Therefore, the vaccination conferred not only reduction of viral loads in a portion of vaccinated macaques (2/6), but also prolonged survival of all vaccinated macaques regardless of viremia control. Our results further suggest that new experimental approaches may be needed to assess protective effects from AIDS-associated disease in the immunized macaques after oral SIV challenge.
Collapse
|
15
|
Venneti S, Bonneh-Barkay D, Lopresti BJ, Bissel SJ, Wang G, Mathis CA, Piatak M, Lifson JD, Nyaundi JO, Murphey-Corb M, Wiley CA. Longitudinal in vivo positron emission tomography imaging of infected and activated brain macrophages in a macaque model of human immunodeficiency virus encephalitis correlates with central and peripheral markers of encephalitis and areas of synaptic degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1603-16. [PMID: 18467697 DOI: 10.2353/ajpath.2008.070967] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus encephalitis is characterized by infiltration of the brain with infected and activated macrophages; however, it is not known why disease occurs after variable lengths of infection in 25% of immunosuppressed acquired immune deficiency syndrome patients. We determined in vivo correlates (in peripheral blood and the central nervous system) for the development and progression of lentiviral encephalitis by longitudinally following infected and activated macrophages in the brain using positron emission tomography (PET). Using human postmortem brain tissues from both lentivirus-infected encephalitic patients and cell culture systems, we showed that the PET ligand [(3)H](R)-PK11195 bound specifically to virus-infected and activated macrophages. We longitudinally imaged infected and activated brain macrophages in a cohort of macaques infected with simian immunodeficiency virus using [(11)C](R)-PK11195. [(11)C](R)-PK11195 retention in vivo in the brain correlated with viral burden in the brain and cerebrospinal fluid, and with regions of both presynaptic and postsynaptic damage. Finally, longitudinal changes in [(11)C](R)-PK11195 retention in the brain in vivo correlated with changes in circulating monocytes as well as in both natural killer and memory CD4(+) T cells in the periphery. Our results suggest that development and progression of simian immunodeficiency virus encephalitis in vivo correlates with changes in specific cell subtypes in the periphery. A combination of PET imaging and the assessment of these peripheral immune parameters may facilitate longitudinal assessment of lentiviral encephalitis in living patients as well as evaluation of therapeutic efficacies.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Systemic and brain macrophage infections in relation to the development of simian immunodeficiency virus encephalitis. J Virol 2008; 82:5031-42. [PMID: 18337567 DOI: 10.1128/jvi.02069-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The brains of individuals with lentiviral-associated encephalitis contain an abundance of infected and activated macrophages. It has been hypothesized that encephalitis develops when increased numbers of infected monocytes traffic into the central nervous system (CNS) during the end stages of immunosuppression. The relationships between the infection of brain and systemic macrophages and circulating monocytes and the development of lentiviral encephalitis are unknown. We longitudinally examined the extent of monocyte/macrophage infection in blood and lymph nodes of pigtailed macaques that did or did not develop simian immunodeficiency virus encephalitis (SIVE). Compared to levels in macaques that did not develop SIVE, more ex vivo virus production was detected from monocyte-derived macrophages and nonadherent peripheral blood mononuclear cells (PBMCs) from macaques that did develop SIVE. Prior to death, there was an increase in the number of circulating PBMCs following a rise in cerebrospinal fluid viral load in macaques that did develop SIVE but not in nonencephalitic macaques. At necropsy, macaques with SIVE had more infected macrophages in peripheral organs, with the exception of lymph nodes. T cells and NK cells with cytotoxic potential were more abundant in brains with encephalitis; however, T-cell and NK-cell infiltration in SIVE and human immunodeficiency virus encephalitis was more modest than that observed in classical acute herpes simplex virus encephalitis. These findings support the hypothesis that inherent differences in host systemic and CNS monocyte/macrophage viral production are associated with the development of encephalitis.
