1
|
Portilho AI, Hermes Monteiro da Costa H, Grando Guereschi M, Prudencio CR, De Gaspari E. Hybrid response to SARS-CoV-2 and Neisseria meningitidis C after an OMV-adjuvanted immunization in mice and their offspring. Hum Vaccin Immunother 2024; 20:2346963. [PMID: 38745461 PMCID: PMC11789737 DOI: 10.1080/21645515.2024.2346963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 μg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.
Collapse
MESH Headings
- Animals
- Mice
- Immunoglobulin G/blood
- Neisseria meningitidis/immunology
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Adjuvants, Immunologic/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunity, Cellular
- Immunity, Humoral
- Mice, Inbred BALB C
- Meningococcal Infections/prevention & control
- Meningococcal Infections/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Vaccine/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Immunization/methods
- Antibody Affinity
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/administration & dosage
- Immunologic Memory
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Hernan Hermes Monteiro da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Marsay L, Dold C, Paterson GK, Yamaguchi Y, Derrick JP, Chan H, Feavers IM, Maiden MCJ, Wyllie D, Hill AV, Pollard AJ, Rollier CS. Viral vectors expressing group B meningococcal outer membrane proteins induce strong antibody responses but fail to induce functional bactericidal activity. J Infect 2022; 84:658-667. [PMID: 35245584 PMCID: PMC7616632 DOI: 10.1016/j.jinf.2022.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Adenoviral vectored vaccines, with the appropriate gene insert, induce cellular and antibody responses against viruses, parasites and intracellular pathogens such as Mycobacterium tuberculosis. Here we explored their capacity to induce functional antibody responses to meningococcal transmembrane outer membrane proteins. METHODS Vectors expressing porin A and ferric enterobactin receptor A antigens were generated, and their immunogenicity assessed in mice using binding and bactericidal assays. RESULTS The viral vectors expressed the bacterial proteins in an in vitro cell-infection assay and, after immunisation of mice, induced higher titres (>105 end-point titre) and longer lasting (>32 weeks) transgene-specific antibody responses in vivo than did outer membrane vesicles containing the same antigens. However, bactericidal antibodies, which are the primary surrogate of protection against meningococcus, were undetectable, despite different designs to support the presentation of the protective B-cell epitopes. CONCLUSION These results demonstrate that, while the transmembrane bacterial proteins expressed by the viral vector induced strong and persistent antigen-specific antibodies, this platform failed to induce bactericidal antibodies. The results suggest that conformation or post-translational modifications of bacterial outer membrane antigens produced in eukaryote cells might not result in presentation of the necessary epitopes for induction of functional antibodies.
Collapse
Affiliation(s)
- Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Gavin K Paterson
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Yuko Yamaguchi
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - David Wyllie
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Adrian V Hill
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom; Section of Immunology, Department of Biochemical sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Dorothy Hodgkin Building (AY), Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
3
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
4
|
Humbert MV, Jackson A, Orr CM, Tews I, Christodoulides M. Characterization of two putative Dichelobacter nodosus footrot vaccine antigens identifies the first lysozyme inhibitor in the genus. Sci Rep 2019; 9:10055. [PMID: 31296905 PMCID: PMC6624275 DOI: 10.1038/s41598-019-46506-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative anaerobic bacterium Dichelobacter nodosus (Dn) causes footrot in ruminants, a debilitating and highly contagious disease that results in necrotic hooves and significant economic losses in agriculture. Vaccination with crude whole-cell vaccine mixed with multiple recombinant fimbrial proteins can provide protection during species-specific outbreaks, but subunit vaccines containing broadly cross-protective antigens are desirable. We have investigated two D. nodosus candidate vaccine antigens. Macrophage Infectivity Potentiator Dn-MIP (DNO_0012, DNO_RS00050) and Adhesin Complex Protein Dn-ACP (DNO_0725, DNO_RS06795) are highly conserved amongst ~170 D. nodosus isolates in the https://pubmlst.org/dnodosus/ database. We describe the presence of two homologous ACP domains in Dn-ACP with potent C-type lysozyme inhibitor function, and homology of Dn-MIP to other putative cell-surface and membrane-anchored MIP virulence factors. Immunization of mice with recombinant proteins with a variety of adjuvants induced antibodies that recognised both proteins in D. nodosus. Notably, immunization with fimbrial-whole-cell Footvax vaccine induced anti-Dn-ACP and anti-Dn-MIP antibodies. Although all adjuvants induced high titre antibody responses, only antisera to rDn-ACP-QuilA and rDn-ACP-Al(OH)3 significantly prevented rDn-ACP protein from inhibiting lysozyme activity in vitro. Therefore, a vaccine incorporating rDn-ACP in particular could contribute to protection by enabling normal innate immune lysozyme function to aid bacterial clearance.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alexandra Jackson
- Neisseria Research Group, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Christian M Orr
- Beamline I23, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, B85 Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom.
| |
Collapse
|
5
|
Structure of the Recombinant Neisseria gonorrhoeae Adhesin Complex Protein (rNg-ACP) and Generation of Murine Antibodies with Bactericidal Activity against Gonococci. mSphere 2018; 3:3/5/e00331-18. [PMID: 30305317 PMCID: PMC6180225 DOI: 10.1128/msphere.00331-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro. We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections. Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and no effective vaccine exists currently. In this study, the structure, biological properties, and vaccine potential of the Ng-adhesin complex protein (Ng-ACP) are presented. The crystal structure of recombinant Ng-ACP (rNg-ACP) protein was solved at 1.65 Å. Diversity and conservation of Ng-ACP were examined in different Neisseria species and gonococcal isolates (https://pubmlst.org/neisseria/ database) in silico, and protein expression among 50 gonococcal strains in the Centers for Disease Control and Prevention/Food and Drug Administration (CDCP/FDA) AR Isolate Bank was examined by Western blotting. Murine antisera were raised to allele 10 (strain P9-17)-encoded rNg-ACP protein with different adjuvants and examined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and a human serum bactericidal assay. Rabbit antiserum to rNg-ACP was tested for its ability to prevent Ng-ACP from inhibiting human lysozyme activity in vitro. Ng-ACP is structurally homologous to Neisseria meningitidis ACP and MliC/PliC lysozyme inhibitors. Gonococci expressed predominantly allele 10- and allele 6-encoded Ng-ACP (81% and 15% of isolates, respectively). Murine antisera were bactericidal (titers of 64 to 512, P < 0.05) for the homologous P9-17 strain and heterologous (allele 6) FA1090 strain. Rabbit anti-rNg-ACP serum prevented Ng-ACP from inhibiting human lysozyme with ∼100% efficiency. Ng-ACP protein was expressed by all 50 gonococcal isolates examined with minor differences in the relative levels of expression. rNg-ACP is a potential vaccine candidate that induces antibodies that (i) are bactericidal and (ii) prevent the gonococcus from inhibiting the lytic activity of an innate defense molecule. IMPORTANCENeisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro. We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections.
Collapse
|
6
|
The Growing Threat of Gonococcal Blindness. Antibiotics (Basel) 2018; 7:antibiotics7030059. [PMID: 30002340 PMCID: PMC6164567 DOI: 10.3390/antibiotics7030059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-resistant gonorrhea is now a reality, as well as the consequences of untreatable infections. Gonococcal eye infections result in blindness if not properly treated; they accounted for the vast majority of infections in children in homes for the blind in the pre-antibiotic era. Neisseria gonorrhoeae infects the eyes of infants born to mothers with gonorrhea and can also infect the eyes of adults. Changes in sexual practices may account for the rise in adult gonococcal eye infections, although some cases seem to have occurred with no associated genital infection. As gonorrhea becomes increasingly difficult to treat, the consequences for the treatment of gonococcal blindness must be considered as well. Monocaprin was shown to be effective in rapidly killing N. gonorrhoeae, and is non-irritating in ocular models. Repeated passage in sub-lethal monocaprin induces neither resistance in gonococci nor genomic mutations that are suggestive of resistance. Here, we show that 1 mM monocaprin kills 100% of N. gonorrhoeae in 2 min, and is equally effective against N. meningitidis, a rare cause of ophthalmia neonatorum that is potentially lethal. Monocaprin at 1 mM also completely kills Staphylococcus aureus after 60 min, and 25 mM kills 80% of Pseudomonas aeruginosa after 360 min. Previously, 1 mM monocaprin was shown to eliminate Chlamydia trachomatis in 5 min. Monocaprin is, therefore, a promising active ingredient in the treatment and prophylaxis of keratitis, especially considering the growing threat of gonococcal blindness due to antimicrobial resistance.
