1
|
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, Sun Y, Wiedensohler A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Viruses 2022; 14:v14071497. [PMID: 35891477 PMCID: PMC9318922 DOI: 10.3390/v14071497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.
Collapse
Affiliation(s)
- Ajit Ahlawat
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
- Correspondence:
| | | | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| | - Pradhi Rajeev
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Vikas Goel
- School of Interdisciplinary Research, Indian Institute of Technology (IIT), Delhi 110016, India;
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China;
| | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| |
Collapse
|
2
|
Abstract
Superinfection exclusion (SIE) is a phenomenon in which a primary viral infection interferes with secondary viral infections within that same cell. Although SIE has been observed across many viruses, it has remained relatively understudied. A recently characterized glycoprotein D (gD)-independent SIE of alphaherpesviruses presents a novel mechanism of coinfection restriction for herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). In this study, we evaluated the role of multiplicity of infection (MOI), receptor expression, and trafficking of virions to gain greater insight into potential mechanisms of alphaherpesvirus SIE. We observed that high-MOI secondary viral infections were able to overcome SIE in a manner that was independent of receptor availability. We next assessed virion localization during SIE through live microscopy of fluorescently labeled virions and capsid assemblies. Analysis of these fluorescent assemblies identified changes in the distribution of capsids during SIE. These results indicate that SIE during PRV infection inhibits viral entry or fusion while HSV-1 SIE inhibits infection through a postentry mechanism. Although the timing and phenotype of SIE are similar between alphaherpesviruses, the related viruses implement different mechanisms to restrict coinfection. IMPORTANCE Most viruses utilize a form of superinfection exclusion to conserve resources and control population dynamics. gD-dependent superinfection exclusion in alphaherpesviruses is well documented. However, the undercharacterized gD-independent SIE provides new insight into how alphaherpesviruses limit sequential infection. The observations described here demonstrate that gD-independent SIE differs between PRV and HSV-1. Comparing these differences provides new insights into the underlying mechanisms of SIE implemented by two related viruses.
Collapse
|
3
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
4
|
Herr AE, Hain KS, Taylor MP. Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Criddle A, Thornburg T, Kochetkova I, DePartee M, Taylor MP. gD-Independent Superinfection Exclusion of Alphaherpesviruses. J Virol 2016; 90:4049-58. [PMID: 26842480 PMCID: PMC4810564 DOI: 10.1128/jvi.00089-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Many viruses have the capacity to prevent a cell from being infected by a second virus, often termed superinfection exclusion. Alphaherpesviruses, including the human pathogen herpes simplex virus 1 (HSV-1) and the animal herpesvirus pseudorabies virus (PRV), encode a membrane-bound glycoprotein, gD, that can interfere with subsequent virion entry. We sought to characterize the timing and mechanism of superinfection exclusion during HSV-1 and PRV infection. To this end, we utilized recombinant viruses expressing fluorescent protein (FP) markers of infection that allowed the visualization of viral infections by microscopy and flow cytometry as well as the differentiation of viral progeny. Our results demonstrated the majority of HSV-1- and PRV-infected cells establish superinfection exclusion by 2 h postinfection. The modification of viral infections by virion inactivation and phosphonoacetic acid, cycloheximide, and actinomycin D treatments indicated new protein synthesis is needed to establish superinfection exclusion. Primary infection with gene deletion PRV recombinants identified that new gD expression is not required to establish superinfection exclusion of a secondary viral inoculum. We also identified the timing of coinfection events during axon-to-cell spread, with most occurring within a 2-h window, suggesting a role for cellular superinfection exclusion during neuroinvasive spread of infection. In summary, we have characterized a gD-independent mechanism of superinfection exclusion established by two members of the alphaherpesvirus family and identified a potential role of exclusion during the pathogenic spread of infection. IMPORTANCE Superinfection exclusion is a widely observed phenomenon initiated by a primary viral infection to prevent further viruses from infecting the same cell. The capacity for alphaherpesviruses to infect the same cell impacts rates of interviral recombination and disease. Interviral recombination allows genome diversification, facilitating the development of resistance to antiviral therapeutics and evasion of vaccine-mediated immune responses. Our results demonstrate superinfection exclusion occurs early, through a gD-independent process, and is important in the directed spread of infection. Identifying when and where in an infected host viral genomes are more likely to coinfect the same cell and generate viral recombinants will enhance the development of effective antiviral therapies and interventions.
Collapse
Affiliation(s)
- A Criddle
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USAUniversity of California, Irvine
| | - T Thornburg
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USAUniversity of California, Irvine
| | - I Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USAUniversity of California, Irvine
| | - M DePartee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USAUniversity of California, Irvine
| | - M P Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USAUniversity of California, Irvine
| |
Collapse
|
6
|
Mechanisms by which ambient humidity may affect viruses in aerosols. Appl Environ Microbiol 2012; 78:6781-8. [PMID: 22820337 DOI: 10.1128/aem.01658-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many airborne viruses have been shown to be sensitive to ambient humidity, yet the mechanisms responsible for this phenomenon remain elusive. We review multiple hypotheses, including water activity, surface inactivation, and salt toxicity, that may account for the association between humidity and viability of viruses in aerosols. We assess the evidence and limitations for each hypothesis based on findings from virology, aerosol science, chemistry, and physics. In addition, we hypothesize that changes in pH within the aerosol that are induced by evaporation may trigger conformational changes of the surface glycoproteins of enveloped viruses and subsequently compromise their infectivity. This hypothesis may explain the differing responses of enveloped viruses to humidity. The precise mechanisms underlying the relationship remain largely unverified, and attaining a complete understanding of them will require an interdisciplinary approach.