Collapse
|
17
|
Molina PE, Lang CH, McNurlan M, Bagby GJ, Nelson S. Chronic alcohol accentuates simian acquired immunodeficiency syndrome-associated wasting. Alcohol Clin Exp Res 2007; 32:138-47. [PMID: 18028526 DOI: 10.1111/j.1530-0277.2007.00549.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Survival following human immunodeficiency virus (HIV) infection has improved significantly following the advent of highly active antiretroviral therapy. A large percentage of HIV-infected patients consume and abuse alcohol. Erosion of lean body mass is an important contributing factor to patient morbidity and mortality, and is a common feature of both chronic alcohol (ALC) consumption and acquired immunodeficiency syndrome (AIDS). We hypothesized that alcohol-induced loss in lean body mass is likely to exacerbate the AIDS wasting syndrome, particularly at the terminal stage of AIDS (SAIDS). METHODS This study examined the impact of chronic, intra-gastric ALC (5 h/d x 4 d/wk; blood alcohol levels = 55 mM to 60 mM) administration on body composition and muscle mass in simian immunodeficiency virus (SIV)-infected male Rhesus macaques in contrast to SIV-infected isocaloric (22 kcal/kg/d) sucrose (SUC)-infused control animals at the terminal stage of SIV infection. RESULTS At terminal stage, ALC/SIV+ animals had significantly lower body weight, body mass index, and limb muscle area than SUC/SIV+ animals. Both ALC/SIV+ and SUC/SIV+ animals had suppressed expression of insulin-like growth factor-I and increased expression of the ubiquitin ligase muscle-specific RING finger-1 mRNA. ALC increased mRNA expression of atrogin-1 (pre-SIV and at SAIDS) and tumor necrosis factor (TNF)-alpha (SAIDS). These changes were not associated with significant differences in fractional rates of muscle protein synthesis or in overall survival rate. These data show that chronic ALC exacerbated the loss of muscle mass at terminal SAIDS. CONCLUSION Our findings suggest the involvement of TNF-alpha and increased muscle proteolysis via atrogin-1 for the greater erosion of lean body mass at terminal SAIDS in ALC-treated Rhesus macaques.
Collapse
Affiliation(s)
- Patricia E Molina
- LSUHSC Department of Physiology and Alcohol Research Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
18
|
Brown KN, Trichel A, Barratt-Boyes SM. Parallel Loss of Myeloid and Plasmacytoid Dendritic Cells from Blood and Lymphoid Tissue in Simian AIDS. THE JOURNAL OF IMMUNOLOGY 2007; 178:6958-67. [PMID: 17513745 DOI: 10.4049/jimmunol.178.11.6958] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The loss of myeloid (mDC) and plasmacytoid dendritic cells (pDC) from the blood of HIV-infected individuals is associated with progressive disease. It has been proposed that DC loss is due to increased recruitment to lymph nodes, although this has not been directly tested. Similarly as in HIV-infected humans, we found that lineage-negative (Lin(-)) HLA-DR(+)CD11c(+)CD123(-) mDC and Lin(-)HLA-DR(+)CD11c(-)CD123(+) pDC were lost from the blood of SIV-infected rhesus macaques with AIDS. In the peripheral lymph nodes of SIV-naive monkeys the majority of mDC were mature cells derived from skin that expressed high levels of HLA-DR, CD83, costimulatory molecules, and the Langerhans cell marker CD1a, whereas pDC expressed low levels of HLA-DR and CD40 and lacked costimulatory molecules, similar to pDC in blood. Surprisingly, both DC subsets were depleted from peripheral and mesenteric lymph nodes and spleens in monkeys with AIDS, although the activation status of the remaining DC subsets was similar to that of DC in health. In peripheral and mesenteric lymph nodes from animals with AIDS there was an accumulation of Lin(-)HLA-DR(moderate)CD11c(-)CD123(-) cells that resembled monocytoid cells but failed to acquire a DC phenotype upon culture, suggesting they were not DC precursors. mDC and pDC from the lymphoid tissues of monkeys with AIDS were prone to spontaneous death in culture, indicating that apoptosis may be a mechanism for their loss in disease. These findings demonstrate that DC are lost from rather than recruited to lymphoid tissue in advanced SIV infection, suggesting that systemic DC depletion plays a direct role in the pathophysiology of AIDS.