Collapse
|
7
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
8
|
Humbert MV, Awanye AM, Lian LY, Derrick JP, Christodoulides M. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathog 2017; 13:e1006448. [PMID: 28662181 PMCID: PMC5507604 DOI: 10.1371/journal.ppat.1006448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/12/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic and commensal Neisseria species produce an Adhesin Complex Protein, which was first characterised in Neisseria meningitidis (Nm) as a novel surface-exposed adhesin with vaccine potential. In the current study, the crystal structure of a recombinant (r)Nm-ACP Type I protein was determined to 1.4 Å resolution: the fold resembles an eight-stranded β-barrel, stabilized by a disulphide bond between the first (Cys38) and last (Cys121) β-strands. There are few main-chain hydrogen bonds linking β4-β5 and β8-β1, so the structure divides into two four-stranded anti-parallel β-sheets (β1-β4 and β5-β8). The computed surface electrostatic charge distribution showed that the β1-β4 sheet face is predominantly basic, whereas the β5-β8 sheet is apolar, apart from the loop between β4 and β5. Concentrations of rNm-ACP and rNeisseria gonorrhoeae-ACP proteins ≥0.25 μg/ml significantly inhibited by ~80–100% (P<0.05) the in vitro activity of human lysozyme (HL) over 24 h. Specificity was demonstrated by the ability of murine anti-Neisseria ACP sera to block ACP inhibition and restore HL activity. ACP expression conferred tolerance to HL activity, as demonstrated by significant 3–9 fold reductions (P<0.05) in the growth of meningococcal and gonococcal acp gene knock-out mutants in the presence of lysozyme. In addition, wild-type Neisseria lactamica treated with purified ACP-specific rabbit IgG antibodies showed similar fold reductions in bacterial growth, compared with untreated bacteria (P<0.05). Nm-ACPI is structurally similar to the MliC/PliC protein family of lysozyme inhibitors. However, Neisseria ACP proteins show <20% primary sequence similarity with these inhibitors and do not share any conserved MliC/PliC sequence motifs associated with lysozyme recognition. These observations suggest that Neisseria ACP adopts a different mode of lysozyme inhibition and that the ability of ACP to inhibit lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms. Thus, ACP represents a dual target for developing Neisseria vaccines and drugs to inhibit host-pathogen interactions. The genus Neisseria contains two major human pathogens: N. meningitidis (Nm) causes meningitis and sepsis, and N. gonorrhoeae (Ng) causes the sexually transmitted disease gonorrhoea. In addition, the genus contains a larger number of commensal organisms, including N. lactamica (Nl). Common to all of these organisms is the ability to colonize exposed mucosal epithelia. Recently, we identified a novel surface-exposed adhesin in Neisseria spp., the Adhesin Complex Protein (ACP), which was capable also of generating a functional bactericidal antibody response in mice. In the current study, we have determined the crystal structure of a recombinant (r)Nm-ACP and shown that it shares structural homology to bacterial lysozyme inhibitors. We demonstrate that Neisseria ACP functions as an inhibitor of mammalian lysozyme but the mechanism appears to be different from other bacterial family lysozyme inhibitors. Expression of ACP enables Neisseria spp. to tolerate human lysozyme. We propose that ACP-mediated inhibition of lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms and that ACP represents not only a target for developing Neisseria vaccines but also drugs to inhibit host-pathogen interactions.
Collapse
Affiliation(s)
- María Victoria Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Amaka Marian Awanye
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Vaccine Potential and Diversity of the Putative Cell Binding Factor (CBF, NMB0345/NEIS1825) Protein of Neisseria meningitidis. PLoS One 2016; 11:e0160403. [PMID: 27505005 PMCID: PMC4978444 DOI: 10.1371/journal.pone.0160403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
The cbf gene from Neisseria meningitidis strain MC58 encoding the putative Cell Binding Factor (CBF, NMB0345/NEIS1825) protein was cloned into the pRSETA system and a ~36-kDa recombinant (r)CBF protein expressed in Escherichia coli and purified by metal affinity chromatography. High titres of rCBF antibodies were induced in mice following immunization with rCBF-saline, rCBF-Al(OH)3, rCBF-Liposomes or rCBF-Zwittergent (Zw) 3-14 micelles, both with and without incorporated monophosphoryl lipid A (MPLA) adjuvant. Anti-rCBF sera reacted in western blots of meningococcal lysates with a single protein band of molecular mass ~29.5 kDa, indicative of mature CBF protein, but did not react with a lysate of a Δnmb0345 mutant (CBF-), demonstrating specificity of the murine immune responses. CBF protein was produced by all strains of meningococci studied thus far and the protein was present on the surface of MC58 (CBF+) bacteria, but absent on Δnmb0345 mutant (CBF-) bacteria, as judged by FACS reactivity of anti-rCBF sera. Analysis of the NEIS1825 amino acid sequences from 6644 N. meningitidis isolates with defined Alleles in the pubmlst.org/Neisseria database showed that there were 141 ST types represented and there were 136 different allelic loci encoding 49 non-redundant protein sequences. Only 6/6644 (<0.1%) of N. meningitidis isolates lacked the nmb0345 gene. Amongst serogroup B isolates worldwide, ~68% and ~20% expressed CBF encoded by Allele 1 and 18 respectively, with the proteins sharing >99% amino acid identity. Murine antisera to rCBF in Zw 3-14 micelles + MPLA induced significant serum bactericidal activity (SBA) against homologous Allele 1 and heterologous Allele 18 strains, using both baby rabbit serum complement and human serum complement (h)SBA assays, but did not kill strains expressing heterologous protein encoded by Alelle 2 or 3. Furthermore, variable bactericidal activity was induced by murine antisera against different meningococcal strains in the hSBA assay, which may correlate with variable surface exposure of CBF. Regardless, the attributes of amino acid sequence conservation and protein expression amongst different strains and the ability to induce cross-strain bactericidal antibodies indicates that rCBF could be a potential meningococcal vaccine antigen and merits further testing.
Collapse
|
10
|
Yadav SK, Meena JK, Sharma M, Dixit A. Recombinant outer membrane protein C of Aeromonas hydrophila elicits mixed immune response and generates agglutinating antibodies. Immunol Res 2016; 64:1087-99. [PMID: 27328672 DOI: 10.1007/s12026-016-8807-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aeromonas hydrophila is a gram-negative fish pathogenic bacterium, also responsible for causing opportunistic pathological conditions in humans. It causes a number of diseases in fish due to which the fish industry incurs huge economic losses annually. Due to problems of antibiotic resistance, and the rapidity with which the infection spreads among fishes, vaccination remains the most effective strategy to combat this infection in fish populations. Among various virulence factors associated with bacterial virulence, outer membrane proteins have been widely evaluated for their vaccine potential owing to their surface exposure and related role in pathogenicity. In the present study, we have investigated the immunogenic potential of a non-specific porin, outer membrane protein C (OmpC) whose expression is regulated by the two-component regulatory system and plays a major role in the survival of A. hydrophila under different osmolaric conditions. The full-length gene (~1 kb) encoding OmpC of A. hydrophila was cloned, characterized and expressed in E. coli. High yield (~112 mg/L at shake flask level) of the recombinant OmpC (rOmpC) (~40 kDa) of A. hydrophila was obtained upon purification from inclusion bodies using Ni(2+)-NTA affinity chromatography. Immunization with purified rOmpC in murine model generated high endpoint (>1:40,000) titers. IgG isotyping, ELISA and ELISPOT assay indicated mixed immune response with a TH2 bias. Also, the anti-rOmpC antibodies were able to agglutinate A. hydrophila in vitro and exhibited specific cross-reactivity with different Aeromonas strains, which will facilitate easy detection of different Aeromonas isolates in infected samples. Taken together, these data clearly indicate that rOmpC could serve as an effective vaccine against different strains of Aeromonas, a highly heterogenous group of bacteria.
