1
|
Figueiredo G, Osório H, Mendes MV, Mendo S. A review on the expanding biotechnological frontier of Pedobacter. Biotechnol Adv 2025; 82:108588. [PMID: 40294724 DOI: 10.1016/j.biotechadv.2025.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The genus Pedobacter consists of Gram-negative bacteria with a broad geographic distribution, isolated from diverse habitats, including water, soil, plants, wood, rocks and animals. However, characterization efforts have been limited to a small number of species. Likewise, in the context of natural products (NP), only a small fraction of Pedobacter -derived NPs have been characterized so far. In contrast, in silico analysis of the increasing number of available genomes in the databases, suggests a wealth of yet to be discovered compounds. Notable biotechnological applications described so far include the production of heparinases and chondroitinases for therapeutic purposes, phytases and galactosidases as aquaculture feed supplements, alginate lyases for biofuel production, and secondary metabolites such as pedopeptins and isopedopeptins with antimicrobial properties. Further research integrating synthetic biology approaches, holds great promise for unlocking the hidden potential of members of this genus, thus expanding its industrial applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the, University of Porto, 4200-135 Porto, Portugal
| | - Marta V Mendes
- CIIMAR/CIMAR LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, 4450-208 Porto, Portugal
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M, González JM, Spring S, Rohlfs M, Brinkhoff T, Cypionka H, Göker M, Fiebig A, Klein J, Goesmann A, Fuhrman JA, Wagner-Döbler I. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 2013; 8:e57487. [PMID: 23526944 PMCID: PMC3587595 DOI: 10.1371/journal.pone.0057487] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
Collapse
Affiliation(s)
- Thomas Riedel
- Helmholtz-Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li N, Zhang LQ, Zhang J, Liu ZX, Huang B, Zhang SH, Nie P. Type I restriction-modification system and its resistance in electroporation efficiency in Flavobacterium columnare. Vet Microbiol 2012; 160:61-8. [PMID: 22655971 DOI: 10.1016/j.vetmic.2012.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/17/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, infects freshwater fish worldwide. However, the pathogenicity of this bacterium is poorly understood due possibly to the lack of an efficient in-frame knockout technique. In order to improve electroporation efficiency, the type I restriction-modification system (R-M system) was cloned and its role in electroporation was examined in F. columnare G(4) strain. The complete sequence of type I R-M system in the bacterium, designated as Fcl, contains all three subunits of type I R-M system, named as fclM, fclS, fclR, respectively, with the identification of a hypothetical gene, fclX. Constitutive transcription of the three genes was observed in F. columnare G(4) by RT-PCR. The ORF of fclM and fclS was cloned into the plasmid pACYC184 and transformed into Escherichia coli TOP10. The resultant E. coli strain, designated as E. coli TOPmt, was transformed with the integrative plasmid pGL006 constructed for F. columnare G(4). The integrative plasmid was re-isolated from TOPmt and incubated with the lysate of F. columnare G(4). The re-isolated integrative plasmid, designated as pGL006', showed higher resistance than pGL006. With pGL006', the electroporation efficiency of the strain G(4) increased 2.6 times, while that of F. columnare G(18) was not obviously improved. Furthermore, a method to improve the electroporation efficiency of F. columnare G(4) was developed using the integrative plasmid methylated by E. coli TOPmt which contains the fclM and fclS gene of F. columnare G(4). Further analyses showed that the fcl gene cluster may be a unique type I R-M system in F. columnare G(4). It will be of significant interest to examine the composition and diversity of R-M systems in strains of F. columnare in order to set up a suitable genetic manipulation system for the bacterium.
Collapse
Affiliation(s)
- N Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Shaya D, Zhao W, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M. Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J Biol Chem 2010; 285:20051-61. [PMID: 20404324 PMCID: PMC2888417 DOI: 10.1074/jbc.m110.101071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/10/2010] [Indexed: 11/06/2022] Open
Abstract
Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a beta-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.