Collapse
Affiliation(s)
- Kevin N Brown
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
19
|
Kuwata T, Kodama M, Sato A, Suzuki H, Miyazaki Y, Miura T, Hayami M. Contribution of monocytes to viral replication in macaques during acute infection with simian immunodeficiency virus. AIDS Res Hum Retroviruses 2007; 23:372-80. [PMID: 17411370 DOI: 10.1089/aid.2006.0208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monocytes are known as an alternative target for HIV/SIV infection, but the contribution of monocytes to viral spread in a host is unclear. In this study, CD14 monocytes were monitored in 6 macaques until six weeks postinfection (wpi) with SIVmac239 to evaluate their contribution to viral load. The monocyte count in blood significantly increased with peak viremia at 2 wpi and the expression level of CD14 on monocytes significantly decreased at 1-2 wpi, though the number of CD4(+) T cells was stable in these macaques. The number of CD14 monocytes and the expression level of CD14 on monocytes at 2 wpi were also significantly related to the extent of viremia in plasma. An increased number of monocytes at 2 wpi was associated with a lower postacute viral load, suggesting that monocytes have a role in suppressing the virus. The lower expression level of CD14 in monocytes at 2 wpi was associated with a higher viral load and greater degree of infection of monocytes. This correlation suggests that monocytes with a low level of CD14 may be more susceptible to SIV and may enhance viral replication. The analysis of monocytes in persistently infected macaques revealed that the expression level of CD14 was also significantly low during persistent infection compared with naïve macaques, though the monocyte count was within the normal range. Monocytes may suppress viruses, perhaps by their immune function, during acute infection. However, infection of monocytes may increase the viral load and spread viruses in a host.
Collapse
Affiliation(s)
- Takeo Kuwata
- Laboratory of Primate Model, Experimental Research Center for Infectious Disease, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Molina PE, McNurlan M, Rathmacher J, Lang CH, Zambell KL, Purcell J, Bohm RP, Zhang P, Bagby GJ, Nelson S. Chronic alcohol accentuates nutritional, metabolic, and immune alterations during asymptomatic simian immunodeficiency virus infection. Alcohol Clin Exp Res 2007; 30:2065-78. [PMID: 17117972 DOI: 10.1111/j.1530-0277.2006.00252.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse has been reported to have a high prevalence in the human immunodeficiency virus (HIV)-infected population. However, its impact on disease progression is unknown. Studies dissecting the drug-induced or alcohol-induced metabolic derangements that are likely to alter the course of disease progression are lacking. This is particularly important because of the substantial reduction in morbidity and mortality of patients on highly active antiretroviral therapy (HAART). HIV infection has become a more chronic disease during which alcohol-induced metabolic alterations may become more prevalent and pronounced. METHODS The present study used a model of chronic intragastric alcohol administration initiated 3 months before intravenous simian immunodeficiency (SIV) inoculation and continued thereafter throughout the course of SIV infection, to investigate the impact of chronic alcohol binge-like consumption during the initial 10-month asymptomatic phase of SIV infection in nonhuman primate rhesus macaques. Anthropometric, metabolic, biochemical, nutritional, and immune state indicators were examined before infection and at 3-month intervals in asymptomatic chronic alcohol-treated SIV-infected macaques and time-matched isocaloric and uninfected controls. RESULTS Intravenous SIV(DeltaB670) infection resulted in increased viral load, decreased circulating CD4(+)/CD8(+) lymphocyte ratio, and increased lymphocyte proliferation (Ki67/CD3(+)). Chronic alcohol/SIV(+) animals showed a higher viral load at 3 months post-SIV infection as well as a significant and early decrease in caloric intake and nitrogen balance associated with a change in food choice. Rates of skeletal muscle protein synthesis and breakdown, mRNA expression of IGF-I, myostatin, or the ubiquitin ligase muscle atrophy F-box protein (MAFbx) did not differ from basal during the 10-month asymptomatic period of infection. However, muscle TNF-alpha mRNA expression was markedly increased at 10 months post-SIV infection in alcohol/SIV(+) animals. DISCUSSION These findings suggest that chronic alcohol accelerates nutritional and metabolic dysregulation during SIV infection and may favor a skeletal muscle proinflammatory state, possibly conducive to subsequent muscle wasting.