Collapse
Affiliation(s)
- Sunita Kumari Yadav
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jitendra Kumar Meena
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mahima Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Hung MC, Humbert MV, Laver JR, Phillips R, Heckels JE, Christodoulides M. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins. Vaccine 2015. [PMID: 26207592 DOI: 10.1016/j.vaccine.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre <4) in a human serum bactericidal assay (hSBA) using anti-rNMB1612 sera, although another strain (MC168) expressing the same protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - María Victoria Humbert
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Jay R Laver
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Renee Phillips
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - John E Heckels
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom.
| |
Collapse
|
12
|
Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins. Infect Immun 2014; 83:730-42. [PMID: 25452551 DOI: 10.1128/iai.01815-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines.
Collapse
|
13
|
Immuno-Modulatory Role of Porins: Host Immune Responses, Signaling Mechanisms and Vaccine Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:79-108. [DOI: 10.1007/978-3-319-11280-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
15
|
Sanders H, Feavers IM. Adjuvant properties of meningococcal outer membrane vesicles and the use of adjuvants inNeisseria meningitidisprotein vaccines. Expert Rev Vaccines 2014; 10:323-34. [DOI: 10.1586/erv.11.10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Wedege E, Lie K, Bolstad K, Weynants VE, Halstensen A, Herstad TK, Kreutzberger J, Nome L, Naess LM, Aase A. Meningococcal omp85 in detergent-extracted outer membrane vesicle vaccines induces high levels of non-functional antibodies in mice. Scand J Immunol 2013; 77:452-9. [PMID: 23521186 DOI: 10.1111/sji.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/09/2013] [Indexed: 11/28/2022]
Abstract
The vaccine potential of meningococcal Omp85 was studied by comparing the immune responses of genetically modified deoxycholate-extracted outer membrane vesicles, expressing five-fold higher levels of Omp85, with wild-type vesicles. Groups (n = 6-12) of inbred and outbred mouse strains (Balb/c, C57BL/6, OFI and NMRI) were immunized with the two vaccines, and the induced antibody levels and bactericidal and opsonic activities measured. Except for Balb/c mice, which were low responders, the genetically modified vaccine raised high Omp85 antibody levels in all mouse strains. In comparison, the wild-type vaccine gave lower antibody levels, but NMRI mice responded to this vaccine with the same high levels as the modified vaccine in the other strains. Although the vaccines induced strain-dependent Omp85 antibody responses, the mouse strains showed high and similar serum bactericidal titres. Titres were negligible with heterologous or PorA-negative meningococcal target strains, demonstrating the presence of the dominant bactericidal PorA antibodies. The two vaccines induced the same opsonic titres. Thus, the genetically modified vaccine with high Omp85 antibody levels and the wild-type vaccine induced the same levels of functional activities related to protection against meningococcal disease, suggesting that meningococcal Omp85 is a less attractive vaccine antigen.
Collapse
Affiliation(s)
- E Wedege
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Phillips R, Williams JN, Tan WM, Bielecka MK, Thompson H, Hung MC, Heckels JE, Christodoulides M. Immunization with recombinant Chaperonin60 (Chp60) outer membrane protein induces a bactericidal antibody response against Neisseria meningitidis. Vaccine 2013; 31:2584-90. [PMID: 23566947 DOI: 10.1016/j.vaccine.2013.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/30/2022]
Abstract
Sera from individuals colonized with Neisseria meningitidis and from patients with meningococcal disease contain antibodies specific for the neisserial heat-shock/chaperonin (Chp)60 protein. In this study, immunization of mice with recombinant (r)Chp60 in saline; adsorbed to aluminium hydroxide; in liposomes and detergent micelles, with and without the adjuvant MonoPhosphoryl Lipid A (MPLA), induced high and similar (p>0.05) levels of antibodies that recognized Chp60 in outer membranes (OM). FACS analysis and immuno-fluorescence experiments demonstrated that Chp60 was surface-expressed on meningococci. By western blotting, murine anti-rChp60 sera recognized a protein of Mr 60kDa in meningococcal cell lysates. However, cross-reactivity with human HSP60 protein was also observed. By comparing translated protein sequences of strains, 40 different alleles were found in meningococci in the Bacterial Isolate Genome Sequence database with an additional 5 new alleles found in our selection of 13 other strains from colonized individuals and patients. Comparison of the non-redundant translated amino acid sequences from all the strains revealed ≥97% identity between meningococcal Chp60 proteins, and in our 13 strains the protein was expressed to high and similar levels. Bactericidal antibodies (median reciprocal titres of 32-64) against the homologous strain MC58 were induced by immunization with rChp60 in liposomes, detergent micelles and on Al(OH)3. Bactericidal activity was influenced by the addition of MPLA and the delivery formulation used. Moreover, the biological activity of anti-Chp60 antisera did not extend significantly to heterologous meningococcal strains. Thus, in order to provide broad coverage, vaccines based on Chp60 would require multiple proteins and specific bactericidal epitope identification.
Collapse
Affiliation(s)
- Renee Phillips
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton General Hospital, Southampton SO166YD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The adhesin complex protein (ACP) of Neisseria meningitidis is a new adhesin with vaccine potential. mBio 2013; 4:mBio.00041-13. [PMID: 23443003 PMCID: PMC3585444 DOI: 10.1128/mbio.00041-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The acp gene encoding the 13-kDa adhesin complex protein (ACP) from Neisseria meningitidis serogroup B strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant ACP (rACP) was used for immunization studies. Analysis of the ACP amino acid sequences from 13 meningococcal strains, isolated from patients and colonized individuals, and 178 strains in the Bacterial Isolate Genome Sequence (BIGS) database showed the presence of only three distinct sequence types (I, II, and III) with high similarity (>98%). Immunization of mice with type I rACP in detergent micelles and liposomes and in saline solution alone induced high levels of serum bactericidal activity (SBA; titers of 1/512) against the homologous strain MC58 and killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/512). Levels of expression of type I, II, or III ACP by different meningococcal strains were similar. ACP functioned as an adhesin, as demonstrated by reduced adherence of acp knockout (MC58 ΔACP) meningococci to human cells in vitro and the direct surface binding of rACP and by the ability of anti-rACP sera to inhibit adherence of wild-type bacteria. ACP also mediated the invasion of noncapsular meningococci into human epithelial cells, but it was not a particularly impressive invasin, as the internalized bacterial numbers were low. In summary, the newly identified ACP protein is an adhesin that induces cross-strain bactericidal activity and is therefore an attractive target antigen for incorporation into the next generation of serogroup B meningococcal vaccines. Infections caused by Neisseria meningitidis serogroup B are still significant causes of mortality and morbidity worldwide, and broadly protective vaccines of defined antigen composition are not yet licensed. Here, we describe the properties of the adhesin complex protein (ACP), which we demonstrate is a newly recognized molecule that is highly conserved and expressed to similar levels in meningococci and facilitates meningococcal interactions with human cells. We also report that a recombinant ACP protein vaccine induces murine antibodies that significantly kill meningococci expressing different ACP. Taken together, these properties demonstrate that ACP merits serious consideration as a component of a broadly protective vaccine against serogroup B meningococci.