Collapse
Affiliation(s)
- David Shaya
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Wenjing Zhao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Marie-Line Garron
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Zhongping Xiao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Qizhi Cui
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Zhenqing Zhang
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Traian Sulea
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Robert J. Linhardt
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Miroslaw Cygler
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| |
Collapse
|
5
|
Clark SE, Jude BA, Danner GR, Fekete FA. Identification of a multidrug efflux pump in Flavobacterium johnsoniae. Vet Res 2009; 40:55. [PMID: 19558960 PMCID: PMC2717357 DOI: 10.1051/vetres/2009038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/25/2009] [Indexed: 11/14/2022] Open
Abstract
In this study, the mechanism conferring multiple drug resistance in several strains of flavobacteria isolated from the ovarian fluids of hatchery reared 3-year old brook trout Salvelinus fontinalis was investigated. Metabolic fingerprinting and 16S rRNA gene sequences identified the isolates as Flavobacterium johnsoniae. The isolates exhibited multiple resistances to a wide range of antimicrobial classes including penicillin, cephem, monobactam, aminoglycoside, and phenicol. Although plasmids and other transposable elements containing antimicrobial resistance genes were not detected, the isolates did contain a genomic sequence for a chloramphenicol-inducible resistance-nodulation-division family multidrug efflux pump system. Efflux pumps are non-specific multidrug efflux systems. They are also a component of cell-cell communication systems, and respond specifically to cell membrane stressors such as oxidative or nitrosative stress. Understanding of efflux pump mediated antibiotic resistances will affect efficacy of clinical treatments of fishes associated with F. johnsoniae epizootics.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Biology, Colby College, 5729 Mayflower Hill Drive, Waterville, ME 04901, USA
| | | | | | | |
Collapse
|
6
|
Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED. Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 2007; 189:5108-18. [PMID: 17483221 PMCID: PMC1951883 DOI: 10.1128/jb.00401-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the -33 consensus element, -7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal -33/-7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis sigma(ABfr) consensus -33/-7 promoter elements but lacked similarity to the E. coli sigma(70) promoter elements. The length of the spacer separating the -33 and -7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
7
|
Chen S, Bagdasarian M, Kaufman MG, Walker ED. Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 2006; 73:1089-100. [PMID: 17189449 PMCID: PMC1828668 DOI: 10.1128/aem.01577-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed techniques for the genetic manipulation of Flavobacterium species and used it to characterize several promoters found in these bacteria. Our studies utilized Flavobacterium hibernum strain W22, an environmental strain we isolated from tree hole habitats of mosquito larvae. Plasmids from F. hibernum strain W22 were more efficiently (approximately 1,250-fold) transferred by electroporation into F. hibernum strain W22 than those isolated from Escherichia coli, thus indicating that an efficient restriction barrier exists between these species. The strong promoter, tac, functional in proteobacteria, did not function in Flavobacterium strains. Therefore, a promoter-trap plasmid, pSCH03, containing a promoterless gfpmut3 gene was constructed. A library of 9,000 clones containing chromosomal fragments of F. hibernum strain W22 in pSCH03 was screened for their ability to drive expression of the promoterless gfpmut3 gene. Twenty strong promoters were used for further study. The transcription start points were determined from seven promoter clones by the 5' rapid amplification of cDNA ends technique. Promoter consensus sequences from Flavobacterium were identified as TAnnTTTG and TTG, where n is any nucleotide, centered approximately 7 and 33 bp upstream of the transcription start site, respectively. A putative novel ribosome binding site consensus sequence is proposed as TAAAA by aligning the 20-bp regions upstream of the translational start site in 25 genes. Our primary results demonstrate that at least some promoter and ribosome binding site motifs of Flavobacterium strains are unusual within the bacterial domain and suggest an early evolutionary divergence of this bacterial group. The techniques presented here allow for more detailed genetics-based studies and analyses of Flavobacterium species in the environment.
Collapse
Affiliation(s)
- S Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
8
|
Shaya D, Tocilj A, Li Y, Myette J, Venkataraman G, Sasisekharan R, Cygler M. Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J Biol Chem 2006; 281:15525-35. [PMID: 16565082 DOI: 10.1074/jbc.m512055200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparinase II depolymerizes heparin and heparan sulfate glycosaminoglycans, yielding unsaturated oligosaccharide products through an elimination degradation mechanism. This enzyme cleaves the oligosaccharide chain on the nonreducing end of either glucuronic or iduronic acid, sharing this characteristic with a chondroitin ABC lyase. We have determined the first structure of a heparin-degrading lyase, that of heparinase II from Pedobacter heparinus (formerly Flavobacterium heparinum), in a ligand-free state at 2.15 A resolution and in complex with a disaccharide product of heparin degradation at 2.30 A resolution. The protein is composed of three domains: an N-terminal alpha-helical domain, a central two-layered beta-sheet domain, and a C-terminal domain forming a two-layered beta-sheet. Heparinase II shows overall structural similarities to the polysaccharide lyase family 8 (PL8) enzymes chondroitin AC lyase and hyaluronate lyase. In contrast to PL8 enzymes, however, heparinase II forms stable dimers, with the two active sites formed independently within each monomer. The structure of the N-terminal domain of heparinase II is also similar to that of alginate lyases from the PL5 family. A Zn2+ ion is bound within the central domain and plays an essential structural role in the stabilization of a loop forming one wall of the substrate-binding site. The disaccharide binds in a long, deep canyon formed at the top of the N-terminal domain and by loops extending from the central domain. Based on structural comparison with the lyases from the PL5 and PL8 families having bound substrates or products, the disaccharide found in heparinase II occupies the "+1" and "+2" subsites. The structure of the enzyme-product complex, combined with data from previously characterized mutations, allows us to propose a putative chemical mechanism of heparin and heparan-sulfate degradation.