Collapse
Affiliation(s)
- Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bagby GJ, Zhang P, Purcell JE, Didier PJ, Nelson S. Chronic binge ethanol consumption accelerates progression of simian immunodeficiency virus disease. Alcohol Clin Exp Res 2006; 30:1781-90. [PMID: 17010145 DOI: 10.1111/j.1530-0277.2006.00211.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND While alcohol consumption is known to increase the incidence and severity of infections, the impact of alcohol consumption on human immunodeficiency virus (HIV) disease progression has been difficult to assess. Therefore, we examined the effect of ethanol on simian immunodeficiency virus (SIV) disease progression in a well-defined model utilizing rhesus macaques. METHODS Alcohol was administered for 5 hours via an indwelling intragastric catheter to achieve an alcohol concentration of 50 to 60 mM for 4 consecutive days per week for the duration of the study. Control animals received isocaloric sucrose. After 3 months, animals were inoculated intravenously with 10,000 times the ID(50) of SIV(DeltaB670) and followed to end-stage disease. RESULTS Plasma SIV ribonucleic acid (RNA) was higher in alcohol-consuming animals compared with sucrose-treated animals during the early asymptomatic stage of disease but not at later time points. This increase in viral set point was associated with more rapid progression to end-stage disease in macaques administered alcohol (median=374 days) compared with sucrose (median=900 days). The decline in blood CD4+ cells was similar in both groups of animals. CONCLUSIONS This study indicates that frequent episodes of alcohol intoxication in SIV+ macaques increase viral set point in association with more rapid development of end-stage disease.
Collapse
Affiliation(s)
- Gregory J Bagby
- Department of Physiology, LSU Health Sciences Center, New Orleans, Louisiana 70112-1393, USA.
| | | | | | | | | |
Collapse
|
22
|
Bissel SJ, Wang G, Trichel AM, Murphey-Corb M, Wiley CA. Longitudinal analysis of monocyte/macrophage infection in simian immunodeficiency virus-infected, CD8+ T-cell-depleted macaques that develop lentiviral encephalitis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1553-69. [PMID: 16651622 PMCID: PMC1457021 DOI: 10.2353/ajpath.2006.050240] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histopathological hallmark of lentiviral-associated encephalitis is an abundance of infected and activated macrophages. Why a subset of infected hosts develops lentiviral encephalitis and others do not is unknown. Using a CD8(+) T-cell depletion model of simian immunodeficiency virus (SIV)-infected rhesus macaques, we examined the relationship between peripheral SIV infection of monocytes/macrophages and the development of encephalitis. At the same time that cerebral spinal fluid viral load increased in macaques that developed encephalitis, we observed that monocyte-derived macrophages from these macaques produced more virus than those from macaques that did not develop encephalitis. However, during the course of infection, the number of blood monocyte-associated SIV DNA copies did not distinguish macaques that developed simian immunodeficiency virus encephalitis from macaques that did not develop encephalitis. Paradoxically, in this model, macaques that developed encephalitis had fewer SIV-infected macrophages in lungs and thymus at postmortem than macaques that did not develop encephalitis. These findings suggest that inherent differences in host monocyte viral production are related to development of encephalitis.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
23
|
Fuller DH, Rajakumar PA, Wu MS, McMahon CW, Shipley T, Fuller JT, Bazmi A, Trichel AM, Allen TM, Mothe B, Haynes JR, Watkins DI, Murphey-Corb M. DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued. Virology 2006; 348:200-15. [PMID: 16439000 DOI: 10.1016/j.virol.2005.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/28/2005] [Accepted: 12/06/2005] [Indexed: 11/20/2022]
Abstract