Collapse
|
19
|
Freixeiro P, Diéguez-Casal E, Costoya L, Seijo B, Ferreirós CM, Criado MT, Sánchez S. Study of the stability of proteoliposomes as vehicles for vaccines against Neisseria meningitidis based on recombinant porin complexes. Int J Pharm 2013; 443:1-8. [DOI: 10.1016/j.ijpharm.2012.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022]
|
20
|
Freixeiro P, Diéguez-Casal E, Costoya L, Marzoa J, Ferreirós CM, Criado MT, Sánchez S. High resolution clear native electrophoresis (hrCNE) allows a detailed analysis of the heterotrimeric structure of recombinant Neisseria meningitidis porins inserted into liposomes. J Proteome Res 2013; 12:777-84. [PMID: 23259616 DOI: 10.1021/pr3008573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three recombinant proteins of Neisseria meningitidis, rPorB, rPorA, and rRmpM, were purified and incorporated into liposomes prepared by dialysis-extrusion. The protein complexes formed using different combinations of recombinant proteins were studied by high resolution clear native electrophoresis (hrCNE) and 2-D hrCNE/SDS-PAGE, analyzing the influence of the stoichiometry of the two porins in the formation of complexes and comparing them with native porin complexes present in OMVs from five different N. meningitidis strains. Insertion of the recombinant proteins into liposomes allowed a complete refolding of porin complexes, and the electrophoretic analyses showed that, when the three recombinant proteins are present, the pattern of porin complexes obtained is similar to that observed in native OMVs. We could show homocomplexes of each individual porin and PorA/PorB, RmpM/PorB, and PorA/PorB/RmpM heterocomplexes. Our results suggest that RmpM binds only to PorB, confirm the trimeric structure of N. meningitidis pores, and demonstrate that insertion into liposomes restores the native structure of porin complexes.
Collapse
Affiliation(s)
- Paula Freixeiro
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Zollinger WD, Babcock JG, Moran EE, Brandt BL, Matyas GR, Wassef NM, Alving CR. Phase I study of a Neisseria meningitidis liposomal vaccine containing purified outer membrane proteins and detoxified lipooligosaccharide. Vaccine 2011; 30:712-21. [PMID: 22138211 DOI: 10.1016/j.vaccine.2011.11.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/16/2011] [Accepted: 11/21/2011] [Indexed: 01/09/2023]
Abstract
Purified outer membrane proteins and purified deacylated lipooligosaccharide (dLOS) were formulated for use as a vaccine in three formulations for clinical use. The three vaccine formulations included (1) purified outer membrane proteins (OMPs) and L8-5 dLOS adsorbed to aluminum hydroxide; (2) purified OMPs and L8-5 dLOS incorporated into liposomes; and (3) purified OMPs and L7 dLOS incorporated into proteoliposomes. The vaccines were compared for immunogenicity and safety in a phase 1clinical study. Ten adult volunteers were vaccinated with each of the three vaccine formulations. Two 50 μg doses were given six weeks apart, and serum samples were obtained at 0, 2, 6, 8 and 14 weeks. Volunteers were evaluated for reactogenicity 30 min after vaccination and at days 1, 2, and 14 after each vaccination, and laboratory safety tests were done at 0, 2 and 6 weeks. Overall, the vaccines were well tolerated. Bactericidal assays against a homologous strain showed a four-fold or greater increase in titer in 6 of 7 volunteers in group one, 9 of 10 volunteers in group two, and 5 of 10 volunteers in group three. A quantitative enzyme linked immunosorbant assay showed increases in antibody against both OMPs and LOS antigens. The liposome formulation appeared to be particularly effective in presenting the dLOS as an antigen.
Collapse
Affiliation(s)
- Wendell D Zollinger
- The Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hung MC, Salim O, Williams JN, Heckels JE, Christodoulides M. The Neisseria meningitidis macrophage infectivity potentiator protein induces cross-strain serum bactericidal activity and is a potential serogroup B vaccine candidate. Infect Immun 2011; 79:3784-91. [PMID: 21708989 PMCID: PMC3165472 DOI: 10.1128/iai.05019-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)(3). Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Blood Bactericidal Activity
- Blotting, Western
- Cross Reactions
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Macrophages
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningitis, Meningococcal/therapy
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Rabbits
- Recombinant Proteins/immunology
- Serum Bactericidal Antibody Assay
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Omar Salim
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Jeannette N. Williams
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - John E. Heckels
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Myron Christodoulides
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
23
|
Sánchez S, Abel A, Marzoa J, Gorringe A, Criado T, Ferreirós CM. Characterisation and immune responses to meningococcal recombinant porin complexes incorporated into liposomes. Vaccine 2009; 27:5338-43. [PMID: 19607954 DOI: 10.1016/j.vaccine.2009.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/04/2009] [Accepted: 06/25/2009] [Indexed: 11/16/2022]
Abstract
We have analysed the structure of meningococcal outer membrane complexes and found that the main complexes are formed by different combinations of PorA and/or PorB molecules, associated to other proteins such as RmpM. In view of the growing knowledge of the importance of conformational epitopes in the immune responses to many pathogens, our aim in this study was to analyse the interactions of PorA and PorB by reconstitution of both recombinant porins into liposomes and determine the relevance of these interactions for the immune response. Recombinant PorA and PorB incorporated into liposomes associate forming complexes that are homomeric when only one of the porins is present, but heteromeric when both neisserial porins are present, mimicking those found previously in native outer membrane vesicles (OMVs). Association of PorA and PorB to form heterocomplexes modifies the immunogenicity of at least PorB, allowing the production of antibodies that recognise conformational epitopes, and produces new epitopes that react with a 50 kDa outer membrane protein not yet identified.
Collapse
Affiliation(s)
- Sandra Sánchez
- Departamento de Microbiología y Parasitología, Facultade de Farmacia, Campus Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Joshi VS, Bajaj IB, Survase SA, Singhal RS, Kennedy JF. Meningococcal polysaccharide vaccines: A review. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 2009; 58:196-208. [DOI: 10.1099/jmm.0.004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Evelin Caballero
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Karem Cobas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Olivia Niebla
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| |
Collapse
|
26
|
Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine 2008; 26:6655-63. [DOI: 10.1016/j.vaccine.2008.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/04/2008] [Accepted: 09/04/2008] [Indexed: 11/18/2022]
|
27
|
The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine 2007; 26:786-96. [PMID: 18191311 DOI: 10.1016/j.vaccine.2007.11.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Porins from pathogenic Neisseriae are among several bacterial products with immune adjuvant activity. Neisseria meningitidis (Nme) PorB, has been shown to induce immune cells activation in a TLR2-dependent manner and acts as a vaccine immune adjuvant. The PorB porin from Neisseria lactamica (Nlac), a common nasopharyngeal commensal, shares significant structural and functional similarities with Nme PorB. In this work we ask whether the immune adjuvant ability of porins from pathogenic Neisserial strains is a characteristic shared with porins from non-pathogenic Neisserial species or whether it is unique for bacterial products derived from microorganisms capable of inducing inflammation and disease. We evaluated the potential immune adjuvant effect of Nlac PorB in mice using ovalbumin (OVA) as a prototype antigen. Immunization with Nlac PorB/OVA induced high OVA-specific IgG and IgM titers compared to OVA alone, similar to other adjuvants such as Nme PorB and alum. High titers of IgG1 and IgG2b were detected as well as production of IL-4, IL-10, IL-12 and INF-gamma in response to Nlac PorB, consistent with induction of both a Th1-type and a Th2-type immune response. OVA-specific proliferation was also determined in splenocytes from Nlac PorB/OVA-immunized mice. In addition, B cell activation in vitro and cytokine production in response to Nlac PorB was found to be mediated by TLR2, in a similar manner to Nme PorB.
Collapse
|
28
|
Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate. Vaccine 2007; 25:8420-31. [DOI: 10.1016/j.vaccine.2007.09.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/20/2007] [Accepted: 09/23/2007] [Indexed: 11/15/2022]
|
29
|
A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis. Infect Immun 2007; 76:334-8. [PMID: 17967859 DOI: 10.1128/iai.00943-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experimental DNA plasmid vaccine was developed based on a well-characterized and protective peptide epitope derived from a bacterial porin protein. For this study, we used the P1.16b serosubtype epitope, located in variable region (VR)2 in loop 4 of the PorA outer membrane (OM) porin from Neisseria meningitidis serogroup B strain MC58. A plasmid that encoded the entire loop (pPorAloop4) was prepared, as well as a fusion plasmid that encoded the loop in tandem with the fragment C (FrC) immunostimulatory sequence from tetanus toxin (pPorAloop4-FrC). The constructs were used for intramuscular immunization without exogenous adjuvant. Murine antisera raised to the pPorAloop4-FrC DNA fusion plasmid reacted significantly with OMs in enzyme-linked immunosorbent assay and with whole bacteria by immunofluorescence, whereas antisera raised to the pPorAloop4 DNA plasmid and to control plasmid showed little or no reactivity. Significantly, only the pPorALoop4-FrC plasmid induced bactericidal antibodies, demonstrating that the intrinsic immunostimulatory sequence was essential for inducing a protective immune response. The antibodies raised to the P1.16b pPorALoop4-FrC plasmid were serosubtype specific, showing no significant immunofluorescence reactivity or bactericidal activity against other PorA variants. These data provide proof of principle for a DNA fusion plasmid strategy as a novel approach to preparing vaccines based on defined, protective epitopes.