Collapse
Affiliation(s)
- David Shaya
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Tao L, Jackson RE, Cheng Q. Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab Eng 2005; 7:10-7. [PMID: 15721806 DOI: 10.1016/j.ymben.2004.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 05/19/2004] [Indexed: 11/24/2022]
Abstract
Random mutagenesis and directed evolution has been successfully used to improve desired properties of enzymes for biocatalysis and metabolic engineering. Here we employ the method to increase copy number of a pBBR-based broad host range plasmid, which can be used to express desired enzymes in a variety of microbial hosts. Localized random mutagenesis was performed in the replication control region of a pBBR-derived plasmid containing a beta-carotene reporter. Mutant plasmids were isolated that showed increased beta-carotene production. Real-time PCR analysis confirmed that the copy number of the mutant plasmids increased 3-7 fold. Sequence of the 10 mutant plasmids indicated that each plasmid contained single or multiple mutations in the rep gene or the flanking regions. Single amino acid change of serine to leucine at codon 100 of the replication protein and single nucleotide change of C to T at 46 bp upstream of the rep gene caused the increase of plasmid copy number. The utility of the mutant plasmids for metabolic engineering were further demonstrated by increased beta-carotene production, when an isoprenoid pathway gene (dxs) was co-expressed on a compatible plasmid. The mutant plasmids were tested in Agrobacterium tumefaciens. Increase of plasmid copy number and beta-carotene production was also observed in the non-Escherichia coli host.
Collapse
Affiliation(s)
- Luan Tao
- Biological and Chemical Sciences and Engineering, Central Research and Development, E. I. DuPont de Nemours Inc., Experimental Station, E328/B48, Wilmington, DE 19880-0328, USA
| | | | | |
Collapse
|
10
|
Alvarez B, Secades P, McBride MJ, Guijarro JA. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2004; 70:581-7. [PMID: 14711690 PMCID: PMC321288 DOI: 10.1128/aem.70.1.581-587.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium psychrophilum, a member of the Cytophaga-Flavobacterium-Bacteroides group, is an important pathogen of salmonid fish. Previous attempts to develop genetic techniques for this fastidious, psychrotrophic bacterium have met with failure. Here we describe the development of techniques for the genetic manipulation of F. psychrophilum and the identification of plasmids, selectable markers, a reporter system, and a transposon that function in several isolates of this fish pathogen. The antibiotic resistance genes ermF, cfxA, and tetQ function in F. psychrophilum. Cloning vectors based on the F. psychrophilum cryptic plasmid pCP1 which carried these selectable markers were introduced by conjugation from E. coli, resulting in antibiotic-resistant colonies of F. psychrophilum. Conjugative transfer of DNA into F. psychrophilum was strain dependent. Efficient transfer was observed for two of the seven strains tested (THC02-90 and THC04-90). E. coli lacZY functioned in F. psychrophilum when expressed from a pCP1 promoter, allowing its development as a reporter for studies of gene expression. Plasmids isolated from F. psychrophilum were efficiently introduced into F. psychrophilum by electroporation, but plasmids isolated from E. coli were not suitable for transfer by this route, suggesting the presence of a restriction barrier. DNA isolated from F. psychrophilum was resistant to digestion by Sau3AI and BamHI, indicating that a Sau3AI-like restriction modification system may constitute part of this barrier. Tn4351 was introduced into F. psychrophilum from E. coli and transposed with apparent randomness, resulting in erythromycin-resistant colonies. The techniques developed in this study allow for genetic manipulation and analysis of this important fish pathogen.
Collapse
Affiliation(s)
- B Alvarez
- Area de Microbiologia, Departamento de Biología Funcional, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|
11
|
Abstract
Enzymes as drugs have two important features that distinguish them from all other types of drugs. First, enzymes often bind and act on their targets with great affinity and specificity. Second, enzymes are catalytic and convert multiple target molecules to the desired products. These two features make enzymes specific and potent drugs that can accomplish therapeutic biochemistry in the body that small molecules cannot. These characteristics have resulted in the development of many enzyme drugs for a wide range of disorders.