DNA immunization in conjunction with antiretroviral therapy was evaluated in SIV-infected rhesus macaques treated with [R]-9-[2-phosphonylmethoxypropyl]adenine (PMPA). Macaques were immunized monthly with DNA vaccines expressing either SIV gag/tat or SIV gag/tat and 19 CD8+ T cell epitopes during 7 months of therapy. Half the animals from each group were additionally immunized before infection. Only 60% of the animals (4 controls, 20 vaccinated) responded to PMPA (ART responders). All 4 ART responder controls demonstrated viral rebound or CD4 decline after PMPA was withdrawn. In contrast, 17 of 20 vaccinated ART responders contained viral rebound for over 7 months after PMPA was withdrawn. Viral control correlated with stable CD4 counts, higher lymphoproliferation and an increase in the magnitude and breadth of the CD8+ T cell response. Immunizing before infection or with multi-epitopes enhanced these effects. These results demonstrate that DNA immunization during antiretroviral therapy may be an effective strategy to treat HIV infection.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Animals
- Anti-HIV Agents/administration & dosage
- Anti-HIV Agents/therapeutic use
- CD4 Lymphocyte Count
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Disease Progression
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Immunotherapy, Active/methods
- Macaca mulatta
- Organophosphonates/administration & dosage
- Organophosphonates/therapeutic use
- RNA, Viral/blood
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/drug effects
- Simian Immunodeficiency Virus/immunology
- Statistics as Topic
- Tenofovir
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viremia/prevention & control
- Withholding Treatment
Collapse
|
24
|
Bagby GJ, Stoltz DA, Zhang P, Kolls JK, Brown J, Bohm RP, Rockar R, Purcell J, Murphey-Corb M, Nelson S. The effect of chronic binge ethanol consumption on the primary stage of SIV infection in rhesus macaques. Alcohol Clin Exp Res 2003; 27:495-502. [PMID: 12658116 DOI: 10.1097/01.alc.0000057947.57330.be] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcohol abuse and infection with HIV individually compromise immune function, but the consequence of both conditions together is poorly understood owing to the difficulties of performing appropriate studies in human subjects. Simian immunodeficiency virus (SIV) infection of rhesus macaques is considered to closely model HIV disease in that the virus infects CD4+ cells and this infection leads to a similar AIDS state. This study was initiated to study the combined effects of chronic binge alcohol consumption on the primary stage of SIV infection. METHODS Rhesus macaques were administered alcohol or isocaloric sucrose via a permanently indwelling intragastric catheter 4 consecutive days per week for the duration of the study. Doses were individualized to achieve plasma alcohol concentrations of 50-60 mM over a 5-hr period. After 3 months, animals were inoculated intravenously with 10,000 times the ID(50) (50% infective dose) of SIV(DeltaB670) at the conclusion of an alcohol session and followed for 2 months postinoculation. RESULTS At 1 week, plasma SIV RNA was greater than 60-fold higher in alcohol-consuming animals compared with sucrose controls. Likewise, alcohol consumption enhanced the SIV-induced increase in cell cycling T lymphocytes (i.e., cells expressing Ki67 protein) in blood. These differences between alcohol- and sucrose-treated animals were not sustained during the observation period. Peak viral load occurred 2 weeks post-SIV inoculation at 7.6 +/- 4.2 and 5.2 +/- 3.1 x 106 copies/ml in alcohol- versus sucrose-consuming animals, respectively. Blood CD4+ lymphocyte numbers were decreased 1 and 2 months after SIV inoculation to a similar degree in both sucrose-control and alcohol-treated animals. CONCLUSIONS The consequence of the early rise in viral load and increase in lymphocyte turnover seen with excess alcohol consumption is unknown. We hypothesize that alcohol intoxication may increase the susceptibility of the host to HIV/SIV infection. This possibility needs to be explored further.