Collapse
|
30
|
Williams JN, Skipp PJ, Humphries HE, Christodoulides M, O'Connor CD, Heckels JE. Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 2006; 75:1364-72. [PMID: 17158897 PMCID: PMC1828559 DOI: 10.1128/iai.01424-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current experimental vaccines against serogroup B Neisseria meningitidis are based on meningococcal outer membrane (OM) proteins present in outer membrane vesicles (OMV) in which toxic lipopolysaccharide is depleted by detergent extraction. Knowledge of the composition of OM and OMV is essential for developing new meningococcal vaccines based on defined antigens. In the current study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nanocapillary liquid chromatography-tandem mass spectrometry were used to investigate the proteomes of OM and OMV from meningococcal strain MC58 and OM from a lipopolysaccharide-deficient mutant. The analysis of OM revealed a composition that was much more complex than the composition that has been reported previously; a total of 236 proteins were identified, only 6.4% of which were predicted to be located in the outer membrane. The most abundant proteins included not only the well-established major OM proteins (PorA, PorB, Opc, Rmp, and Opa) but also other proteins, such as pilus-associated protein Q (PilQ) and a putative macrophage infectivity protein. All of these proteins were also present in OMV obtained by extraction of the OM with deoxycholate. There were markedly increased levels of some additional proteins in OM from the lipopolysaccharide-deficient mutant, including enzymes that contribute to the tricarboxylic acid cycle. In all the preparations, the proteins not predicted to have an OM location were predominantly periplasmic or cytoplasmic or had an unknown location, and relatively few cytoplasmic membrane proteins were detected. However, several proteins that have previously been identified as potential vaccine candidates were not detected in either OM preparations or in OMV. These results have important implications for the development and use of vaccines based on outer membrane proteins.
Collapse
Affiliation(s)
- Jeannette N Williams
- Molecular Microbiology Group, Division of Infection Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Humphries HE, Williams JN, Blackstone R, Jolley KA, Yuen HM, Christodoulides M, Heckels JE. Multivalent liposome-based vaccines containing different serosubtypes of PorA protein induce cross-protective bactericidal immune responses against Neisseria meningitidis. Vaccine 2005; 24:36-44. [PMID: 16105711 DOI: 10.1016/j.vaccine.2005.07.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 07/25/2005] [Indexed: 11/30/2022]
Abstract
Four serosubtypes (P1.7, 16, P1.7-2, 4, P1.19, 15 and P1.5-1, 10-4) of the PorA outer-membrane protein of Neisseria meningitidis were purified as recombinant proteins and incorporated into liposomes to investigate their immunogenicity. Each serosubtype induced high levels of bactericidal activity against the homologous strain. In addition, liposome preparations containing multiple serosubtypes induced high levels of bactericidal activity against each of the four strains. Significantly, antisera raised against monovalent and multivalent liposomes also showed cross-reactive bactericidal activity against heterologous strains. These data demonstrate that multivalent liposome vaccines, containing multiple PorA serosubtypes, have the potential to provide protection against a broad range of meningococcal strains.
Collapse
Affiliation(s)
- Holly E Humphries
- Molecular Microbiology Group, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Mailpoint 814, Level C, Lab and Path Block, Tremona Road, Southampton SO16 6YD, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Price GA, Russell MW, Cornelissen CN. Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. Infect Immun 2005; 73:3945-53. [PMID: 15972481 PMCID: PMC1168620 DOI: 10.1128/iai.73.7.3945-3953.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transferrin binding proteins (TbpA and TbpB) comprise the gonococcal transferrin receptor and are considered potential antigens for inclusion in a vaccine against Neisseria gonorrhoeae. Intranasal (IN) immunization has shown promise in development of immunity against sexually transmitted disease pathogens, in part due to the induction of antigen-specific genital tract immunoglobulin A (IgA) and IgG. Conjugation of antigens to the highly immunogenic cholera toxin B subunit (Ctb) enhances antibody responses in the serum and mucosal secretions following IN vaccination. In the current study, we characterized the anti-Tbp immune responses following immunization of mice IN with recombinant transferrin binding proteins (rTbpA and rTbpB) conjugated to rCtb. We found that both rTbpA-Ctb and rTbpB-Ctb conjugates administered IN induced antibody responses in the serum and genital tract. IN immunization resulted in both IgA and IgG in the genital tract; however, subcutaneous immunization mainly generated IgG. Surprisingly, rTbpA alone was immunogenic and induced serum and mucosal antibody responses similar to those elicited against the rTbpA-Ctb conjugate. Overall, rTbpB was much more immunogenic than rTbpA, generating serum IgG levels that were greater than those elicited against rTbpA. Bactericidal assays conducted with sera collected from mice immunized IN with TbpA and/or TbpB indicated that both antigens generated antibodies with bactericidal activity. Anti-TbpA antibodies were cross-bactericidal against heterologous gonococcal strains, whereas TbpB-specific antibodies were less cross-reactive. By contrast, antibodies elicited via subcutaneous immunization were not cross-bactericidal against heterologous strains, indicating that IN vaccination could be the preferred route for elicitation of biologically functional antibodies.
Collapse
Affiliation(s)
- Gregory A Price
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA
| | | | | |
Collapse
|
33
|
Welsch JA, Rossi R, Comanducci M, Granoff DM. Protective activity of monoclonal antibodies to genome-derived neisserial antigen 1870, a Neisseria meningitidis candidate vaccine. THE JOURNAL OF IMMUNOLOGY 2004; 172:5606-15. [PMID: 15100304 DOI: 10.4049/jimmunol.172.9.5606] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genome-derived neisserial Ag (GNA) 1870 is a meningococcal vaccine candidate that can be subdivided into three variants based on amino acid sequence variability. Variant group 1 accounts for approximately 60% of disease-producing group B isolates. The Ag went unrecognized until its discovery by genome mining because it is expressed in low copy number by most strains. To investigate the relationship between Ab binding to GNA1870 and complement-mediated protective functions, we prepared a panel of four murine IgG mAbs against rGNA1870 (variant 1) and evaluated their activity against nine genetically diverse encapsulated Neisseria meningitidis strains expressing subvariants of variant 1 GNA1870. Based on flow cytometry with live encapsulated bacteria, surface accessibility of the epitopes recognized by the mAbs appeared to be low in most strains. Yet mAb concentrations <1 to 5 micro g/ml were sufficient to elicit bactericidal activity with human complement and/or activate C3b deposition on the bacterial surface. Certain combinations of mAbs were highly bactericidal against strains that were resistant to bactericidal activity of the respective individual mAbs. The mAbs conferred passive protection against bacteremia in infant rats challenged by strains resistant to bacteriolysis, and the protective activity paralleled the ability of the mAb to activate C3b deposition. Thus, despite low GNA1870 surface exposure, anti-GNA1870 variant 1 Abs are bactericidal and/or elicit C3b deposition and confer protection against bacteremia caused by encapsulated N. meningitidis strains expressing GNA1870 subvariant 1 proteins. The data support GNA1870 as a promising vaccine candidate for prevention of meningococcal group B disease caused by GNA1870 variant 1 strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacteremia/immunology
- Bacteremia/prevention & control
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Cell Line
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Genome, Bacterial
- Humans
- Hybridomas
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/immunology
- Mice
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Neisseria meningitidis/growth & development
- Neisseria meningitidis/immunology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Jo Anne Welsch
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | |
Collapse
|
34
|
Al-Bader T, Jolley KA, Humphries HE, Holloway J, Heckels JE, Semper AE, Friedmann PS, Christodoulides M. Activation of human dendritic cells by the PorA protein of Neisseria meningitidis. Cell Microbiol 2004; 6:651-62. [PMID: 15186401 DOI: 10.1111/j.1462-5822.2004.00392.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major porin proteins present in the outer membrane of Neisseria meningitidis, the causative agent of life-threatening meningitis and septicaemia, are believed to have potent immunostimulatory effects. In this study, the interactions between human monocyte-derived dendritic cells (mo-DC) and the PorA porin were investigated, in order to reveal the role of this protein in promoting innate and adaptive immune responses. Recombinant (r)PorA induced mo-DC maturation, as reflected by reduced receptor-mediated endocytosis, increased production of the chemokines IL-8, RANTES, MIP-1 alpha and MIP-1 beta and augmented expression of the surface markers CD40, CD54, CD80, CD86 and major histocompatibility complex class II molecules. However, rPorA induced either low level or no significant secretion of pro-inflammatory cytokines from mo-DC. The protein potently augmented the capacity of mo-DC to activate both allogeneic CD4(+) memory T-cells and CD4(+)RA(+) naïve T-cells. In addition, rPorA appeared to inhibit the production of IL-12p70 that follows from the interaction between CD40 on the mo-DC and CD40-ligand on T-cells, thereby directing T-cell differentiation towards a Th2 type response. These data demonstrate that PorA is involved in DC activation and in influencing the nature of the T-helper immune response, which are important properties for generating antibody responses required for protective immunity against meningococci and for determining the immuno-adjuvant effects of this protein.