Collapse
Affiliation(s)
- Michel Vellard
- Department of Cellular Genetics, BioMarin Pharmaceutical Inc., 46 Galli Drive, Novato, CA 94949, USA.
| |
Collapse
|
12
|
Capila I, Wu Y, Rethwisch DW, Matte A, Cygler M, Linhardt RJ. Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:260-70. [PMID: 12044904 DOI: 10.1016/s0167-4838(02)00304-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chondroitin AC lyase (chondroitinase EC 4.2.2.5), an eliminase from Flavobacterium heparinum, cleaves chondroitin sulfate glycosaminoglycans (GAGs) at 1,4 glycosidic linkages between N-acetylgalactosamine and glucuronic acid residues. Cleavage occurs through beta-elimination in a random endolytic action pattern. Crystal structures of chondroitin AC lyase (wild type) complexed with oligosaccharides reveal a binding site within a narrow and shallow protein channel, suggesting several amino acids as candidates for the active site residues. Site-specific mutagenesis studies on residues within the active-site tunnel revealed that only the Arg to Ala 292 mutation (R292A) retained activity. Furthermore, structural data suggested that R292 was primarily involved in recognition of N-acetyl or O-sulfo moieties of galactosamine residues and did not directly participate in catalysis. The current study demonstrates that the R292A mutation affords approximately 10-fold higher K(m) values but no significant change in V(max), consistent with hypothesis that R292 is involved in binding the O-sulfo moiety of the saccharide residues. Change in chondroitin sulfate viscosity, as a function of its enzymatic cleavage, affords a shallower concave curve for the R292A mutant, suggesting its action pattern is neither purely random endolytic nor purely random exolytic. Product studies using gel electrophoresis confirm the altered action pattern of this mutant. Thus, these data suggest that the R292A mutation effectively reduces binding affinity, making it possible for the oligosaccharide chain, still bound after initial endolytic cleavage, to slide through the tunnel to the catalytic site for subsequent, processive, step-wise, exolytic cleavage.
Collapse
Affiliation(s)
- Ishan Capila
- Department of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
13
|
Blain F, Tkalec AL, Shao Z, Poulin C, Pedneault M, Gu K, Eggimann B, Zimmermann J, Su H. Expression system for high levels of GAG lyase gene expression and study of the hepA upstream region in Flavobacterium heparinum. J Bacteriol 2002; 184:3242-52. [PMID: 12029040 PMCID: PMC135102 DOI: 10.1128/jb.184.12.3242-3252.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Accepted: 03/19/2002] [Indexed: 11/20/2022] Open
Abstract
A system for high-level expression of heparinase I, heparinase II, heparinase III, chondroitinase AC, and chondroitinase B in Flavobacterium heparinum is described. hepA, along with its regulatory region, as well as hepB, hepC, cslA, and cslB, cloned downstream of the hepA regulatory region, was integrated in the chromosome to yield stable transconjugant strains. The level of heparinase I and II expression from the transconjugant strains was approximately fivefold higher, while heparinase III expression was 10-fold higher than in wild-type F. heparinum grown in heparin-only medium. The chondroitinase AC and B transconjugant strains, grown in heparin-only medium, yielded 20- and 13-fold increases, respectively, in chondroitinase AC and B expression, compared to wild-type F. heparinum grown in chondroitin sulfate A-only medium. The hepA upstream region was also studied using cslA as a reporter gene, and the transcriptional start site was determined to be 26 bp upstream of the start codon in the chondroitinase AC transconjugant strain. The transcriptional start sites were determined for hepA in both the wild-type F. heparinum and heparinase I transconjugant strains and were shown to be the same as in the chondroitinase AC transconjugant strain. The five GAG lyases were purified from these transconjugant strains and shown to be identical to their wild-type counterparts.
Collapse
|
14
|
Westwater C, Schofield DA, Schmidt MG, Norris JS, Dolan JW. Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria. MICROBIOLOGY (READING, ENGLAND) 2002; 148:943-950. [PMID: 11932441 DOI: 10.1099/00221287-148-4-943] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inability to transform many clinically important Gram-negative bacteria has hampered genetic studies addressing the mechanism of bacterial pathogenesis. This report describes the development and construction of a delivery system utilizing the broad-host-range transducing bacteriophage P1. The phagemids used in this system contain a P1 pac initiation site to package the vector, a P1 lytic replicon to generate concatemeric DNA, a broad-host-range origin of replication and an antibiotic-resistance determinant to select bacterial clones containing the recircularized phagemid. Phagemid DNA was successfully introduced by infection and stably maintained in members of the families Enterobacteriaceae (Escherichia coli, Shigella flexneri, Shigella dysenteriae, Klebsiella pneumoniae and Citrobacter freundii) and Pseudomonadaceae (Pseudomonas aeruginosa). In addition to laboratory strains, these virions were used successfully to deliver phagemids to a number of strains isolated from patients. This ability to deliver genetic information to wild-type strains raises the potential for use in antimicrobial therapies and DNA vaccine development.
Collapse
Affiliation(s)
- Caroline Westwater
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - David A Schofield
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - Michael G Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - Joseph W Dolan
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| |
Collapse
|