Collapse
Affiliation(s)
- Gregory J Bagby
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112-1393, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Maldarelli F. HIV-1 Fitness and Replication Capacity: What Are They and Can They Help in Patient Management? Curr Infect Dis Rep 2003; 5:77-84. [PMID: 12525294 DOI: 10.1007/s11908-003-0068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural history of HIV-1 infection is characterized by persistent viremia, progressive CD4 lymphopenia, and profound immune suppression resulting in opportunistic infections, neoplasms, and death. Introduction of combination antiretroviral therapy has been effective in suppressing HIV-1 replication, reversing immunodeficiency to a degree, reducing HIV-1-associated complications, and thereby prolonging life. One of the most vexing challenges of prolonged antiretroviral therapy is the development of drug resistance. Antiretroviral therapies fail in a substantial number of cases, often with emergence of HIV-1 variants encoding mutations that confer potent drug resistance to individual agents or entire drug classes. Resistance testing methods have been introduced to evaluate drug resistance, and several studies have reported clinical benefits of genotyping and phenotyping assays in clinical decision-making. However, the genetic variability of HIV-1 to develop resistance exceeds the antiretroviral armamentarium, and the number of patients with drug experience and resistance to all classes of antiretrovirals continues to grow. From a clinical standpoint, it would be useful to have a more comprehensive grasp of pathogenic determinants of HIV-1 in all patients. One proposed in vitro correlate of HIV-1 pathogenic potential is the replication capacity of HIV-1. New techniques to assess HIV-1 replication potential are in development, with a commercial assay now available to analyze clinical samples. In this review we explore the experimental basis for replication capacity measurements and potential clinical applications of this methodology.
Collapse
Affiliation(s)
- Frank Maldarelli
- HIV-1 Drug Resistance Program, National Cancer Institute, National Institutes of Health, Building 10, Room 10S255, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Trichel AM, Rajakumar PA, Murphey-Corb M. Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. J Med Primatol 2002; 31:171-8. [PMID: 12390539 DOI: 10.1034/j.1600-0684.2002.02003.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The shortage of rhesus macaques of Indian origin for acquired immune deficiency syndrome (AIDS) research has prompted a search for an alternate species. As rhesus macaques of Chinese origin are more readily obtainable, we have defined the parameters of infection in seven members of this subspecies with the primary virulent isolate, SIV/delta B670. Viremic peaks and set points as determined by real time polymerase chain reaction were, in general, lower than that observed in Indian origin rhesus macaques. As expected, these values were associated with maintenance of CD4+ lymphocytes and significantly longer survival, with six of seven Chinese origin animals living significantly longer than Indian origin rhesus macaques. Interestingly, these findings were associated with a selective amplification of one of two major phylogenetic groups found within the inoculum. This observation is in contrast to Indian origin animals where both phylogenetic groups are commonly identified. Together, these data suggest prudence in the design of experimental protocols using rhesus macaques of Chinese origin where survival and rapid loss of CD4+ lymphocytes are desired endpoints.
Collapse
Affiliation(s)
- A M Trichel
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
27
|
Peng B, Voltan R, Lim L, Edghill-Smith Y, Phogat S, Dimitrov DS, Arora K, Leno M, Than S, Woodward R, Markham PD, Cranage M, Robert-Guroff M. Rhesus macaque resistance to mucosal simian immunodeficiency virus infection is associated with a postentry block in viral replication. J Virol 2002; 76:6016-26. [PMID: 12021334 PMCID: PMC136199 DOI: 10.1128/jvi.76.12.6016-6026.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidation of the host factors which influence susceptibility to human immunodeficiency virus or simian immunodeficiency virus (SIV) infection and disease progression has important theoretical and practical implications. Rhesus macaque 359, a vaccine control animal, resisted two successive intravaginal challenges with SIV(mac251) and failed to seroconvert. Here, after an additional intrarectal SIVmac32H challenge, macaque 359 remained highly resistant to infection. Viral RNA (10(6) copies/ml) was observed in plasma only at week 2 postchallenge. Virus isolation and proviral DNA were positive only once at week eight postchallenge. The animal remained seronegative and cleared SIV in vivo. Its blood and lymph node cells obtained at 49 weeks after intrarectal challenge did not transmit SIV to a naive macaque. We found that the resistance of macaque 359 to SIV infection was not due to a high level of CD8(+) suppressor activity but to an inherent resistance of its CD4(+) T cells. To elucidate the basis for the unusually strong resistance of macaque 359 to SIV infection in vivo and in vitro, we investigated early events of viral infection and replication in CD4(+) cells of macaque 359, including expression and mutation screening of SIV coreceptors and analysis of viral entry and reverse transcription. Mutation screening revealed no genetic alteration in SIV coreceptors. PCR analysis revealed a significant delay in production of early in vitro reverse transcription intermediates in macaque 359 cells compared to susceptible controls, but cell fusion assays showed that SIV entered the CD4(+) CCR5(+) cells of macaque 359 as readily as cells of macaques susceptible to SIV infection. Our results suggest that the resistance of macaque 359 to SIV infection is due to a postentry block in viral replication and implicate a cellular inhibitory mechanism in its CD4(+) T cells. Identification of this host mechanism will help further elucidate the biochemistry of reverse transcription and may suggest therapeutic strategies. Determining the prevalence of this host resistance mechanism among macaques may lead to better design of SIV pathogenesis and vaccine studies.