Collapse
Affiliation(s)
- Tamara Al-Bader
- Dermatopharmacology Unit, Division of Infection, Inflammation and Repair, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Humphries HE, Williams JN, Christodoulides M, Heckels JE. Recombinant meningococcal PorA protein, expressed using a vector system with potential for human vaccination, induces a bactericidal immune response. Vaccine 2004; 22:1564-9. [PMID: 15063582 DOI: 10.1016/j.vaccine.2003.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 09/26/2003] [Indexed: 11/25/2022]
Abstract
The PorA protein of Neisseria meningitidis (subtype P1.7,16) was expressed as a recombinant protein using three vectors; pTWIN, pQE30 and pRSETA, which introduce different sized N-terminal leader sequences to the mature protein. The immunogenicity of these proteins was compared following incorporation into liposomes and ZW-micelles. All of the recombinant PorA (rPorA) preparations induced high titres of antibody that recognised the homologous PorA within the outer membrane (OM) and on the surface of meningococci. Antisera raised against liposomes and micelles containing the different rPorA proteins induced high and comparable levels of complement-mediated killing of the homologous, but not heterologous, strain. Furthermore, the bactericidal effect was greater when rPorA were incorporated into liposomes rather than detergent micelles. The minimal addition of three N-terminal amino acids in rPorA purified from the pTWIN vector represents a significant improvement over rPorA purified from vectors pQE30 and pRSETA, plus other previously purified rPorA, when considering use of these proteins in vaccines for human use.
Collapse
Affiliation(s)
- Holly E Humphries
- Molecular Microbiology and Infection, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
36
|
Segal S, Pollard AJ. The Last of the Meningococcus? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 549:201-9. [PMID: 15250534 DOI: 10.1007/978-1-4419-8993-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shelley Segal
- Department of Pediatrics, University of Oxford, United Kingdom
| | | |
Collapse
|
37
|
Arigita C, Bevaart L, Everse LA, Koning GA, Hennink WE, Crommelin DJA, van de Winkel JGJ, van Vugt MJ, Kersten GFA, Jiskoot W. Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect Immun 2003; 71:5210-8. [PMID: 12933866 PMCID: PMC187329 DOI: 10.1128/iai.71.9.5210-5218.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 05/01/2003] [Accepted: 06/20/2003] [Indexed: 11/20/2022] Open
Abstract
The effect of targeting strategies for improving the interaction of liposomal PorA with dendritic cells (DC) on the immunogenicity of PorA was investigated. PorA, a major antigen of Neisseria meningitidis, was purified and reconstituted in different types of (targeted) liposomes, i.e., by using mannose or phosphatidylserine as targeting moieties, or with positively charged liposomes. We studied the efficiency of liposome uptake and its effect on the maturation of and interleukin 12 (IL-12) production by murine DC. Moreover, mice were immunized subcutaneously to study the localization and immunogenicity of PorA liposomes. Uptake of liposomes by DC was significantly increased for targeted liposomes and resulted in the maturation of DC, but to various degrees. Maturation markers (i.e., CD80, CD86, major histocompatibility complex class II, and CD40) showed enhanced expression on DC incubated with targeted PorA liposomes relative to those incubated with nontargeted PorA liposomes. Moreover, only the uptake of targeted PorA liposomes induced production of IL-12 by DC, with levels similar to those produced by lipopolysaccharide (LPS)-pulsed DC. Mannose-targeted PorA liposomes administered subcutaneously had an increased localization in draining lymph nodes compared to nontargeted PorA liposomes. Liposomes in draining lymph nodes interacted preferentially with antigen-presenting cells, an effect that was enhanced with targeted PorA liposomes. Immunization studies showed an improvement of the bactericidal antibody response (i.e., increased number of responders) generated by targeted PorA liposomes compared to that generated by nontargeted ones or LPS-containing outer membrane vesicles. In conclusion, the use of targeted PorA liposomes results in an improved uptake by and activation of DC and an increased localization in draining lymph nodes. These effects correlate with an enhanced immune response toward the vaccine.
Collapse
Affiliation(s)
- Carmen Arigita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Humphries HE, Christodoulides M, Heckels JE. Expression of the class 1 outer-membrane protein of Neisseria meningitidis in Escherichia coli and purification using a self-cleavable affinity tag. Protein Expr Purif 2002; 26:243-8. [PMID: 12406678 DOI: 10.1016/s1046-5928(02)00534-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The class 1 protein (PorA) is a major component of the outer membrane of Neisseria meningitidis and functions as a cationic porin. The protein is particularly effective in generating a bactericidal immune response following infection and is therefore under investigation as a potential antigen for inclusion in new meningococcal vaccines. Studies on the vaccine potential of PorA would be facilitated by the production of pure protein, free from other components of the meningococcal outer membrane. In the current study, PorA was expressed from the heterologous host Escherichia coli as a C-terminal fusion to an inducible protein-splicing element (intein) with an N-terminal chitin-binding domain (CBD) (IMPACT-TWIN system). The CBD acted as an affinity tag and allowed binding of the fusion protein to a chitin bead column, after which self-cleavage of the intein at its C-terminus was induced, resulting in the release of mature PorA. Cleavage of the fusion protein was temperature- and time-dependent, and was optimal at pH 7.0 after 5 days of storage at 4 degrees C. Efficient cleavage was also dependent on the addition of a minimal amino acid sequence (Gly-Arg-Ala) to the N-terminus of the mature PorA protein. This represented a significant improvement on the large N-terminal sequences introduced by other expression systems previously used to prepare recombinant PorA, and the yields of PorA purified with the IMPACT-TWIN system were similar. Thus, the IMPACT-TWIN system provides a facile method for producing recombinant PorA and may also be useful for the production of other bacterial outer-membrane proteins for vaccine studies.