Collapse
|
7
|
Blanc AM, Berois MB, Tomé LM, Epstein AL, Arbiza JR. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors. J Vet Sci 2012; 13:59-65. [PMID: 22437537 PMCID: PMC3317458 DOI: 10.4142/jvs.2012.13.1.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease.
Collapse
Affiliation(s)
- Andrea Maria Blanc
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11600, Uruguay
| | | | | | | | | |
Collapse
|
8
|
Meurens F, Schynts F, Keil GM, Muylkens B, Vanderplasschen A, Gallego P, Thiry E. Superinfection prevents recombination of the alphaherpesvirus bovine herpesvirus 1. J Virol 2004; 78:3872-9. [PMID: 15047803 PMCID: PMC374301 DOI: 10.1128/jvi.78.8.3872-3879.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination between strains of the same alphaherpesvirus species occurs frequently both in vitro and in vivo. This process has been described between strains of herpes simplex virus type 1, herpes simplex virus type 2, pseudorabies virus, feline herpesvirus 1, varicella-zoster virus, and bovine herpesvirus 1 (BoHV-1). In vivo, the rise of recombinant viruses can be modulated by different factors, such as the dose of the inoculated viruses, the distance between inoculation sites, the time interval between inoculation of the first and the second virus, and the genes in which the mutations are located. The effect of the time interval between infections with two distinguishable BoHV-1 on recombination was studied in three ways: (i) recombination at the level of progeny viruses, (ii) interference induced by the first virus infection on beta-galactosidase gene expression of a superinfecting virus, and (iii) recombination at the level of concatemeric DNA. A time interval of 2 to 8 h between two successive infections allows the establishment of a barrier, which reduces or prevents any successful superinfection needed to generate recombinant viruses. The dramatic effect of the time interval on the rise of recombinant viruses is particularly important for the risk assessment of recombination between glycoprotein E-negative marker vaccine and field strains that could threaten BoHV-1 control and eradication programs.
Collapse
Affiliation(s)
- François Meurens
- Department of Infectious and Parasitic Diseases, Virology, and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Scanlan PM, Tiwari V, Bommireddy S, Shukla D. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry. Virology 2003; 312:14-24. [PMID: 12890617 DOI: 10.1016/s0042-6822(03)00176-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entry of herpes simplex virus-1 (HSV-1) into cells requires a concerted action of four viral glycoproteins gB, gD, and gH-gL. Previously, cell surface expression of gD had been shown to confer resistance to HSV-1 entry. To investigate any similar effects caused by other entry glycoproteins, gB and gH-gL were coexpressed with Nectin-1 in Chinese hamster ovary (CHO) cells. Interestingly, cellular expression of gB had no effect on HSV-1(KOS) entry. In contrast, entry was significantly reduced in cells expressing gH-gL. This effect was further analyzed by expressing gH and gL separately. Cells expressing gL were normally susceptible, whereas gH-expressing cells were significantly resistant. Further experiments suggested that the gH-mediated interference phenomenon was not specific to any particular gD receptor and was also observed in gH-expressing HeLa cells. Moreover, contrary to a previous report, gL-independent cell surface expression of gH was detected in stably transfected CHO cells, possibly implicating cell surface gH in the interference phenomenon. Thus, taken together these findings indicate that cellular expression of gH interferes with HSV-1 entry.
Collapse
Affiliation(s)
- Perry M Scanlan
- Department of Microbiology-Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
10
|
Nixdorf R, Klupp BG, Mettenleiter TC. Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J Gen Virol 2001; 82:215-226. [PMID: 11125174 DOI: 10.1099/0022-1317-82-1-215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic domains of several herpesviral glycoproteins encompass potential intracellular sorting signals. To analyse the function of the cytoplasmic domains of different pseudorabies virus (PrV) glycoproteins, hybrid proteins were constructed consisting of the extracellular and transmembrane domains of envelope glycoprotein D (gD) fused to the cytoplasmic tails of gB, gE or gM (designated gDB, gDE and gDM), all of which contain putative endocytosis motifs. gD is a type I membrane protein required for binding to and entry into target cells. Localization of hybrid proteins compared to full-length gB, gE and gM as well as carboxy-terminally truncated variants of gD was studied by confocal laser scanning microscopy. The function of gD hybrids was assayed by trans-complementation of a gD-negative PrV mutant. The carboxy-terminal domains of gB and gM directed a predominantly intracellular localization of gDB and gDM, while full-length gD and a tail-less gD mutant (gDc) were preferentially expressed on the cell surface. In contrast gDE, and a gDB lacking the putative gB endocytosis signal (gDB Delta 29), were predominantly located in the plasma membrane. Despite the different intracellular localization, all tested proteins were able to complement infectivity of a PrV gD(-) mutant. Cells which stably express full-length gD and plasma-membrane-associated gD hybrids exhibit a significant resistance to PrV infection, while cells expressing predominantly intracellularly located forms do not. This suggests that the assumed sequestration of receptors by gD, which is supposed to be responsible for the interference phenomenon, occurs at the cell surface.
Collapse
Affiliation(s)
- Ralf Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|