Collapse
Affiliation(s)
- Bo Peng
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fuller DH, Rajakumar PA, Wilson LA, Trichel AM, Fuller JT, Shipley T, Wu MS, Weis K, Rinaldo CR, Haynes JR, Murphey-Corb M. Induction of mucosal protection against primary, heterologous simian immunodeficiency virus by a DNA vaccine. J Virol 2002; 76:3309-17. [PMID: 11884556 PMCID: PMC136011 DOI: 10.1128/jvi.76.7.3309-3317.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective vaccine against human immunodeficiency virus (HIV) should protect against mucosal transmission of genetically divergent isolates. As a safe alternative to live attenuated vaccines, the immunogenicity and protective efficacy of a DNA vaccine containing simian immunodeficiency virus (SIV) strain 17E-Fr (SIV/17E-Fr) gag-pol-env was analyzed in rhesus macaques. Significant levels of cytotoxic T lymphocytes (CTL), but low to undetectable serum antibody responses, were observed following multiple immunizations. SIV-specific mucosal antibodies and CTL were also detected in rectal washes and gut-associated lymphoid tissues, respectively. Vaccinated and naive control monkeys were challenged intrarectally with SIV strain DeltaB670 (SIV/DeltaB670), a primary isolate whose env is 15% dissimilar to that of the vaccine strain. Four of seven vaccinees were protected from infection as determined by the inability to identify viral RNA or DNA sequences in the peripheral blood and the absence of anamnestic antibody responses postchallenge. This is the first report of mucosal protection against a primary pathogenic, heterologous isolate of SIV by using a commercially viable vaccine approach. These results support further development of a DNA vaccine for protection against HIV.
Collapse
|
29
|
Lifson JD, Rossio JL, Piatak M, Parks T, Li L, Kiser R, Coalter V, Fisher B, Flynn BM, Czajak S, Hirsch VM, Reimann KA, Schmitz JE, Ghrayeb J, Bischofberger N, Nowak MA, Desrosiers RC, Wodarz D. Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J Virol 2001; 75:10187-99. [PMID: 11581387 PMCID: PMC114593 DOI: 10.1128/jvi.75.21.10187-10199.2001] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transient antiretroviral treatment with tenofovir, (R)-9-(2-phosphonylmethoxypropyl)adenine, begun shortly after inoculation of rhesus macaques with the highly pathogenic simian immunodeficiency virus (SIV) isolate SIVsmE660, facilitated the development of SIV-specific lymphoproliferative responses and sustained effective control of the infection following drug discontinuation. Animals that controlled plasma viremia following transient postinoculation treatment showed substantial resistance to subsequent intravenous rechallenge with homologous (SIVsmE660) and highly heterologous (SIVmac239) SIV isolates, up to more than 1 year later, despite the absence of measurable neutralizing antibody. In some instances, resistance to rechallenge was observed despite the absence of detectable SIV-specific binding antibody and in the face of SIV lymphoproliferative responses that were low or undetectable at the time of challenge. In vivo monoclonal antibody depletion experiments demonstrated a critical role for CD8(+) lymphocytes in the control of viral replication; plasma viremia rose by as much as five log units after depletion of CD8(+) cells and returned to predepletion levels (as low as <100 copy Eq/ml) as circulating CD8(+) cells were restored. The extent of host control of replication of highly pathogenic SIV strains and the level of resistance to heterologous rechallenge achieved following transient postinoculation treatment compared favorably to the results seen after SIVsmE660 and SIVmac239 challenge with many vaccine strategies. This impressive control of viral replication was observed despite comparatively modest measured immune responses, less than those often achieved with vaccination regimens. The results help establish the underlying feasibility of efforts to develop vaccines for the prevention of AIDS, although the exact nature of the protective host responses involved remains to be elucidated.