Collapse
Affiliation(s)
- Holly E Humphries
- Molecular Microbiology and Infection, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, UK.
| | | | | |
Collapse
|
39
|
Wright JC, Williams JN, Christodoulides M, Heckels JE. Immunization with the recombinant PorB outer membrane protein induces a bactericidal immune response against Neisseria meningitidis. Infect Immun 2002; 70:4028-34. [PMID: 12117908 PMCID: PMC128133 DOI: 10.1128/iai.70.8.4028-4034.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with Neisseria meningitidis are characterized by life-threatening meningitis and septicemia. The meningococcal porin proteins from serogroup B meningococci have been identified as candidates for inclusion in vaccines to prevent such infections. In this study, we investigated the vaccine potential of the PorB porin protein free of other meningococcal components. The porB gene from a strain of Neisseria meningitidis expressing the class 3 outer membrane porin protein (PorB3) was cloned into the pRSETB vector, and the protein was expressed at high levels in a heterologous host Escherichia coli. The recombinant protein was purified to homogeneity by affinity chromatography and used for immunization after incorporation into liposomes and into micelles composed either of zwitterionic detergent or nondetergent sulfobetaine. The immunogenicity of these preparations was compared to recombinant PorB protein adsorbed to Al(OH)(3) adjuvant as a control. Although sera raised against the protein adsorbed to Al(OH)(3) reacted with the purified recombinant protein, sera raised against liposomes and micelles showed greater activity with native protein, as measured by enzyme immunoassay with outer membranes and by whole-cell immunofluorescence. Reactivity with native protein was considerably enhanced by incorporation of the adjuvant monophosphoryl lipid A into the liposome or micelle preparations. Recognition of the native protein was in a serotype-specific manner and was associated with the ability of the antisera to promote high levels of serotype-specific complement-mediated killing of meningococci. These results demonstrate that the PorB protein should be considered as a component of a vaccine designed to prevent serogroup B meningococcal infection.
Collapse
Affiliation(s)
- J Claire Wright
- Molecular Microbiology and Infection, Division of Infection, Inflammation and Repair, University of Southampton Medical School, and Southampton General Hospital, United Kingdom
| | | | | | | |
Collapse
|
40
|
Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, Heckels JE. Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun 2002; 70:4035-44. [PMID: 12117909 PMCID: PMC128145 DOI: 10.1128/iai.70.8.4035-4044.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The interactions of Neisseria meningitidis with cells of the leptomeninges are pivotal events in the progression of bacterial leptomeningitis. An in vitro model based on the culture of human meningioma cells was used to investigate the role of the leptomeninges in the inflammatory response. Following challenge with meningococci, meningioma cells secreted specifically the proinflammatory cytokine interleukin-6 (IL-6), the CXC chemokine IL-8, the CC chemokines monocyte chemoattractant protein 1 (MCP-1) and regulated-upon-activation, normal-T-cell expressed and secreted protein (RANTES), and the cytokine growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). A temporal pattern of cytokine production was observed, with early secretion of IL-6, IL-8, and MCP-1 followed by later increases in RANTES and GM-CSF levels. IL-6 was induced equally by the interactions of piliated and nonpiliated meningococci, whereas lipopolysaccharide (LPS) had a minimal effect, suggesting that other, possibly secreted, bacterial components were responsible. Induction of IL-8 and MCP-1 also did not require adherence of bacteria to meningeal cells, but LPS was implicated. In contrast, efficient stimulation of RANTES by intact meningococci required pilus-mediated adherence, which served to deliver increased local concentrations of LPS onto the surface of meningeal cells. Secretion of GM-CSF was induced by pilus-mediated interactions but did not involve LPS. In addition, capsule expression had a specific inhibitory effect on GM-CSF secretion, which was not observed with IL-6, IL-8, MCP-1, or RANTES. Thus, the data demonstrate that cells of the leptomeninges are not inert but are active participants in the innate host response during leptomeningitis and that there is a complex relationship between expression of meningococcal components and cytokine induction.
Collapse
Affiliation(s)
- Myron Christodoulides
- Molecular Microbiology and Infection, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The past century has seen the use of a number of vaccines for prevention and control of meningococcal disease with varied success. The use of polysaccharide vaccines for the control of outbreaks of serogroup C infections in teenagers and young adults and epidemic serogroup A disease has been established for 30 years and an effective protein-polysaccharide conjugate vaccine against serogroup C was introduced into the UK infant immunisation schedule in 2000. The next generation of these glycoconjugate vaccines will be on the shelf soon, eventually offering the prospect of eradication of serogroups A, C, Y and W135 through routine infant immunisation. Despite these exciting prospects, serogroup B meningococci still account for a majority of infections in industrialised nations but development of safe, immunogenic and effective serogroup B meningococcal vaccines has been an elusive goal. Outer membrane vesicle vaccines for B disease are already used in some countries, and will likely be used more widely in the next few years, but efficacy for endemic disease in children has so far been disappointing. However, the innovations arising from the availability of the meningococcal genome sequence, public and scientific interest in the disease and recent pharmaceutical company investment in development of serogroup B vaccines may have started the countdown to the end of meningococcal infection in children.
Collapse
Affiliation(s)
- S L Morley
- Department of Paediatrics, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
42
|
Granoff DM, Moe GR, Giuliani MM, Adu-Bobie J, Santini L, Brunelli B, Piccinetti F, Zuno-Mitchell P, Lee SS, Neri P, Bracci L, Lozzi L, Rappuoli R. A novel mimetic antigen eliciting protective antibody to Neisseria meningitidis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6487-96. [PMID: 11714816 DOI: 10.4049/jimmunol.167.11.6487] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular mimetic Ags are of considerable interest as vaccine candidates. Yet there are few examples of mimetic Ags that elicit protective Ab against a pathogen, and the functional activity of anti-mimetic Abs has not been studied in detail. As part of the Neisseria meningitidis serogroup B genome sequencing project, a large number of novel proteins were identified. Herein, we provide evidence that genome-derived Ag 33 (GNA33), a lipoprotein with homology to Escherichia coli murein transglycosylase, elicits protective Ab to meningococci as a result of mimicking an epitope on loop 4 of porin A (PorA) in strains with serosubtype P1.2. Epitope mapping of a bactericidal anti-GNA33 mAb using overlapping peptides shows that the mAb recognizes peptides from GNA33 and PorA that share a QTP sequence that is necessary but not sufficient for binding. By flow cytometry, mouse antisera prepared against rGNA33 and the anti-GNA33 mAb bind as well as an anti-PorA P1.2 mAb to the surface of eight of nine N. meningitidis serogroup B strains tested with the P1.2 serosubtype. Anti-GNA33 Abs also are bactericidal for most P1.2 strains and, for susceptible strains, the activity of an anti-GNA33 mAb is similar to that of an anticapsular mAb but less active than an anti-P1.2 mAb. Anti-GNA Abs also confer passive protection against bacteremia in infant rats challenged with P1.2 strains. Thus, GNA33 represents one of the most effective immunogenic mimetics yet described. These results demonstrate that molecular mimetics have potential as meningococcal vaccine candidates.
Collapse
MESH Headings
- Adult
- Animals
- Animals, Suckling
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/therapeutic use
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Binding Sites, Antibody
- Blood Bactericidal Activity
- Blotting, Western
- Cell Membrane/chemistry
- Cell Membrane/immunology
- Cell Membrane/microbiology
- Female
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- Genome, Bacterial
- Glycosyltransferases/immunology
- Humans
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Mice
- Molecular Mimicry/genetics
- Molecular Mimicry/immunology
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Peptide Mapping
- Porins/immunology
- Rats
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- D M Granoff
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jolley KA, Appleby L, Wright JC, Christodoulides M, Heckels JE. Immunization with recombinant Opc outer membrane protein from Neisseria meningitidis: influence of sequence variation and levels of expression on the bactericidal immune response against meningococci. Infect Immun 2001; 69:3809-16. [PMID: 11349046 PMCID: PMC98398 DOI: 10.1128/iai.69.6.3809-3816.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opc gene from Neisseria meningitidis was cloned into the pRSETA vector, and recombinant protein was expressed at high levels in Escherichia coli. The protein was readily purified by affinity chromatography and used for immunization with conventional Al(OH)3 adjuvant or after incorporation into liposomes and Zwittergent micelles. The resulting sera were analyzed for their ability to recognize purified recombinant protein and "native" protein in an enzyme immunoassay with outer membranes and by whole-cell immunofluorescence. Immunization with Al(OH)3 induced high levels of antibodies which reacted with the purified protein but did not recognize whole cells. In contrast, liposomes and micelles induced antibodies which reacted with the native protein in whole cells. The addition of monophosphoryl lipid A (MPLA) to either liposomes or micelle preparations increased the magnitude of the immune response and induced a wider range of immunoglobulin subclasses. This was associated with the ability of the sera to induce complement-mediated killing of the homologous strain. The most effective bactericidal activity was observed with Opc protein incorporated into liposomes containing MPLA. The magnitude of the bactericidal effect was strongly influenced by the level of expression of the Opc protein and was abolished by limited variation in the sequence of the protein expressed by heterologous strains.