Collapse
Affiliation(s)
- J D Lifson
- Retroviral Pathogenesis Laboratory, AIDS Vaccine Program, SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Iida T, Kita M, Kuwata T, Miura T, Ibuki K, Ui M, Hayami M, Imanishi J. Apoptosis induced by in vitro infection with simian-human immunodeficiency chimeric virus in macaque and human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 2001; 17:1387-93. [PMID: 11679151 DOI: 10.1089/088922201753197051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated apoptosis induced by in vitro infection with the chimeric virus of simian immunodeficiency virus and human immunodeficiency virus (SHIV). Macaque and human peripheral blood mononuclear cells (PBMCs) were infected with pathogenic SHIV-89.6p (89.6p) or nonpathogenic SHIV-NM-3rN (NM-3rN). In macaque PBMCs, the extent of virus production and apoptosis induction in CD4(+) cells was much greater in 89.6p infection than in NM-3rN infection. The result was consistent with our previous study of in vivo SHIV infection. In human PBMCs, 89.6p replicated and induced apoptosis more extensively than did NM-3rN, when the cells were infected with the same infectious doses of the viruses. However, in cells infected with a high dose of NM-3rN, the levels of virus production and apoptosis induction were comparable to those in 89.6p infection. There was no significant difference in the extent of apoptosis induction between 89.6p and NM-3rN infection when growth curves of the two viruses matched. Thus, apoptosis induction by SHIV might depend quantitatively on the amount of virus production rather than on the strains of the virus. Moreover, the correlation between the extent of apoptosis induction and virus pathogenicity in macaque PBMCs has also been found in SHIV-infected macaques. This suggests that the profiles of SHIV infection in vitro reflect the in vivo phenomena. Therefore, the in vitro evaluation of apoptosis induction by SHIV could be useful as a safety test for the development of live-attenuated vaccines.
Collapse
Affiliation(s)
- T Iida
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guan Y, Whitney JB, Liang C, Wainberg MA. Novel, live attenuated simian immunodeficiency virus constructs containing major deletions in leader RNA sequences. J Virol 2001; 75:2776-85. [PMID: 11222701 PMCID: PMC115902 DOI: 10.1128/jvi.75.6.2776-2785.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a series of simian immunodeficiency virus (SIV) mutants containing deletions within a 97-nucleotide (nt) region of the leader sequence. Deletions in this region markedly decreased the replication capacity in tissue culture, i.e., in both the C8166 and CEMx174 cell lines, as well as in rhesus macaque peripheral blood mononuclear cells. In addition, these deletions adversely affected the packaging of viral genomic RNA into virions, the processing of Gag precursor proteins, and patterns of viral proteins in virions, as assessed by biochemical labeling and polyacrylamide gel electrophoresis. Different levels of attenuation were achieved by varying the size and position of deletions within this 97-nt region, and among a series of constructs that were generated, it was possible to rank in vitro virulence relative to that of wild-type virus. In all of these cases, the most severe impact on viral replication was observed when the deletions that were made were located at the 3' rather than 5' end of the leader region. The potential of viral reversion over protracted periods was investigated by repeated viral passage in CEMx174 cells. The results showed that several of these constructs showed no signs of reversion after more than 6 months in tissue culture. Thus, a series of novel, attenuated SIV constructs have been developed that are significantly impaired in replication capacity yet retain all viral genes. One of these viruses, termed SD4, may be appropriate for study with rhesus macaques, in order to determine whether reversions will occur in vivo and to further study this virus as a candidate for attenuated vaccination.
Collapse
Affiliation(s)
- Y Guan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|