Collapse
Affiliation(s)
- K A Jolley
- Molecular Microbiology Group, Division of Cell and Molecular Medicine, University of Southampton Medical School, Southampton General Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Niebla O, Alvarez A, Martín A, Rodríguez A, Delgado M, Falcón V, Guillén G. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent. Vaccine 2001; 19:3568-74. [PMID: 11348724 DOI: 10.1016/s0264-410x(01)00008-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions.
Collapse
Affiliation(s)
- O Niebla
- Division of Vaccines, Centre for Genetic Engineering and Biotechnology, PO Box 6162, Ave 31, Apartado 6162, 10600, La Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
45
|
Haake DA, Mazel MK, McCoy AM, Milward F, Chao G, Matsunaga J, Wagar EA. Leptospiral outer membrane proteins OmpL1 and LipL41 exhibit synergistic immunoprotection. Infect Immun 1999; 67:6572-82. [PMID: 10569777 PMCID: PMC97069 DOI: 10.1128/iai.67.12.6572-6582.1999] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 09/02/1999] [Indexed: 11/20/2022] Open
Abstract
New vaccine strategies are needed for prevention of leptospirosis, a widespread human and veterinary disease caused by invasive spirochetes belonging to the genus Leptospira. We have examined the immunoprotective capacity of the leptospiral porin OmpL1 and the leptospiral outer membrane lipoprotein LipL41 in the Golden Syrian hamster model of leptospirosis. Specialized expression plasmids were developed to facilitate expression of leptospiral proteins in Escherichia coli as the membrane-associated proteins OmpL1-M and LipL41-M. Although OmpL1-M expression is highly toxic in E. coli, this was accomplished by using plasmid pMMB66-OmpL1, which has undetectable background expression without induction. LipL41-M expression and processing were enhanced by altering its lipoprotein signal peptidase cleavage site to mimic that of the murein lipoprotein. Active immunization of hamsters with E. coli membrane fractions containing a combination of OmpL1-M and LipL41-M was found to provide significant protection against homologous challenge with Leptospira kirschneri serovar grippotyphosa. At 28 days after intraperitoneal inoculation, survival in animals vaccinated with both proteins was 71% (95% confidence interval [CI], 53 to 89%), compared with only 25% (95% CI, 8 to 42%) in the control group (P < 0.001). On the basis of serological, histological, and microbiological assays, no evidence of infection was found in the vaccinated survivors. The protective effects of immunization with OmpL1-M and LipL41-M were synergistic, since significant levels of protection were not observed in animals immunized with either OmpL1-M or LipL41-M alone. In contrast to immunization with the membrane-associated forms of leptospiral proteins, hamsters immunized with His(6)-OmpL1 and His(6)-LipL41 fusion proteins, either alone or in combination, were not protected. These data indicate that the manner in which OmpL1 and LipL41 associates with membranes is an important determinant of immunoprotection.
Collapse
Affiliation(s)
- D A Haake
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Moe GR, Tan S, Granoff DM. Molecular mimetics of polysaccharide epitopes as vaccine candidates for prevention of Neisseria meningitidis serogroup B disease. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 26:209-26. [PMID: 10575132 DOI: 10.1111/j.1574-695x.1999.tb01392.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neisseria meningitidis is a major cause of meningitis and sepsis. Despite nearly 25 years of work, there is no promising vaccine candidate for prevention of disease caused by meningococcal B strains. This review summarizes newer approaches for eliciting protective meningococcal B immune responses, including the use of molecular mimetics of group B polysaccharide and conserved membrane proteins as immunogens. The capsular polysaccharide of this organism is conserved and serum antibody to this capsule confers protection against disease. However, the immunogenicity of meningococcal B polysaccharide-based vaccines is poor. Further, a portion of the antibody elicited has autoantibody activity. Recently, our laboratory produced a panel of murine monoclonal antibodies (Mabs) that react specifically with capsular polysaccharide epitopes on meningococcal B that are distinct from host polysialic acid. These Mabs elicit complement-mediated bactericidal activity and confer passive protection in animal models. The anti-capsular Mabs were used to identify molecular mimetics from phage display peptide libraries. The resulting peptides were antigenic mimetics as defined by binding to the Mabs used to select them but, to date, are poor immunogenic mimetics in failing to elicit anti-capsular antibodies.
Collapse
Affiliation(s)
- G R Moe
- Children's Hospital Oakland Research Institute, 747 52nd Street, Oakland, CA 94609, USA
| | | | | |
Collapse
|
47
|
Moe GR, Tan S, Granoff DM. Differences in surface expression of NspA among Neisseria meningitidis group B strains. Infect Immun 1999; 67:5664-75. [PMID: 10531214 PMCID: PMC96940 DOI: 10.1128/iai.67.11.5664-5675.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NspA is a highly conserved membrane protein that is reported to elicit protective antibody responses against Neisseria meningitidis serogroups A, B and C in mice (D. Martin, N. Cadieux, J. Hanel, and B. R. Brodeur, J. Exp. Med. 185:1173-1183, 1997). To investigate the vaccine potential of NspA, we produced mouse anti-recombinant NspA (rNspA) antisera, which were used to evaluate the accessibility of NspA epitopes on the surface of different serogroup B strains by an immunofluorescence flow cytometric assay and by susceptibility to antibody-dependent, complement-mediated bacteriolysis. Among 17 genetically diverse strains tested, 11 (65%) were positive for NspA cell surface epitopes and 6 (35%) were negative. All six negative strains also were resistant to bactericidal activity induced by the anti-rNspA antiserum. In contrast, of the 11 NspA surface-positive strains, 8 (73%; P < 0.05) were killed by the antiserum and complement. In infant rats challenged with one of these eight strains, the anti-rNspA antiserum conferred protection against bacteremia, whereas the antiserum failed to protect rats challenged by one of the six NspA cell surface-negative strains. Neither NspA expression nor protein sequence accounted for differences in NspA surface accessibility, since all six negative strains expressed NspA in outer membrane preparations and since their predicted NspA amino acid sequences were 99 to 100% identical to those of three representative positive strains. However, the six NspA cell surface-negative strains produced, on average, larger amounts of group B polysaccharide than did the 11 positive strains (reciprocal geometric mean titers, 676 and 224, respectively; P < 0.05), which suggests that the capsule may limit the accessibility of NspA surface epitopes. Given these strain differences in NspA surface accessibility, an rNspA-based meningococcal B vaccine may have to be supplemented by additional antigens.
Collapse
Affiliation(s)
- G R Moe
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | |
Collapse
|
48
|
Abstract
The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data.
Collapse
Affiliation(s)
- D G Myszka
- University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
49
|
Christodoulides M, Rattue E, Heckels JE. Effect of adjuvant composition on immune response to a multiple antigen peptide (MAP) containing a protective epitope from Neisseria meningitidis class 1 porin. Vaccine 1999; 18:131-9. [PMID: 10501243 DOI: 10.1016/s0264-410x(99)00190-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A variety of adjuvants with the potential for use with experimental human vaccines were used for immunisation of mice, in an attempt to augment the humoral immune response to a multiple antigen peptide (MAP) containing a protective epitope from the sero-subtype specific class 1 porin protein of Neisseria meningitidis, in tandem with a Th-cell epitope. Surface plasmon resonance showed that combinations of the immunomodulators pluronic block co-polymer, muramyl dipeptide and monophosphoryl lipid A (MPL), increased the magnitude and avidity of the immune response in comparison with both Al(OH)3 and Freund-type adjuvants. In addition, the incorporation of MPL was essential for the induction of a broad distribution of antibody isotypes. The antibodies induced recognised the native protein in meningococcal outer membranes in a subtype-specific manner. The formulations containing these multiple immunomodulators which have already been used in human phase I/II trials with experimental vaccines, are candidates for inclusion in future human vaccines based on synthetic peptides containing defined, protective epitopes.
Collapse
Affiliation(s)
- M Christodoulides
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, UK.
| | | | | |
Collapse
|